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Abstract

Unbiased single-cell proteomics (scProteomics) promises to advance our understanding of cell
functions within complex biological systems. However, amgjor challenge for current methodsis
their ability to identify and provide accurate quantitative information for low abundance proteins.
Herein, we describe an ion mobility-enhanced mass spectrometry acquisition and peptide
identification method, TIFF (Transferring Identification based on FAIMS Filtering), designed to
improve the sensitivity and accuracy of label-free scProteomics. TIFF significantly extends the
ion accumulation times for peptideions by filtering out singly charged background ions. The
peptide identities are then assigned by a 3-dimensional M S1 feature matching approach
(retention time, accurate mass, and FAIM S compensation voltage). The TIFF method enabled
unbiased proteome analysis to a depth of >1,700 proteinsin single HeLa cellswith >1,100
proteins cong stently quantified. As a demonstration, we applied the TIFF method to obtain
temporal proteome profiles of >150 single murine macrophage cells during a lipopolysaccharide

stimulation experiment and identified time-dependent proteome profiles.
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I ntroduction

Single-cell technologies have become the cornerstone of biomedical and cell biology research 2. The
emergence of single-cell RNA sequencing (ScRNA-seq) and related single-cell sequencing technologies
has illuminated unappreciated cellular heterogeneity and revealed cell subpopulations obscured in bulk
measurements 3. However, many integrative studies have shown only low to moderate correlations
between the abundance of RNA transcripts and their corresponding proteins * °, as the translation of RNA
into afunctional protein can be affected by diverse events such as alternative splicing and microRNA
regulation °. Additionally, RNA measurements cannot infer post-translational modifications that modul ate
protein functions. Thus, there is an unmet need for broad proteome measurements at the single-cell level,

which has lagged behind single-cell sequencing approaches.

Recent advances in sample preparation and mass spectrometry facilitate unbiased single-cell proteomics
(scProteomics) “%°. Microfluidic sample processing devices and systems have improved protein digestion
efficiency and sample recovery by minimizing adsorptive losses ***% ** % Tandem mass tag (TM T)-based
isobaric labeling approaches (e.g., SCOPE-MS) have enabled multiplexed single-cell analysisin individual
LC-MSruns "% 17192 The miniaturization of capillary electrophoresis or liquid chromatography has
improved separation resolution and enhanced electrospray ionization efficiency . High-resolution MS
analyzers combined with ion focusing devices, such asion funnel, have increased detection sensitivity to
the level where single molecules can be detected %. State-of-the-art methodol ogies in scProteomics now
can identify from ~700 to ~1,000 proteins from cultured single mammalian cells (e.g., HeLa) using label-

free approaches ® 10.14.25. 24

and from ~750 to ~1,500 proteins using TMT-labelling and signal boosting
strategies "% 1"*°, Despite these advances, scProteomics remains immature, and significant technical
challenges remain, including not only limited proteome depth and poor quantification performance, but

aso low system robustness for large-scale single-cell studies.
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Because of the lack of a global amplification method for proteins, the coverage and quantification
performance of scProteomics largely rely on the capabilities of MS measurement (e.g., sensitivity, speed,
dynamic range). Although targeted M S measurements enable the detection of |ow copy number proteins
and even single molecules %, these measurements are generally performed using narrow m/z windows %
or tandem mass spectra * to minimize background signals. Background ions, originating from ambient air
and solvent/reagent impurities, dominate M S spectra during full m/z range acquisition. These abundant
ions quickly fill ion trapping devices (e.g., ion trap or ion routing multipole) and limit the ability to trap
ions over an extended time, which could otherwise accumulate more |ow-abundance ions of interest and
improve detection sensitivity ** #’. The high background signals generated by these ions can also
significantly reduce the dynamic range of M S analyzers and deteriorate feature detection during

downstream data analysis.

We reasoned that the removal of background ions should dramatically enhance the sensitivity of MS
detection and improve the proteome coverage and quantitation performance of scProteomics. A variety of
approaches have been devel oped to minimize background signals, including the use of a carbon filter in
front of MSinlets to purify the ambient air 2, a picoliter-flow liquid chromatography (LC) system to
reduce overall contaminates from air and solvent %, a dynamic range enhancement applied to MS
(DREAMS) data acquisition algorithm to reject highly abundant ions before ion accumulation 2/, and a
high field asymmetric waveform ion mobility spectrometry (FAIMS) interface to remove singly charged
ions? . Recently, Cong et. al. > demonstrated the coupling of FAIMS with low flow LC (20 nL/min) and
Orbitrap Eclipse can identify ~1100 proteins from single cells. Because the peptides were identified by
MS/MS, long LC gradients were required to collect sufficient numbers of MS/MS spectrafor deep
proteome coverages, which limited the analysis throughput. Herein, to address these challenges, we
describe an M S1-centric data acquisition and peptide identification method, TIFF (Transferring
Identification based on FAIMS Filtering), that significantly improves the proteome coverage,

guantification accuracy, and throughput of |abel-free scProteomics. We demonstrated the capability and
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scalability of the TIFF method by studying macrophage activation with lipopolysaccharide (LPS) and by

classifying dissociated human lung cells into distinct cellular populations.

Results

The TIFF method

The TIFF method is inspired by the accurate mass and time (AMT) tag approach °, or other derivative
approaches, such as “match between run” (MBR) implemented in MaxQuant * or lonQuant™, that
generally rely on two measurements for the assignment of peptide identity: the accurate mass-to-charge
ratio (m/z) and the LC retention time (RT). We have previously demonstrated that MBR improves the
proteome coverage and reduces missing values in scProteomics > ?*. The recent integration of ion
mobility devices, including FAIMS at the interface between the LC system and mass spectrometer,
provide an opportunity to use the additional ion-mobility separation dimension to reduce false discovery
and improve coverage **. We take advantage of this advance and utilize the FAIM S compensation voltage
(CV) asathird matching feature (in addition to retention time and accurate mass) for peptide
identification, asillustrated in Figure 1a. Briefly, a spectra library is constructed by repeatedly analyzing
high-input samples on an LC-FAIMS-M S platform, with each LC-M S analysis utilizing a discrete
FAIMS CV; inthis case, CVsof -45V, -55V, -65V and -75V. Each peptide identified in the high-input
analyses is associated with a unique 3-dimensional (3D) tag comprising LC retention time, accurate m/z,
and FAIMS CV. Next, low-input samples (e.g., single cells) are analyzed by cycling through multiple
FAIMS CVs (-45V, -55V, -65V, and -75V) within asingle LC-MS analysis. A key aspect of the TIFF
method is the mode of M S data acquisition, with most of the M S time spent on MS1 acquisition to
enhance the accumulation of low-abundant peptide ions for sensitive detection. Compared with our
previous FAIM S-based scProteomics method (Figure Slaand Sib),* precursor ion sampling efficiency is
increased by > 2 fold (Figure S1c). The fewer MS2 acquisitions generated within each cycle are sufficient

to exploit the non-linear multi-sample alignment feature of MaxQuant. Subsequently, MS1 featuresin
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low-input samples (i.e., single-cells) are identified by matching to the spectral library and utilizing the

unique 3D tag based on the MBR al gorithm within MaxQuant *.

TIFF improves LC-M S sensitivity

Wefirst verified the utility of FAIMS to remove singly charged ions (“chemical background” noise) and
create more “room” for peptide ion accumulation and enhance detection of low-abundance peptides. We
analyzed single-cell equivalent amount (0.2 ng) of protein digests (CMK cells) with or without a

FAIM Spro interface. Without FAIMS, most dominating signals correspond to singly charged ions, some
of which are known to originate from plasticizers (e.g., m/z 391.28) and air impurities (e.g., m/z 445.12,
462.29, and 519.14) (Figure S2). Because these highly abundant contaminants quickly fill ion
accumulation (or trapping) regions, the median ion injection/accumulation timeis only 30 ms across the
whole LC-MS analysis (Figure 1b). In comparison, when FAIMS is used, most dominating ion signals are
multiply charged (Figure S2), and the median ion injection times increase from ~30 msto ~180 msfor a
CV of -45V, reaching the maximal time of 254 msfor the other three CVs. This corresponds to an ~8.5%
increase in ion sampling efficiency (Figure 1b). Benefiting from the low background and elongated ion
accumulation, the median S/N of LC-MS features increased from 5.2 (STD) to 29.6 (FAIMS),

representing a~5-fold increase for al the CV values (Figure 1c).

To evaluate the improvements in M S sensitivity, we investigated several metrics related to proteome
coverage, including the number of multiply-charged M S features, unique peptides, and proteins (Figure
1d-1e and Figure S3a-S3d). Briefly, we analyzed single-cell-level (0.2 ng) protein digests from three
leukemiacell lines: CMK, K562, and MOLM 14 with either a FAIM Spro interface or with a standard
interface. Compared to the standard interface, the FAIM Spro interface and the TIFF method increased the
number of multiply-charged M S features detected in the MS1 by > 3 folds (Figure S3a). Most of the
increased peptide features appeared in the low-M S-intensity scale across all four FAIMS CVs (Figure

S3e). Similarly, the TIFF method increased peptide identification by >75% (Figure 1d) and protein
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identification by >74% (Figure 1€). As expected, the MS/M S-based identifications were reduced due to
the lower number of MS/M S scans (Figure S3b to S3d) in the TIFF method. M odulation of CVswithin
the TIFF method had a modest effect on the number of peptide features, peptides, and proteins, with only
adlight increase using 4 CV's as opposed to 2 CV's. However, utilizing 4 CVsin the TIFF method yielded
increases in summed peptide intensities compared to utilizing 2 CV's (Figure S3f), which subsequently

improved the quantification performance as described below.

We evaluated whether the 3D feature matching approach could reduce fal se discovery rates by comparing
it with the conventional 2D matching approach® *. We generated a mixed-species spectral library
containing 20588 human peptides from MOLM 14 cells and 9362 bacterial peptides from Shewanella
Oneidensis MR-1. These Shewanella proteins were served as “decoy” proteinsin the library. To do this,
we analyzed 0.1-ng MOLM 14 peptides with the 4CV-FAIM S method. During MaxQuant analysis with
MBR algorithm, we either disabled or enabled the FAIMS CV matching function. As shown in Figure 1f
and Figure $4, the conventional 2D matching approach resultsin total 7199 peptides identified, and 304
of them are bacterial peptides, representing afalse matching rate of 4.1%. Encouragingly, when the 3D
matching approach (TIFF) was applied, only 161 bacterial peptides were identified, corresponding to a
false matching rate of 1.8 % (Figure $S4). At the protein level, the fal se discovery rates of 2D and 3D

matching approaches were estimated to be 10.8% and 5.3%, respectively.

TIFF improves the quantification of scProteomics

Next, we evaluated whether the TIFF method improves quantification performance when compared with
a standard approach. We compared the run-to-run reproducibility from triplicates using 0.2 ng of CMK
cell digests with the standard, 2-CV TIFF, and 4-CV TIFF methods. While the distribution of the
coefficients of variation was similar between the 2-CV TIFF and the standard methods, the median of the
coefficients of variation for the 4-CV TIFF method was significantly reduced from 15.6% to 12% (Figure

S5a). Such an improvement could be attributed to the enhanced sensitivity of the 4-CV TIFF method,
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allowing more low-abundance peptides to be identified. With the 4-CV TIFF method, > 80% of the
proteins had no missing values and > 90% had no more than one missing value across the triplicates.
Higher percentages of missing data were present with the 2-CV TIFF and standard methods (Figure S5b).
To further assess the quantification accuracy of the 4-CV TIFF method, we performed a stetistical
analysis using samples from two cell types (CMK and K562). Proteins having at least 2 valid valuesin a
given group were considered quantifiable. The 4-CV TIFF method exhibited atotal of 2,345 quantifiable
proteins that included ~98% of the proteins (1,052) using the standard method (Figure S5¢). Because it
was possible to quantify proteins more consistently with the TIFF method, we observed 1,053
differentially abundant proteins (DAPs) (FDR < 0.05 and $,=0.1) between the CMK and K562 cells,
while only about half (i.e., 536 DAPs) were found using the standard method (Figure S6a-S6b). A total of
380 DAPs were shared between the two methods. As shown in Figure S5d, the linear correlation
coefficient of protein fold-changes between the two |abel-free methods is high (R = 0.95). The slope of
linear regression is ~1 (K), indicating similar fold changes between the two methods. Similarly, the 4-CV
TIFF method showed improved quantification results over the standard method in the comparison

between MOLM 14 and the other two cell types (Figure S7 and S8).
A streamlined label-fr ee scProteomics platform

Having demonstrated that the TIFF method offers improvements in proteome coverage and quantification
for mass-limited samples, we integrated it into our scProteomics pipeline that includes fluorescence-
activated cell sorting (FACS) for cell isolation **, arobotically addressed nanowell chip for single-cell
processing (nanoPOTS, Nanodroplet Processing in One pot for Trace Samples) 2, ananoliter-scale LC
autosampler for reliable sample injection *°, and alow-flow liquid chromatography system (LC column
with 50 umii.d.) *°. Both single cells and pooled library cells can be isolated with FACS and processed
with nanoPOTS. The integrated FACS-nanoPOT S-autosampler-TIFF-MS platform offers a complete

solution from cell isolation to data acquisition and peptide identification for unbiased scProteomics, as
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well as other biological applications with mass-limited samples. The platform is robust and scalable.

Since developed, it has been used to analyze > 1200 samplesin our facility.
Proteome coverage of single Hel a cells

We used Hel a cells to benchmark the TIFF-based scProteomics workflow. Using atandem mass
spectrometry approach (MS/MS), an average of 209 proteins were identified from single HeLa cells
(Figure S9a). The number is comparable to our previously reported result (211 proteins) using alower-
flow LC-MS system (50 nL/min with 30 pm i.d. column) but without a FAIM S interface (Supplementary
Table 1) , and 42% lower than that obtained using an ultra-low-flow LC system (20 pm i.d. column) and
the newest generation (Eclipse) MS 8. The utilization of the 4-CV TIFF method dramatically increased the
coverage to an average of 1,212 (+ 10%) identified protein across 10 single cells (Figure S9a). The TIFF
method doubled the total number of identifications compared with our previous report **, reaching 1,771
unique proteins (Figure S9b). The number of identifications obtained with the TIFF method is comparable
to the one we obtained using a 20-um-i.d. column (20 nL/min)), a FAIMS interface, an Eclipse MS, and a

long LC gradient %.

The quantification consistency was a so evaluated. Using protein iBAQ intensities, 684 out of 1,771
proteins had no missing values across the 10 Hela cells (Figure S9c¢). 1,103 proteins were presented in at
least 50% of the analyses. Pearson's correlation coefficients had a median value of 0.95 between any two
HelL a cells, indicating the high reproducibility of our integrated scProteomics pipeline (Figure S9d).
Together, these results demonstrated that the integration of the TIFF method with high-efficiency single-

cell preparation offers a sensitive and reliable scProteomics pipeline for 1abel -free quantification.
Preliminary application to dissociated primary cells from human lung

Toinitially explore the scProteomics platform for cell-type classification from dissociated primary cells,

we analyzed non-depleted and non-labeled primary cells from the lung of a 2-year-old donor (Figure


https://doi.org/10.1101/2021.01.30.428333
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.30.428333; this version posted December 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

S10a). 19 single cells were processed and analyzed using the TIFF-based scProteomics workflow,
resulting in atotal of 986 identified proteins with an average of 390 identified proteins per single cell
(Supplementary Table 2). We retained proteinsidentified in at least 8 of the 19 single cells (40% presence)
for quantitative analysis, resulting in 402 quantifiable proteins (Supplementary Table 3). PCA analysis of
the 402 proteins suggested the presence of at |least three cell populations in the lung tissue single-cell

suspension (Figure S10b).

To identify proteins distinguishing these popul ations, we performed the ANOV A test (permutati on-based
FDR < 0.05, Sy=0), reveaing 99 proteins (~20% of quantifiable proteins) that were differentially
abundant across the three cell population groups/clusters (Supplementary Table 4) as visually represented
in Figure S10c. Cell-type identity was assigned to each of the three cell population groups by comparing
markers from the scProteomics datato lung cell type markers previously enumerated by bulk proteomics
of sorted cell populations of human lung endothelial, epithelial, immune, and mesenchymal cells®.
Correspondence across the scProteomic and bulk proteomic markers revealed Cluster 1 represented alung
endothelia cell population, Cluster 2 represented alung immune cell population, and Cluster 3
represented alung epithelial cell population (Figure S11). For example, Caveolin-1 (CAV1) and
Polymerase | and transcript release factors (PTRF), which were highly abundant in single-cell cluster 1
(Figure S10d and Figure S11), are known to structurally maintain the speciaized lipid raft of caveolain
lung endothelial cells *. L-Plastin (LCP1) protein, important for alveolar macrophage devel opment and
antipneumococcic response **, was highly abundant in bulk sorted immune cells aswell as Cluster 2.
Pulmonary surfactant-associated protein B (SFTPB), which facilitates alveolar stability by modulating
surface tension * is known to be preferentially enriched in lung epithelial cells. SFTPB was highly
abundant in bulk sorted epithelial cellsaswell as Cluster 3. The above results demonstrate the feasibility
of the scProteomics platform for cell-type classification from non-depleted whole tissue single-cell

suspension samples.
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We also examined the abundance patterns of the 17 marker proteins based on scProteomics, bulk
proteomics, and transcriptomics of the sorted populations (Figure S11). For the three protein markers
mentioned above, we observed good agreement in all three measurement modalities. However, similar to
our previous integrative study®, we also observed disagreement for some protein markers. For example,
TUBB protein isidentified as an endothelial cell marker in the proteomics dataset, but it is not significant
in the transcriptomics dataset. In addition, among the 7 epithelial cell markers, only 1 protein/gene

(SFTPM) is significantly expressed in both proteomics and transcriptomics datasets.

L ar ge-scale proteome pr ofiling of single macr ophage cellsin responseto lipopolysaccharide

treatment

To further evaluate our platform for large-scale scProteomics analysis, we profiled proteome changes of
single murine macrophage cells (RAW 264.7) after 24-hr and 48-hr lipopolysaccharide (LPS) stimulation
relative to unstimulated cells (control) (Figure 2a). We analyzed atotal of 155 individual RAW 264.7
cells, containing 54 unstimulated cells, 52 24-hr stimulated cells, and 49 48-hr stimulated cells. Our
anaysisidentified atota of 1,671 proteins across the 155 individual cells. The median number of proteins
identified per cell was 451. While lower than the number of proteins identified from single HeLa cells
described above, we note that RAW 264.7 cells have a median diameter of 10 pm * compared to ~17 pm
for HeLa cells'% the 5-fold difference in cell volume likely accounts for the reduced coverages. We also
observed control cellsto have fewer identified proteins than LPS-stimulated cells. The median numbers
of identified proteins were 307, 482, and 575 for control, 24-hr stimulation, and 48-hr stimulation,
respectively (Figure 2b). Previous reports have indicated that stimulated RAW 264.7 macrophages
increased in size and changed morphology upon LPS stimulation, potentially accounting in part for the
difference in identifications *. Of the 1,671 identified proteins, 519 were conservatively retained for
guantitative analysis after filtering out proteins containing > 50% missing valuesin at least one
experimental condition. Using a UMAP (the uniform manifold approximation and projection)-based

dimensional reduction analysis®, the 155 individual cells partitioned into three distinct clusters on a two-
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dimensional plot correspond to the three experimental conditions (Figure 2c). Five stimulated cells (3
from 24 hrs and 2 from 48 hrs) are clustered into the control group, indicating aonly small portion of

RAW cells (~5%) are not sensitive to LPS stimulation.

Toidentify the differentially abundant proteins (DAPS) that drive the partitioning of the three clusters, we
performed an ANOV A test analysis (permutation-based FDR <0.001, Sy=5). A total of 250 proteins were
significantly modulated across the three groups (Figure 2d). Gene ontology analysis results showed that
proteins increased in abundance at 24 hr LPS stimulation (Cluster A in Figure 2d) were primarily
enriched in antigen processing and presentation processes (FE = 37.2 to 157.5, p < 0.01). Proteins
increased at 24hr LPS stimulation and remained elevated through 48 hr LPS stimulation (Cluster B) were
enriched in antigen processing and presentation (FE = 10.6, p < 0.05), responseto LPS (FE=2.5, p <
0.05), aswell as oxidation-reduction (FE = 2.1, p < 0.01) processes, which are known to be a critical
function of activated macrophage cells. Biological processes enriched in proteins increased after 48-hr
LPS stimulation (Cluster C) included those related to protein exit from the endoplasmic reticulum (FE =
61.8, p < 0.05) and to foam cell differentiation (FE = 56.1, p < 0.05). The latter finding isin linewith a
previous report on the ability of LPS activated RAW 264.7 macrophages to differentiate into foam cells ®.
Proteins associated with cholesterol storage (FE = 47.5, p < 0.05) were also increased in abundance after

48 hr LPS stimulation. Storage of cholesterol ester or triglyceride has been suggested to lead to the

formation of foam cells*°.

Beyond functional enrichment analysis, our statistical analysis identified specific proteins previously
described as being involved in the response process of macrophage cellsto LPS stimulation. For example,
immune responsive gene 1 (Irgl), known as a resistance-inducing protein against LPS “°, was up-
regulated in macrophage cells exposed to LPS at both 24 and 48 hr (Figure 2€). Irgl is highly expressed
during various infections or TLR ligand stimulation in macrophages, which have been reported to

regul ate macrophage innate immune responses by controlling proinflammatory cytokines “.

Prostaglandin-endoperoxide synthase 2 (Ptgs2/Cox-2), an important precursor of prostacyclin enzyme

11
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which is expressed in macrophages exposed to LPS *, was also significantly increased in LPS-stimulated
macrophage cells (Figure 2e). Transitional endoplasmic reticulum ATPase (Vcp, also called p97) is
involved in targeting and transl ocation of ubiquitinated proteins and the regulation of the inflammatory
response in immune cells *2. We observed increased abundances of Vcp at 24 hr LPS stimulation with a
decrease to basal levels at 48 hr LPS stimulation. The perturbation of cellular ubiquitin homeostasis
supports the concept that variations in protein ubiquitination may be key to infection by pathogens and are
also involved in triggering the defense mechanism of macrophages. Heat shock cognate 71 kDa protein
(Hspa8), known to be involved in the presentation of antigenic peptides by major histocompatibility
complex (MHC) class || (MHCII) moleculesfor CD4 + T cells, was significantly increased in LPS
stimulated cellsin line with previous studies that also showed this protein to be overexpressed in response

to LPS stimulation *3.

Discussion

In this study, we developed an ion mobility-enhanced M S acquisition and peptide identification method,
TIFF (Transferring Identification based on the FAIMS Filtering), which was coupled with our previously

described nanoPOTS scProteomics workflow 1 1

to improve the sensitivity and accuracy of 1abel-free
scProteomics. M S acquisition efficiency was significantly improved by filtering out singly charged
background ions and allowing ion accumulation for extended periods for sensitive detection. Compared
with our previous FAIM S-based scProteomics workflow using an ultralow-flow LC column (20-pum-i.d.)
and long gradient,™ the TIFF method dramatically improved both system robustness and analysis
throughput to enable large-scale single-cell studies. The TIFF-based workflow enabled the identification
of >1,700 proteins and quantification of ~1,100 proteins from single HeLa cells with l1abel-free analysis.
We demonstrated the robustness and scalability of the scProteomics workflow via alarge-scale analysis
of 155 single macrophage cells under different LPS stimulation conditions to reveal the biological

processes at the single-cell level. Finally, we demonstrated the feasibility of classifying cell populations

of ahuman lung.
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While our label-free analysis of single cultured cells (e.g., HelLa) yielded >1000 proteins identified and
similar numbers of proteins quantified, a similar analysis of single primary cells (e.g., human lung cells)
resulted in the identification of significantly fewer proteins, presumably due to the fact that culture cells
have larger sizes and more proteins mass. This again highlights the need to further improve the overall
sensitivity of current scProteomics platforms to enable routine and deep single-cell proteome anal yses of
primary cells derived from tissues of animal models and human donors. One strategy for improving
overall sensitivity is by further improving protein/peptide recovery. Sample recovery during sample
processing procedures could be increased using smaller nanowells or low-binding surfaces to reduce
adsorptive loss. Another strategy for improving overall sensitivity is through enhancing peptide
separation resolution and ionization efficiency. With the advance of nanoLC pump technologies, the LC
flow rates could be reduced to low nanoliter and to even picoliter-scale to further enhance peptide
separation resolution and ionization efficiency. M S instrumentation with high ion-transmission optics and
sensitive detectors could provide further enhancementsin proteome coverage for single cells. In addition
to FAIMS, other ion mobility-based technologies, including trapped ion mobility spectrometry (TIMS)*
* and particularly, structures for lossless ion manipulation (SLIM) can offer improved ion separation and
overall ion utilization efficiencies. With all these devel opments, we believe the proteome depths of
scProteomics will reach the level of single-cell RNA sequencing and ultimately become an indispensable

tool in biological and medical researches.
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M aterialsand Methods

Cédll cultureand single-cell sorting

All cell lines used in this study were maintained in a medium compatible with each cell line and incubated
at 37 11 with 5% of CO,. Of the three Leukemia cell lines, K562 and MOLM14 cells were cultured in
RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), and CMK cells were maintained
in RPM1-1640 medium with 20% FBS added. For HeLa cells, DMEM supplemented with 10% FBS was
added. RAW 264.7 cells were maintained in DMEM supplemented with 10% FBS followed to be
stimulated with 100 ng/ul of LPS (Sigma Aldrich) in serum-free DMEM (Thermo Fisher Scientific) for
24 hr or 48 hr. For the control of RAW264.7 cells (non-treated), ten million cells were collected before
stimulation with LPS. In the same way, LPS stimulated cells were harvested after 24 hr or 48 hr of
treatments. HeLaand RAW 264.7 cells were washed by chilled PBS and sorted on the nanoPOTS chips
(4 x 12, 1.2 mm diameter per well) using the Influx |1 cell sorter (BD Biosciences, San Jose, CA) as
described previously **. To build the in-depth spectral library, 50 cells of each cell line (or equivalent

peptides of ~10 ng) were loaded onto the microPOTS chip (3 x 9, 2.2-mm diameter per well).

Primary lung cells

The dissociated primary human lung cells was kindly provided by Dr. Gloria Pryhuber at University of
Raochester Medical Center. The detailed protocol to generate the human lung cells was described
previously*® and available on protocol.io (http://dx.doi.org/10.17504/protocols.io.biz5kf86). The
dissociated lung cellsin 90% FBS and 10% DM SO were cryo-frozen in -80°C freezer. A freezing vial
was shipped to PNNL on dry ice. The cells were thawed and resuspended in DMEM with 10%FBS for 1
Hr prior to be centrifuged at 800 g for 10 min. The supernatant was removed and cells were washed in
DPBS. To gate out dead cells or cell debris, the cells with labeled with Calcein AM viability dye (Thermo
Fisher). Similar to the FACS-sorting procedures above, we sort 50 cellsinto microPOTS chipsfor library

generation and single cellsinto nanoPOTS chips for analysis.
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Protein digestion

For the low-input mock samples (0.2 ng, equivalent amount peptides to asingle-cell), AML cell lines
were lysed in atube with lysis buffer including 50 mM NH4;HCO; (pH8.0), 8 M UREA, and 1 %
phosphatase inhibitor followed by sonicated in a cold bath for 3 min. After the measurements of the
protein concentrations by BCA assay (Thermo Fisher Scientific), proteins equivalent to 200 pug were
reduced in 5 mM DTT for 1 hr at 37 7 and akylated with 10 mM iodoacetamide (IAA) in the dark for 1
hr at room temperature. Eight-fold diluted samples with 50 mM NH4HCO; were digested with Lys-C
peptidase at 37 J with aratio of 50:1 (w/w) for 3 hr followed by digesting with trypsin with aratio of
50:1 (w/w) at 37 U overnight. The tryptic digested peptides were acidified by 0.5% trifluoroacetic acid
(TFA) at final concentration, then desalted using C18 SPE tips. After concentrated, the BCA assay was
performed to estimate the final concentration of the peptides. Using the nanoPOTSrobot, 0.2 ng and 10
ng of the peptides from each AML cell line were loaded on the nanowell/microwell chips and completely

dried by avacuum system *.

For single-cell analysis, single and 50 FACS-sorted cells on the chip were processed on the nanoPOTS
platform for single cells and spectral library, respectively. To extract proteins, we first added alysis
buffer containing 0.2% n-Dodecyl b-D-maltoside (DDM) and 5 mM DTT in 0.5x PBS and 25 mM
NH4HCO; buffer in each well, then incubated for 1 hr at 70 0. Denatured and reduced proteins were
alkylated with 10 mM [AA in the dark for 30 min at RT. Double enzymatic digestions were performed by
incubating with LysC (1 ng for single-cell, 5 ng for 50 cells) for 4 hr at 37 I followed by treatment with
trypsin (2 ng for single-cell, 10 ng for 50 cells) overnight. Peptides were acidified with 5% formic acid

and completely dried using a vacuum system. All chips were stored in a-20 [ 1 freezer until MS analysis.

Shewanella oneidensis MR-1 peptide was obtained from a non-related study. The sample preparation

procedures were described in detail previously**'.

LC-FAIMSMS/M S analysis
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In-house assembled nanoPOT S autosampler with an in-house packed SPE column (100 umi.d., 4cm, 5

um, 300 A C18 material, Phenomenex) and an LC column (50 pmi.d., 25 cm, 1.7 um, 190 A C18

meaterial, Waters) heated to 50 7 using AgileSleeve column heater (Analytical Sales and services, Inc.,
Flanders, NJ) was used for sample analysis *°. Briefly, samples were dissolved with Buffer A (0.1%

formic acid in water) on the chip, then trapped on the SPE column for 5 min. After washing the peptides,
samples were eluted at 100 nL/min and separated using a 60-min gradient from 8% to 35% Buffer B (0.1%

formic acid in acetonitrile).

An Orbitrap Fusion Lumos Tribrid MS (Thermo Scientific) operated in data-dependent acquisition mode
was used for all analyses. Peptides were ionized by applying a voltage of 2,000 V or 2,400 V for standard

or FAIMS methods, respectively.

For the standard method, precursor ions with mass range 375-1600 m/z were scanned at 120,000
resolution with an ion injection time (IT) of 254 ms and an AGC target of 1E6. To analyze pooled
samples for generating the spectral libraries, the selected precursor ions with +2 to +7 charges were
fragmented by a 30% level of high energy dissociation (HCD) and scanned at 60,000 resolution with an
IT of 118 msand an AGC target of 1E5. When single-cell level (0.2 ng) peptides were injected,
fragmented peptide ions were scanned at 120,000 resolution with an IT of 246 ms and an AGC target of

1ES.

For the TIFF method, the ionized peptides were fractionated by the FAIM Spro interface using a2-CV (-
45, -65 V) method or a4-CV (-45, -55, -65, -75 V) method. Fractionated ions with a mass range 350-
1500 m/z were scanned at 120,000 resolution with an IT of 254 ms and an AGC target of 1E6. For the
pooled samples for generating a spectral library, asingle CV was used for each LC-MS run. Precursor
ions with intensities > 1E4 were selected for fragmentation by 30% HCD and scanned in an lon trap with

an AGC of 2E4 and an IT of 150 ms. For single-cell samples, cycle times of 1.5 sand 0.6 swere used for
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the 2-CV and 4-CV methods, respectively. Precursor ions with intensities > 1E4 were fragmented by 30%

HCD and scanned with an AGC of 2E4 and an IT of 254 ms.

Data analysis

All raw files were processed by MaxQuant (Ver. 1.6.2.10) with the Uniport protein sequence database of
homo sapiens (Downloaded in 03/12/2020 containing 20,364 reviewed sequences) and of mus musculus
(Downloaded in 5/19/2020 containing 17,037 reviewed sequences) using the Andromeda search engine
with a 6-ppm precursor ion tolerance after mass calibration *°. Protein acetylation in N-terminal and
oxidation at methionine were chosen as variable modifications. Carbamidomethylation of cysteine
residues was set as a fixed modification. Both proteins and peptides were filtered with a false discovery
rate (FDR) less than 0.01. Match between runs algorithm in Maxquant was activated with a matching
window of 0.4 min and alignment windows of 10 min. For raw files with multiplex FAIMS CVs, we
converted them to multiple mzxml files corresponding to separate individual CVs using an in-house

converting tool (https://github.com/PNNL -Comp-M ass-Spec/FAIMS-MzX ML -Generator/rel eases).

Those separated files were assigned to non-adjacent fractionation numbers (e.g., 1, 3, 5, 7) during the

Maxqguant search to ensure feature matching only occurs between the files with the same CV.

For 1abel-free quantification of single-cell-level peptides (0.2 ng) for three AML cell lines and dissociated
human lung single-cell, Perseus (Ver. 1.6.12.0) was utilized for the data clean and statistical analysis. The
iBAQ algorithm was used for the single-cell analysis because theiBAQ values are proportional to the
molar quantities of the proteins. We log2 transformed the iBAQ values after filtering out contaminants
and reverse identifications. Missing values were imputed based on a standard distribution (width: 0.3,
downshift: 1.8) to simulate signals for low-abundance proteins. Data were normalized using width
adjustment, which subtracts medians and scales for al valuesin a sample to show equal interquartile
ranges. Two-way t-tests were performed for the pairwise comparison of the AML cell lines proteomes

utilizing the threshold of Benjamini-Hochberg FDR < 0.05 and S;=0.1, while ANOVA tests were
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employed for multiple sample tests of dissociated human lung single cells with Permutation based FDR <
0.05. To clarify cell populations from dissociated lung cells, multiple steps including principal
components analysis (PCA) and hierarchical clustering were employed using Perseus. Gene ontology
analysis for the biological process of the molecules was performed in DAV ID web-based bioinformatic

tools (database version 6.8, https.//david.ncifcrf.gov/summary.jsp).

The processing of the macrophage single-cell data was performed using an R package; RomicsProcessor

v1.1.0 (https:.//github.com/PNNL -Comp-Mass-Spec/RomicsPro). Briefly, the “ proteingroups.txt” output

file of the MaxQuant search was imported as a multilayered R object with its associated metadata to
extract iBAQ values of the identified proteins. The iBAQ values were then log2 transformed and filtered
to alow maximal missingness of 50% within at least one given condition. After median normalization,
batch correction was applied to remove the batch effects between chips using ComBat agorithm from the
SV A package (v3.36.0). The missing values were imputed using the function of imputeMissing() and
UMAP (the uniform manifold approximation and projection)-based dimensional reduction analysis was
performed using the romicsUmapPlot() function in the RomicsProcessor package. For the statistics,
ANOV A test was applied with a Benjamini-Hochberg FDR < 0.001 and a Sy=5; we applied a highly
significant level to alarge number of macrophage cells datain which the group was clearly distinguished

by the duration of LPS treatment to give a statistical role to the difference between the median value.

Supplementary Materials

Figure S1. Comparison of different MS acquisition methods.

Figure S2. Representative M S raw spectra obtained with and without FAIMS interface.

Figure S3. Benchmarking of the detection sensitivity using different MS acquisition methods.

Figure $4. Evaluation of false matching rates by matching a human sample to a mixed-species

spectral library containing both human and bacteria peptides.
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Figure S5.The evaluation of the quantification performance of the TIFF method.

Figure S6. Differentially abundant proteins between CMK and K562 cell lines obtained from

standard and TIFF methods.

Figure S7. Differentially abundant proteins between K562 and MOLM14 cell lines.

Figure S8. Differentially abundant proteins between CMK and MOLM 14 cell lines.

Figure S9. ScProteomics of Hel a cells using TIFF method.

Figure S10. ScProteomics for classifying cell populations of a human lung.

Figure S11. Comparison of quantitative protein markers for human lung cells.

Supplementary Table 1. Numbers of identified proteins in single mammalian cells from

previously published papers using nanoPOTS and label-free analysis.

Supplementary Table 2. List of identified proteins from 19 single lung cells.

Supplementary Table 3. List of 402 quantifiable proteins of 19 single lung cells.

Supplementary Table 4. A list of statistically significantly abundant proteins classifying three cell

populations.
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Figure 1. The concept of TIFF method.

() Workflow of the TIFF method (Transferring Identification based on FAIMS Filtering). High-input
samples (usually from 50 t0100 cells) are analyzed by LC-FAIMS-M S with each LC-MS analysis
utilizing adiscrete FAIMS CV to generate a spectral library; Single-cell samples are analyzed by cycling
through multiple FAIMS CVsfor each LC-MS analysis. Peptide featuresin single cells are identified by

matching to the spectral library based on three-dimensional (3D) tags, including retention time, m/z, and
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FAIMS CVs. (b) Injection time distributions of MS1 for the single-cell level peptides (0.2 ng, CMK cell)
in the standard MS (STD, No FAIMS) method and FAIMS method with four different CVs. (c) The
distributions of signal to noise ratios (S/N) of LC-MS features for the 0.2-ng peptidesin STD run or
FAIMS run with 4 CVs. (d-e) The average number of unique peptides and unique proteins using single-
cell level (0.2 ng) peptide digests from three cell lines (CMK, K562, and MOLM 14). Standards deviation
error bars were obtained from the triplicate analysis. Benchmarking analysis was performed with the
standard method, 2-CV TIFF (-45 and -65 V), and a4-CV TIFF (-45, -55, -65 and -75 V) methods. (f)
The number of human peptides (MOLM-14) and bacteria peptides (SHEWON) were identified from 2D

and 3D tag methods. The bacteria peptides were considered as false identifications.
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Figure 2. Single-cell proteomics analysis of time-dependent macrophage activation.

(a) lustration of workflow for scProteomics analysis of 155 macrophages containing untreated (control)
cells and the cells treated by LPS for 24 and 48 hrs. (b) Violin plots of the distribution of the protein
identification numbers for each treatment group. (¢) UMAP projection showing the clustering of the 155
single macrophages cells based on treatment groups. (d) Heatmap showing the protein abundance
differences across the 155 macrophage cells after statistical test using ANOVA (FDR <0.001, SO =5).
The hierarchical clustering was performed using the Euclidean method for 250 DAPs by ANOVA test.
Proteinsin cluster A to C were applied to enrichment analysis using DAV ID bioinformatics tools . ()

Abundance distributions of representative regulated proteins from different treatment conditions.
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