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Abstract 

Unbiased single-cell proteomics (scProteomics) promises to advance our understanding of cell 

functions within complex biological systems. However, a major challenge for current methods is 

their ability to identify and provide accurate quantitative information for low abundance proteins. 

Herein, we describe an ion mobility-enhanced mass spectrometry acquisition and peptide 

identification method, TIFF (Transferring Identification based on FAIMS Filtering), designed to 

improve the sensitivity and accuracy of label-free scProteomics. TIFF significantly extends the 

ion accumulation times for peptide ions by filtering out singly charged background ions. The 

peptide identities are then assigned by a 3-dimensional MS1 feature matching approach 

(retention time, accurate mass, and FAIMS compensation voltage). The TIFF method enabled 

unbiased proteome analysis to a depth of >1,700 proteins in single HeLa cells with >1,100 

proteins consistently quantified. As a demonstration, we applied the TIFF method to obtain 

temporal proteome profiles of >150 single murine macrophage cells during a lipopolysaccharide 

stimulation experiment and identified time-dependent proteome profiles.  
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Introduction 

Single-cell technologies have become the cornerstone of biomedical and cell biology research 1, 2. The 

emergence of single-cell RNA sequencing (scRNA-seq) and related single-cell sequencing technologies 

has illuminated unappreciated cellular heterogeneity and revealed cell subpopulations obscured in bulk 

measurements 3. However, many integrative studies have shown only low to moderate correlations 

between the abundance of RNA transcripts and their corresponding proteins 4, 5, as the translation of RNA 

into a functional protein can be affected by diverse events such as alternative splicing and microRNA 

regulation 6. Additionally, RNA measurements cannot infer post-translational modifications that modulate 

protein functions. Thus, there is an unmet need for broad proteome measurements at the single-cell level, 

which has lagged behind single-cell sequencing approaches. 

Recent advances in sample preparation and mass spectrometry facilitate unbiased single-cell proteomics 

(scProteomics) 7-20. Microfluidic sample processing devices and systems have improved protein digestion 

efficiency and sample recovery by minimizing adsorptive losses 13-16, 18, 20. Tandem mass tag (TMT)-based 

isobaric labeling approaches (e.g., ScoPE-MS) have enabled multiplexed single-cell analysis in individual 

LC-MS runs 7, 9, 11, 17, 19, 20. The miniaturization of capillary electrophoresis or liquid chromatography has 

improved separation resolution and enhanced electrospray ionization efficiency 21.  High-resolution MS 

analyzers combined with ion focusing devices, such as ion funnel, have increased detection sensitivity to 

the level where single molecules can be detected 22. State-of-the-art methodologies in scProteomics now 

can identify from ~700 to ~1,000 proteins from cultured single mammalian cells (e.g., HeLa) using label-

free approaches 8, 10, 14, 23, 24 and from ~750 to ~1,500 proteins using TMT-labelling and signal boosting 

strategies 7, 9, 11, 17-19. Despite these advances, scProteomics remains immature, and significant technical 

challenges remain, including not only limited proteome depth and poor quantification performance, but 

also low system robustness for large-scale single-cell studies.  
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Because of the lack of a global amplification method for proteins, the coverage and quantification 

performance of scProteomics largely rely on the capabilities of MS measurement (e.g., sensitivity, speed, 

dynamic range). Although targeted MS measurements enable the detection of low copy number proteins 

and even single molecules 22, these measurements are generally performed using narrow m/z windows 22 

or tandem mass spectra 25 to minimize background signals. Background ions, originating from ambient air 

and solvent/reagent impurities, dominate MS spectra during full m/z range acquisition. These abundant 

ions quickly fill ion trapping devices (e.g., ion trap or ion routing multipole) and limit the ability to trap 

ions over an extended time, which could otherwise accumulate more low-abundance ions of interest and 

improve detection sensitivity 26, 27. The high background signals generated by these ions can also 

significantly reduce the dynamic range of MS analyzers and deteriorate feature detection during 

downstream data analysis.  

We reasoned that the removal of background ions should dramatically enhance the sensitivity of MS 

detection and improve the proteome coverage and quantitation performance of scProteomics. A variety of 

approaches have been developed to minimize background signals, including the use of a carbon filter in 

front of MS inlets to purify the ambient air 28, a picoliter-flow liquid chromatography (LC) system to 

reduce overall contaminates from air and solvent 21, a dynamic range enhancement applied to MS 

(DREAMS) data acquisition algorithm to reject highly abundant ions before ion accumulation 27, and a 

high field asymmetric waveform ion mobility spectrometry (FAIMS) interface to remove singly charged 

ions 23 . Recently, Cong et. al. 23 demonstrated the coupling of FAIMS with low flow LC (20 nL/min) and 

Orbitrap Eclipse can identify ~1100 proteins from single cells. Because the peptides were identified by 

MS/MS, long LC gradients were required to collect sufficient numbers of MS/MS spectra for deep 

proteome coverages, which limited the analysis throughput. Herein, to address these challenges, we 

describe an MS1-centric data acquisition and peptide identification method, TIFF (Transferring 

Identification based on FAIMS Filtering), that significantly improves the proteome coverage, 

quantification accuracy, and throughput of label-free scProteomics. We demonstrated the capability and 
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scalability of the TIFF method by studying macrophage activation with lipopolysaccharide (LPS) and by 

classifying dissociated human lung cells into distinct cellular populations. 

Results 

The TIFF method  

The TIFF method is inspired by the accurate mass and time (AMT) tag approach 29, or other derivative 

approaches, such as “match between run” (MBR) implemented in MaxQuant 30 or IonQuant31, that 

generally rely on two measurements for the assignment of peptide identity: the accurate mass-to-charge 

ratio (m/z) and the LC retention time (RT). We have previously demonstrated that MBR improves the 

proteome coverage and reduces missing values in scProteomics 13, 24. The recent integration of ion 

mobility devices, including FAIMS at the interface between the LC system and mass spectrometer, 

provide an opportunity to use the additional ion-mobility separation dimension to reduce false discovery 

and improve coverage 32. We take advantage of this advance and utilize the FAIMS compensation voltage 

(CV) as a third matching feature (in addition to retention time and accurate mass) for peptide 

identification, as illustrated in Figure 1a. Briefly, a spectral library is constructed by repeatedly analyzing 

high-input samples on an LC-FAIMS-MS platform, with each LC-MS analysis utilizing a discrete 

FAIMS CV; in this case, CVs of -45V, -55V, -65V and -75V. Each peptide identified in the high-input 

analyses is associated with a unique 3-dimensional (3D) tag comprising LC retention time, accurate m/z, 

and FAIMS CV. Next, low-input samples (e.g., single cells) are analyzed by cycling through multiple 

FAIMS CVs (-45V, -55V, -65V, and -75V) within a single LC-MS analysis. A key aspect of the TIFF 

method is the mode of MS data acquisition, with most of the MS time spent on MS1 acquisition to 

enhance the accumulation of low-abundant peptide ions for sensitive detection. Compared with our 

previous FAIMS-based scProteomics method (Figure S1a and S1b),31 precursor ion sampling efficiency is 

increased by > 2 fold (Figure S1c). The fewer MS2 acquisitions generated within each cycle are sufficient 

to exploit the non-linear multi-sample alignment feature of MaxQuant. Subsequently, MS1 features in 
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low-input samples (i.e., single-cells) are identified by matching to the spectral library and utilizing the 

unique 3D tag based on the MBR algorithm within MaxQuant 30.  

TIFF improves LC-MS sensitivity 

We first verified the utility of FAIMS to remove singly charged ions (“chemical background” noise) and 

create more “room” for peptide ion accumulation and enhance detection of low-abundance peptides. We 

analyzed single-cell equivalent amount (0.2 ng) of protein digests (CMK cells) with or without a 

FAIMSpro interface. Without FAIMS, most dominating signals correspond to singly charged ions, some 

of which are known to originate from plasticizers (e.g., m/z 391.28) and air impurities (e.g., m/z 445.12, 

462.29, and 519.14) (Figure S2). Because these highly abundant contaminants quickly fill ion 

accumulation (or trapping) regions, the median ion injection/accumulation time is only 30 ms across the 

whole LC-MS analysis (Figure 1b). In comparison, when FAIMS is used, most dominating ion signals are 

multiply charged (Figure S2), and the median ion injection times increase from ~30 ms to ~180 ms for a 

CV of -45 V, reaching the maximal time of 254 ms for the other three CVs. This corresponds to an ~8.5× 

increase in ion sampling efficiency (Figure 1b). Benefiting from the low background and elongated ion 

accumulation, the median S/N of LC-MS features increased from 5.2 (STD) to 29.6 (FAIMS), 

representing a ~5-fold increase for all the CV values (Figure 1c).  

To evaluate the improvements in MS sensitivity, we investigated several metrics related to proteome 

coverage, including the number of multiply-charged MS features, unique peptides, and proteins (Figure 

1d-1e and Figure S3a-S3d). Briefly, we analyzed single-cell-level (0.2 ng) protein digests from three 

leukemia cell lines: CMK, K562, and MOLM14 with either a FAIMSpro interface or with a standard 

interface. Compared to the standard interface, the FAIMSpro interface and the TIFF method increased the 

number of multiply-charged MS features detected in the MS1 by > 3 folds (Figure S3a). Most of the 

increased peptide features appeared in the low-MS-intensity scale across all four FAIMS CVs (Figure 

S3e). Similarly, the TIFF method increased peptide identification by >75% (Figure 1d) and protein 
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identification by >74% (Figure 1e).  As expected, the MS/MS-based identifications were reduced due to 

the lower number of MS/MS scans (Figure S3b to S3d) in the TIFF method. Modulation of CVs within 

the TIFF method had a modest effect on the number of peptide features, peptides, and proteins, with only 

a slight increase using 4 CVs as opposed to 2 CVs. However, utilizing 4 CVs in the TIFF method yielded 

increases in summed peptide intensities compared to utilizing 2 CVs (Figure S3f), which subsequently 

improved the quantification performance as described below.  

We evaluated whether the 3D feature matching approach could reduce false discovery rates by comparing 

it with the conventional 2D matching approach29, 30. We generated a mixed-species spectral library 

containing 20588 human peptides from MOLM14 cells and 9362 bacterial peptides from Shewanella 

Oneidensis MR-1. These Shewanella proteins were served as  “decoy” proteins in the library. To do this, 

we analyzed 0.1-ng MOLM14 peptides with the 4CV-FAIMS method. During MaxQuant analysis with 

MBR algorithm, we either disabled or enabled the FAIMS CV matching function. As shown in Figure 1f 

and Figure S4, the conventional 2D matching approach results in total 7199 peptides identified, and 304 

of them are bacterial peptides, representing a false matching rate of 4.1%. Encouragingly, when the 3D 

matching approach (TIFF) was applied, only 161 bacterial peptides were identified, corresponding to a 

false matching rate of 1.8 % (Figure S4). At the protein level, the false discovery rates of 2D and 3D 

matching approaches were estimated to be 10.8% and 5.3%, respectively.  

TIFF improves the quantification of scProteomics 

Next, we evaluated whether the TIFF method improves quantification performance when compared with 

a standard approach. We compared the run-to-run reproducibility from triplicates using 0.2 ng of CMK 

cell digests with the standard, 2-CV TIFF, and 4-CV TIFF methods. While the distribution of the 

coefficients of variation was similar between the 2-CV TIFF and the standard methods, the median of the 

coefficients of variation for the 4-CV TIFF method was significantly reduced from 15.6% to 12% (Figure 

S5a). Such an improvement could be attributed to the enhanced sensitivity of the 4-CV TIFF method, 
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allowing more low-abundance peptides to be identified. With the 4-CV TIFF method, > 80% of the 

proteins had no missing values and > 90% had no more than one missing value across the triplicates. 

Higher percentages of missing data were present with the 2-CV TIFF and standard methods (Figure S5b). 

To further assess the quantification accuracy of the 4-CV TIFF method, we performed a statistical 

analysis using samples from two cell types (CMK and K562). Proteins having at least 2 valid values in a 

given group were considered quantifiable. The 4-CV TIFF method exhibited a total of 2,345 quantifiable 

proteins that included ~98% of the proteins (1,052) using the standard method (Figure S5c). Because it 

was possible to quantify proteins more consistently with the TIFF method, we observed 1,053 

differentially abundant proteins (DAPs) (FDR < 0.05 and S0=0.1) between the CMK and K562 cells, 

while only about half (i.e., 536 DAPs) were found using the standard method (Figure S6a-S6b). A total of 

380 DAPs were shared between the two methods. As shown in Figure S5d, the linear correlation 

coefficient of protein fold-changes between the two label-free methods is high (R = 0.95). The slope of 

linear regression is ~1 (K), indicating similar fold changes between the two methods. Similarly, the 4-CV 

TIFF method showed improved quantification results over the standard method in the comparison 

between MOLM14 and the other two cell types (Figure S7 and S8).  

A streamlined label-free scProteomics platform 

Having demonstrated that the TIFF method offers improvements in proteome coverage and quantification 

for mass-limited samples, we integrated it into our scProteomics pipeline that includes fluorescence-

activated cell sorting (FACS) for cell isolation 14, a robotically addressed nanowell chip for single-cell 

processing (nanoPOTS, Nanodroplet Processing in One pot for Trace Samples) 13, a nanoliter-scale LC 

autosampler for reliable sample injection 10, and a low-flow liquid chromatography system (LC column 

with 50 µm i.d.) 10. Both single cells and pooled library cells can be isolated with FACS and processed 

with nanoPOTS. The integrated FACS-nanoPOTS-autosampler-TIFF-MS platform offers a complete 

solution from cell isolation to data acquisition and peptide identification for unbiased scProteomics, as 
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well as other biological applications with mass-limited samples. The platform is robust and scalable. 

Since developed, it has been used to analyze > 1200 samples in our facility.  

Proteome coverage of single HeLa cells 

We used HeLa cells to benchmark the TIFF-based scProteomics workflow. Using a tandem mass 

spectrometry approach (MS/MS), an average of 209 proteins were identified from single HeLa cells 

(Figure S9a). The number is comparable to our previously reported result (211 proteins) using a lower-

flow LC-MS system (50 nL/min with 30 µm i.d. column) but without a FAIMS interface (Supplementary 

Table 1) 14, and 42% lower than that obtained using an ultra-low-flow LC system (20 µm i.d. column) and 

the newest generation (Eclipse) MS 8. The utilization of the 4-CV TIFF method dramatically increased the 

coverage to an average of 1,212 (± 10%) identified protein across 10 single cells (Figure S9a). The TIFF 

method doubled the total number of identifications compared with our previous report 14, reaching 1,771 

unique proteins (Figure S9b). The number of identifications obtained with the TIFF method is comparable 

to the one we obtained using a 20-µm-i.d. column (20 nL/min)), a FAIMS interface, an Eclipse MS, and a 

long LC gradient 23.  

The quantification consistency was also evaluated. Using protein iBAQ intensities, 684 out of 1,771 

proteins had no missing values across the 10 HeLa cells (Figure S9c). 1,103 proteins were presented in at 

least 50% of the analyses. Pearson's correlation coefficients had a median value of 0.95 between any two 

HeLa cells, indicating the high reproducibility of our integrated scProteomics pipeline (Figure S9d). 

Together, these results demonstrated that the integration of the TIFF method with high-efficiency single-

cell preparation offers a sensitive and reliable scProteomics pipeline for label-free quantification. 

Preliminary application to dissociated primary cells from human lung 

To initially explore the scProteomics platform for cell-type classification from dissociated primary cells, 

we analyzed non-depleted and non-labeled primary cells from the lung of a 2-year-old donor (Figure 
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S10a).  19 single cells were processed and analyzed using the TIFF-based scProteomics workflow, 

resulting in a total of 986 identified proteins with an average of 390 identified proteins per single cell 

(Supplementary Table 2). We retained proteins identified in at least 8 of the 19 single cells (40% presence) 

for quantitative analysis, resulting in 402 quantifiable proteins (Supplementary Table 3). PCA analysis of 

the 402 proteins suggested the presence of at least three cell populations in the lung tissue single-cell 

suspension (Figure S10b).  

To identify proteins distinguishing these populations, we performed the ANOVA test (permutation-based 

FDR < 0.05, S0 = 0), revealing 99 proteins (~20% of quantifiable proteins) that were differentially 

abundant across the three cell population groups/clusters (Supplementary Table 4) as visually represented 

in Figure S10c. Cell-type identity was assigned to each of the three cell population groups by comparing 

markers from the scProteomics data to lung cell type markers previously enumerated by bulk proteomics 

of sorted cell populations of human lung endothelial, epithelial, immune, and mesenchymal cells 5. 

Correspondence across the scProteomic and bulk proteomic markers revealed Cluster 1 represented a lung 

endothelial cell population, Cluster 2 represented a lung immune cell population, and Cluster 3 

represented a lung epithelial cell population (Figure S11). For example, Caveolin-1 (CAV1) and 

Polymerase I and transcript release factors (PTRF), which were highly abundant in single-cell cluster 1 

(Figure S10d and Figure S11), are known to structurally maintain the specialized lipid raft of caveola in 

lung endothelial cells 33. L-Plastin (LCP1) protein, important for alveolar macrophage development and 

antipneumococcic response 34, was highly abundant in bulk sorted immune cells as well as Cluster 2 . 

Pulmonary surfactant-associated protein B (SFTPB), which facilitates alveolar stability by modulating 

surface tension 35 is known to be preferentially enriched in lung epithelial cells.  SFTPB was highly 

abundant in bulk sorted epithelial cells as well as Cluster 3. The above results demonstrate the feasibility 

of the scProteomics platform for cell-type classification from non-depleted whole tissue single-cell 

suspension samples. 
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We also examined the abundance patterns of the 17 marker proteins based on scProteomics, bulk 

proteomics, and transcriptomics of the sorted populations (Figure S11). For the three protein markers 

mentioned above, we observed good agreement in all three measurement modalities. However, similar to 

our previous integrative study5, we also observed disagreement for some protein markers. For example, 

TUBB protein is identified as an endothelial cell marker in the proteomics dataset, but it is not significant 

in the transcriptomics dataset. In addition, among the 7 epithelial cell markers, only 1 protein/gene 

(SFTPM) is significantly expressed in both proteomics and transcriptomics datasets.  

Large-scale proteome profiling of single macrophage cells in response to lipopolysaccharide 

treatment 

To further evaluate our platform for large-scale scProteomics analysis, we profiled proteome changes of 

single murine macrophage cells (RAW 264.7) after 24-hr and 48-hr lipopolysaccharide (LPS) stimulation 

relative to unstimulated cells (control) (Figure 2a). We analyzed a total of 155 individual RAW 264.7 

cells, containing 54 unstimulated cells, 52 24-hr stimulated cells, and 49 48-hr stimulated cells. Our 

analysis identified a total of 1,671 proteins across the 155 individual cells. The median number of proteins 

identified per cell was 451. While lower than the number of proteins identified from single HeLa cells 

described above, we note that RAW 264.7 cells have a median diameter of 10 µm 36 compared to ~17 µm 

for HeLa cells 12; the 5-fold difference in cell volume likely accounts for the reduced coverages. We also 

observed control cells to have fewer identified proteins than LPS-stimulated cells. The median numbers 

of identified proteins were 307, 482, and 575 for control, 24-hr stimulation, and 48-hr stimulation, 

respectively (Figure 2b). Previous reports have indicated that stimulated RAW 264.7 macrophages 

increased in size and changed morphology upon LPS stimulation, potentially accounting in part for the 

difference in identifications 36. Of the 1,671 identified proteins, 519 were conservatively retained for 

quantitative analysis after filtering out proteins containing > 50% missing values in at least one 

experimental condition. Using a UMAP (the uniform manifold approximation and projection)-based 

dimensional reduction analysis37, the 155 individual cells partitioned into three distinct clusters on a two-
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dimensional plot correspond to the three experimental conditions (Figure 2c).  Five stimulated cells (3 

from 24 hrs and 2 from 48 hrs) are clustered into the control group, indicating a only small portion of 

RAW cells (~5%) are not sensitive to LPS stimulation.  

To identify the differentially abundant proteins (DAPs) that drive the partitioning of the three clusters, we 

performed an ANOVA test analysis (permutation-based FDR <0.001, S0=5). A total of 250 proteins were 

significantly modulated across the three groups (Figure 2d). Gene ontology analysis results showed that 

proteins increased in abundance at 24 hr LPS stimulation (Cluster A in Figure 2d) were primarily 

enriched in antigen processing and presentation processes (FE = 37.2 to 157.5, p < 0.01). Proteins 

increased at 24hr LPS stimulation and remained elevated through 48 hr LPS stimulation (Cluster B) were 

enriched in antigen processing and presentation (FE = 10.6, p < 0.05), response to LPS (FE = 2.5, p < 

0.05), as well as oxidation-reduction (FE = 2.1, p < 0.01) processes, which are known to be a critical 

function of activated macrophage cells. Biological processes enriched in proteins increased after 48-hr 

LPS stimulation (Cluster C ) included those related to protein exit from the endoplasmic reticulum (FE = 

61.8, p < 0.05) and to foam cell differentiation (FE = 56.1, p < 0.05). The latter finding is in line with a 

previous report on the ability of LPS activated RAW 264.7 macrophages to differentiate into foam cells 38. 

Proteins associated with cholesterol storage (FE = 47.5, p < 0.05) were also increased in abundance after 

48 hr LPS stimulation. Storage of cholesterol ester or triglyceride has been suggested to lead to the 

formation of foam cells 39.  

Beyond functional enrichment analysis, our statistical analysis identified specific proteins previously 

described as being involved in the response process of macrophage cells to LPS stimulation. For example, 

immune responsive gene 1 (Irg1), known as a resistance-inducing protein against LPS 40, was up-

regulated in macrophage cells exposed to LPS at both 24 and 48 hr (Figure 2e). Irg1 is highly expressed 

during various infections or TLR ligand stimulation in macrophages, which have been reported to 

regulate macrophage innate immune responses by controlling proinflammatory cytokines 40. 

Prostaglandin-endoperoxide synthase 2 (Ptgs2/Cox-2), an important precursor of prostacyclin enzyme 
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which is expressed in macrophages exposed to LPS 41, was also significantly increased in LPS-stimulated 

macrophage cells (Figure 2e). Transitional endoplasmic reticulum ATPase (Vcp, also called p97) is 

involved in targeting and translocation of ubiquitinated proteins and the regulation of the inflammatory 

response in immune cells 42. We observed increased abundances of Vcp at 24 hr LPS stimulation with a 

decrease to basal levels at 48 hr LPS stimulation. The perturbation of cellular ubiquitin homeostasis 

supports the concept that variations in protein ubiquitination may be key to infection by pathogens and are 

also involved in triggering the defense mechanism of macrophages. Heat shock cognate 71 kDa protein 

(Hspa8), known to be involved in the presentation of antigenic peptides by major histocompatibility 

complex (MHC) class II (MHCII) molecules for CD4 + T cells, was significantly increased in LPS 

stimulated cells in line with previous studies that also showed this protein to be overexpressed in response 

to LPS stimulation 43.  

Discussion 

In this study, we developed an ion mobility-enhanced MS acquisition and peptide identification method, 

TIFF (Transferring Identification based on the FAIMS Filtering), which was coupled with our previously 

described nanoPOTS scProteomics workflow 10, 13 to improve the sensitivity and accuracy of label-free 

scProteomics. MS acquisition efficiency was significantly improved by filtering out singly charged 

background ions and allowing ion accumulation for extended periods for sensitive detection. Compared 

with our previous FAIMS-based scProteomics workflow using an ultra low-flow LC column (20-µm-i.d.) 

and long gradient,12 the TIFF method dramatically improved both system robustness and analysis 

throughput to enable large-scale single-cell studies. The TIFF-based workflow enabled the identification 

of >1,700 proteins and quantification of ~1,100 proteins from single HeLa cells with label-free analysis. 

We demonstrated the robustness and scalability of the scProteomics workflow via a large-scale analysis 

of 155 single macrophage cells under different LPS stimulation conditions to reveal the biological 

processes at the single-cell level. Finally, we demonstrated the feasibility of classifying cell populations 

of a human lung.   
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While our label-free analysis of single cultured cells (e.g., HeLa) yielded >1000 proteins identified and 

similar numbers of proteins quantified, a similar analysis of single primary cells (e.g., human lung cells) 

resulted in the identification of significantly fewer proteins, presumably due to the fact that culture cells 

have larger sizes and more proteins mass. This again highlights the need to further improve the overall 

sensitivity of current scProteomics platforms to enable routine and deep single-cell proteome analyses of 

primary cells derived from tissues of animal models and human donors. One strategy for improving 

overall sensitivity is by further improving protein/peptide recovery. Sample recovery during sample 

processing procedures could be increased using smaller nanowells or low-binding surfaces to reduce 

adsorptive loss. Another strategy for improving overall sensitivity is through enhancing peptide 

separation resolution and ionization efficiency. With the advance of nanoLC pump technologies, the LC 

flow rates could be reduced to low nanoliter and to even picoliter-scale to further enhance peptide 

separation resolution and ionization efficiency. MS instrumentation with high ion-transmission optics and 

sensitive detectors could provide further enhancements in proteome coverage for single cells. In addition 

to FAIMS, other ion mobility-based technologies, including trapped ion mobility spectrometry (TIMS)44, 

45, and particularly, structures for lossless ion manipulation (SLIM) can offer improved ion separation and 

overall ion utilization efficiencies. With all these developments, we believe the proteome depths of 

scProteomics will reach the level of single-cell RNA sequencing and ultimately become an indispensable 

tool in biological and medical researches. 
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Materials and Methods 

Cell culture and single-cell sorting 

All cell lines used in this study were maintained in a medium compatible with each cell line and incubated 

at 37 � with 5% of CO2. Of the three Leukemia cell lines, K562 and MOLM14 cells were cultured in 

RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), and CMK cells were maintained 

in RPMI-1640 medium with 20% FBS added. For HeLa cells, DMEM supplemented with 10% FBS was 

added. RAW 264.7 cells were maintained in DMEM supplemented with 10% FBS followed to be 

stimulated with 100 ng/ul of LPS (Sigma Aldrich) in serum-free DMEM (Thermo Fisher Scientific) for 

24 hr or 48 hr. For the control of RAW264.7 cells (non-treated), ten million cells were collected before 

stimulation with LPS. In the same way, LPS stimulated cells were harvested after 24 hr or 48 hr of 

treatments. HeLa and RAW 264.7 cells were washed by chilled PBS and sorted on the nanoPOTS chips 

(4 × 12, 1.2 mm diameter per well) using the Influx II cell sorter (BD Biosciences, San Jose, CA) as 

described previously 14. To build the in-depth spectral library, 50 cells of each cell line (or equivalent 

peptides of ~10 ng) were loaded onto the microPOTS chip (3 × 9, 2.2-mm diameter per well). 

Primary lung cells 

The dissociated primary human lung cells was kindly provided by Dr. Gloria Pryhuber at University of 

Rochester Medical Center. The detailed protocol to generate the human lung cells was described 

previously46 and available on protocol.io (http://dx.doi.org/10.17504/protocols.io.biz5kf86). The 

dissociated lung cells in  90% FBS and 10% DMSO were cryo-frozen in -80°C freezer. A freezing vial 

was shipped to PNNL on dry ice. The cells were thawed and resuspended in DMEM with 10%FBS for 1 

Hr prior to be centrifuged at 800 g for 10 min. The supernatant was removed and cells were washed in 

DPBS. To gate out dead cells or cell debris, the cells with labeled with Calcein AM viability dye (Thermo 

Fisher). Similar to the FACS-sorting procedures above, we sort 50 cells into microPOTS chips for library 

generation and single cells into nanoPOTS chips for analysis. 
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Protein digestion 

For the low-input mock samples (0.2 ng, equivalent amount peptides to a single-cell), AML cell lines 

were lysed in a tube with lysis buffer including 50 mM NH4HCO3 (pH8.0), 8 M UREA, and 1 % 

phosphatase inhibitor followed by sonicated in a cold bath for 3 min. After the measurements of the 

protein concentrations by BCA assay (Thermo Fisher Scientific), proteins equivalent to 200 μg were 

reduced in 5 mM DTT for 1 hr at 37 � and alkylated with 10 mM iodoacetamide (IAA) in the dark for 1 

hr at room temperature. Eight-fold diluted samples with 50 mM NH4HCO3 were digested with Lys-C 

peptidase at 37 � with a ratio of 50:1 (w/w) for 3 hr followed by digesting with trypsin with a ratio of 

50:1 (w/w) at 37 � overnight. The tryptic digested peptides were acidified by 0.5% trifluoroacetic acid 

(TFA) at final concentration, then desalted using C18 SPE tips. After concentrated, the BCA assay was 

performed to estimate the final concentration of the peptides. Using the nanoPOTS robot, 0.2 ng and 10 

ng of the peptides from each AML cell line were loaded on the nanowell/microwell chips and completely 

dried by a vacuum system 10.  

For single-cell analysis, single and 50 FACS-sorted cells on the chip were processed on the nanoPOTS 

platform for single cells and spectral library, respectively. To extract proteins, we first added a lysis 

buffer containing 0.2% n-Dodecyl b-D-maltoside (DDM) and 5 mM DTT in 0.5× PBS and 25 mM 

NH4HCO3 buffer in each well, then incubated for 1 hr at 70 �. Denatured and reduced proteins were 

alkylated with 10 mM IAA in the dark for 30 min at RT. Double enzymatic digestions were performed by 

incubating with LysC (1 ng for single-cell, 5 ng for 50 cells) for 4 hr at 37 � followed by treatment with 

trypsin (2 ng for single-cell, 10 ng for 50 cells) overnight. Peptides were acidified with 5% formic acid 

and completely dried using a vacuum system. All chips were stored in a -20 � freezer until MS analysis. 

Shewanella oneidensis MR-1 peptide was obtained from a non-related study. The sample preparation 

procedures were described in detail previously21, 47. 

LC-FAIMS-MS/MS analysis 
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In-house assembled nanoPOTS autosampler with an in-house packed SPE column (100 µm i.d., 4 cm, 5 

µm, 300 Å C18 material, Phenomenex) and an LC column (50 µm i.d., 25 cm, 1.7 µm,  190 Å C18 

material, Waters) heated to 50 � using AgileSleeve column heater (Analytical Sales and services, Inc., 

Flanders, NJ) was used for sample analysis 10. Briefly, samples were dissolved with Buffer A (0.1% 

formic acid in water) on the chip, then trapped on the SPE column for 5 min. After washing the peptides, 

samples were eluted at 100 nL/min and separated using a 60-min gradient from 8% to 35% Buffer B (0.1% 

formic acid in acetonitrile).  

An Orbitrap Fusion Lumos Tribrid MS (Thermo Scientific) operated in data-dependent acquisition mode 

was used for all analyses. Peptides were ionized by applying a voltage of 2,000 V or 2,400 V for standard 

or FAIMS methods, respectively.  

For the standard method, precursor ions with mass range 375-1600 m/z were scanned at 120,000 

resolution with an ion injection time (IT) of 254 ms and an AGC target of 1E6. To analyze pooled 

samples for generating the spectral libraries, the selected precursor ions with +2 to +7 charges were 

fragmented by a 30% level of high energy dissociation (HCD) and scanned at 60,000 resolution with an 

IT of 118 ms and an AGC target of 1E5. When single-cell level (0.2 ng) peptides were injected, 

fragmented peptide ions were scanned at 120,000 resolution with an IT of 246 ms and an AGC target of 

1E5. 

For the TIFF method, the ionized peptides were fractionated by the FAIMSpro interface using a 2-CV (-

45, -65 V) method or a 4-CV (-45, -55, -65, -75 V) method. Fractionated ions with a mass range 350-

1500 m/z were scanned at 120,000 resolution with an IT of 254 ms and an AGC target of 1E6. For the 

pooled samples for generating a spectral library, a single CV was used for each LC-MS run. Precursor 

ions with intensities > 1E4 were selected for fragmentation by 30% HCD and scanned in an Ion trap with 

an AGC of 2E4 and an IT of 150 ms.  For single-cell samples, cycle times of 1.5 s and 0.6 s were used for 
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the 2-CV and 4-CV methods, respectively. Precursor ions with intensities > 1E4 were fragmented by 30% 

HCD and scanned with an AGC of 2E4 and an IT of 254 ms. 

Data analysis 

All raw files were processed by MaxQuant (Ver. 1.6.2.10) with the Uniport protein sequence database of 

homo sapiens (Downloaded in 03/12/2020 containing 20,364 reviewed sequences) and of mus musculus 

(Downloaded in 5/19/2020 containing 17,037 reviewed sequences) using the Andromeda search engine 

with a 6-ppm precursor ion tolerance after mass calibration 30. Protein acetylation in N-terminal and 

oxidation at methionine were chosen as variable modifications. Carbamidomethylation of cysteine 

residues was set as a fixed modification. Both proteins and peptides were filtered with a false discovery 

rate (FDR) less than 0.01. Match between runs algorithm in Maxquant was activated with a matching 

window of 0.4 min and alignment windows of 10 min. For raw files with multiplex FAIMS CVs, we 

converted them to multiple mzxml files corresponding to separate individual CVs using an in-house 

converting tool (https://github.com/PNNL-Comp-Mass-Spec/FAIMS-MzXML-Generator/releases). 

Those separated files were assigned to non-adjacent fractionation numbers (e.g., 1, 3, 5, 7) during the 

Maxquant search to ensure feature matching only occurs between the files with the same CV.  

For label-free quantification of single-cell-level peptides (0.2 ng) for three AML cell lines and dissociated 

human lung single-cell, Perseus (Ver. 1.6.12.0) was utilized for the data clean and statistical analysis. The 

iBAQ algorithm was used for the single-cell analysis because the iBAQ values are proportional to the 

molar quantities of the proteins. We log2 transformed the iBAQ values after filtering out contaminants 

and reverse identifications. Missing values were imputed based on a standard distribution (width: 0.3, 

downshift: 1.8) to simulate signals for low-abundance proteins. Data were normalized using width 

adjustment, which subtracts medians and scales for all values in a sample to show equal interquartile 

ranges. Two-way t-tests were performed for the pairwise comparison of the AML cell lines proteomes 

utilizing the threshold of Benjamini-Hochberg FDR < 0.05 and S0=0.1, while ANOVA tests were 
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employed for multiple sample tests of dissociated human lung single cells with Permutation based FDR < 

0.05. To clarify cell populations from dissociated lung cells, multiple steps including principal 

components analysis (PCA) and hierarchical clustering were employed using Perseus. Gene ontology 

analysis for the biological process of the molecules was performed in DAVID web-based bioinformatic 

tools (database version 6.8, https://david.ncifcrf.gov/summary.jsp). 

The processing of the macrophage single-cell data was performed using an R package; RomicsProcessor 

v1.1.0 (https://github.com/PNNL-Comp-Mass-Spec/RomicsPro). Briefly, the “proteingroups.txt” output 

file of the MaxQuant search was imported as a multilayered R object with its associated metadata to 

extract iBAQ values of the identified proteins. The iBAQ values were then log2 transformed and filtered 

to allow maximal missingness of 50% within at least one given condition. After median normalization, 

batch correction was applied to remove the batch effects between chips using ComBat algorithm from the 

SVA package (v3.36.0). The missing values were imputed using the function of imputeMissing() and 

UMAP (the uniform manifold approximation and projection)-based dimensional reduction analysis was 

performed using the romicsUmapPlot() function in the RomicsProcessor package. For the statistics, 

ANOVA test was applied with a Benjamini-Hochberg FDR < 0.001 and a S0=5; we applied a highly 

significant level to a large number of macrophage cells data in which the group was clearly distinguished 

by the duration of LPS treatment to give a statistical role to the difference between the median value.  

Supplementary Materials 

Figure S1. Comparison of different MS acquisition methods. 

Figure S2. Representative MS raw spectra obtained with and without FAIMS interface. 

Figure S3. Benchmarking of the detection sensitivity using different MS acquisition methods. 

Figure S4. Evaluation of false matching rates by matching a human sample to a mixed-species 

spectral library containing both human and bacterial peptides.  
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Figure S5.The evaluation of the quantification performance of the TIFF method. 

Figure S6. Differentially abundant proteins between CMK and K562 cell lines obtained from 

standard and TIFF methods.  

Figure S7. Differentially abundant proteins between K562 and MOLM14 cell lines. 

Figure S8. Differentially abundant proteins between CMK and MOLM14 cell lines. 

Figure S9. ScProteomics of HeLa cells using TIFF method. 

Figure S10. ScProteomics for classifying cell populations of a human lung. 

Figure S11. Comparison of quantitative protein markers for human lung cells. 

Supplementary Table 1. Numbers of identified proteins in single mammalian cells from 

previously published papers using nanoPOTS and label-free analysis. 

Supplementary Table 2. List of identified proteins from 19 single lung cells. 

Supplementary Table 3. List of 402 quantifiable proteins of 19 single lung cells. 

Supplementary Table 4. A list of statistically significantly abundant proteins classifying three cell 

populations. 
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Figures 

  

 

Figure 1. The concept of TIFF method. 

(a) Workflow of the TIFF method (Transferring Identification based on FAIMS Filtering). High-input 

samples (usually from 50 to100 cells) are analyzed by LC-FAIMS-MS with each LC-MS analysis 

utilizing a discrete FAIMS CV to generate a spectral library; Single-cell samples are analyzed by cycling 

through multiple FAIMS CVs for each LC-MS analysis. Peptide features in single cells are identified by 

matching to the spectral library based on three-dimensional (3D) tags, including retention time, m/z, and 
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FAIMS CVs. (b) Injection time distributions of MS1 for the single-cell level peptides (0.2 ng, CMK cell) 

in the standard MS (STD, No FAIMS) method and FAIMS method with four different CVs. (c) The 

distributions of signal to noise ratios (S/N) of LC-MS features for the 0.2-ng peptides in STD run or 

FAIMS run with 4 CVs. (d-e) The average number of unique peptides and unique proteins using single-

cell level (0.2 ng) peptide digests from three cell lines (CMK, K562, and MOLM14). Standards deviation 

error bars were obtained from the triplicate analysis. Benchmarking analysis was performed with the 

standard method, 2-CV TIFF (-45 and -65 V), and a 4-CV TIFF (-45, -55, -65 and -75 V) methods. (f) 

The number of human peptides (MOLM-14) and bacterial peptides (SHEWON) were identified from 2D 

and 3D tag methods. The bacterial peptides were considered as false identifications.  
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Figure 2. Single-cell proteomics analysis of time-dependent macrophage activation.  

(a) Illustration of workflow for scProteomics analysis of 155 macrophages containing untreated (control) 

cells and the cells treated by LPS for 24 and 48 hrs. (b) Violin plots of the distribution of the protein 

identification numbers for each treatment group. (c) UMAP projection showing the clustering of the 155 

single macrophages cells based on treatment groups. (d) Heatmap showing the protein abundance 

differences across the 155 macrophage cells after statistical test using ANOVA (FDR <0.001, S0 = 5). 

The hierarchical clustering was performed using the Euclidean method for 250 DAPs by ANOVA test. 

Proteins in cluster A to C were applied to enrichment analysis using DAVID bioinformatics tools 48. (e) 

Abundance distributions of representative regulated proteins from different treatment conditions. 
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