

1 **Intrinsic bias at non-canonical, β -arrestin-coupled seven transmembrane receptors**

2 Shubhi Pandey^{1#}, Punita Kumari^{1#}, Mithu Baidya^{1#}, Ryoji Kise², Yubo Cao³, Hemlata Dwivedi-Agnihotri¹,
3 Ramanuj Banerjee¹, Xaria X. Li⁴, Cedric S. Cui⁴, John D. Lee⁴, Kouki Kawakami², Madhu Chaturvedi¹,
4 Ashutosh Ranjan¹, Stéphane A. Laporte^{3,5}, Trent M. Woodruff^{4,6}, Asuka Inoue² and Arun K. Shukla^{1*}

5 ¹Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016,
6 India; ²Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; ³Department of
7 Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; ⁴The School of Biomedical
8 Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; ⁵Department of
9 Medicine, McGill University Health Center, McGill University, Montréal, QC, Canada; ⁶Queensland Brain
10 Institute, The University of Queensland, Brisbane 4072, Australia.

11 [#]joint 1st author; ^{*}corresponding author (email: arshukla@iitk.ac.in)

12 **Keywords**

13 GPCRs, biased signaling, β -arrestins, GPCR kinases, β -arrestin-coupled receptors, seven transmembrane
14 receptors, Complement C5a

15

16

17

18

19

20

21

22

23

24

25 **Abstract**

26 G protein-coupled receptors (GPCRs) are typically characterized by their seven transmembrane (7TM)
27 architecture, and interaction with two universal signal-transducers namely, the heterotrimeric G-
28 proteins and β -arrestins (β arrs). Synthetic ligands and receptor mutants have been designed to elicit
29 transducer-coupling preferences and distinct downstream signaling outcomes for many GPCRs. This
30 raises the question if some naturally-occurring 7TMRs may selectively engage one of these two signal-
31 transducers, even in response to their endogenous agonists. Although there are scattered hints in the
32 literature that some 7TMRs lack G-protein coupling but interact with β arrs, an in-depth understanding
33 of their transducer-coupling preference, GRK-engagement, downstream signaling and structural
34 mechanism remains elusive. Here, we use an array of cellular, biochemical and structural approaches to
35 comprehensively characterize two non-canonical 7TMRs namely, the human decoy D6 receptor (D6R)
36 and the human complement C5a receptor (C5aR2), in parallel with their canonical GPCR counterparts,
37 CCR2 and C5aR1, respectively. We discover that D6R and C5aR2 couple exclusively to β arrs, exhibit
38 distinct GRK-preference, and activate non-canonical downstream signaling partners. We also observe
39 that β arrs, in complex with these receptors, adopt distinct conformations compared to their canonical
40 GPCR counterparts despite being activated by a common natural agonist. Our study therefore
41 establishes D6R and C5aR2 as bona-fide arrestin-coupled receptors (ACRs), and provides important
42 insights into their regulation by GRKs and downstream signaling with direct implications for biased
43 agonism.

44 Words: 220

45

46

47

48

49

50

51

52 **Introduction**

53 G protein-coupled receptors (GPCRs), also referred to as seven transmembrane receptors (7TMRs),
54 constitute a large family of cell surface proteins in the human genome with direct involvement in all
55 major physiological processes (1, 2). The overall transducer-coupling framework of these receptors is
56 highly conserved across the family where agonist-activation results in the coupling of heterotrimeric G-
57 proteins followed by phosphorylation, primarily by GRKs, at multiple sites, and subsequent binding of β -
58 arrestins (β bars) (3, 4). While natural agonists typically induce both G-protein and β arr coupling to these
59 receptors, it is possible to design ligands that promote preferential coupling to one of these transducers
60 leading to biased signaling and functional outcomes (5, 6). This framework, referred to as biased
61 agonism, is considered to harbor previously untapped therapeutic potential by minimizing the side-
62 effects exerted by conventional GPCR targeting drugs (7-9).

63 A central question that still remains to be answered unequivocally is whether naturally-biased
64 7TMRs, able to selectively and exclusively engage one of the two well-known transducers, i.e. G-proteins
65 and β bars, exist? Although there are scattered examples in the literature of 7TMRs, which lack functional
66 G-protein coupling but exhibit agonist-induced β arr recruitment (10-12), they are poorly characterized in
67 terms of comprehensive G-protein coupling profile, GRK-dependence, β arr conformational signatures,
68 and downstream signaling. These receptors include, for example, the human decoy D6 receptor (D6R)
69 (13-15), the chemokine receptor CXCR7 (16) and the complement C5a receptor (C5L2/C5aR2) (17-20).
70 Interestingly, such receptors share a natural agonist with prototypical GPCRs and therefore, constitute
71 intriguing pairs of receptors activated by a common agonist that exhibit strikingly different transducer-
72 coupling patterns. For example, the complement C5a peptide binds to two different 7TMRs, C5aR1 and
73 C5aR2 but only C5aR1 exhibits functional coupling to G-protein while both of them recruit β bars (21, 22).

74 Here, we focus on two such receptor pairs namely the CCR2-D6R activated by a common
75 chemokine ligand CCL7, and C5aR1-C5aR2 that share complement C5a as their native agonist (Figure
76 1A). Using a set of complementary approaches, we discover that D6R and C5aR2 do not couple to any of
77 the common G-proteins, robustly recruit β bars but have differential dependence on GRKs, activate a
78 broad spectrum of potential signaling pathways, and impart distinct conformational signatures on β bars
79 compared to their prototypical GPCR counterparts. This study not only establishes D6R and C5aR2 as
80 bona fide “arrestin-coupled receptors” (ACRs) but also provides a conceptual and experimental
81 framework that can be leveraged to discover additional receptors falling into this category, and to better
82 understand the intricacies of biased agonism and 7TMR signaling.

83 **Lack of G-protein coupling and second messenger response for D6R and C5aR2**

84 Although there are scattered suggestions in the literature that D6R and C5aR2 do not couple to G-
85 proteins, the experimental data are primarily limited to a lack of cAMP response as readout of G α i-
86 activation (13, 22). Therefore, we first set out to comprehensively measure the G-protein activation
87 profile of these receptors using a NanoBiT-based G-protein dissociation assay (23). Here, a NanoBiT-G
88 protein consisting of a large fragment (LgBiT)-containing G α subunit and a small fragment (SmBiT)-fused
89 G γ 2 subunit, along with the untagged G β 1 subunit are expressed in HEK-293 cells together with the
90 receptor construct (23). Subsequently, agonist-induced changes in the luminescent signal arising from
91 the dissociation of G α and G β sub-units is measured as a readout of G-protein activation (23). As
92 mentioned earlier, we used CCR2 and C5aR1 as prototypical counterparts of D6R and C5aR2
93 respectively, in this assay. We observed that CCR2 and C5aR1 yielded robust activation of G α i subtype as
94 expected, however, D6R and C5aR2 failed to generate any measurable response for any of the G-protein
95 subtypes tested here (Figure 1B-C, Figure S1A-B). In these experiments, the receptors from each pair
96 were expressed at comparable levels as measured by flow-cytometry-based surface expression assay
97 (Figure S1C). Furthermore, in line with this observation, D6R and C5aR2 also failed to elicit any
98 detectable second messenger response in cAMP and Ca⁺⁺ mobilization assays while C5aR1 exhibited the
99 expected profile for G α i-coupling (Figure 1D). Taken together, these data demonstrate the lack of
100 measurable activation of common G-proteins upon agonist-stimulation of D6R and C5aR2.

101 **Barr-recruitment, trafficking and GRK preference for D6R and C5aR2**

102 In order to assess Barr-recruitment to D6R and C5aR2, we first used a co-immunoprecipitation assay by
103 expressing these receptors in HEK-293 cells followed by agonist-stimulation, addition of purified Barrs
104 and chemical cross-crosslinking. We observed robust interaction of Barr1 and 2 upon agonist-
105 stimulation with each of these receptors (Figure 2A). We next monitored agonist-induced trafficking of
106 mYFP-tagged Barr1 and 2 for D6R and C5aR2 using confocal microscopy, and we detected a typical "class
107 B" signature of Barr trafficking as observed for other GPCRs (24). Upon agonist-stimulation, Barrs were
108 first localized to the membrane followed by their trafficking to endosomal vesicles (Figure 2B-C) with an
109 apparent preference for Barr2 (Figure 2A-C). Interestingly, we also observed some level of Barr
110 localization to the membrane in D6R and C5aR2 expressing cells even under basal condition (i.e. before
111 agonist-stimulation), which is more pronounced for Barr2 (Figure 2B-C). We further corroborated
112 agonist-induced Barr1 and 2 trafficking and pre-coupling by using mCherry-tagged Barr1/2 constructs in

113 confocal microscopy (Figure S2A-B), and scoring β arr1/2 localization patterns from a pool of cells (Figure
114 S3).

115 In order to probe whether internalized vesicles harbor both β arrs and receptors, we measured
116 their colocalization by immunostaining, and observed that both D6R and C5aR2 co-localized on
117 endosomal vesicles together with β arr2 (Figure 2D). These findings suggest that agonist-induced β arr
118 interaction of D6R and C5aR2 has a functional consequence in terms of driving their endocytosis. In
119 order to further establish β arr interaction, we reconstituted C5aR2- β arr1 complex stabilized by a
120 synthetic antibody fragment (Fab30) directed against β arr1, and subjected the complex to single particle
121 negative staining-based visualization by electron microscopy. As presented in Figure 2E, we observed
122 several 2D class-averages reminiscent of previously described tail-engaged receptor- β arr interaction
123 (25), which further confirms a direct interaction between C5aR2 and β arr1.

124 As receptor phosphorylation is a key determinant for β arr recruitment, and GPCR kinases (GRKs)
125 play a central role in this process, we measured the contribution of different GRKs in agonist-induced
126 β arr recruitment using CRISPR-CAS9 based GRK knock-out cell lines generated recently (26). These
127 assays were performed under Gai/Gao-inhibited condition by co-expressing the catalytic subunit of
128 pertussis toxin (PTX) in order to compare the responses for each of the receptors in the absence of G-
129 protein signaling. We observed that C5aR2 primarily relies on GRK5/6 for β arr recruitment, a pattern
130 that is mostly analogous to C5aR1 (Figure 3A). On the contrary, we observed that GRK knock-out has no
131 major effect on CCL7-induced β arr recruitment for D6R, and even an increase in β arr recruitment upon
132 GRK5/6 knock-out (Figure 3B). This is in striking contrast with CCR2, which clearly requires GRK5/6 for
133 β arr recruitment (Figure 3B). In order to probe this interesting observation further, we assessed agonist-
134 induced phosphorylation of D6R using the PIMAGO reagent that detects total protein phosphorylation.
135 We observed that D6R exhibits robust constitutive phosphorylation, which does not change significantly
136 upon CCL7-stimulation (Figure 3C). As a control, we also measured the phosphorylation of a chimeric β 2-
137 adrenergic receptor with V2R carboxyl-terminus (referred to as β 2V2R), and we observed an agonist-
138 induced increase in phosphorylation as anticipated (Figure S4A).

139 D6R harbors a number of Ser/Thr residues in its carboxyl-terminus that represent potential
140 phosphorylation sites (Figure S4B). In addition, it also harbors a stretch of acidic amino acids at its distal
141 carboxyl-terminus that is suggested to play a role in its constitutive internalization (27). Therefore, we
142 generated two different truncations of D6R lacking either the distal region with acidic residues (D6R $^{\Delta 351}$)
143 or the Ser/Thr cluster and the acidic residue containing stretch together (D6R $^{\Delta 342}$) (Figure S4B). We

144 observed that D6R^{Δ351} is also constitutively phosphorylated similar to D6R^{WT}; however, D6R^{Δ342} did not
145 exhibit constitutive phosphorylation (Figure S4B). These data indicate that receptor phosphorylation is
146 localized primarily in the Ser/Thr cluster region i.e. between Ser³⁴² and Ser³⁵¹. We also measured
147 agonist-induced βarr2 interaction and trafficking for these truncated constructs, and observed that even
148 D6R^{Δ351} exhibits near-complete loss of βarr2 recruitment and trafficking, similar to D6R^{Δ342} (Figure 3D).
149 These data indicate that D6R recruits βarrs primarily through the distal stretch in its carboxyl-terminus-
150 containing acidic residues, despite having constitutive phosphorylation. In line with this observation, we
151 also found that CCL7-stimulation fails to elicit any measurable trafficking of βarr2 for D6R^{Δ351} and D6R^{Δ342}
152 mutants (Figure S5A-B). Taken together, these data help reconcile the intriguing observation that GRK
153 knock-out does not influence βarr interaction for D6R.

154 **Distinct conformational signatures of βarrs for D6R and C5aR2**

155 In order to probe if the distinct transducer-coupling preference of D6R and C5aR2 with respect to their
156 prototypical GPCR counterparts may impart distinct βarr conformations, we measured the
157 conformational signatures of βarrs upon their interaction with these receptors. First, we used a
158 previously described intrabody30 (Ib30)-based sensor for βarr1, which selectively recognizes receptor-
159 bound conformation of βarr1, and reports agonist-induced formation of receptor-βarr1 complex in
160 cellular context (28, 29). We observed that the Ib30 sensor reacted robustly to βarr1 upon C5a-
161 stimulation of C5aR1, but it failed to exhibit a response for C5aR2 under normalized surface expression
162 of these receptors (Figure 4A). As C5aR2 robustly recruits βarr1, the lack of Ib30 sensor reactivity
163 indicates a distinct conformation in C5aR2-bound βarr1 compared to C5aR1-bound βarr1. On the other
164 hand, Ib30 recognized βarr1 for both D6R and CCR2 although the response was relatively weaker for
165 CCR2 (Figure 4A). Considering the relatively stronger βarr1 recruitment to CCR2 than D6R in NanoBiT
166 assay (Figure 3B-C), it is plausible that the difference in Ib30 sensor reactivity reflects distinct
167 conformations of βarr1 for D6R and CCR2; however, further studies are required to probe this
168 possibility. Collectively, the Ib30 sensor data also suggests that βarr1 conformations differ between the
169 two ACRs namely C5aR2 vs. D6R, which underscores the conformational diversity that exists in 7TMR-
170 βarr complexes.

171 Second, we employed FlAsH-BRET based sensors of βarr2 (30) to further probe the
172 conformations of βarr2 in complex with these receptors. These intramolecular sensors harbor a BRET
173 donor (R-luciferase) at the N-terminus of βarr2 while FlAsH labeling sequences (tetracysteine motifs) at
174 different positions (Figure 4B). Thus, in-parallel comparison of these sensors for a given receptor can

175 reveal conformational signatures of β arr2 with a change in BRET signal as the readout. As presented in
176 Figure 4B, we observed striking differences not only in C5aR1-C5aR2 and D6R-CCR2 pairs but also
177 between C5aR2 and D6R. For example, there is an opposite change in BRET signal for the F6 sensor upon
178 activation of C5aR1 vs. C5aR2 (Figure 4B) while the F4 sensor displays directionally opposite change in
179 BRET signal for D6R vs. CCR2 (Figure 4B). Furthermore, the comparison of BRET response for F1 and F6
180 sensors also reveals a distinct pattern for C5aR2 vs. D6R (Figure 4B). Taken together, these data further
181 corroborate the conformational differences in β arr1 revealed by the lb30 sensor, and collectively
182 establish distinct β arr conformations induced by D6R and C5aR2 compared to their canonical GPCR
183 counterparts. Although these assays are analytically quantitative, they are also rather qualitative in
184 nature for assessing differences in receptor- β arr conformations, as they do not directly illuminate the
185 precise differences unique in β arr conformations. However, they clearly reflect distinct signatures of
186 β arrs, which can be investigated at higher resolution in the future studies using direct biophysical
187 approaches.

188 **D6R and C5aR2 display distinct profile of ERK1/2 MAP kinase activation**

189 Agonist-induced ERK1/2 MAP kinase phosphorylation has been one of the most common readouts of
190 β arr signaling and therefore, we assessed whether D6R and C5aR2 stimulate ERK1/2 phosphorylation.
191 While CCL7-stimulation resulted in a robust increase in ERK1/2 phosphorylation downstream of CCR2,
192 we did not observe a detectable stimulation for D6R expressing cells (Figure 5A). We also observed a
193 decrease in CCR2 mediated pERK1/2 at high dose of CCL7 that has been reported previously for some
194 chemokine receptors. Interestingly, we observed a typical pattern of ERK1/2 phosphorylation upon
195 stimulation of C5aR1; however, we noticed an elevated level of pERK1/2 in C5aR2 expressing cells,
196 which was reduced significantly upon C5a-stimulation in a dose dependent fashion (Figure 5B).
197 Interestingly, the elevated level of phospho-ERK1/2 was not sensitive to pre-treatment with PTX (i.e. G α i
198 inhibition) (Figure 5C) but it was ablated completely with U0126 (MEK inhibitor) pre-treatment (Figure
199 5D). These data suggest that while a canonical pathway involving MEK is involved in the enhanced level
200 of phospho-ERK1/2, it is not dependent on G α i. As mentioned earlier, we observed a measurable level of
201 constitutive β arr localization in the membrane for C5aR2 expressing cells, and therefore, we measured
202 the effect of β arr knock-down on the basal level of ERK1/2 phosphorylation. Interestingly however,
203 although the knock-down of β arr1 or 2 did not affect the elevated basal level of ERK1/2 phosphorylation
204 in C5aR2 expressing cells, β arr2 depletion appears to reduce the effect of C5a on lowering ERK1/2

205 phosphorylation (Figure S6). Additional studies would be required to better understand the mechanistic
206 basis of this intriguing observation in further detail.

207 **Global phospho-proteomics analysis reveals potential signaling pathways downstream of D6R**

208 In order to identify potential pathways involved in signaling downstream of D6R, we performed a
209 phospho-antibody array based screen to identify cellular proteins that undergo a change in their
210 phosphorylation level upon D6R stimulation. This array is designed for broad-scope protein
211 phosphorylation profiling, and it consists of more than a thousand antibodies related to multiple
212 signaling pathways and biological processes. In addition, we also carried out a global phospho-
213 proteomics study on HEK-293 cells expressing D6R under basal and agonist-stimulated conditions (Figure
214 6A, Figure S7). These studies yielded a number of cellular proteins, which exhibit a change in their
215 phosphorylation status upon activation of D6R (Table 1 and 2), including a sub-set that were common to
216 both, the phospho-antibody array and phosphoproteomics (Figure S8). A classification of these proteins
217 based on their cellular localization, molecular function and biological processes suggests that D6R
218 activation is linked to a broad spectrum of cellular and functional outcomes (Figure 6B).

219 In order to gain further insights into D6R signaling, we also compared the list of proteins
220 identified in our study with those described previously in the context of β arr-biased agonism by
221 stimulating the angiotensin II subtype 1 receptor (AT1R) using a β arr-biased agonist SII (31-33), and a
222 recent study describing the phospho-proteome of another chemokine receptor, CCR2, in response to
223 stimulation with CCL2 chemokine (34). This comparison identified not only a number of common
224 proteins present in these studies but also several proteins that are unique to D6R activation (Figure 6C,
225 Figure S8). These findings underline that some of the signaling downstream of D6R may be potentially
226 similar to that identified for other GPCRs in the context of β arr-mediated pathways while there may also
227 exist receptor-specific and previously unidentified pathways downstream of D6R. It should be noted
228 here that SII elicits measurable G α i and G α 12 signaling response (35), and therefore, a part of the hits
229 identified earlier may not be exclusively β arr-dependent.

230 We also experimentally validated the phosphorylation of three different proteins namely cofilin
231 (Ser³), protein kinase D (PKD) (Ser^{744/748}) and the platelet-derived growth factor receptor (PDGFR- β)
232 (Tyr⁷⁵¹) upon CCL7-stimulation in D6R expressing cells, and observed agonist-induced, time-dependent
233 response (Figure S9A-C). Furthermore, we also observed that agonist-induced phosphorylation of
234 PDGFR- β (Tyr⁷⁵¹) (Figure 6D) and cofilin (Ser³) (Figure S9D) is significantly attenuated upon β arr knock-

235 down suggesting a direct involvement of β arrs. Interestingly, a previous study has reported that the
236 phosphorylation of cofilin upon stimulation of D6R with another chemokine, CCL2, is also reduced by
237 β arr1 depletion (13). Taken together these data suggest a broad signaling network downstream of D6R
238 and set the stage for further investigation of specific signaling pathways and corresponding cellular
239 outcomes going forward.

240 **C5aR2 activation leads to p90RSK phosphorylation and neutrophil mobilization**

241 In order to probe if C5aR2 may signal through non-canonical pathways, we carried out a phospho-
242 antibody array based screen to identify cellular proteins that undergo a change in their phosphorylation
243 level upon C5aR1 and C5aR2 stimulation, similar to that described for D6R above. We observed that a
244 number of proteins undergo phosphorylation/dephosphorylation upon stimulation of C5aR1 and C5aR2
245 expressing cells (Table1), and interestingly, several of the proteins were common to both receptors
246 (Figure 7A) suggesting a potential involvement of β arrs. We experimentally validated agonist-induced
247 phosphorylation of one of these proteins, p90RSK, at three different phosphorylation sites namely
248 Thr³⁵⁹, Ser³⁸⁰ and Thr⁵⁷³. We observed agonist-induced and time-dependent phosphorylation at Ser³⁸⁰
249 (Figure 7B) while the other two sites did not yield consistent data. Importantly, C5a-induced
250 phosphorylation of p90RSK at Ser³⁸⁰ is reduced upon β arr1 knock-down in HEK-293 cells suggesting an
251 involvement of β arr1 (Figure 7C).

252 In order to further corroborate this finding, we measured C5a-induced p90RSK phosphorylation
253 in human monocyte derived macrophages (HMDMs), which constitutively express both the receptors i.e.
254 C5aR1 and C5aR2. As efficient knock-down of β arrs in these cells has technical limitations, we used a
255 pharmacological approach to dissect the specific contribution of C5aR2 by using a C5aR2-specific agonist
256 (P32) (36). As presented in Figure 7D, we found that C5a-induced p90RSK phosphorylation at Thr⁵⁷³ in
257 HMDMs was identical to that induced by P32. Interestingly, pre-treatment of these cells with a C5aR1
258 specific antagonist (PMX53) (37) did not block P32-induced p90RSK phosphorylation suggesting a direct
259 involvement of C5aR2 (Figure 7D). On the other hand, C5a-induced phosphorylation of Thr³⁵⁹ and Ser³⁸⁰
260 in HMDMs appears to be mediated primarily by C5aR1 as pre-treatment with PMX53 blocks C5a
261 response, and stimulation with P32 does not yield a significant response (Figure S10).

262 In order to identify a potential cellular and physiologically relevant effect mediated by C5aR2,
263 we used C5aR1 and C5aR2 knock-out mice to measure C5a-induced polymorphonuclear leukocyte
264 (PMN) mobilization. We observed that C5a induced robust PMN mobilization in wild-type mice in a time-

265 dependent manner, which was significantly reduced but not completely abolished by C5aR1 knock-out
266 (Figure 7E). Interestingly, PMN mobilization is also reduced in C5aR2 knock-out mice, albeit at lower
267 levels compared to C5aR1, suggesting a distinct role of C5aR2 in PMN mobilization, in addition to the
268 major role played by C5aR1 (Figure 7E). Taken together, these data suggest a direct contribution of
269 C5aR2 activation in PMN mobilization and establish a distinct functional response elicited through this
270 receptor *in vivo*.

271 **Discussion**

272 The NanoBiT-based G-protein dissociation assay and second messenger assays demonstrate the lack of
273 common G-protein coupling upon activation of D6R and C5aR2. However, an interesting question that
274 remains to be explored is whether these receptors lack a physical interaction with G-proteins or they are
275 incapable of activating G-proteins despite a physical interaction. In this context, it would be tantalizing
276 to explore whether D6R and C5aR2 undergo an activation-dependent conformational change similar to
277 that observed for prototypical GPCRs including outward movement of transmembrane (TM) helix 5 and
278 6 (3). It is plausible that activation dependent outward movement of TM5 and 6 is restricted in these
279 receptors, which does not permit G-protein interaction; however, exploring this possibility requires
280 additional studies. While structural elucidation of GPCR activation and signaling has seen an exponential
281 progress, direct structural analysis of D6R and C5aR2 is still rather limited, and requires additional effort
282 going forward.

283 An intriguing observation is also the constitutive phosphorylation of D6R, which does not alter
284 significantly upon CCL7-stimulation. Although we observe some level of constitutive localization of β arrs
285 in the membrane for D6R, it is significantly enhanced upon CCL7-stimulation followed by distribution in
286 endosomal vesicles. Taken together with the data that β arr-recruitment is not affected upon GRK knock-
287 out, it is possible that receptor phosphorylation has a rather minor contribution in β arr recruitment, and
288 in fact, the truncation of distal carboxyl-terminus without disrupting the phosphorylation site cluster
289 appears to be sufficient to ablate β arr recruitment and trafficking. These findings potentially uncover a
290 non-canonical mode of interaction between a 7TMR and β arrs without a major role of receptor
291 phosphorylation, which is considered as a generic paradigm in the 7TMR family.

292 C5aR2 has also been an enigmatic receptor since its discovery due to lack of G-protein
293 activation, and it has been shown to be involved in broadly modulating GPCR signaling including that of
294 C5aR1 (21, 38). However, the activation of a signaling pathway directly downstream of C5aR2 has not

295 been established yet. We observe an elevated level of basal ERK1/2 phosphorylation in HEK-293 cells
296 expressing C5aR2, which is reduced upon C5a-stimulation, but it does not appear to involve G α i or β arrs.
297 Importantly, we also discover that several cellular proteins undergo a change in their phosphorylation
298 status upon C5aR2 activation, and that p90RSK phosphorylation downstream of C5aR2 is sensitive to
299 β arr1 depletion. Therefore, our study provides a framework for exploring additional signaling pathways
300 downstream of C5aR2, and may help uncover novel functions of C5aR2 going forward.

301 Finally, the distinct conformational signatures of β arrs upon their interaction with D6R and
302 C5aR2 compared to CCR2 and C5aR1 also underscores the conformational diversity in 7TMR- β arr
303 interaction. It is interesting to note that both D6R and C5aR2 do not exhibit the canonical readout of
304 ERK1/2 phosphorylation despite robustly recruiting β arrs. This observation underlines the notion that
305 recruitment of β arrs may not always translate to ERK1/2 phosphorylation, and that there may be
306 additional cross-talk mechanisms, which fine-tune the functional responses for 7TMRs. Previous studies
307 have linked distinct β arr conformations to different functional outcomes such as desensitization,
308 endocytosis and signaling although a clean separation of these functional outcomes has been technically
309 challenging (39-43). Our study now provides an additional handle in the form of these ACRs to decipher
310 and link conformational signatures in β arrs to specific functional outcomes.

311 In summary, our study establishes D6R and C5aR2 as “arrestin-coupled receptors” with a lack of
312 detectable G-protein coupling and potential signaling through non-canonical pathways. Moreover, we
313 also establish that β arrs adopt distinct conformations upon interaction with these receptors compared
314 to prototypical GPCRs, which underscores the conformational diversity of 7TMR- β arr complexes. Our
315 findings underscore distinct functional capabilities of 7TMRs, and they have broad implications to better
316 understand the framework of biased agonism at these receptors.

317

318

319

320

321

322

323 **Acknowledgement**

324 Research in A.K.S.'s laboratory is supported by the Intermediate Fellowship of the Wellcome Trust/DBT
325 India Alliance (IA/I/14/1/501285) awarded to A.K.S., the Swarnajayanti Fellowship of the Department of
326 Science and Technology (DST/SJF/LSA-03/2017-18), Innovative Young Biotechnologist Award from the
327 Department of Biotechnology (DBT) (BT/08/IYBA/2014-3), Department of Biotechnology (DBT
328 BT/PR29041/BRB/10/1697/2018), Science and Engineering Research Board (EMR/2017/003804), Young
329 Scientist Award from the Lady TATA Memorial Trust, and the Indian Institute of Technology, Kanpur.
330 A.K.S. is EMBO Young Investigator, and Joy Gill Chair Professor. M.B. is supported by the National Post-
331 Doctoral Fellowship of SERB (PDF/2016/002930) and Institute Post-Doctoral Fellowship of IIT Kanpur.
332 H.D.-A. is supported by National Post-Doctoral Fellowship of SERB (PDF/2016/2893) and BioCare grant
333 from DBT (BT/PR31791/BIC/101/1228/2019). M.C. is supported by a fellowship from CSIR
334 [09/092(0976)/2017-EMR-I]. We thank Dr. Somnath Dutta for his guidance on single particle analysis
335 using negative staining electron microscopy, Dr. Ashish Srivastava for assistance in C5aR2-βarr1 complex
336 formation, Dr. Eshan Ghosh for helping with stable cell line generation and CCL7 purification from *Sf9*
337 cells, and Debarati Roy for help with CCL7 purification from *E. coli*. We thank Kayo Sato, Shigeko Nakano
338 and Ayumi Inoue (Tohoku University) for their assistance of plasmid preparation, maintenance of
339 cultured cells and cell-based GPCR assays. A.I. was funded by the PRIME 19gm5910013 the LEAP
340 JP19gm0010004 from the Japan Agency for Medical Research and Development (AMED). Research
341 performed in T.M.W's laboratory is supported by the National Health and Medical Research Council
342 (APP1118881). This work was also supported by a grant from the Canadian Institutes of Health Research
343 (CIHR) (MOP-74603) to SAL, and YC is supported by a doctoral training scholarship from the Fonds de
344 recherche santé Québec.

345

346

347

348

349

350

351 **Authors' contributions**

352 S.P. carried out the ERK1/2 phosphorylation assays on C5aRs, p90RSK phosphorylation in HEK-293 cells,
353 D6R phosphorylation experiments, co-IP experiments for measuring β arr interaction with D6R
354 truncation constructs, and D6R phospho-hit validation together with H.D.-A. and M.B.; P.K. and M.B.
355 prepared samples for phospho-antibody array experiments and phospho-proteomics, carried out data
356 analysis and classification, β arr trafficking using confocal microscopy and ERK1/2 phosphorylation for
357 D6R and CCR2; R.K. and K.K. carried out G-protein dissociation assays and β arr recruitment assays in GRK
358 knock-out cells under the supervision of A.I.; Y.C. performed BRET experiments under the supervision of
359 S.A.L.; H.D.A. performed Ib30 sensor experiments together with M.B.; R.B. carried out negative staining
360 on C5aR2- β arr1-Fab30 complex; M.C. and A.R. assisted in validation of phospho-antibody array and
361 phospho-proteomics hits for D6R; X.L. carried out p90RSK phosphorylation in HMDMs under the
362 supervision of T.M.W.; S.C. and J.L. performed PMN mobilization experiment in mice under the
363 supervision of T.M.W.; A.K.S. managed and coordinate overall project. All authors contributed to
364 manuscript writing and editing.

365 **Competing interests**

366 The authors declare that they have no competing interests.

367 **Data and materials availability**

368 All data needed to evaluate the conclusions in the paper are present in the paper and the
369 supplementary materials. Additional data related to this paper can be provided by the authors upon
370 reasonable request.

371

372

373

374

375

376

377 **Materials and methods**

378 **General reagents, plasmids, and cell culture**

379 Most of the general chemicals and molecular biology reagents were purchased from Sigma unless
380 mentioned otherwise. HEK-293 cells (ATCC) were maintained at 37°C under 5% CO₂ in Dulbecco's
381 modified Eagle's medium (Gibco, Cat. no. 12800-017) supplemented with 10% FBS (Gibco, Cat. no.
382 10270-106) and 100 U ml⁻¹ penicillin and 100 µg ml⁻¹ streptomycin (Gibco, Cat. no. 15140-122). Stable
383 cell lines expressing N-terminal Flag tagged receptor constructs in pcDNA3.1 vector were generated by
384 transfecting HEK-293 cells with 7 µg of plasmid DNA using polyethylenimine (PEI) (Polysciences, Cat. no.
385 19850), followed by selection using G418 (Gibco, Cat. no. 11811-031, 200-1000 µg ml⁻¹). Single cell
386 clones, which survived G418 selection, were subsequently expanded and sub-cultured. βarr1 and βarr2
387 shRNA expressing stable cell lines have been described earlier (44), and they were cultured in DMEM
388 containing 10% (FBS), 100 U ml⁻¹ penicillin and 100 µg ml⁻¹ streptomycin, and 1.5µg ml⁻¹ puromycin
389 dihydrochloride (GoldBio, Cat. no. P-600). Recombinant C5a (human) and CCL7 (human) ligands were
390 expressed and purified as described previously (17, 45). The plasmids encoding FLAG-C5aR1, FLAG-
391 C5aR2, FLAG-CCR2, FLAG-D6R, βarr1-mCherry, βarr1-YFP, βarr2-YFP, Ib30-YFP have been described
392 previously (17, 29, 41, 44, 46). All constructs were verified by DNA sequencing (Macrogen). The
393 antibodies used in this study were purchased either from Sigma (HRP-coupled mouse anti-FLAG M2,
394 HRP-coupled anti-β-actin, HRP-coupled anti-rabbit) or from Cell Signaling Technology (βarrs, ERK, PKD,
395 PDGFRB, Cofilin, P90RSK).

396 **NanoBiT-G-protein dissociation assay**

397 Agonist-induced G-protein activation was measured by a NanoBiT-G-protein dissociation assay (23), in
398 which dissociation of a G α subunit from a G $\beta\gamma$ subunit was monitored by a NanoBiT system (Promega).
399 Specifically, a NanoBiT-G-protein consisting of a large fragment (LgBiT)-containing G α subunit and a
400 small fragment (SmBiT)-fused G γ ₂ subunit with a C68S mutation, along with the untagged G β ₁ subunit,
401 was expressed with a test GPCR construct, and the ligand-induced luminescent signal change was
402 measured. HEK-293A cells (Thermo Fisher Scientific) were seeded in a 6-well culture plate (Greiner Bio-
403 One) at a concentration of 2 x 10⁵ cells ml⁻¹ (2 ml per dish hereafter) in DMEM (Nissui Pharmaceutical)
404 supplemented with 10% FBS (Gibco), glutamine, penicillin, and streptomycin, one day before
405 transfection. The transfection solution was prepared by combining 5 µl of polyethylenimine solution (1
406 mg ml⁻¹) and a plasmid mixture consisting of 100 ng LgBiT-containing G α , 500 ng G β ₁, 500 ng SmBiT-

407 fused $G\gamma_2$ (C68S), and an indicated volume (below) of a test GPCR with N-terminal HA-derived signal
408 sequence and FLAG-epitope tag followed by a flexible linker
409 (MKTIIIALSYIFCLVFADYKDDDDKGGSGGGSGGGSSSSGGG; ssHA-FLAG-GPCR) in 200 μ l of Opti-MEM (Thermo
410 Fisher Scientific). To measure dissociation of the other G-protein families, LgBiT- $G\alpha_s$ subunit (G_s), LgBiT-
411 $G\alpha_q$ subunit (G_q) and LgBiT- $G\alpha_{13}$ subunit (G_{13}) were used instead of the LgBiT- $G\alpha_{i1}$ subunit plasmid. To
412 enhance NanoBiT-G-protein expression for G_s , G_q and G_{13} , 100 ng plasmid of RIC8B (isoform 2; for G_s) or
413 RIC8A (isoform 2; for G_q and G_{13}) was additionally co-transfected. To match the expression of the
414 receptor pairs, 40 ng (C5aR1; with 160 ng of an empty vector) and 200 ng (C5aR2, CCR2 and D6R)
415 plasmids were used. After an incubation for one day, the transfected cells were harvested with 0.5 mM
416 EDTA-containing Dulbecco's PBS, centrifuged, and suspended in 2 ml of Hank's balanced saline solution
417 (HBSS, Gibco, Cat. no. 14065-056) containing 0.01% bovine serum albumin (BSA fatty acid-free grade,
418 SERVA) and 5 mM HEPES (pH 7.4) (assay buffer). The cell suspension was dispensed in a white 96-well
419 plate at a volume of 80 μ l per well and loaded with 20 μ l of 50 μ M coelenterazine (Carbosynth), diluted
420 in the assay buffer. After 2 h incubation, the plate was measured for baseline luminescence (SpectraMax
421 L, Molecular Devices) and 20 μ l of 6X test compound (C5a or CCL7), serially diluted in the assay buffer,
422 were manually added. The plate was immediately read for the second measurement as a kinetics mode
423 and luminescence counts recorded from 3 min to 5 min after compound addition were averaged and
424 normalized to the initial counts. The fold-change signals were further normalized to the vehicle-treated
425 signal and were plotted as a G-protein dissociation response. Using the Prism 8 software (GraphPad
426 Prism), the G-protein dissociation signals were fitted to a four-parameter sigmoidal concentration-
427 response curve.

428 **Receptor surface expression assay**

429 For measuring surface expression of the receptors, whole-cell based surface ELISA was performed as
430 described previously (47). Briefly, receptor-expressing cells were seeded in 24-well plate (pre-coated
431 with poly-D-Lysine) at a density of 0.1 million per well. After 24 h, media was removed, and cells were
432 washed once with ice-cold 1XTBS followed by fixation with 4% PFA (w/v in 1XTBS) on ice for 20 min and
433 subsequent extensive washing with 1XTBS. Blocking was done with 1% BSA prepared in 1XTBS for 1.5 h,
434 which was followed by incubation of cells anti-FLAG M2-HRP antibody (Sigma, Cat no. A8592) at a
435 dilution of 1:2000 prepared in 1% BSA+1XTBS for 1.5 h. Subsequently, cells were washed thrice with 1%
436 BSA (in 1XTBS) to rinse off any unbound traces of antibody. Cells were incubated with 200 μ L of TMB-
437 ELISA (Thermo Scientific, Cat. no: 34028) substrate till the appearance of a light blue color and reaction

438 was stopped by transferring 100 μ L of this solution to a different 96-well plate containing 100 μ L of 1 M
439 H_2SO_4 . Absorbance was recorded at 450 nm in a multi-mode plate reader (Victor X4, Perkin Elmer). For
440 normalization of signal intensity, cell density was estimated using a mitochondrial stain Janus green B.
441 Briefly, TMB was removed and cells were washed twice with 1XTBS followed by incubation with 0.2%
442 Janus green B (Sigma, Cat. no. 201677) (w/v) for 15 min. Cells were destained by extensively washing
443 with distilled water. The stain was eluted by adding 800 μ L of 0.5 N HCl per well. 200 μ L of this solution
444 was transferred to a 96-well plate and absorbance was read at 595 nm. Data normalization was
445 performed by calculating the ratio of A_{450} to A_{595} values.

446 In the NanoBiT assays, surface expression was measured using flow-cytometry based assay.
447 Briefly, HEK-293A cells were transfected as described in the “NanoBiT-G-protein dissociation assay”
448 section. One day after transfection, the cells were harvested with 0.53 mM EDTA-containing Dulbecco’s
449 PBS (D-PBS). Forty percent of the cell suspension was transferred in a 96-well V-bottom plate and
450 fluorescently labeled by using anti-FLAG epitope (DYKDDDDK) tag monoclonal antibody (Clone 1E6,
451 FujiFilm Wako Pure Chemicals; 10 μ g ml⁻¹ diluted in 2% goat serum- and 2 mM EDTA-containing D-PBS
452 (blocking buffer)) and a goat anti-mouse IgG secondary antibody conjugated with Alexa Fluor 488
453 (Thermo Fisher Scientific; 10 μ g ml⁻¹ in diluted in the blocking buffer). After washing with D-PBS, the cells
454 were resuspended in 200 μ l of 2 mM EDTA-containing D-PBS and filtered through a 40 μ m filter.
455 Fluorescent intensity of single cells was quantified by an EC800 flow cytometer equipped with a 488 nm
456 laser (Sony). Fluorescent signal derived from Alexa Fluor 488 was recorded in a FL1 channel and flow
457 cytometry data were analyzed by a FlowJo software (FlowJo). Live cells were gated with a forward
458 scatter (FS-Peak-Lin) cutoff of 390 setting a gain value of 1.7. Values of mean fluorescence intensity
459 (MFI) from approximately 20,000 cells per sample were used for analysis.

460 **cAMP assay**

461 Ligand-induced $\text{G}\alpha_s$ - and $\text{G}\alpha_i$ -activation was assessed by measuring cAMP with Glosensor assay as
462 described previously (1,4). Briefly, HEK-293 cells were transfected with FLAG-tagged receptor (3.5 μ g)
463 and luciferase-based 22F cAMP biosensor construct (3.5 μ g) (Promega). 14–16 h post transfection, cells
464 were harvested and resuspended in assay buffer containing D-luciferin (0.5 mg ml⁻¹, GoldBio, Cat. no.
465 LUCNA-1G) in 1X HBSS, pH 7.4 and 20 mM of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
466 (HEPES). Cells were seeded in 96 well white plate (Corning) at a density of 125,000 cells per 100 μ l and
467 incubated at 37°C for 90 min. This was followed by an additional incubation of 30 min at room
468 temperature. For stimulation, ligand doses (AVP for V₂R, C5a for C5aR1 and C5aR2; CCL7 for D6R) were

469 prepared by serial dilution ranging from 0.1 pM to 1 μ M and were added to respective wells. For G α i
470 activation assay, prior to ligand addition, cells were treated with forskolin (5 μ M). Luminescence was
471 recorded using a microplate reader (Victor X4; Perkin Elmer). Data were normalized by treating maximal
472 concentration of agonist as 100%. Data were plotted and analyzed using nonlinear regression in
473 GraphPad Prism software.

474 **Calcium assay**

475 In order to assess the G α q-coupling and activation, we performed calcium assay using Fluo4-NW dye
476 (Invitrogen, Cat. no. F36206). HEK-293 cells were transfected with FLAG-tagged receptor encoded in
477 the pcDNA3.1 construct (3.5 μ g). After 24 h of transfection, cells were seeded at a density of 125,000
478 cells per 50 μ l in each well of a 96-well plate. Following seeding, the plate was incubated at 37°C and
479 5% CO₂ for 1 h to allow the cells to settle down. After 1 h, the plate was removed from the incubator
480 and 50 μ l of freshly prepared 2X dye loading solution was subsequently added to each well. The plate
481 was again incubated at 37°C and 5% CO₂ for an additional 30 min followed by 30 min incubation at
482 room temperature. The fluorescence was recorded using multimode plate reader (EnSpire; Perkin
483 Elmer) at excitation wavelength of 494 nm and emission wavelength of 516 nm. The human
484 bradykinin receptor (B₂R) was used as a positive control in the experiment. Data were normalized by
485 subtracting values of fluorescence recorded after ligand treatment with values of baseline
486 fluorescence and time kinetics showing calcium response was plotted in the GraphPad Prism software.

487 **Chemical cross-linking and co-immunoprecipitation**

488 For measuring agonist dependent β arr recruitment by respective receptor constructs, chemical
489 crosslinking was performed following previously published protocol (5). Briefly, HEK-293 cells were
490 transfected with FLAG-tagged receptor. 48 h post-transfection, cells were serum starved in DMEM for at
491 least 6 h followed by stimulation with 100 nM of C5a for C5aR2 and CCL7 for D6R. Cells were lysed in a
492 homogeniser in lysis buffer (20 mM Hepes, pH 7.4, 100 mM NaCl, Protease and Phosphatase inhibitor
493 cocktail). Purified β arr1 or β arr2 (2.5 μ g) was added to the lysate and allowed to incubate for 1 h at
494 room temperature. Freshly prepared amine reactive crosslinker, DSP (Sigma, Cat. no. D3669) at a final
495 concentration of 1.5 mM was added to the reaction mixture and incubated for an additional 45 min at
496 room temperature to allow cross-linking of receptor- β arr complex. Following incubation with DSP, the
497 reaction was quenched using 1 M Tris, pH 8.0. 1% (v/v) MNG (maltose neopentyl glycol) was added for
498 solubilisation of receptor- β arr complex at room temperature for 1 h. In order to capture the complex,

499 pre-equilibrated FLAG M1 antibody beads were added and incubated for additional 2 h at 4°C. Beads
500 were thoroughly washed to remove any non-specific binding and the receptor-βarr complex were finally
501 eluted in FLAG-EDTA solution (20 mM HEPES, 150 mM NaCl, 2 mM EDTA, 0.01% MNG, 5 µg ml⁻¹ FLAG-
502 peptide) and further incubated for 20 min at room temperature. Receptor and βarr were probed by
503 immunoblotting by using rabbit mAb anti-βarr antibody (1:5000, CST, Cat. no. 4674). The blot was
504 stripped and then reprobed for FLAG-tagged receptor using anti-FLAG antibody (1:2000, Sigma, Cat. no.
505 A8592). Data were quantified using ImageLab software (Bio-Rad) and were analyzed using appropriate
506 statistical analysis in GraphPad prism.

507 **Confocal microscopy**

508 In order to visualize βarr recruitment and trafficking for D6R and C5aR2, confocal microscopy was
509 used following the protocol described previously (48). Briefly, HEK-293 cells were transfected with
510 receptor (3.5 µg), βarr1-mYFP or βarr1-mYFP (3.5 µg). For D6R mutants the constructs were
511 normalized for surface expression and HEK-293 cells were transfected with D6R^{WT} (200 ng), D6R¹⁻³⁵¹
512 (5 µg) and D6R¹⁻³⁴² (7 µg). After 24 h, cells were seeded at 1 million density on to 0.01% poly-D-lysine
513 (Sigma, Cat. no. P0899) pre-treated confocal dishes (SPL Lifesciences, Cat. no. 100350). Cells were
514 allowed to attach to the plate for 24 h, prior agonist stimulation cells were serum starved for at least
515 6 h. For fixed cell imaging cells were fixed after starvation with 4% PFA (Sigma, Cat. no. P6148) in 1X
516 phosphate-buffered saline (PBS, Sigma, Cat. no. D1283) for 20 min at 4°C. Fixed cells were thoroughly
517 washed with 1XPBS and then the cells were incubated in 3% BSA with 0.1% Triton X-100 in 1XPBS
518 (Sigma, Cat. no. 9002-93-1) for permeabilization. For staining FLAG tagged receptors we used anti-
519 FLAG M1 antibody (1:100) labelled with DyLight594 (Thermo Scientific, Cat. no. 46412) dye in
520 presence of 2 mM CaCl₂. Cells were thoroughly washed with 1XPBS having 2 mM CaCl₂. Finally, for
521 nuclear staining, DAPI stain (5 µg ml⁻¹ (Sigma, Cat. no. D9542)) was used for 10 min at room
522 temperature. After extensive washing, cells on cover slips were mounted on slides with VectaShield
523 HardSet mounting medium (VectaShield, Cat. no. H-1400). Confocal imaging of all samples was done
524 using Zeiss LSM 710 NLO confocal microscope where samples were housed on a motorized XY stage
525 with a CO₂ enclosure and a temperature-controlled platform equipped with 32x array GaAsP
526 descanned detector (Zeiss). A Ti: sapphire laser (Coherent) was used for exciting the DAPI channel, a
527 Multi-Line argon laser source is used for the green channel (mYFP), and for the red channel (DyLight
528 594), a diode pump solid state laser source was used. All microscopic setting including laser intensity
529 and pinhole opening were kept in the same range for a parallel set of experiments. For avoiding any

530 spectral overlap between two channels filter excitation regions and bandwidths were adjusted
531 accordingly. Images were scanned in line scan mode and acquired images were processed post
532 imaging in ZEN lite (ZEN-blue/ZEN-black) software suite from ZEISS. For quantifying receptor co-
533 localization with β arrs, the Pearson's correlation coefficient was measured using JACoP plugin in
534 ImageJ suite. Three regions of interest per cell were analysed for each receptor at membrane and
535 endosomes both and the means \pm S.E. of PCCs are mentioned for respective receptors in the figure
536 legends along with the number of cells and the number of independent experiments. For quantifying
537 β arr trafficking confocal images captured in 1 to 8 min and 9 to 30 min after agonist stimulation were
538 categorized into early and late time points, respectively. The scoring of β arr localization was done on the
539 basis of mYFP fluorescence either in the plasma membrane (surface localized) or in the punctate
540 structures in the cytoplasm (internalized). In cells where β arrs were seen in both, the membrane and in
541 punctate structures, cells having more than three punctae in the cytoplasm were scored under
542 internalized category. All the experiments were repeated at least three times independently on different
543 days, and the data are plotted as percentage of β arr localization from more than 500 cells for each
544 condition. To avoid any sort of bias in manual counting, the same set of images was analyzed by three
545 different individuals in a blinded fashion and cross-checked. All data were plotted in GraphPad Prism
546 software.

547 **Isolation of C5aR- β arr1-Fab30 complex and negative staining electron microscopy**

548 N-terminal Flag-tagged chimeric C5aR2 with V₂R carboxyl terminus was expressed in cultured Sf9 cells
549 together with GRK2^{CAAX} and β arr1 using the baculovirus expression system. 66 h post-infection, cells
550 were stimulated with C5a followed by stabilization of the complex using Fab30. Subsequently, the
551 complex was purified using anti-Flag M1 antibody agarose and size exclusion chromatography as
552 described previously for the analogous β ₂AR- β arr1 complex (25). Prior to staining, the C5aR2-V2- β arr1-
553 Fab30 protein complex was diluted to 0.02 mg ml⁻¹ in buffer containing 20 mM HEPES, pH7.4 and 150
554 mM NaCl. Negative staining was performed in accordance with previously published protocols (49). In
555 brief, 3.5 μ l of the protein complex was applied onto glow discharged formvar/carbon coated 300 mesh
556 copper grids (PELCO, Ted Pella) and blotted off after adsorption of the sample for 1 min using a filter
557 paper. Staining was done with freshly prepared 0.75% (w/v) uranyl formate stain for 45 seconds. The
558 negatively stained samples were imaged with a FEI Tecnai G2 12 Twin TEM (LaB6, 120 kV) equipped with
559 a Gatan CCD camera (4k x 4k) at 30,000x magnifications. Approximately, 10,000 particles were picked
560 manually from 118 micrographs using e2boxer.py within the EMAN2.31 software suite (50). 2D

561 classification of the picked particles was performed with ISAC2 (51) within the SPHIRE suite (52) using
562 the box files generated from EMAN2.31.

563 **NanoBiT-β-arrestin recruitment assay**

564 The effect of GRKs on agonist-induced βarr activation was measured by a NanoBiT-βarr recruitment
565 assay. Specifically, the parental HEK-293A, GRK2/3-KO, GRK5/6 and GRK2/3/5/6-KO cells (26) were
566 seeded and transfection was performed by following the same procedures as described in “NanoBiT-G-
567 protein dissociation assay” section. For the βarr recruitment assay, 100 ng (hereafter per well in a 6-well
568 plate) of an N-terminally LgBiT-fused βarr1/2 plasmid and 80 ng (C5aR1; with 420 ng of an empty vector)
569 or 500 ng (C5aR2, CCR2 and D6R) of a test GPCR plasmid with the N-terminal HA-derived signal
570 sequence and FLAG-epitope tag and a C-terminal SmBiT (ssHA-FLAG-GPCR-SmBiT). The transfected cells
571 were subjected to the NanoBiT luminescent measurement as described above. Luminescence counts
572 from 10 min to 15 min after compound addition were used for the calculation.

573 **Detection of D6R basal phosphorylation by pIMAGO assay**

574 To detect agonist independent basal phosphorylation in D6R, pIMAGO phosphoprotein detection kit
575 from Sigma (Cat. no. 18419) was used and receptor phosphorylation was detected as per the
576 manufacturer’s protocol. Briefly, HEK-293 cells were transfected with 7 µg D6 receptor DNA complexed
577 with 21 µg PEI. 48 h after transfection, cells were serum-starved for 6 h followed by stimulation with 200
578 nM CCL7 for 30 min and harvested in 1XPBS. Post stimulation, cells were lysed in buffer containing 50
579 mM HEPES (pH 7.4), 150 mM NaCl, 10% glycerol (v/v), 1% NP40, 2 mM EDTA, 1X phosSTOP and 1X
580 protease inhibitor cocktail (Roche, Cat. no. 04693116001) for 2h at room temperature. The lysate was
581 cleared by centrifugation and transferred to a separate tube already containing pre-equilibrated M1-
582 FLAG beads supplemented with 2 mM CaCl₂. The receptor was enriched by performing FLAG-
583 immunoprecipitation as described previously. Afterwards, the protein was eluted in FLAG elution buffer
584 containing 20 mM HEPES pH 7.5, 150 mM NaCl, 2 mM EDTA, 0.06% NP40 and 250 µg ml⁻¹ FLAG peptide.
585 Subsequently, protein loading dye was added to each sample, followed by the addition of 5X IAA
586 solution to a 1X final concentration from the pIMAGO kit. The samples were incubated at room
587 temperature for 15 min in dark. Eluted samples were subjected to SDS-PAGE followed by western
588 blotting. The membrane was blocked in 1X blocking buffer for 1 h followed by incubation with pIMAGO
589 reagent (1:1000, prepared in 1X pIMAGO buffer) for 1 h. The membrane was washed thrice with 1X
590 wash buffer and once with 1XTBST (5 min each wash). The PVDF membrane was incubated with avidin-
591 HRP (1:1000, prepared in 1X blocking buffer) for 1h at room temperature and washed thrice with

592 1XTBST (5 min each wash). The signal was detected using Promega ECL solution on chemidoc (BioRad).
593 Blot was stripped and re-probed for total receptor using HRP conjugated anti-FLAG M2-antibody (Sigma,
594 1: 5000). The signal was normalized with respect to total receptor and quantified using ImageLab
595 software (BioRad).

596 To assess the role of D6R C-terminus in basal receptor phosphorylation, the receptor was
597 truncated at C-terminus at two positions (i.e. 1-342 and 1-351) by inserting a STOP codon by site-
598 directed mutagenesis (NEB, Cat. no. E0554). The surface expression of WT and truncated receptor
599 constructs were normalized to similar levels by DNA titration in HEK-293 cells. Relative surface
600 expression of all the constructs was measured by whole cell-based surface ELISA as described previously.
601 For the detection of basal phosphorylation in D6R-WT and mutants, 50-60% confluent HEK-293 cells
602 were transfected with D6R-WT (200 ng) and mutant receptor DNA complexed with 21 µg PEI (1-342: 7
603 µg, 1-351: 5 µg). For each construct, 5x10 cm HEK-293 plates were transfected. 48 h post-transfection,
604 cells were harvested in 1XPBS and lysed in NP40-lysis buffer. Receptor phosphorylation was detected
605 using a western blot based pIMAGO- phosphoprotein detection kit as mentioned in the previous section.

606 To identify the specific determinants of βarr interaction in D6R C-terminus, 50-60% confluent
607 HEK-293 cells were transfected with either D6R-WT (200 ng) or mutants (1-342: 5 µg and 1-351: 5 µg)
608 and βarr2 (2 µg). The surface expression of WT and mutant receptor constructs was normalized to
609 similar levels as mentioned in the previous section. 48h post-transfection, cells were serum-starved for 6
610 h followed by stimulation with 100 nM CCL7 for 30 min. Post-stimulation, cells were harvested in 1XPBS
611 and proceeded for chemical crosslinking. Cells were lysed by Dounce homogenization in 20 mM HEPES
612 pH 7.5, 350 mM NaCl, 1XPhosSTOP, and 1X complete protease inhibitor cocktail). This was followed by
613 the addition of freshly prepared dithiobis(succinimidyl-propionate) to a final concentration of 1 mM. Cell
614 lysates were tumbled at room temperature for 40 min and the reaction was quenched by 1 M Tris pH
615 8.5. Afterward, lysates were solubilized in 1% MNG (w/v) at room temperature for 1.5 h and centrifuged
616 at 15000 rpm for 10 min. Cleared lysates were supplemented with CaCl₂ to a final concentration of 2
617 mM followed by the addition of pre-equilibrated M1-FLAG beads to the lysate. The samples were
618 tumbled at room temperature for 1.5 h to allow bead binding and beads were washed 3 times each with
619 low salt buffer (20 mM HEPES pH7.5, 150 mM NaCl, 2 mM CaCl₂, and 0.01% MNG) and high salt buffer
620 (20 mM HEPES pH7.5, 350 mM NaCl, 2 mM CaCl₂ and 0.01% MNG) alternately. The bound proteins were
621 eluted in FLAG-elution buffer containing 20mM HEPES pH 7.5, 150mM NaCl, 2mM EDTA, 0.01% MNG
622 and 250 µg ml⁻¹ FLAG peptide. Eluted βarr2 was detected by Western blotting using rabbit anti-βarr mAb

623 (1:5000, CST, Cat. no. 4674). The blots were stripped and re-probed for receptor with HRP-coupled anti-
624 FLAG M2 antibody (1:5000). The blots were developed on Chemidoc (Bio-Rad) and quantified using
625 ImageLab software (Bio-Rad).

626 **Ib30 NanoBiT Assay**

627 We measured ligand-induced β arr conformational change recognized by Intrabody 30 (Ib30) using
628 NanoBiT assay (28). Ib30 and β arr1 were N-terminally fused to LgBiT and SmBiT respectively with the 15-
629 amino acid flexible linker and inserted into the pCAGGS plasmid. The receptor pair C5aR1 and C5aR2
630 exhibited matched cell surface expression at DNA concentration of 0.25 μ g and 3 μ g respectively.
631 Similarly, cells transfected with 0.5 μ g DNA of D6R and 3 μ g CCR2 showed comparable surface
632 expression. For NanoBiT assay, HEK-293 cells at a density of 3 million were transfected with receptor
633 (DNA concentration as mentioned above), LgBiT-Ib30 (5 μ g) and SmBiT β arr1 (2 μ g) using PEI
634 (Polyethylenimine; 1 mg ml⁻¹) as transfection agent at DNA:PEI ratio of 1:3. After 16-18 h of transfection,
635 cells were harvested in PBS solution containing 0.5 mM EDTA and centrifuged. Cells were resuspended
636 in 3 ml assay buffer (HBSS buffer with 0.01% BSA and 5 mM HEPES, pH 7.4) containing 10 μ M
637 coelenterazine (Goldbio, Cat. no: CZ05) at final concentration. The cells were then seeded in a white,
638 clear-bottom, 96 well plate at a density of 0.7 \times 10⁵ cells per 100 μ l per well. The plate was kept at 37°C
639 for 90 min in the CO₂ incubator followed by incubation at room temperature for 30min. Basal reading
640 was read on luminescence mode of multi-plate reader (Victor X4). The cells were then stimulated with
641 varying doses of each ligand (C5a and CCL7) ranging from 0.1 pM to 1 μ M (6x stock, 20 μ l per well)
642 prepared in drug buffer (HBSS buffer with 5 mM HEPES, pH 7.4). Luminescence was recorded for 60 min
643 immediately after addition of ligand. The initial counts of 4-10 cycles were averaged and basal corrected.
644 Fold increase was calculated with respect to vehicle control (unstimulated values) and analyzed using
645 nonlinear regression four-parameter sigmoidal concentration-response curve in GraphPad Prism
646 software.

647 **FIAsH BRET experiments**

648 HEK-293SL cells were cultured in DMEM supplemented with 10% FBS and 20 μ g ml⁻¹ gentamicin, and
649 grown at 37°C in 5% CO₂ and 90% humidity. Cells were seeded at a density of 1.5 \times 10⁵ cells per well in 6-
650 well plate and were transiently transfected the next day with C5aR1, C5aR2, D6R, or CCR2 and β arr2-
651 FIAsH constructs using conventional calcium phosphate co-precipitation method. One day post-
652 transfection, cells were detached and seeded in poly-ornithine-coated white 96-well plates at a density

653 of 2.5×10^4 cells per well in media. The next day, cells were washed and incubated for 1 h with Tyrode's
654 buffer (140 mM NaCl, 2.7 mM KCl, 1 mM CaCl₂, 12 mM NaHCO₃, 5.6 mM D-glucose, 0.5 mM MgCl₂, 0.37
655 mM NaH₂PO₄, 25 mM HEPES, pH 7.4) at room temperature. FlAsH labeling was performed as previously
656 described (30). Briefly, 1.75 μ l of FlAsH-EDT₂ stock reagent was mixed with 3.5 μ l of 25 mM EDT solution
657 in DMSO and left for 10 min at room temperature. 100 μ l of Tyrode's buffer was then added and left for
658 5 min at room temperature. The volume was then adjusted to 5 ml with Tyrode's buffer to complete the
659 labeling solution. Cells were washed with Tyrode's buffer and incubated with 60 μ l of labeling solution
660 per well for 1 h at 37°C. Cells were then washed twice with BAL wash buffer followed by another wash
661 with Tyrode's buffer. Next, 90 μ l of Tyrode's buffer was added per well and incubated for 1 h at 37°C.
662 Cells were stimulated with 1 μ M C5a or CCL7 ligand for 10 min, with six consecutive BRET measurements
663 taken every minute after 5 min stimulation. Cell-permeable substrate coelenterazine H (final
664 concentration of 2 μ M) was added 3 min prior to BRET measurements, with triplicates for each
665 condition. BRET measurements were performed using a Victor X (PerkinElmer) plate reader with a filter
666 set (center wavelength/band width) of 460/25 nm (donor) and 535/25 nm (acceptor). BRET ratios were
667 determined by dividing the intensity of light emitted by the acceptor over the intensity of light emitted
668 by the donor. The net BRET ratio is calculated by subtracting the background BRET ratio (unlabeled)
669 from the FlAsH-EDT₂-labeled BRET ratio. The Δ net BRET is then obtained by dividing the stimulated net
670 BRET ratio by the vehicle net BRET ratio.

671 **ERK1/2 phosphorylation assay in HEK-293 cells**

672 Agonist-induced ERK1/2 MAP kinase phosphorylation was carried out following the protocol described
673 previously (53). Briefly, HEK-293 cells expressing the indicated receptors were seeded into a 6-well plate
674 at a density of 1 million cells per well. Cells were serum-starved for 12 h followed by stimulation with
675 the indicated concentration of corresponding ligands at specific time points. To study the effect of
676 pertussis toxin (PTX) on basal ERK phosphorylation of C5aR2, cells were treated with 100 ng ml⁻¹ PTX (in
677 starvation media) for 12 h prior to ligand stimulation. Similarly, to study the effect of MEK-inhibitor
678 (U0126) on basal ERK phosphorylation of C5aR2, cells were pretreated with 10 μ M U0126 for 30 min
679 before ligand stimulation. After the completion of the time course, the media was aspirated, and cells
680 were lysed in 100 μ l 2x SDS dye per well. Cell lysates were heated at 95°C for 15 min followed by
681 centrifugation at 15000 rpm for 10 min. 10 μ L of lysate was loaded per well and separated in SDS-PAGE
682 followed by western blotting. Blots were blocked in 5% BSA (in TBST) for 1 h and incubated overnight
683 with rabbit phospho-ERK (CST, Cat. no. 9101) primary antibody at 1:5000 dilution. Blots were washed

684 thrice with TBST for 10 min each and incubated with anti-rabbit HRP-coupled secondary antibody
685 (1:10000, Genscript), Cat. No. A00098 for 1 h. Blots were washed again with TBST for three times and
686 developed with Promega ECL solution (Cat. no. W1015) on chemidoc (BioRad). Blots were stripped with
687 low pH stripping buffer and then re-probed for total ERK using rabbit total ERK (CST, Cat. no. 9102/)
688 primary antibody at 1:5000 dilution.

689 **Phospho-antibody array**

690 A phospho-antibody array (Full Moon Biosystems) consisting of 1318 antibodies against proteins from
691 multiple signaling pathways were used to discover potential signaling pathways downstream of
692 receptors investigated here. The samples were prepared as per the manufacturer's instruction and sent
693 to Full Moon Biosystems for further analysis. Briefly, HEK-293 cells stably expressing the receptor was
694 stimulated with saturating concentration of ligands (C5a, 100 nM for C5aR1 and C5aR2; CCL7, 100 nM
695 for D6R) for 10 min and then harvested using 1 ml of ice-cold 1X PBS supplemented with 0.01%
696 Phosphatase inhibitor (PhosSTOP, Roche, Cat. no. 04906845001). Pellets corresponding to 10 plates of a
697 10 cm plate were pooled together and centrifuged at 5,000 rpm for 5 min at 4°C. The supernatant was
698 discarded and the pellets were washed again with 1 ml of cold 1X PBS to remove any traces of media.
699 HEK-293 cells stably expressing the receptor under non-stimulation conditions were used as a control.
700 Three independent set of pellets comprising of cells pooled from the unstimulated conditions and
701 stimulated conditions were prepared following similar conditions and sent to Full Moon Biosystems for
702 phosphoarray and analysis. The antibody array was done using a kit (Cat. no. KAS02). Briefly cells was
703 lysed and centrifuged to obtain a clear lysate. Prior labelling of the proteins in the lysate with biotin,
704 buffer was exchanged for ensuring proper biotinylation. The amount of total protein was analyzed using
705 BCA estimation for both unstimulated and stimulated conditions. Subsequently, equal amount of
706 biotinylated proteins were allowed to bind with the immobilized antibodies coated on a glass slide. After
707 rigorous washing, Cy3-streptavidin was used to detect the bound proteins to respective antibodies. The
708 antibody array slide was finally detected using a microarray scanner. Fold increase in signal was
709 obtained after dividing the fluorescence signal emitted from respective antibody spots for stimulated
710 sample by corresponding signal from unstimulated sample.

711 **MS-based Phosphoproteomics**

712 For MS-based phosphoproteomics of D6R, HEK-293 cells stably expressing the D6R were grown at a
713 confluence of ~70%. Cells were serum starved for at least 6 h prior to stimulation. Cells were then
714 stimulated for 10 min with 100 nM of CCL7. Media was then aspirated and cells were washed with

715 1XTBS containing 0.01% of phosphatase inhibitors. Cells corresponding to 10 plates each were scraped
716 and collected and pelleted in a 15 ml falcon. Three independent sets of unstimulated and stimulated cell
717 pellets each were prepared. The pellets were then treated with 6 M Gn-HCL/0.1 M Tris (pH 8.5) plus
718 phosphatase inhibitors and resuspended well. The lysate was then boiled at 90°C for 10 min, followed by
719 sonication for breaking the nucleic acids and reducing the viscosity of slimy material. After sonication,
720 lysate was again boiled at 90°C for 5 min and then spun at 15,000 rpm for 20 min at room temperature.
721 The supernatant was collected carefully leaving behind the cell pellet. Protein concentration was
722 estimated by BCA using the same lysis buffer as a blank solution. Lysates corresponding to 5 mg or more
723 was transferred into 1.5 ml Eppendorf tubes, double parafilmmed and sent to V-Proteomics for analysis.

724 For sample preparation, 25 µg of the sample from each condition were first reduced with 5 mM
725 TCEP and further alkylated with 50 mM iodoacetamide. Alkylated proteins were then digested with
726 trypsin (1:50, trypsin: lysate ratio) for 16 h at 37°C. Prior to phospho-enrichment of the samples with
727 TiO₂, digested samples were cleaned up using Sep-Pak columns. These digests and enriched samples
728 were further cleaned up using C18 silica cartridge and dried using speed vac. The dried pellet was
729 resuspended in Buffer-A (5 % acetonitrile / 0.1% formic acid). For the mass spectrometric analysis of
730 peptide mixtures, all the experiments were performed using EASY-nLC 1000 system (Thermo Fisher
731 Scientific) coupled to QExactive mass spectrometer (Thermo Fisher Scientific) equipped with
732 nanoelectrospray ion source. 1 µg of the peptide mixture was loaded on pre-column and resolved using
733 15 cm Pico-Frit filled with 1.8 µm C18-resin (Dr. Maeisch). The peptides were loaded with Buffer A and
734 eluted with a 0-40% gradient of Buffer-B (95% acetonitrile/0.1% Formic acid) at a flow rate of 300 nL min⁻¹
735 for 105 min. The QExactive was operated using the Top10 HCD data-dependent acquisition mode with
736 a full scan resolution of 70,000 at m/z 400. MS/MS scans were acquired at a resolution of 17500 at m/z
737 400. Lock mass option was enabled for polydimethylcyclosiloxane (PCM) ions (m/z = 445.120025) for
738 internal recalibration during the run. MS data was acquired using a data-dependent top10 method
739 dynamically choosing the most abundant precursor ions from the survey scan.

740 For data analysis, all six raw files (3 sets of stimulated and 3 sets of unstimulated samples) were
741 analyzed with Proteome Discoverer 2.2 against the Uniprot Human reference proteome database
742 (containing 20162 entries). For Sequest HT and MS Amanda 2.0 search, the precursor and fragment
743 mass tolerances were set at 10 ppm and 0.5 Da, respectively. The protease used to generate peptides,
744 i.e. enzyme specificity was set for trypsin/P (cleavage at the C terminus of “K/R: unless followed by “P”)
745 along with maximum missed cleavages value of two. Carbamidomethyl on cysteine as fixed modification

746 and oxidation of methionine and N-terminal acetylation were considered as variable modifications for
747 database search. Both peptide spectrum match and protein false discovery rate were set to 0.01 FDR
748 and determined using percolator node. Relative protein quantification of the proteins were performed
749 using Minora feature detector node of Proteome Discoverer 2.2 with default settings and considering
750 only high PSM (peptide spectrum matches) confidence. Based on uniprot accession number Pfam, KEGG
751 pathways and GO annotations were assigned for the list of identified proteins. Also, for high sensitivity-
752 phospho site localization to be detected for individual site, ptmRS node was considered. Based on
753 relative abundance of phospho-peptides across three independent sets a one-way ANOVA test was
754 performed to screen out significant and high confidence phospho-peptides by using Perseus
755 (MaxQuant).

756 In order to get a functional insight from the robust data generated from phospho-proteomics
757 and phospho-array, we also analyzed additional data sets from the literature namely the phospho-
758 proteomics data set for CCR2, a chemokine receptor (34), and a β arr biased phospho-proteomics data
759 set carried out on the AT1aR stimulated with a biased agonist SII (31, 33). The rationale behind including
760 the above datasets is because D6R is a chemokine receptor with exclusive bias towards β arr. Therefore,
761 comparing the above-mentioned dataset can bring out some common features of β arr signaling
762 involving chemokine receptors. Moreover, the unique hits from D6R not matching with these datasets
763 will allow us to understand novel β arr mediated signaling outcome in atypical chemokine receptors.
764 After analyzing all data sets overlapping hits were identified. The phosphor-sites mentioned for the
765 common identified proteins from all the data sets in Figure 6C are retrieved from D6R phosphor-
766 proteomics data set. Furthermore, a list of unique proteins was generated from both phospho-array
767 and phospho-proteomics data of D6R and the unique proteins with their phospho-sites labeled were
768 submitted to kinase enrichment analysis tool KEA 2.0 (<https://www.maayanlab.net/KEA2/>). The
769 significantly enriched hits were listed based on their P-values. The listed proteins were further analyzed
770 in STRING database to identify protein-protein interaction to understand the pathways involved. Using
771 this criterion, we selected three proteins i.e. protein kinase D1 (PKD1), cofilin, and the platelet derived
772 growth factor receptor β (PGGFR- β) for immunoblotting based validation from cell lysate.

773 **Validation of D6R phospho-protein hits**

774 For validation of phospho-array and phospho-proteomics hits, stable cell lines expressing D6R were
775 seeded at 3 million per 10 cm plate. Cells were serum-starved with 20 mM HEPES (pH 7.4) and 1% BSA in
776 serum-free DMEM media for 16-18h. Cells were then stimulated with 200 nM CCL7/for indicated time

777 points. Cells were lysed in buffer containing 50 mM HEPES (pH 7.4), 150 mM NaCl, 10% glycerol (v/v), 1%
778 NP40, 2 mM EDTA, 1X phosSTOP and 1X protease inhibitor cocktail for 1h at room temperature. The
779 lysate was cleared by centrifugation and solubilized proteins were estimated with BCA method (G
780 Bioscience). Approximately 90-100 μ g of each sample was loaded on 4-20% precast gradient gel (Bio-
781 Rad) and resolved proteins were transferred to a PVDF membrane. After blocking with 3% BSA in 1X
782 TBST blots were incubated with primary antibody (phospho-Cofilin^{S3}, 1:1000; phospho-PKD^{S744/T748} 1:1000,
783 phospho-PDGFR^{Y751}, 1:1000). Blots were developed in ChemiDocTM MP Gel Imaging System (Bio-Rad)
784 after incubating the blots in anti-rabbit HRP antibody (1:5000) for 1h at room temperature.

785 To evaluate the role of β arr isoforms in phosphorylation of these hits, D6R or C5aR2 plasmids
786 were transfected in control-, β arr1- and β arr2-shRNA expressing cell lines at 7 μ g. Serum-starvation,
787 stimulation, and sample preparation were performed as mentioned previously. About 90-100 μ g of cell
788 lysates were run on 4-20% precast gradient gel and western blotting was performed as per the previous
789 protocol. PVDF membranes were probed for phospho-Cofilin^{S3} (CST, Cat. no. 3313, 1:1000), phospho-
790 PKD^{S744/T748} (CST, Cat. no. 2054, 1:1000), phospho-PDGFR^{Y751} (CST, Cat. no. 4549, 1: 1000), phospho-
791 P90RSK^{S380} (CST, Cat. no. 11989, 1:500). Blots were stripped with low pH stripping buffer and then re-
792 probed for total RSK using RSK1/RSK2/RSK3 rabbit monoclonal primary antibody at 1:2500 dilution (CST,
793 Cat. no. 9355S,) or for β -actin (Sigma, Cat. no. A3854, 1:50000). Phospho-site specific signal was
794 normalized with respect to the total RSK or β -actin signal.

795 **Ligand-induced p90RSK phosphorylation in HEK-293 cells**

796 In order to measure C5a-induced p90RSK phosphorylation, HEK-293 cells stably expressing C5aR2 were
797 seeded in 10 cm culture dishes at a density of 5 million. After 24 h, cells were subjected to serum
798 starvation for 16 h followed by stimulation with 100 nM C5a for indicated time points and harvested in
799 PBS. Subsequently, cells were lysed in 200 μ L of 2XSDS reducing buffer, and lysates were heated at 95°C
800 for 30 min followed by centrifugation at 15000 rpm for 15 min. Afterwards, 10 μ L of cell lysate was
801 loaded in each well and separated on SDS-PAGE followed by western blotting. The PVDF membranes
802 were blocked in 5% BSA (in TBST) for 1 h followed by overnight incubation with phosphorylation site-
803 specific p90RSK primary antibodies (phospho-Thr³⁵⁹, Cat. no. 8753, 1:500; phospho-Thr⁵⁷³, Cat. no.
804 9346S, 1:500; phospho-Ser^{S380}, CST, Cat. no. 11989, 1:500). Next day, blots were washed thrice with
805 TBST for 10min each and incubated with anti-rabbit HRP-coupled secondary antibody (Genscript, Cat.
806 no. A00098, 1:2000) for 1 h. The secondary antibody was rinsed off by washing the blots again with TBST
807 for three times and developed with Promega ECL solution on chemidoc (BioRad). Blots were stripped

808 with low pH stripping buffer and then re-probed for total RSK using RSK1/RSK2/RSK3 rabbit monoclonal
809 primary antibody at 1:2500 dilution (CST, Cat. no. 9355S). Phospho-site specific signal was normalized
810 with respect to the total RSK signal.

811 **Human monocyte-derived macrophages**

812 Human monocyte-derived macrophages (HMDM) were derived and cultured following the previously
813 described protocol (21, 37). Briefly, human buffy coat blood from anonymous healthy donors was
814 obtained through the Australian Red Cross Blood Service (Brisbane, Australia). Human CD14⁺ monocytes
815 were isolated from blood using Lymphoprep density centrifugation (STEMCELL, Melbourne, Australia)
816 followed by CD14⁺ MACS separation (Miltenyi Biotec, Sydney, Australia). The isolated monocytes were
817 cultured in Iscove's Modified Dulbecco's Medium (IMDM) containing 10% FBS, 100 U ml⁻¹ penicillin, 100
818 µg ml⁻¹ streptomycin and 15 ng ml⁻¹ recombinant human macrophage colony stimulating factor (Lonza,
819 Melbourne, Australia) on 10 mm square dishes (Bio-strategy, Brisbane, Australia). The adherent
820 differentiated HMDMs were harvested by gentle scraping on Day 6-7.

821 **In-cell western assays on HMDMs**

822 In-cell western assays were performed following the technical guidelines provided by LI-COR Biosciences
823 (Lincoln, USA). Briefly, HMDMs were seeded (80,000 perwell) in poly D-lysine-coated (Merck, Perth,
824 Australia) black-wall clear-bottom tissue culture 96-well plates (Corning, Corning, USA) for 24 h and
825 serum-starved overnight. All ligands were prepared in serum-free IMDM containing 0.1% BSA (Merck,
826 Perth, Australia). Cells were firstly pre-treated with the C5aR1 antagonist PMX53 (10 µM) for 20min (37
827 °C, 5 % CO₂) before stimulated with recombinant human C5a (Sino Biological, Beijing, China) or P32 (100
828 µM) for 10 min at room temperature. The media was removed and the cells were fixed using 4 %
829 paraformaldehyde (Alfa Aesar, Haverhill, USA) (10min, room temperature). Upon gentle washing with
830 DPBS, the cells were permeabilised using ice-cold methanol (10 min, room temperature) and then
831 blocked using Odyssey Blocking Buffer in TBS (LI-COR Biosciences) (1.5h, room temperature). The cells
832 were then stained with the indicated primary antibodies at 4°C overnight (phospho-p90RSK^{S380}, CST, Cat.
833 no. 11989S, 1:800; phospho-p90RSK^{T359}, CST, Cat. no. 8753S, 1:200; phospho-p90RSK^{T573}, CST, Cat. no.
834 9346S, 1:200; Human/Mouse/Rat RSK Pan Specific Antibody, R&D Systems, Cat. no. RDSMAB2056,
835 1:200; phospho-p^{44/42} MAPK-ERK1/2^{T202/Y204}, CST, Cat. no. 9101S, 1:250). Upon further washing with
836 DPBS containing 0.1 % Tween-20, the cells were stained with IRDye 680RD donkey anti-rabbit secondary
837 antibody (Cat. no. 926-68073, 1:1000,) and/or IRDye 800CW donkey anti-mouse IgG secondary antibody

838 (Cat. no. 926-32212, 1:1000,) (LI-COR Biosciences, Lincoln, USA) for 1.5h at room temperature. The plate
839 was then washed with DPBS containing 0.1 % Tween-20 and blotted dry. For fluorescence quantification,
840 the plate was read on a Tecan Spark 20M microplate reader (Ex/Em: 667 nm/ 707 nm for IRDye 680RD
841 and 770 nm/810 nm for IRDye 800CW, respectively) (Tecan, Männedorf, Switzerland).

842 **Neutrophil mobilization assay**

843 Wild-type (WT), C5aR1^{-/-} and C5aR2^{-/-} mice on a C57BL/6J genetic background (n=5-15) were
844 administered with recombinant mouse C5a (Sino Biological, China) at a dose of 50 µg kg⁻¹ via
845 intravenous injection (tail vein). After C5a injection, one drop of blood was collected from the tail tip to
846 make a blood smear on a slide at 0, 15, 30 and 60 min. Blood smears were stained using a Microscopy
847 Hemacolor® Rapid Staining of Blood Smear Kit (Merck, Germany). Briefly, blood smears were fixed in
848 Hemacolor® Solution 1 (methanol). The slides were then stained with Hemacolor® Solution 2 (Eosin Y),
849 followed by Hemacolor® Solution 3 (Azur B). The slides were washed with 1 x PBS (pH 7.2) and mounted
850 with dibutylphthalate polystyrene xylene. Using a 20x/0.4 NA objective on an Olympus CX21 microscope,
851 the first 400 white blood cells were counted for each slide, and the proportion of PMNs (i.e. cells
852 containing granules that are light violet) was then calculated as previously described (54).

853 **Enzyme-linked immunosorbent assay**

854 Blood for WT, C5aR1^{-/-} and C5aR2^{-/-} mice was collected in tubes containing 4 mM EDTA and plasma was
855 obtained by centrifugation for 10 min at 2000xg at 4°C. Plasma TNF α levels were determined using a
856 commercially available enzyme-linked immunosorbent assay kit (BD Biosciences).

857 **Data collection, processing, and statistical analysis**

858 All the experiments were conducted at least three times and data were plotted and analyzed using
859 GraphPad Prism software (Prism 8.0). Heat maps were plotted in Python 3.7 using appropriate libraries.
860 The data were normalized with respect to proper experimental controls and appropriate statistical
861 analyses were performed.

862

863

864

865 **Figure legends:**

866 **Figure 1. D6R and C5aR2 lack G-protein coupling and second messenger response.** **A.** Schematic
867 representation of canonical GPCR and non-canonical 7TMR pairs activated by a common agonist. C5a,
868 complement C5a; C5aR1, C5a receptor subtype 1; C5aR2, C5a receptor subtype 2; CCL7, chemokine
869 CCL7; CCR2, C-C chemokine receptor subtype 2; D6R, decoy D6 receptor. **B-C.** Agonist-induced
870 dissociation of heterotrimeric G-proteins for C5aR1-C5aR2, and CCR2-D6R pairs measured using NanoBiT
871 complementation assay. HEK-293 cells expressing the indicated receptor and Sm/Lg-BiT constructs of G-
872 protein α, β, γ sub-units were stimulated with corresponding ligands, and the change in luminescence
873 signal upon NanoBiT dissociation was measured as a readout of G-protein coupling. Data represent
874 three independent experiments, normalized with respect to baseline signal (i.e. vehicle treatment). **D.**
875 Agonist-induced second messenger response measured using GloSensor assay (cAMP stimulation, and
876 inhibition of forskolin-induced cAMP level), and Fluo-4 NW calcium mobilization assay. HEK-293 cells
877 expressing the indicated receptor were used for these assays using standard protocols as described in
878 the method section. For each of the second messenger assay, a well-established prototypical GPCR was
879 included as a reference (V₂R, vasopressin receptor subtype 2; B₂R, bradykinin receptor subtype 2). Data
880 are normalized with respect to maximum signal (treated as 100%) and represent mean \pm sem of four
881 independent experiments.

882 **Figure 2. D6R and C5aR2 robustly recruit β arrs and display typical trafficking patterns.** **A.** HEK-293 cells
883 expressing the indicated receptor constructs were stimulated with agonist, lysed and incubated with
884 purified β arr1/2. Subsequently, the receptor was immunoprecipitated using anti-FLAG M1 antibody
885 agarose and co-purified β arrs were detected using Western blotting. A representative blot from three
886 independent experiments is shown here. **B-C.** Agonist-induced trafficking of β arrs was measured in HEK-
887 293 cells expressing the indicated receptor constructs and mYFP-tagged β arrs using live cell confocal
888 microscopy. Cells were stimulated with saturating concentration of agonists (CCL7, 100 nM; C5a, 100
889 nM) and trafficking of β arrs was monitored at indicated time-points. Representative images from three
890 independent experiments are shown (scale bar is 10 μ m). **D.** Internalized D6R and C5aR2 co-localize with
891 β arr2 as monitored by confocal microscopy. HEK-293 cells expressing the indicated receptor and β arr2-
892 mYFP were stimulated with agonist, followed by fixation, permeabilization and staining of the receptor
893 using DyLight-688 conjugated anti-FLAG M1 antibody. Localization of the receptor and β arr2 was
894 visualized using confocal microscopy, and representative images from three independent experiments
895 are shown (scale bar is 10 μ m). The Pearson's Correlation Coefficient (PCC) were 0.68 \pm 0.05, 0.72 \pm 0.06,

896 0.94±0.01 and 0.96±0.01 for C5aR2, 0min (12 cells), C5aR2, 10min (13 cells), D6R, 0min (14 cells) and
897 D6R, 10min (15 cells), respectively. **E.** Single particle analysis of C5aR2-V2-βarr1-Fab30 complex further
898 corroborates the interaction of βarr1 with C5aR2. *Sf9* cells expressing a chimeric C5aR2 construct
899 (C5aR2-V2), GRK2^{CAAX} and βarr1 were stimulated with C5a (100 nM), stabilized using Fab30, followed by
900 affinity purification of the complex on anti-Flag M1 column. Subsequently, the fractions containing the
901 complex were further isolated by size-exclusion chromatography and subjected to negative staining
902 based single particle analysis. 2D-class averages based on approximately ten thousand particles are
903 shown here, and a typical 2D class average is indicated together with a schematic representation of the
904 complex.

905 **Figure 3. D6R and C5aR2 exhibit distinct GRK-preference for βarr recruitment. A-B.** HEK-293 cells
906 lacking specific GRKs were transfected with indicated receptor and βarrs followed by measurement of
907 agonist-induced βarr recruitment using the NanoBiT assay. Data are normalized with respect to basal
908 signal (i.e. vehicle treatment) and represent mean±sem of three independent experiments. **C.** D6R is
909 constitutively phosphorylated as measured using PIMAGO kit, and its phosphorylation does not change
910 upon ligand (CCL7) stimulation. HEK-293 cells expressing D6R were stimulated with CCL7 (100nM) and
911 total receptor phosphorylation was assessed by using pIMAGO phospho-protein detection kit. Data are
912 normalized with respect to basal signal and represent mean ± SEM of five independent experiments. **D.**
913 HEK-293 cells expressing the indicated receptor constructs with βarr2 were stimulated with agonist
914 followed by cross-linking and co-IP using anti-FLAG M1 antibody agarose. D6R and βarr2 were detected
915 using Western blotting. A representative blot from three independent experiments and densitometry-
916 based quantification is shown here. Data are normalized with D6R^{WT} stimulation condition as 100% (n=3;
917 p<0.001).

918 **Figure 4. D6R and C5aR2 impart distinct conformations in βarrs compared to their GPCR counterparts.**
919 **A.** Intrabody30-based conformational sensor developed in the NanoBiT format reports the active
920 conformation of receptor-bound βarr1 (upper panel). HEK-293 cells expressing the indicated receptor,
921 LgBiT-lb30 and SmBiT-βarr1 were stimulated with varying concentrations of the agonists, and
922 luminescence signal was monitored. Data from four independent experiments (average±sem) is
923 presented here. **B.** A set of sensors of βarr2 conformational signatures based on intramolecular BRET
924 reveal distinct conformational signatures between C5aR1/C5aR2-βarr2 and D6R/CCR2-βarr2 complexes.
925 The upper panel shows the schematic of BRET based conformational sensor where the N-terminus of
926 βarr2 harbors r-Luc (Renilla luciferase) as BRET donor while FlAsH motif (as BRET acceptor) is encoded in

927 various positions in β arr2. HEK-293 cells expressing the indicated receptor and sensor constructs were
928 labeled with FlAsH reagent followed by agonist-stimulation and measurement of BRET signal. Data
929 represent average \pm sem of four independent experiments (*p<0.05, **p<0.01, ***p<0.001).

930 **Figure 5. D6R and C5aR2 exhibit distinct patterns of agonist-induced ERK1/2 MAP kinase activation.** **A.**
931 CCL7 stimulation leads to robust ERK1/2 phosphorylation in HEK-293 cells expressing CCR2, however, it
932 fails to elicit any detectable ERK1/2 phosphorylation for D6R as measured by Western blotting. **B.** C5aR1
933 stimulation exhibits a typical ERK1/2 phosphorylation pattern upon agonist-stimulation while C5aR2
934 cells display an elevated level of basal ERK1/2 phosphorylation, which decreases upon C5a-stimulation.
935 **C.** PTX-treatment inhibits C5a-induced ERK1/2 phosphorylation downstream of C5aR1 but it fails to
936 inhibit the elevated level of basal ERK1/2 phosphorylation for C5aR2. **D.** Treatment of cells with U0126,
937 a MEK-inhibitor completely abolishes ERK1/2 phosphorylation for both, C5aR1 and C5aR2 suggesting the
938 involvement of a canonical mechanism of ERK1/2 phosphorylation. The right panels show quantification
939 based on densitometry data from 4-6 experiments analyzed using One- or Two-Way ANOVA (*p<0.05,
940 **p<0.01, ***p<0.001, ****p<0.0001).

941 **Figure 6. Global phosphoproteomics reveals potential signaling pathways downstream of D6R.** **A.** HEK-
942 293 cells expressing D6R were stimulated with CCL7 (100nM) followed by preparation of cellular lysate,
943 trypsin digestion, enrichment of phospho-peptides on IMAC column and Mass-Spectrometry based
944 identification of cellular proteins. Three independent samples prepared in parallel were analyzed and a
945 heat map generated based on phosphoproteomics analysis is presented here. **B.** Classification of cellular
946 proteins that undergo phosphorylation/dephosphorylation upon D6R stimulation based on biological
947 processes, molecular functions and cellular localization reveal an extensive network of potential
948 signaling pathways. **C.** Comparison of D6R phosphoproteomics data with phospho-antibody array and
949 previously published β arr signaling networks reveals the activation of some common and multiple D6R-
950 specific signaling proteins. **D.** shRNA-mediated depletion of β arr1 and β arr2 attenuate CCL7-induced
951 (200nM) phosphorylation of PDGFR- β (Tyr⁷⁵¹) in HEK-293 cells expressing D6R. A representative image
952 from four independent experiments is shown, and the lower panel shows densitometry-based
953 quantification, normalized with respect to the basal PDGFR- β phosphorylation (i.e. without CCL7-
954 stimulation). Data are analyzed using One-Way ANOVA; *p<0.05).

955 **Figure 7. Signaling and functional outcomes of C5aR2 activation.** **A.** Phospho-antibody array on HEK-
956 293 cells expressing C5aR1 or C5aR2 reveals phosphorylation/dephosphorylation of a few common and
957 several distinct cellular proteins. Of these, C5a-stimulation of C5aR2-expressing HEK-293 cells exhibits

958 robust enhancement of p90RSK phosphorylation, which is also common to C5aR1. **B.** C5a-stimulation of
959 C5aR2 expressing HEK-293 cells is validated using Western blotting, which validates the phospho-
960 antibody array data. A representative blot from six experiments and densitometry-based quantification
961 (average \pm sem) is presented (*p<0.05, ***p<0.001; One-Way ANOVA). **C.** C5a-stimulated p90RSK
962 phosphorylation is β arr1 dependent as knock-down of β arr1 in HEK-293 cells expressing C5aR2 reduces
963 p90RSK phosphorylation. A representative blot from five experiments and densitometry-based
964 quantification (average \pm sem) is presented (**p<0.01; One-Way ANOVA). **D.** Stimulation of human
965 macrophage derived monocytes (hMDMs) with either C5a or P32 (a C5aR2-selective agonist) results in
966 significant p90RSK phosphorylation. Importantly, PMX53, a C5aR1-selective antagonist, does not block
967 p90RSK phosphorylation suggesting that it is mediated by C5aR2. **E.** A significant component of C5a-
968 induced polymorphonuclear leukocyte (PMN) mobilization depends on C5aR2. WT, C5aR1^{-/-} and C5aR2^{-/-}
969 mice on a C57BL/6J genetic background (n = 5-15) were intravenously administered with recombinant
970 mouse C5a (50 μ g kg^{-1}). Tail tip collected blood was smeared onto a slide followed by staining and
971 counting of white blood cells, with the proportion of PMNs calculated. Data is presented as
972 average \pm sem (*p<0.05, ***p<0.001; One- and Two-Way ANOVA).

973

974

975

976

977

978

979

980

981

982

983

984

985 **References**

- 986 1. D. M. Rosenbaum, S. G. Rasmussen, B. K. Kobilka, The structure and function of G-protein-
987 coupled receptors. *Nature* **459**, 356-363 (2009).
- 988 2. K. L. Pierce, R. T. Premont, R. J. Lefkowitz, Seven-transmembrane receptors. *Nat Rev Mol Cell
989 Biol* **3**, 639-650 (2002).
- 990 3. W. I. Weis, B. K. Kobilka, The Molecular Basis of G Protein-Coupled Receptor Activation. *Annu
991 Rev Biochem* **87**, 897-919 (2018).
- 992 4. E. Reiter, S. Ahn, A. K. Shukla, R. J. Lefkowitz, Molecular mechanism of beta-arrestin-biased
993 agonism at seven-transmembrane receptors. *Annu Rev Pharmacol Toxicol* **52**, 179-197 (2012).
- 994 5. S. Rajagopal, K. Rajagopal, R. J. Lefkowitz, Teaching old receptors new tricks: biasing seven-
995 transmembrane receptors. *Nat Rev Drug Discov* **9**, 373-386 (2010).
- 996 6. J. S. Smith, R. J. Lefkowitz, S. Rajagopal, Biased signalling: from simple switches to allosteric
997 microprocessors. *Nat Rev Drug Discov* **17**, 243-260 (2018).
- 998 7. E. J. Whalen, S. Rajagopal, R. J. Lefkowitz, Therapeutic potential of beta-arrestin- and G protein-
999 biased agonists. *Trends Mol Med* **17**, 126-139 (2011).
- 1000 8. J. D. Violin, R. J. Lefkowitz, Beta-arrestin-biased ligands at seven-transmembrane receptors.
Trends Pharmacol Sci **28**, 416-422 (2007).
- 1001 9. R. Ranjan, S. Pandey, A. K. Shukla, Biased Opioid Receptor Ligands: Gain without Pain. *Trends
1003 Endocrinol Metab* **28**, 247-249 (2017).
- 1004 10. F. Bachelerie *et al.*, New nomenclature for atypical chemokine receptors. *Nat Immunol* **15**, 207-
1005 208 (2014).
- 1006 11. R. J. Nibbs, G. J. Graham, Immune regulation by atypical chemokine receptors. *Nat Rev Immunol*
1007 **13**, 815-829 (2013).
- 1008 12. L. H. Van Lith, J. Oosterom, A. Van Elsas, G. J. Zaman, C5a-stimulated recruitment of beta-
1009 arrestin2 to the nonsignaling 7-transmembrane decoy receptor C5L2. *J Biomol Screen* **14**, 1067-
1010 1075 (2009).
- 1011 13. E. M. Borroni *et al.*, beta-arrestin-dependent activation of the coflin pathway is required for the
1012 scavenging activity of the atypical chemokine receptor D6. *Sci Signal* **6**, ra30 31-11, S31-33
1013 (2013).
- 1014 14. R. Bonecchi *et al.*, Differential recognition and scavenging of native and truncated macrophage-
1015 derived chemokine (macrophage-derived chemokine/CC chemokine ligand 22) by the D6 decoy
1016 receptor. *Journal of Immunology* **172**, 4972-4976 (2004).
- 1017 15. M. Weber *et al.*, The chemokine receptor D6 constitutively traffics to and from the cell surface
1018 to internalize and degrade chemokine. *Molecular Biology of the Cell* **15**, 2492-2508 (2004).
- 1019 16. S. Rajagopal *et al.*, Beta-arrestin- but not G protein-mediated signaling by the "decoy" receptor
1020 CXCR7. *Proc Natl Acad Sci U S A* **107**, 628-632 (2010).
- 1021 17. S. Pandey *et al.*, Partial ligand-receptor engagement yields functional bias at the human
1022 complement receptor, C5aR1. *J Biol Chem* **294**, 9416-9429 (2019).
- 1023 18. S. Pandey, J. Maharana, X. X. Li, T. M. Woodruff, A. K. Shukla, Emerging Insights into the
1024 Structure and Function of Complement C5a Receptors. *Trends Biochem Sci* **45**, 693-705 (2020).
- 1025 19. D. Kalant *et al.*, C5L2 is a functional receptor for acylation-stimulating protein. *J Biol Chem* **280**,
1026 23936-23944 (2005).
- 1027 20. X. X. Li, J. D. Lee, C. Kemper, T. M. Woodruff, The Complement Receptor C5aR2: A Powerful
1028 Modulator of Innate and Adaptive Immunity. *J Immunol* **202**, 3339-3348 (2019).

1029 21. X. X. Li, R. J. Clark, T. M. Woodruff, C5aR2 Activation Broadly Modulates the Signaling and
1030 Function of Primary Human Macrophages. *J Immunol* **205**, 1102-1112 (2020).

1031 22. S. Okinaga *et al.*, C5L2, a nonsignaling C5A binding protein. *Biochemistry* **42**, 9406-9415 (2003).

1032 23. A. Inoue *et al.*, Illuminating G-Protein-Coupling Selectivity of GPCRs. *Cell* **177**, 1933-1947 e1925
1033 (2019).

1034 24. R. H. Oakley, S. A. Laporte, J. A. Holt, M. G. Caron, L. S. Barak, Differential affinities of visual
1035 arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major
1036 classes of receptors. *J Biol Chem* **275**, 17201-17210 (2000).

1037 25. A. K. Shukla *et al.*, Visualization of arrestin recruitment by a G-protein-coupled receptor. *Nature*
1038 **512**, 218-222 (2014).

1039 26. M. Y. Kouki Kawakami, Suzune Hiratsuka, Misaki Yoshida, Yuki Ono, Michio Hiroshima, Masahiro
1040 Ueda, Arun K Shukla, Yasushi Sako, Junken Aoki, Asuka Inoue, The origin of β -arrestin transducer
1041 bias: heterotrimeric Gq as a switch for GRK5/6 selectivity. *Submitted*, (2021).

1042 27. E. Galliera *et al.*, beta-Arrestin-dependent constitutive internalization of the human chemokine
1043 decoy receptor D6. *J Biol Chem* **279**, 25590-25597 (2004).

1044 28. M. Baidya *et al.*, Key phosphorylation sites in GPCRs orchestrate the contribution of beta-
1045 Arrestin 1 in ERK1/2 activation. *EMBO Rep* **21**, e49886 (2020).

1046 29. M. Baidya *et al.*, Genetically encoded intrabody sensors report the interaction and trafficking of
1047 beta-arrestin 1 upon activation of G-protein-coupled receptors. *J Biol Chem* **295**, 10153-10167
1048 (2020).

1049 30. M. H. Lee *et al.*, The conformational signature of beta-arrestin2 predicts its trafficking and
1050 signalling functions. *Nature* **531**, 665-668 (2016).

1051 31. K. Xiao *et al.*, Global phosphorylation analysis of beta-arrestin-mediated signaling downstream
1052 of a seven transmembrane receptor (7TMR). *Proc Natl Acad Sci U S A* **107**, 15299-15304 (2010).

1053 32. R. T. Kendall *et al.*, The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A)
1054 agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling
1055 network. *J Biol Chem* **286**, 19880-19891 (2011).

1056 33. G. L. Christensen *et al.*, Quantitative phosphoproteomics dissection of seven-transmembrane
1057 receptor signaling using full and biased agonists. *Mol Cell Proteomics* **9**, 1540-1553 (2010).

1058 34. C. Huang *et al.*, Phosphoproteomic characterization of the signaling network resulting from
1059 activation of the chemokine receptor CCR2. *J Biol Chem* **295**, 6518-6531 (2020).

1060 35. Y. Namkung *et al.*, Functional selectivity profiling of the angiotensin II type 1 receptor using
1061 pathway-wide BRET signaling sensors. *Sci Signal* **11**, (2018).

1062 36. D. E. Croker *et al.*, Discovery of functionally selective C5aR2 ligands: novel modulators of C5a
1063 signalling. *Immunol Cell Biol* **94**, 787-795 (2016).

1064 37. X. X. Li *et al.*, Pharmacological characterisation of small molecule C5aR1 inhibitors in human cells
1065 reveals biased activities for signalling and function. *Biochem Pharmacol* **180**, 114156 (2020).

1066 38. D. E. Croker *et al.*, C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation
1067 with C5a1 and beta-arrestin recruitment. *Immunol Cell Biol* **92**, 631-639 (2014).

1068 39. T. J. Cahill, 3rd *et al.*, Distinct conformations of GPCR-beta-arrestin complexes mediate
1069 desensitization, signaling, and endocytosis. *Proc Natl Acad Sci U S A* **114**, 2562-2567 (2017).

1070 40. A. K. Shukla *et al.*, Distinct conformational changes in beta-arrestin report biased agonism at
1071 seven-transmembrane receptors. *Proc Natl Acad Sci U S A* **105**, 9988-9993 (2008).

1072 41. P. Kumari *et al.*, Functional competence of a partially engaged GPCR-beta-arrestin complex. *Nat
1073 Commun* **7**, 13416 (2016).

1074 42. P. Kumari *et al.*, Core engagement with beta-arrestin is dispensable for agonist-induced
1075 vasopressin receptor endocytosis and ERK activation. *Mol Biol Cell* **28**, 1003-1010 (2017).

1076 43. B. Zimmerman *et al.*, Differential beta-arrestin-dependent conformational signaling and cellular
1077 responses revealed by angiotensin analogs. *Sci Signal* **5**, ra33 (2012).

1078 44. E. Ghosh *et al.*, Conformational Sensors and Domain Swapping Reveal Structural and Functional
1079 Differences between beta-Arrestin Isoforms. *Cell Rep* **28**, 3287-3299 e3286 (2019).

1080 45. M. V. Goncharuk *et al.*, Purification of native CCL7 and its functional interaction with selected
1081 chemokine receptors. *Protein Expr Purif* **171**, 105617 (2020).

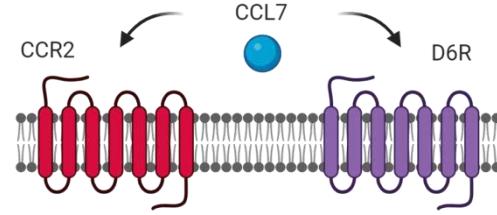
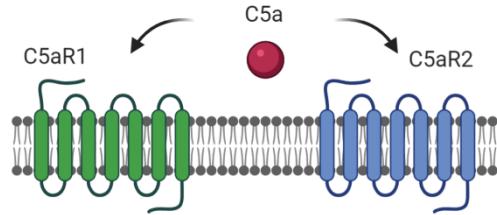
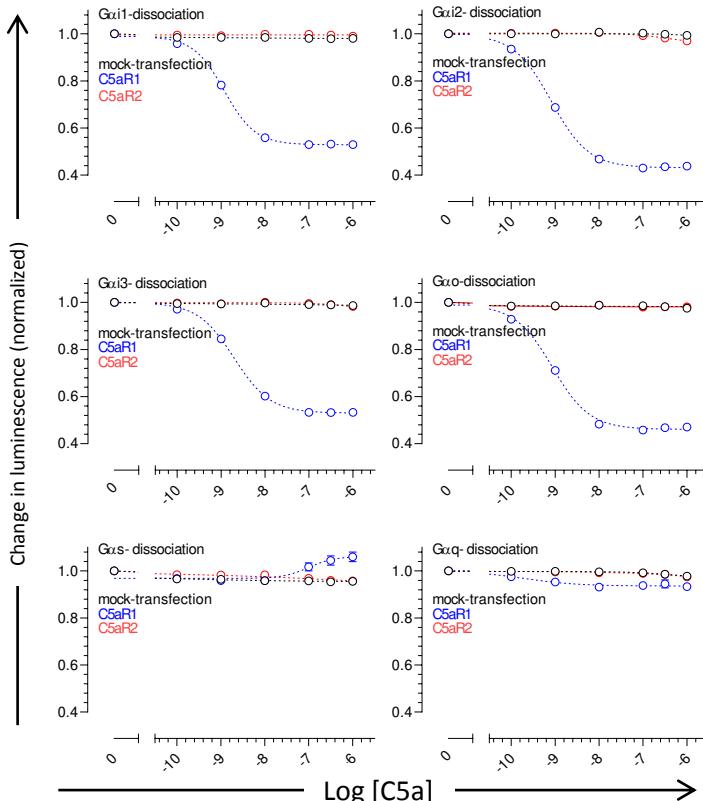
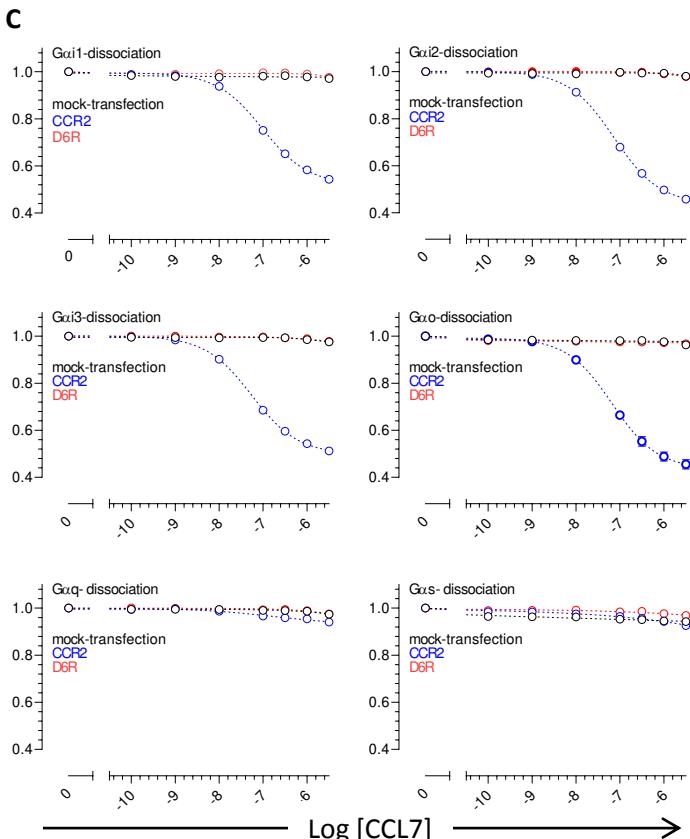
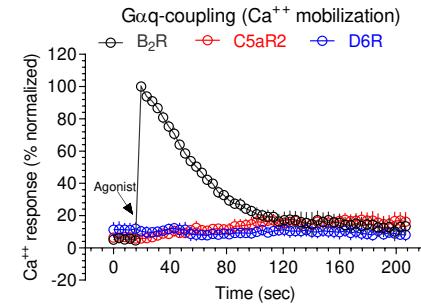
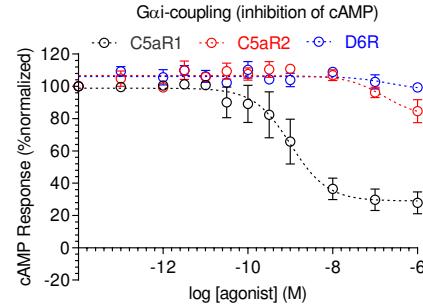
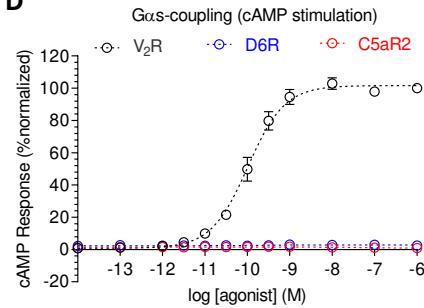
1082 46. E. Ghosh *et al.*, A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis.
1083 *Nat Nanotechnol* **12**, 1190-1198 (2017).

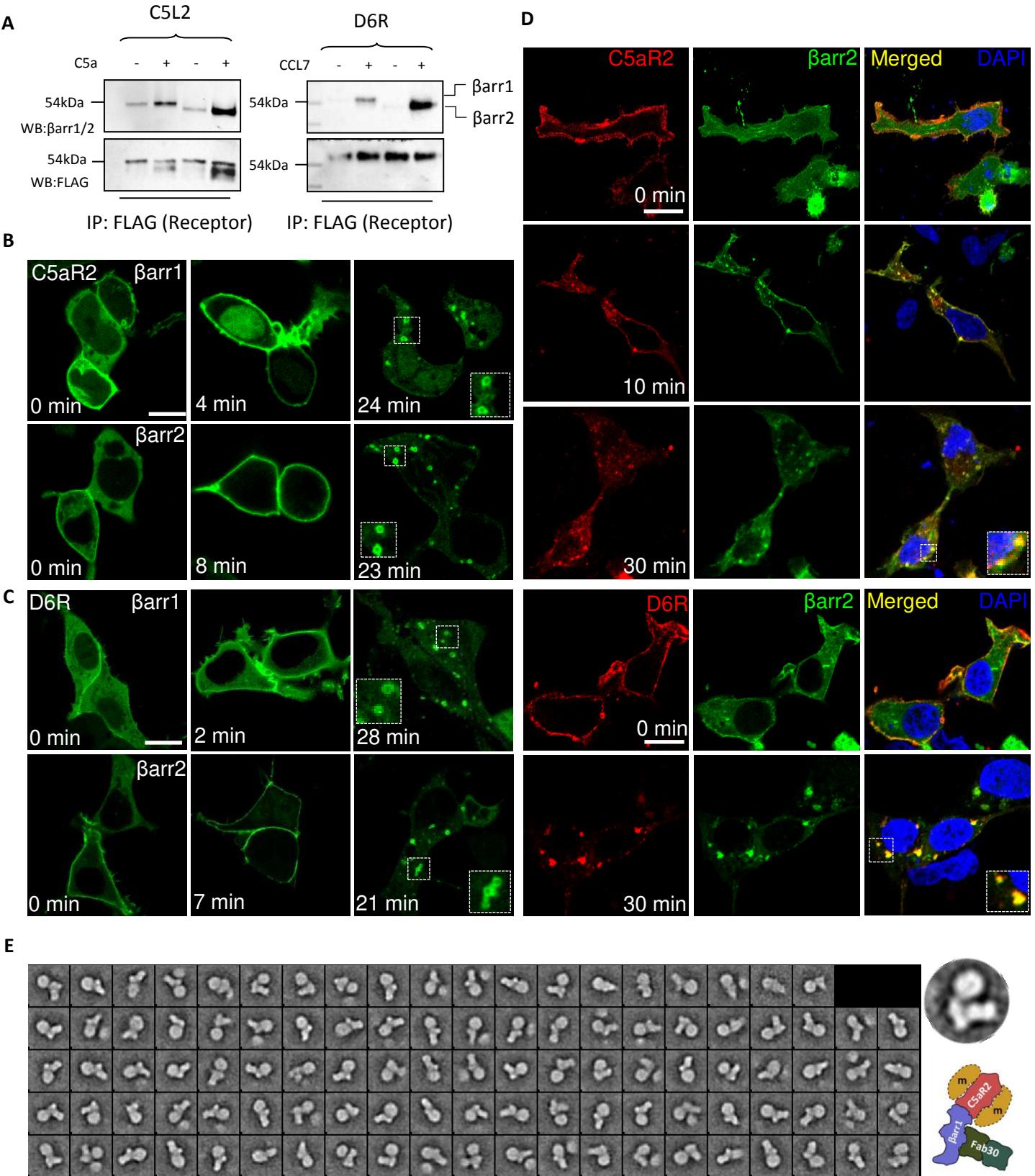
1084 47. S. Pandey, D. Roy, A. K. Shukla, Measuring surface expression and endocytosis of GPCRs using
1085 whole-cell ELISA. *Methods Cell Biol* **149**, 131-140 (2019).

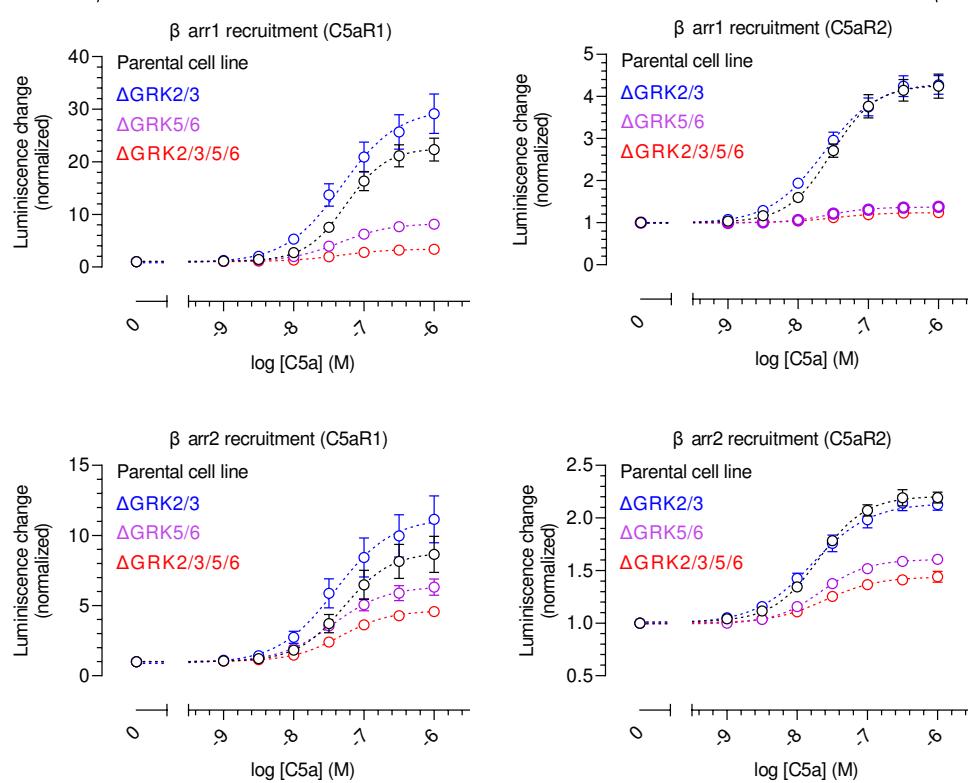
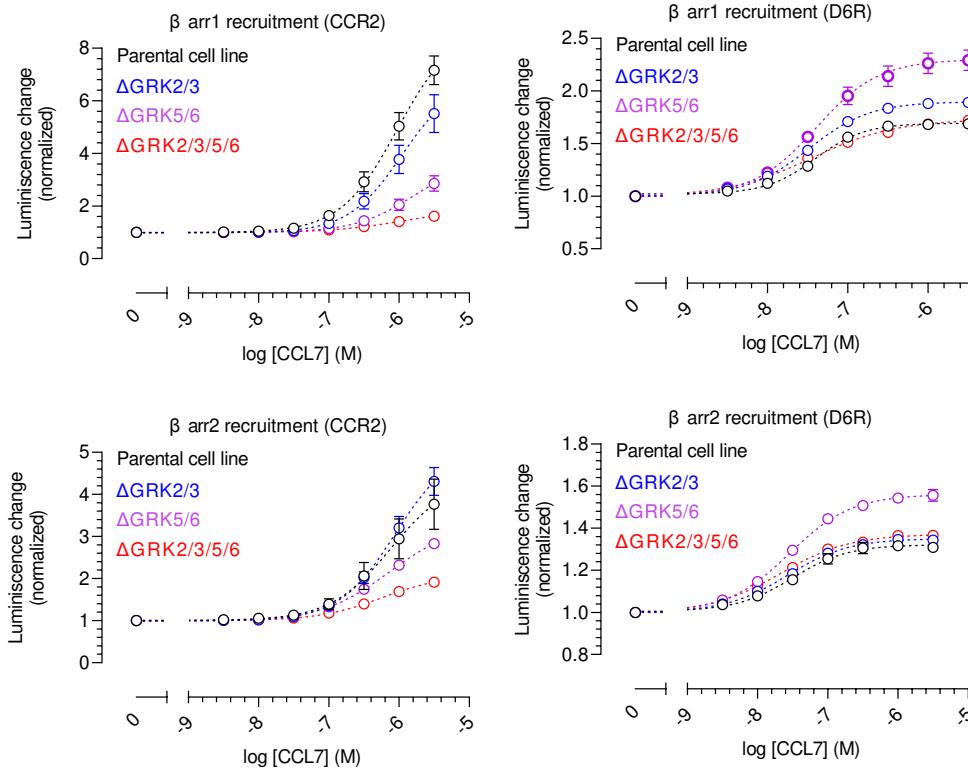
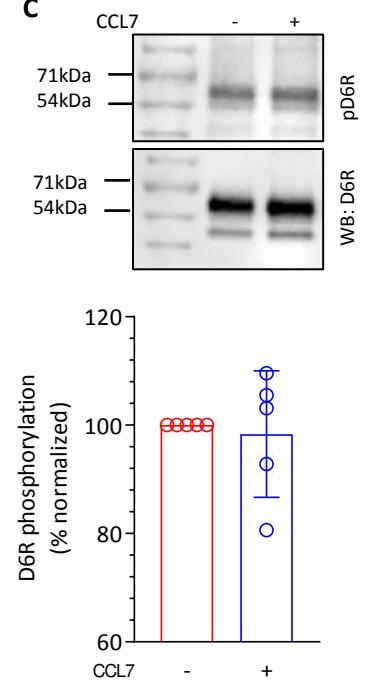
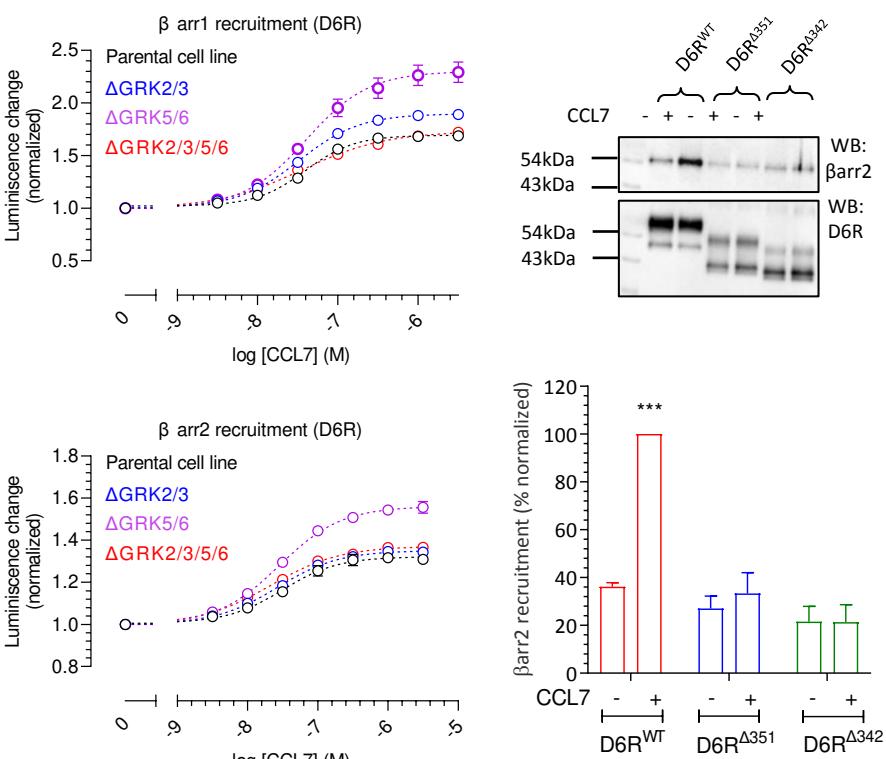
1086 48. H. Dwivedi-Agnihotri *et al.*, Distinct phosphorylation sites in a prototypical GPCR differently
1087 orchestrate beta-arrestin interaction, trafficking, and signaling. *Sci Adv* **6**, (2020).

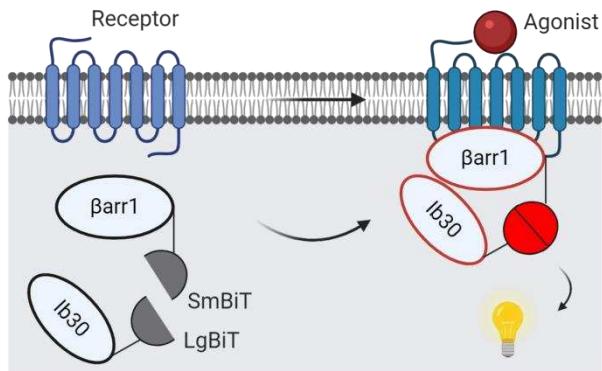
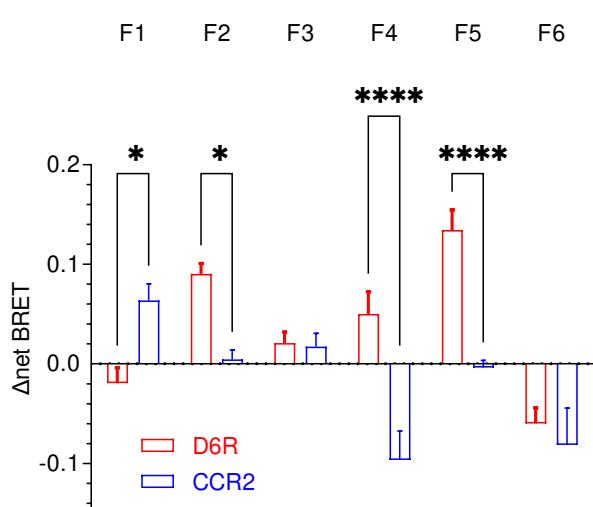
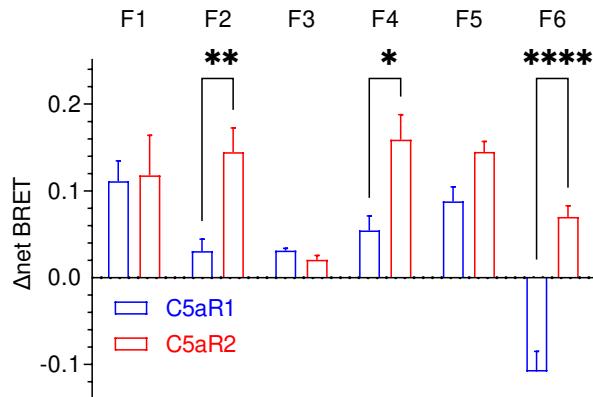
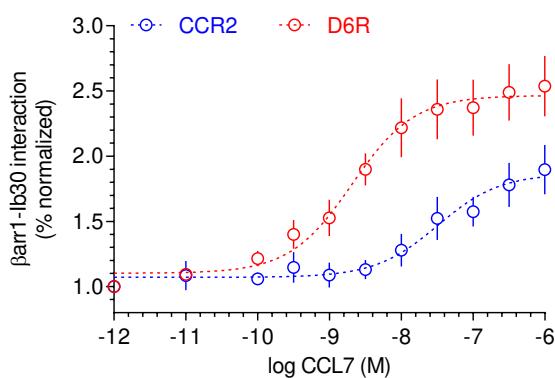
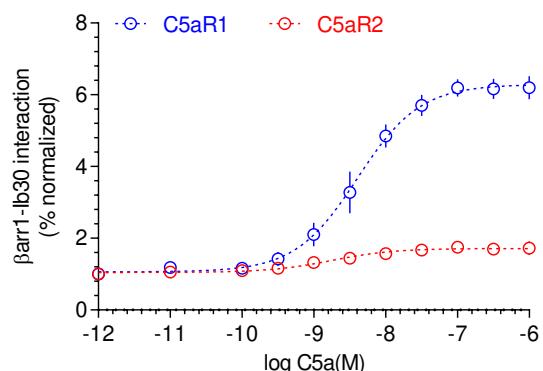
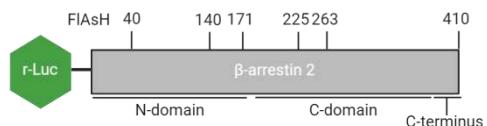
1088 49. A. Peisley, G. Skiniotis, 2D Projection Analysis of GPCR Complexes by Negative Stain Electron
1089 Microscopy. *Methods Mol Biol* **1335**, 29-38 (2015).

1090 50. G. Tang *et al.*, EMAN2: an extensible image processing suite for electron microscopy. *J Struct
1091 Biol* **157**, 38-46 (2007).








1092 51. Z. Yang, J. Fang, J. Chittuluru, F. J. Asturias, P. A. Penczek, Iterative stable alignment and
1093 clustering of 2D transmission electron microscope images. *Structure* **20**, 237-247 (2012).


1094 52. T. Moriya *et al.*, High-resolution Single Particle Analysis from Electron Cryo-microscopy Images
1095 Using SPHIRE. *J Vis Exp*, (2017).





1096 53. P. Kumari, H. Dwivedi, M. Baidya, A. K. Shukla, Measuring agonist-induced ERK MAP kinase
1097 phosphorylation for G-protein-coupled receptors. *Methods Cell Biol* **149**, 141-153 (2019).







1098 54. M. C. L. Wu, J. D. Lee, M. J. Ruitenberg, T. M. Woodruff, Absence of the C5a Receptor C5aR2
1099 Worsens Ischemic Tissue Injury by Increasing C5aR1-Mediated Neutrophil Infiltration. *J Immunol*
1100 **205**, 2834-2839 (2020).

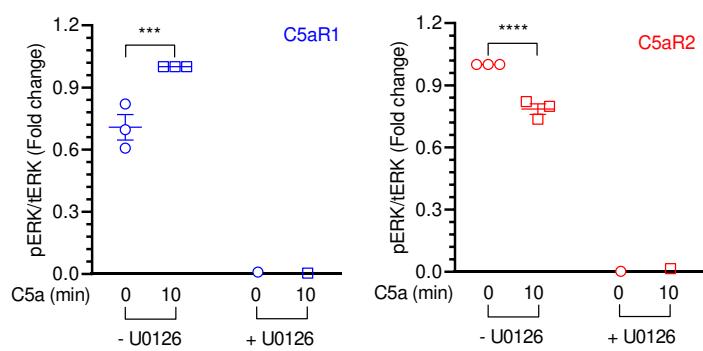
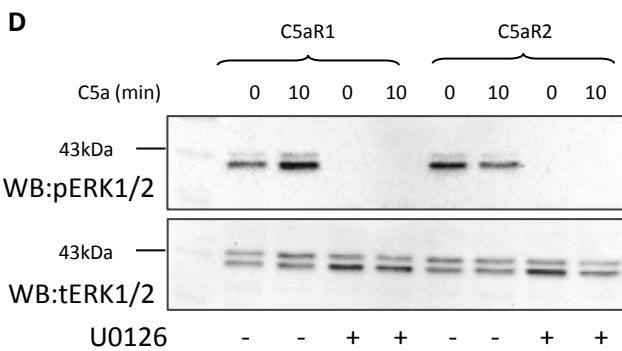
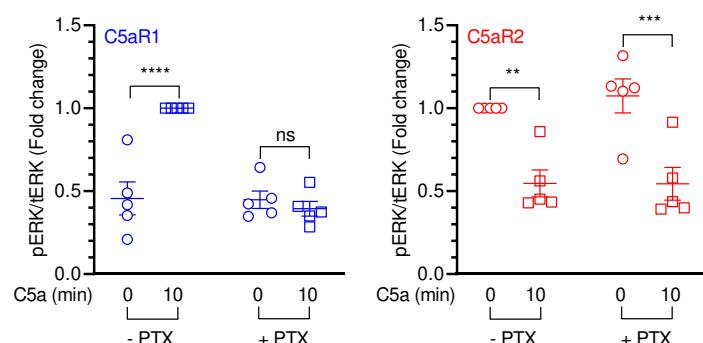
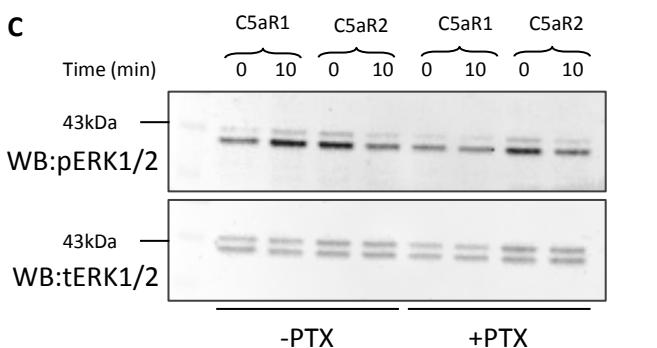
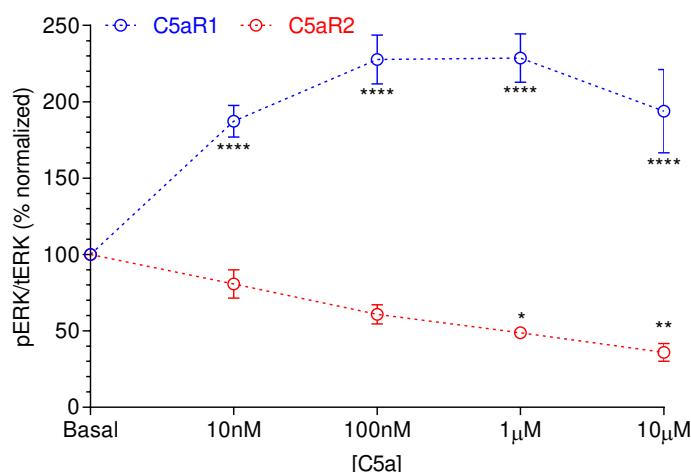
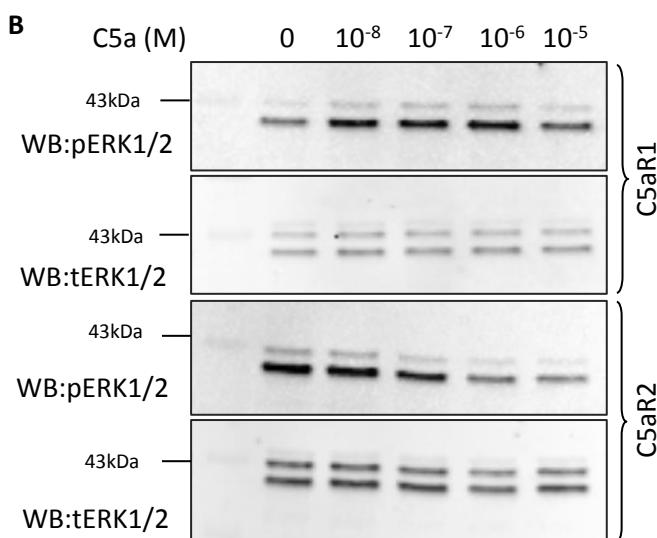
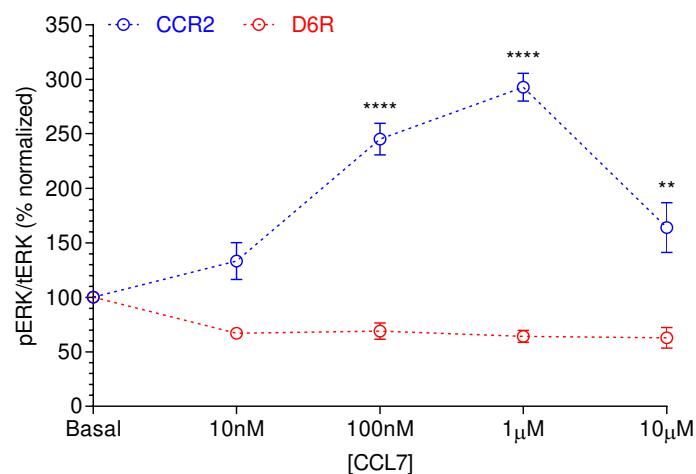
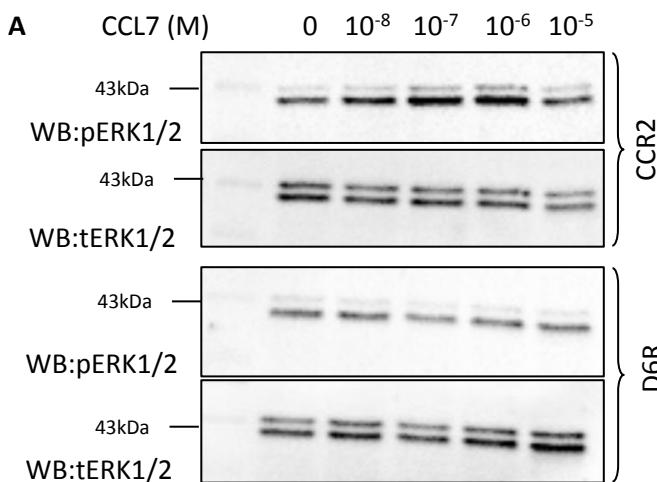
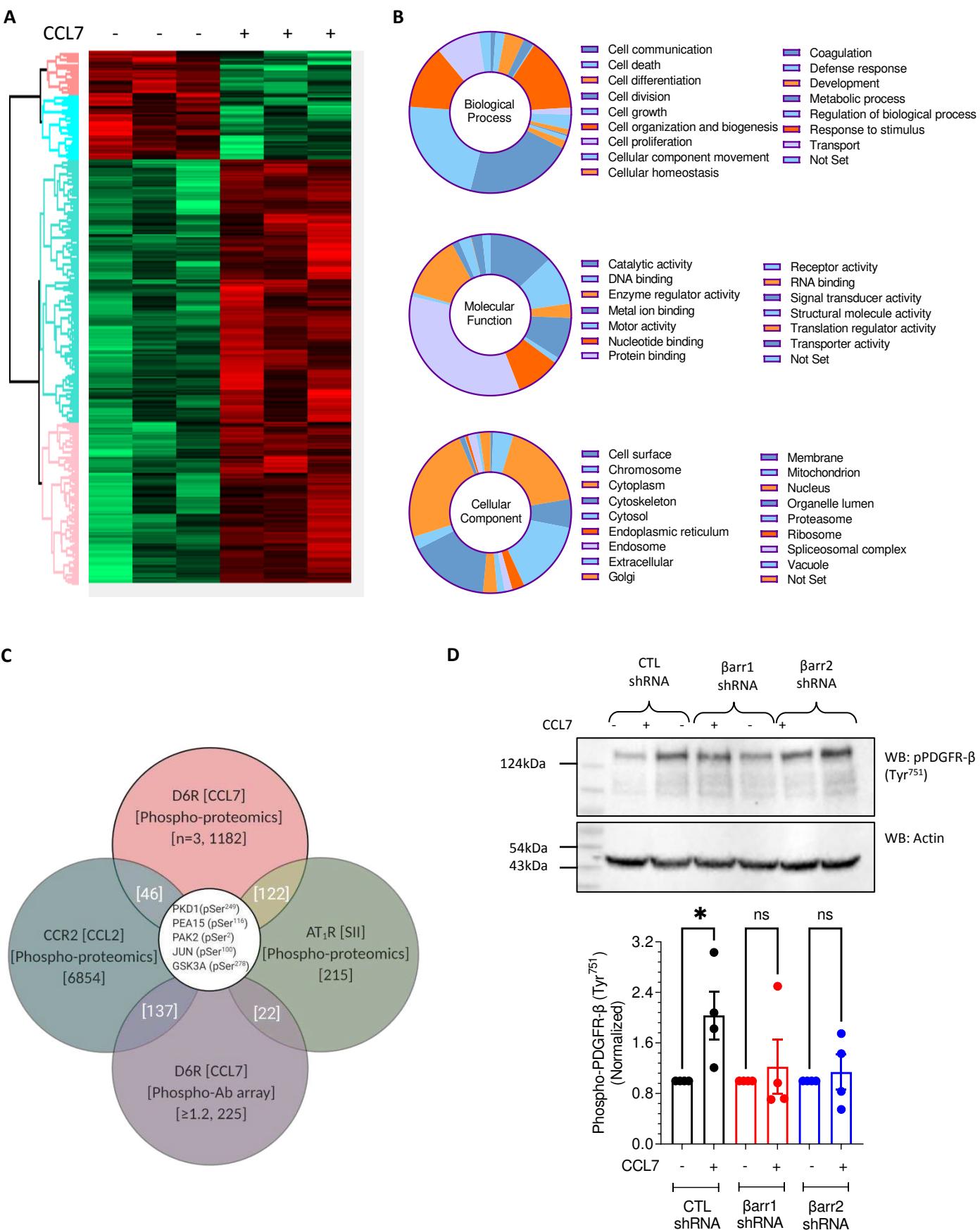








1101

Figure 1**A****B****C****D**


Figure 2

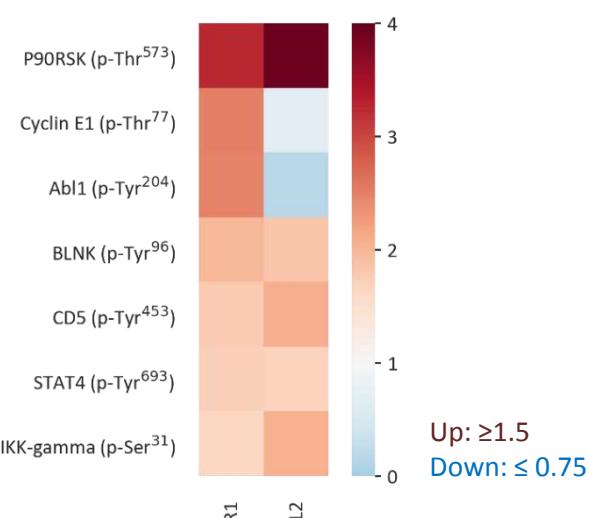
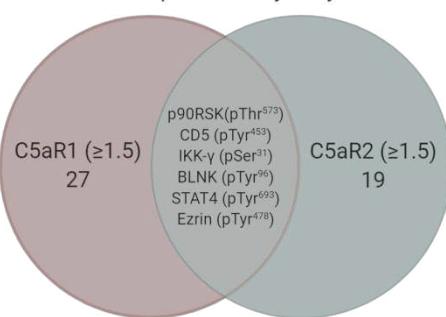
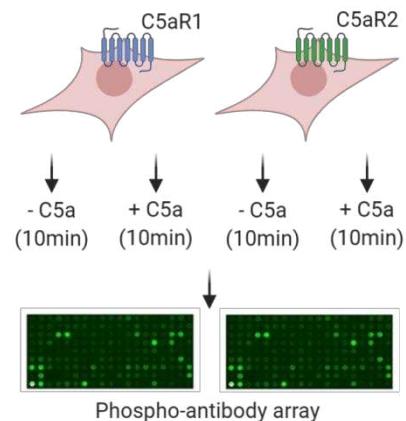
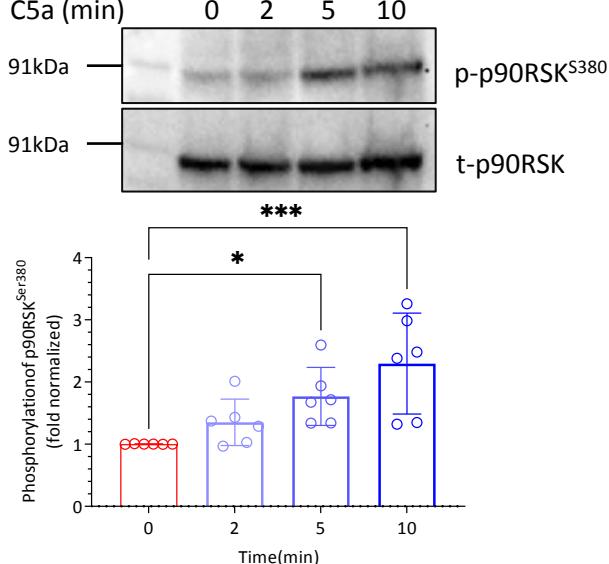
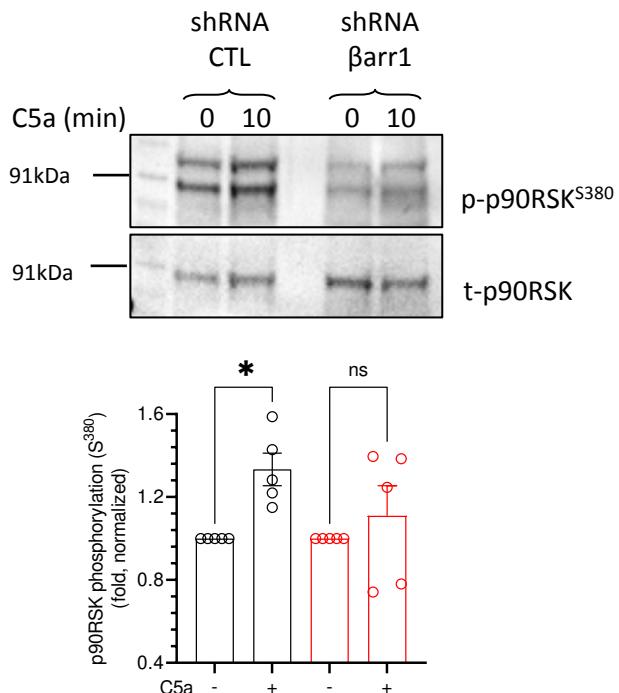
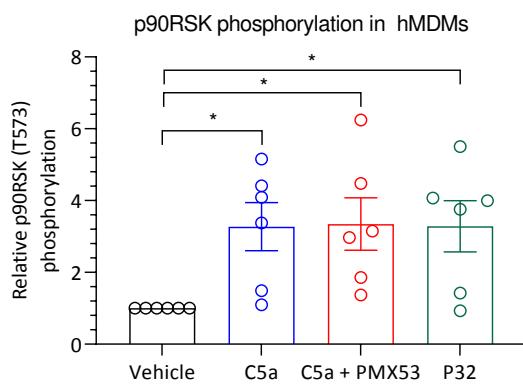
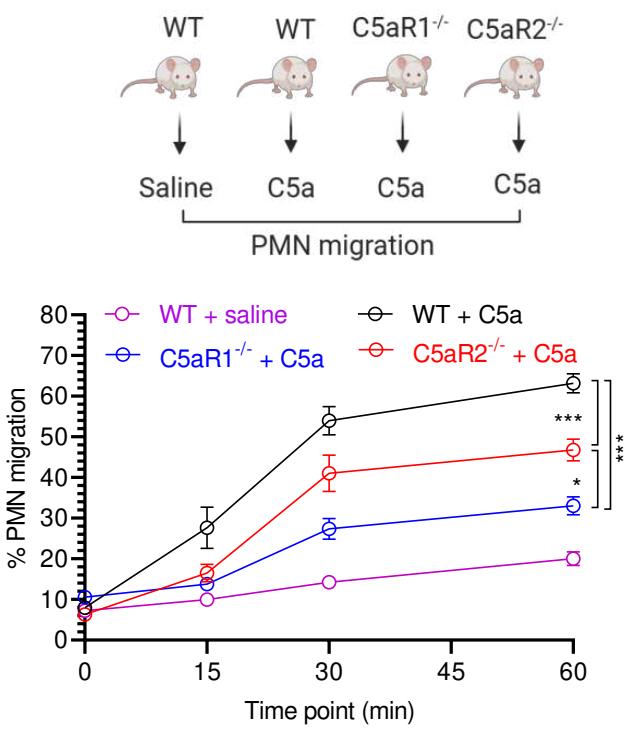







Figure 3**Receptor-SmBiT + LgBiT- β arr1****A****B****C****D**

Figure 4**A****B**

Figure 5

Figure 6

Figure 7**A****B****C****D****E**