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Abstract

Modern studies of embryogenesis are increasingly quantitative, powered by rapid advances in imaging, sequencing,
and genome manipulation technologies. Deriving mechanistic insights from the complex datasets generated by these
new tools requires systematic approaches for data-driven analysis of the underlying developmental processes. Here
we use data from our work on signal-dependent gene repression in the Drosophila embryo to illustrate how com-
putational models can compactly summarize quantitative results of live imaging, chromatin immunoprecipitation,
and optogenetic perturbation experiments. The presented computational approach is ideally suited for integrating
rapidly accumulating quantitative data and for guiding future studies of embryogenesis.

Main Text 1

Modern studies of embryonic development started in the 1980s, when mutagenesis screens in the fruit fly revealed 2

associations between individual genes and external structures of the larva, which hatches approximately one day 3

after egg fertilization [1]. Most genes identified by genetic approaches encode evolutionarily conserved transcription 4

factors and signaling enzymes. While early studies of these genes relied mainly on qualitative approaches, the 5

ongoing research is increasingly quantitative, harnessing advances in imaging, sequencing, and genome editing [2–5]. 6

Extracting mechanistic insights from the heterogeneous datasets generated by these new techniques, each of which 7

reveals a different aspect of development, requires systematic strategies for data integration and analysis [6–11]. 8

Computational models can serve as platforms for quantitative evaluation of candidate mechanisms of embryonic 9

development and should begin to be viewed as compact repositories of data [12]. Here we illustrate this point, using 10

datasets from genetic, biochemical, and imaging studies of the signaling enzyme Extracellular signal Regulated Kinase 11

(ERK) and its substrate, a transcription factor Capicua (Cic), both of which are critical for normal embryogenesis 12

and are deregulated in human diseases. 13

Cic is a gene repressor that controls its targets by binding to specific sequences in their regulatory DNA. Repression 14

is relieved when Cic is phosphorylated by ERK, an enzyme activated by signaling from cell surface receptors [13–15]. 15

ERK counteracts repression by Cic by controlling its DNA binding as well as its sub-cellular localization. The 16

relative contributions of each mechanism to transcription remain unclear, mainly because of the differences among 17

the experimental systems and lack of a quantitative framework for data analysis. The fruit fly embryo, a versatile 18

developmental system where Cic was originally identified in one of the mutagenesis screens, offers unique opportunities 19

for dissecting how distinct regulatory steps affect gene transcription. The embryo uses ERK to pattern the terminal 20

structures of the larva and can be used to study gene regulation at multiple levels of biological organization, from 21

molecular interactions to tissue morphogenesis [16]. 22

We have established quantitative approaches for live imaging of Cic and its transcriptional effects in the em- 23

bryo (Fig. 1c, 1e, and Supplementary Figure 1). These real-time studies reveal dynamics of molecular and cellular 24
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Figure 1: (a) A schematic of the experiments that led to the datasets used to construct the model: Ectopic activation of ERK
signaling by locally activating SOS; Live imaging of fluorescently tagged Cic (green); estimation of Cic lifetime, using Cic tagged
with a photoswitchable protein; ELISA measurement of molar concentration of Cic estimates the number of Cic molecules
inside the nucleus; visualization of transcription via MS2-MCP reporters in the nuclei (red), respectively; measurement of the
binding affinity of Cic to DNA by ChIP-Seq/ChIP-qPCR. (b) A schematic of the three tiers the model: A pairwise force-field
model of nuclear divisions; a kinetic model describing the subcellular localization and biochemical state of Cic; a two-state
model describes how a Cic target genes switches between the active (red) and inactive black) states. (c) Dynamics of nuclear
Cic in the middle of a wild type embryo in cycle 11-14 (top) and in an embryo stimulated with optogenetic ERK signals in
cycle 14 (bottom) for the simulation (green) compared to real data from imaging fluorescent protein (black) (N = 3 samples
for both the experiments). (d) The dynamics of the fraction of Cic bound to DNA for in response to step (top) and pulsed
(bottom) optogenetic ERK signals. Results from the simulation (purple) are compared to chromatin immunoprecipitation
data (black) (e) Expression of the transcriptional reporter of a Cic target gene (tailless) in the middle of the embryo induced
by a step (top) and pulsed (bottom) optogenetic ERK signals. Fraction of transcriptionally active nuclei in the model (red)
and real embryos (black). The cyan lines in the top plots refer to start of the optogenetic stimulation. The solid colored lines
show the mean simulation output from the 1000 parameter sets obtained from MCMC simulations; shaded regions represent
one standard deviation from the mean. In Fig. 1c-e the black dots denote experimental mean and the errorbars denote the
standard deviation across all experiments.

processes at single-cell resolution and can be coupled with biochemical assays that quantify concentration and genome-25

wide DNA binding patterns of Cic [17] (Fig. 1d). The power of imaging and biochemical assays is further extended by26

combining them with optogenetic perturbations of the signaling cascade that culminates in ERK activation [17–19].27

Here we demonstrate that datasets emerging from such integrative studies (Fig. 1a) are already sufficient for con-28
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straining the parameters in a computational model that accounts for the key dynamic processes in the early embryo. 29

The resulting model provides insights into the relative time scales and importance of the processes through which 30

ERK relieves gene repression by Cic. 31

Our computational model is based on a three-tiered biophysical description of the following processes: nuclear 32

divisions that establish a random nuclear packing under the common plasma membrane of the early embryo, signal- 33

dependent nucleocytoplasmic shuttling, and transcription (Fig. 1b). Cic is synthesized in the cytoplasm and shuttles 34

in and out of the nuclei in a tissue where the nucleocytoplasmic partitioning evolves with mitotic divisions. The 35

rate of shuttling depends on Cic phosphorylation, which is in turn controlled by ERK. When in the cytoplasm, Cic 36

is degraded with first order kinetics; in the nucleus, Cic reversibly binds to DNA, with phosphorylation-dependent 37

rate constants. The Cic target gene tailless (tll) switches between transcriptionally active and inactive states. The 38

integrated model has both stochastic and deterministic components: dissipative particle dynamics that produce 39

nuclear packings (tier 1) [20], mean field kinetics with individual parameters describing nucleocytoplasmic transport, 40

DNA binding and phosphorylation (tier 2), and a two-state Markov model for expression of the Cic target genes (tier 41

3) [21–23] (Methods). 42

Since nuclear divisions are unaffected by nucleocytoplasmic shuttling and transcription, parameters for the first 43

tier of the model can be constrained independently of the other two, by matching the experimental and predicted 44

statistics for internuclear distances [20]. The remaining part of the model has 12 free parameters (Supplementary 45

Table 1). We used a stochastic optimization approach to obtain an ensemble of parameter vectors that minimize the 46

mismatch between model predictions and datasets from measurements of Cic dynamics and its effects on transcription 47

( [24], Methods). Data from live imaging of nuclear Cic (Supplementary Figure 1) and time resolved chromatin 48

immunoprecipitation measurements of Cic binding to the regulatory DNA [17] constrained the parameters related 49

to tier 2 of the model (i.e. phoshphorylation, nucleocytoplasmic shuttling and DNA binding). Parameters for the 50

transcription part of the model were constrained by live imaging of nascent mRNA production [17] controlled by the 51

regulatory region of tll, visualized with single nucleus resolution via the MS2-MCP system. All of these measurements 52
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Figure 2: Heatmaps of the rate constants of import and export of unphosphorylated (a) and phosphorylated (b) Capicua,
the rate constants of Cic-DNA binding and unbinding (c), and the rates of the activation and deactivation of the Cic target
gene tailless (tll) (d). The axes are on a logarithmic scale. The color represents the probability of the respective pair of data
points to be in a particular bin on the 2D plot. The insets show the corresponding processes. Transcriptional responses in the
middle of the embryo in the full model (black lines) (e-g) compared to the models with inhibited import (light blue lines) (e),
inhibited export (dark blue lines) (f), and inhibited import and export (pink lines) (g), after the ERK signal was turned on
(cyan bar) in cycle 14. In each plot, the dark line represents the mean and the light shaded region around it represents a
region of one standard deviation across the mean. In the absence of all nucleocytoplasmic transport, transcription is reduced
slightly (g), whereas in the absence of only export it is reduced significantly (f) and in the absence of only import it is increased
slightly (e).
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were done in both unperturbed embryos and embryos stimulated with optogenetically induced steps and pulses of53

ERK activation.54

Our computational model is quantitatively consistent with the most salient features of Cic regulation and function,55

revealed by imaging and biochemical assays (Fig. 1c-e, Supplementary Figure 2). The individual parameters of the56

model, most notably those related to the time scales of Cic nucleocytoplasmic shuttling and Cic-DNA binding, as57

well as parameters for transcription kinetics are either well constrained or have well defined upper bounds (Fig. 2a-d,58

Supplementary Figure 3). Furthermore, the estimated parameters quantitatively show that the Cic-DNA binding and59

unbinding are faster than nucleocytoplasmic shuttling of Cic – the two processes through which ERK signals control60

gene regulation (Supplementary Figure 4). Consistent with these findings, model predictions over the parameter61

ensemble show that while changes in the nuclear localization of Cic are not essential for relieving its repressor function,62

they provide quantitative control of the transcriptional output on a longer timescale (Fig. 2e-g). These results63

demonstrate how our computational model can generate quantitative predictions for the outcomes of perturbations64

that can not be realized experimentally, such as selective disruption of Cic nuclear import or export.65

In conclusion, the rapid convergence of time-resolved data, advanced genetic perturbations, and biophysical66

modeling have reached the point when models can make credible quantitative predictions regarding multiple aspects of67

embryogenesis, especially those that are too costly and difficult to explore experimentally. The presented framework is68

ideally suited for rigorous evaluation of the mechanistic consistency of heterogeneous datasets. For example, the model69

trained on data obtained for a known Cic target is also consistent with a fully synthetic reporter (Supplementary70

Figure 5). Our strategy can be used for evaluating how each individual data point within a dataset constrains the71

model parameters (Supplementary Figure 6) and is readily applicable to models that account for transcriptional72

feedbacks [25]. Finally, while our work was based on data from a single laboratory, future efforts should focus on73

integrating data from independent laboratories, similar to what has been successfully accomplished by the “data74

collaboration” framework in combustion research [12]. If successful, such a framework should lead to more efficient,75

cost-effective and, ultimately, more insightful studies of embryonic development.76

Methods77

Cic-sfGFP live imaging78

To track endogenous nuclear Cic intensity in the middle of the embryo, flies with Cic Crispr-tagged with sfGFP79

(previously described in [17]) were crossed to flies containing a nuclear marker, histone-RFP. Embryos from this cross80

have maternally deposited Cic-sfGFP and his-RFP. Collected embryos were manually dechorionated and mounted81

onto a slide. The slide was placed on a live imaging chamber with halocarbon oil. All imaging was done on a Leica82

SP5 point scanning confocal microscope using the 63X oil objective. A central region of the embryo was imaged83

encompassing about 500 nuclei using 20 % and 10 % laser powers for the 488 nm and 561 nm lasers respectively.84

A Z-stack of 12 images (step size of 1 micron) was captured every 30 seconds from nuclear cycle 12 through to85

gastrulation. From the red channel capturing the nuclear marker, we segmented the images using the imbinarize86

function of the MATLAB and found the nuclear Cic levels by averaging the intensity from the green channel capturing87

the sf-GFP.88

To track how quickly Cic leaves the nucleus in response to a light stimulus (in other words, ERK activation), we89

imaged embryos expressing Cic-sfGFP and OptoSOS [26]. OptoSOS expresses SOS tagged with mCherry, indicating90

that a red histone marker could not be used in this case. SOS is an enzyme that catalyzes the modification of a91

membrane-tethered pathway component, Ras, that favors its active conformation. Once active, Ras itself catalyzes92

the activation of a phosphorylation cascade resulting in activated ERK, which de-represses Cic. Blue light activates93

Opto-SOS, so simply imaging Cic-sfGFP with the 488 laser activates ERK. Within the first 5 minutes of nuclear94

cycle 14 we imaged Cic-sfGFP (and subsequently activated the optogeneic construct) using 20 % 488 nm laser. A95

Z-stack of 12 images (step size of 1 micron) was captured every 30 seconds until gastrulation. From the OptoSOS-96

mcherry channel, we segmented the images using the imbinarize function of the MATLAB and identify the pixels97

corresponding to the membranes. We assumed all other pixels correspond to nuclei (in nuclear cycle 14 nuclei are98

tightly packed in the cell) and found the the nuclear Cic levels by averaging the intensity from the channel capturing99

the sf-GFP.100

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.01.31.429006doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.429006
http://creativecommons.org/licenses/by-nc/4.0/


Model Description 101

In our model (Fig. 1b, Supplementary Table 1 ), Capicua (Cic) molecules have three different localizations– cytoplas- 102

mic (C, C∗), nuclear but unbound to the DNA (N ,N∗) and nuclear and bound to the DNA (B, B∗). The molecule 103

in each localization can be in two states– unphosphorylated (C, N , B) and phosphorylated (C∗, N∗, B∗). The 104

transition between these two states depends on level of active ERK (E), which switches reversibly to it’s inactive 105

form from the total constant pool of ERK Emax. k+ and k− are the rates of transition from inactive to active forms 106

of ERK and vice-versa. Equation (1) describes the dynamics of ERK signals. k+ = kendo(x)+kopto(x, t), where kendo 107

has an endogenous profile from pole to the middle of the embryo and kopto represents the optogenetic activation of 108

ERK. In the model, ERK levels are same in the nucleus and cytoplasm. Equations (2)-(7) describe the dynamics 109

among two states and three localization of Cic. The rate of phosphorylation of Cic is proportional to active ERK (E); 110

kp is the rate constant of phosphorylation, and kd is the rate constant of dephoshorylation. We used the endogenous 111

level in the pole of the WT embryo as the unit signaling level of ERK. Cic is synthesised with a volumetric rate of q 112

and degrades in the cytoplasm, with the rate constant of kdeg. The rate constants of degradation in cytoplasm are 113

independent of the phosphorylation state of the molecule [14]. The rate constants of import and export are different 114

for the unphosphorylated ( ˆkim, k̂ex) and phosphorylated ( ˆk∗im, k̂
∗

ex) states. Similarly, affinity to DNA is also different 115

for the unphosphorylated (kb) and phosphorylated (k∗b) states. However, for the sake of simplicity we assumed the 116

rate constants of unbinding to be same (ku = k∗u) and rate of binding to DNA of unphosphorylated molecule to be 117

significantly higher than the phosphorylated ones (kb/k
∗

b = 1000 >> 1). Smax is the total number of Cic binding 118

sites in the Drosophila genome and Cmax
N is the maximum concentration of nuclear Cic in nuclear cycle 14.

(1)
dE

dt
= k+(x, t)(Emax − E)− k−E;

(2)
d(V i

cC)

dt
= qVC − kdegV

i
cC −

ˆkimA
i
nC + k̂exAnN − kpEVcC + kdV

i
cC

∗.

(3)
d(V i

cC
∗)

dt
= −kdegV

i
cC

∗

−
ˆkim

∗

Ai
nC

∗ + k̂∗exA
i
nN

∗ + kpEV i
cC − kdV

i
cC

∗

(4)
d(V i

nN)

dt
= ˆkimA

i
nC − kexAnN

i
− kpEV i

nN + kdV
i
nN

∗

− kb(N/Cmax
N )(Smax

− V i
n(B +B∗)) + kuVnB

(5)
d(V i

nN
∗)

dt
= ˆk∗imA

i
nC

∗

− k∗exA
i
nN

∗ + kpEVnN − kdV
i
nN

∗

− k∗b(N
∗/Cmax

N )(Smax
− Vn(B +B∗)) + k∗uV

i
nB

∗

(6)
d(V i

nB)

dt
= −kpEV i

nB + kdVnB
∗ + kb(N/Cmax

N )(Smax
− V i

n(B +B∗))− kuVnB

(7)
d(V i

nB
∗)

dt
= kpEVnB − kdV

i
nB

∗ + k∗b(N
∗/Cmax

N )(Smax
− V i

n(B +B∗))− k∗uVnB
∗

We non-dimensionalized all the concentrations by (q/kdeg) and time as τ = kdegt. In cycle 11, we initialized the 119

concentration of all the Cic pools as zero, whereas, in cycle 12-14 we distributed the total pool of unphosphorylated 120

and phosphorylated Cic in the cytoplasm of two daughter cell, as the nuclear membrane breaks apart during mitosis. 121

We used the geometric parameters Ai
n, V

i
n and V i

c in nuclear cycle (i) 11-14 from [27]. For a given set of parameters, 122

we calculated Cmax
n as the maximum value of N +N∗ by setting kb, k

∗

b , ku, k
∗

u to zero and treating the bound and 123

unbound pools together. 124

In the transcription, where Cic target flips between a transcriptionally active and inactive state (Fig. 1b). The 125

rate constant of activation is kon, which is proportional to the probability of finding all the sites not bound by Cic, 126

a non-linear function of fraction of Cic sites bound (fb), defined as V i
n(B +B∗)/Smax (Fig. 1b).

(8)kon = kmax
on (1− fb)

m.

Deactivation happens with the rate constant koff . If transcription is off in a nucleus in time t, it switches to the on 127

state in the next timestep at t+∆t, with a probability exp(−kon(t)∆t). Similarly, if transcription is on in a nucleus, 128

it switches to the off state with a probability exp(−koff∆t). 129
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Parameter Estimation130

The parameters for the tier 1 of the model were estimated by minimizing the difference of radial distribution function,131

a statistical mechanics descriptor that quantifies the structural order of a point pattern [20]. There are 12 free132

parameters in the rest of the model (Supplementary Table 1). In this 12 dimensional space, we started from an133

initial guess p0 chosen randomly in the pre-specified range (Supplementary Table 1). Then we ran the Markov134

Chain Monte Carlo (MCMC) simulations for M steps, where in each step j the following operations were done135

(Supplementary Code, [28]):136

• The normalized error from each experiment εkj is calculated as ε2kj =
∑T

l=1(Skl − µkl)
2/
∑T

l=1 σ
2
kl, where, µkl137

and σkl are the mean and standard deviation of the lth datapoint of the kth experiment and Skl is the equivalent138

model output.139

• The total error of the simulation Ej is evaluated as the norm of a vector of normalized errors from all the140

experiments– E2
j =

∑N

k=1 ε
2
kj .141

• A vector V of length δ of the same dimension as the parameter space is chosen in a random direction.142

• The parameter vector pg is updated such that the mth parameter is pgm = pjm(1 + Vm).143

• The total error Eg is calculated for the parameter vector pg.144

• If Eg < Ej , the movement in the parameter space is accepted with a probability 1, else, the movement is145

accepted with a probability exp(−β(E2
g − E2

j )).146

As our initial guesses were uniformly dispersed in the parameter space, we chose β = 500 >> 1 and δ = 0.1147

to find the local minimum around each initial guess. We present results from 1000 simulations, each of which ran148

for M = 2000 steps, when the error becomes steady (Supplementary Figure 7). In Fig. 2a-d, we plot the relative149

frequency of each pair of parameters in a bin in logarithmic scale.150

Comparing data and model predictions151

In every step of the MCMC simulations, we solved equations (1)-(7) for 4 nuclei–a nucleus at the middle of a wild152

type embryo (E = 0), a nucleus at the pole of a wild type embryo (E = 1), a nucleus at the middle of the embryo153

with a step activation of ERK in cycle 14, and a nucleus at the middle of the embryo with a pulse activation of ERK154

of 5 minute duration in cycle 14 (E changes dynamically). We elaborate below how we compare the model output155

for these nuclei to the experimental data below.156

Live Cic imaging157

Though there are four pools of Cic in the nucleus, the live imaging of Cic-sfGFP doesn’t distinguish between the158

proteins bound and unbound to DNA or it’s state of phosphorylation. So, for comparison with the experimental159

data, we define the total dimensionless concentration of nuclear Cic as C̃n = Ñ + Ñ∗ + B̃ + B̃∗, where Ñ , Ñ∗, B̃,160

B̃∗ are dimensionless form of the respective concentrations. The nuclear Cic intensity obtained from live imaging161

are in arbitrary units. So, we further divide the non-dimensional nuclear Cic concentration C̃N from the model by162

the concentration of cytoplasmic Capicua (C + C∗) at time t0, when the synthesis of Cic stops in cycle 14. We163

normalized the fluorescence intensity of Cic such that the maximum value of Cic intensity in cycle 14 in the middle164

of the embryo is 9, the experimentally reported ratio of nuclear and cytoplasmic Cic in cycle 14 [14]. In this way,165

we effectively normalized both the experimental and the computational time-series of nuclear Cic by the typical166

cytoplasmic concentration of Cic at cycle 14 (Fig. 1c). For comparing the ratio of nuclear Cic at the middle and pole167

regions, we found the ratio of C̃N at time t0 in cycle 14 and compare it with the results from [17] (Supplementary168

Figure 2a).169

DNA binding170

The ChIP-Seq data reveals the genome-wide binding of Cic. Although this data is from the entire embryo, endoge-171

neous ERK is active in less than 10 % of the embryo. So, we assumed the data to be reflective of nuclei without any172

endogeneous ERK signal such as one in the middle of the embryo within experimental error (≈ 20%). Furthermore,173

to compare with the model output fb, the fraction of Cic sites bound, we normalized all the experimental ChIP-Seq174

data to the wild type data, assuming all sites are bound in the middle of the wild type embryo in cycle 14.175
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Transcriptional response 176

The experimental data for transcriptional activity in the middle of the embryo in response to optogenetic activation 177

is the fraction of nuclei transcribing in a given area [17], which is an ensemble property. However, during the MCMC 178

optimization, we ran the simulations on a single nucleus on the middle of the embryo. To extract ensemble statistics 179

out of this, we found the fraction of nuclei ft transcribing in the middle of the embryo by solving the following 180

equation,

(9)
dft
dt

= kon(t)(1− ft)− koffft,

where, we calculated kon as a function of fb (equation 8) for the nucleus situated in the center of the nucleus. 181

The initial condition is ft = 0 after the mitosis. This comparison is based on the assumption that E, the only 182

input to the model is constant in the imaging region, which is evident from the experimental ERK profiles [14, 16]. 183

This predictions of this deterministic model are close to the predictions of a stochastic description of transcription 184

(Supplementary Figure 8). 185

Data and code availability 186

The code for the MCMC Simulation, data used to run the code and code for generating ensemble predictions are 187

available in [28]. Source data for figure 1 and 2 are available with the manuscript. 188
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