

1 Prior dengue immunity enhances Zika virus infection of the maternal-fetal 2 interface in rhesus macaques

3
4 C. M. Crooks¹, A. M. Weiler², S. L. Rybarczyk^{2,†}, M. I. Bliss², A. S. Jaeger³, M. E. Murphy^{4,‡},
5 H. A. Simmons², A. Mejia², M. K. Fritsch⁵, J. M. Hayes², J. C. Eickhoff⁶, A. M. Mitzey⁴, E.
6 Razo⁷, K. M. Braun¹, E. A. Brown¹, K. Yamamoto^{5,§}, P. M. Shepherd⁵, A. Possell², K.
7 Weaver², K. M. Antony⁸, T. K. Morgan^{9,10}, C. M. Newman⁵, D. M. Dudley⁵, N. Schultz-
8 Darken², E. Peterson², L. C. Katzelnick^{11,||}, A. Balmaseda¹², E. Harris¹¹, D. H. O'Connor^{2,5}, E.
9 L. Mohr⁷, T. G. Golos^{2,4,8}, T. C. Friedrich^{1,2,*}, and M. T. Aliota^{3*}

10
11 ¹Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI,
12 USA

13 ²Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison,
14 WI, USA

15 ³Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities,
16 St. Paul, MN, USA

17 ⁴Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI,
18 USA

19 ⁵Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison,
20 Madison, WI, USA

21 ⁶Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison,
22 Madison, WI, USA

23 ⁷Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA

24 ⁸Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI,
25 USA

26 ⁹Department of Pathology, Oregon Health and Science University, Portland, OR, USA

27 ¹⁰Department of Obstetrics and Gynecology, Oregon Health and Science University,
28 Portland, OR, USA

29 ¹¹Division of Infectious Diseases and Vaccinology, University of California Berkeley,
30 Berkeley, CA, USA

31 ¹²Sustainable Sciences Institute, Managua, Nicaragua

33 *Corresponding author, T.C. Friedrich, Email: tfriedri@wisc.edu

34 *Corresponding author, M.T. Aliota, Email: mtaliota@umn.edu

36 † Present address, Sierra L. Rybarczyk, Sangamo Therapeutics, Richmond, CA, USA

37 ‡ Present address, Megan E. Murphy, HIV Prevention Department, Terros Health, Phoenix,
38 AZ, USA

39 § Present address, Keisuke Yamamoto, Touro College of Osteopathic Medicine, New York,
40 NY, USA

41 || Present address, Leah Katzelnick, National Institute of Allergy and Infectious Disease,
42 Bethesda, MD, USA

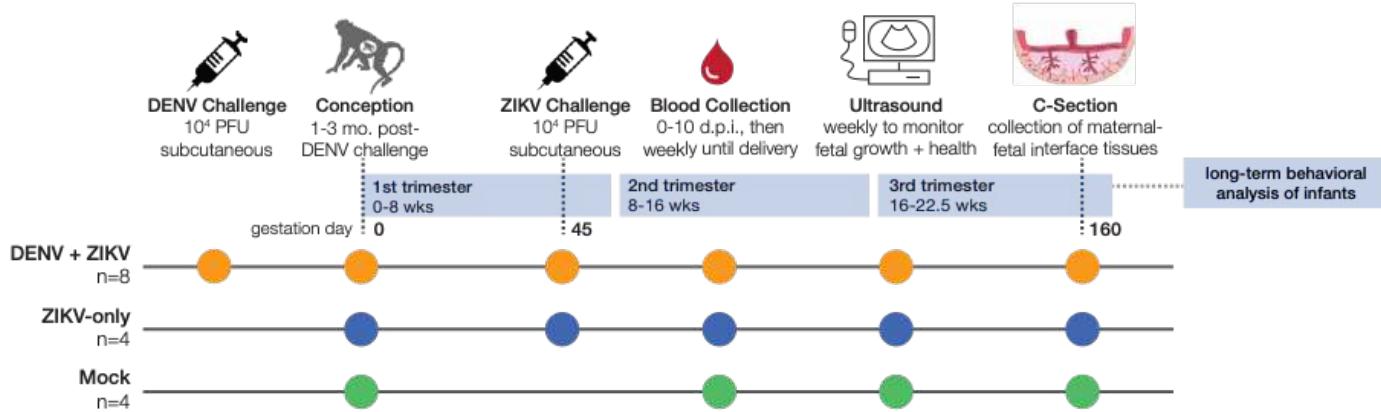
43 **ABSTRACT**

44 Concerns have arisen that pre-existing immunity to dengue virus (DENV) could enhance
45 Zika virus (ZIKV) disease, due to the homology between ZIKV and DENV and the
46 observation of antibody-dependent enhancement (ADE) among DENV serotypes. To date,
47 no study has examined the impact of pre-existing DENV immunity on ZIKV pathogenesis
48 during pregnancy in a translational non-human primate model. Here we show that prior
49 DENV-2 exposure enhanced ZIKV infection of maternal-fetal interface tissues in macaques.
50 However, pre-existing DENV immunity had no detectable impact on ZIKV replication kinetics
51 in maternal plasma, and all pregnancies progressed to term without adverse outcomes or
52 gross fetal abnormalities detectable at delivery. Understanding the risks of ADE to pregnant
53 women worldwide is critical as vaccines against DENV and ZIKV are developed and
54 licensed and as DENV and ZIKV continue to circulate.

55 **INTRODUCTION**

56 Pre-existing immunity to one DENV serotype can enhance the severity of a secondary
57 heterologous DENV infection, a phenomenon known as antibody-dependent enhancement
58 (ADE) (1–3). ZIKV is genetically and antigenically closely related to DENV, raising the
59 possibility that pre-existing DENV-specific antibodies might also modulate the severity of
60 ZIKV infection. ADE is thought to occur when antibodies from a prior DENV infection bind to
61 DENV virions and enhance uptake into Fc_Y-receptor bearing cells rather than neutralizing
62 viral infectivity. This can lead to increased viral replication, a more robust inflammatory
63 response, and more severe disease (1, 4, 5).

64

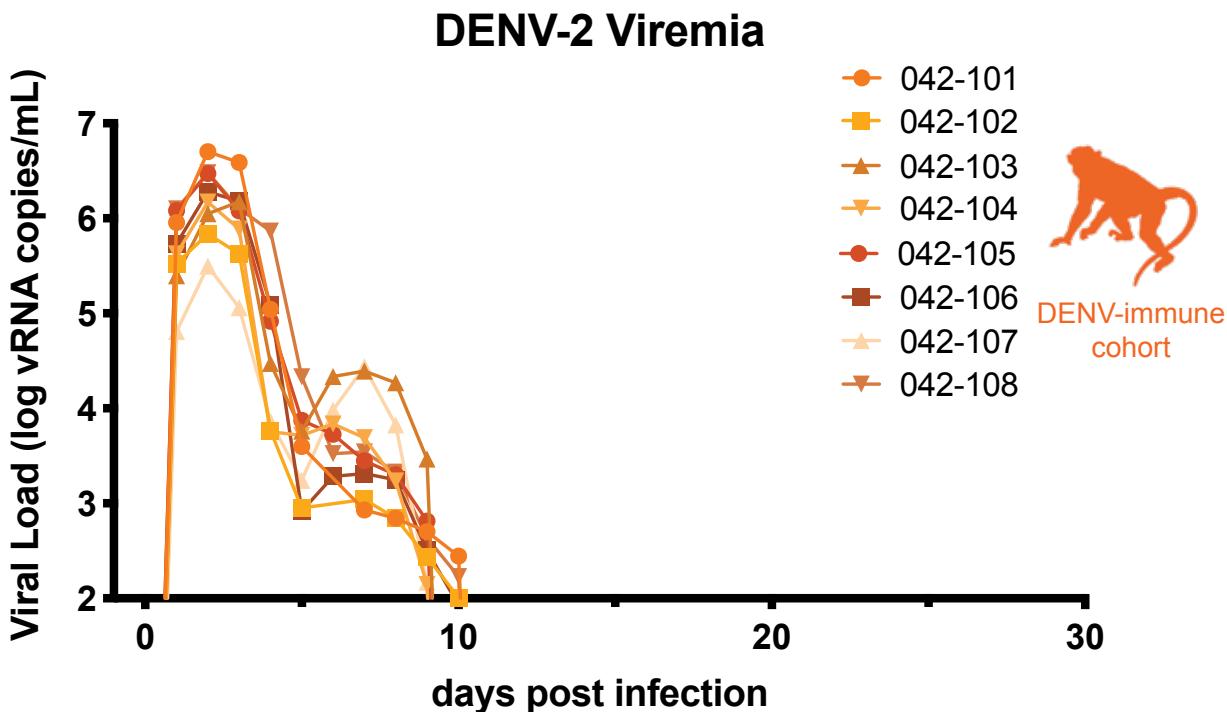

65 Since the ZIKV outbreak in the Americas in 2015–2016, the potential role of DENV
66 antibodies in ZIKV infection has been examined in a variety *in vitro*, *in vivo*, and
67 epidemiological studies. Studies in cell culture (6–13, 13–16) and immunocompromised
68 mice (6, 7, 13, 17–19) have found a range of outcomes from enhancement of, to protection
69 against, ZIKV infection. Data from non-human primates (NHP) and human cohorts support
70 the growing consensus that prior DENV infection does not enhance ZIKV infection in non-
71 pregnant individuals (20–29). However, DENV seroprevalence has been high in regions such
72 as French Polynesia (>80%), Yap, and New Caledonia that subsequently experienced large-
73 scale ZIKV outbreaks, suggesting that high DENV seroprevalence does not protect against
74 ZIKV outbreaks in a population (30–33).

75

76 The impact of prior DENV immunity on ZIKV pathogenesis during pregnancy remains
77 unclear. Studies in placental macrophages (34), human placental explants (34–36), and both
78 immunocompetent and immunocompromised pregnant mice (36, 37) have all demonstrated
79 enhancement of ZIKV infection in the presence of DENV antibodies. Retrospective studies
80 of pregnant women in South America did not identify an association between DENV
81 antibodies and adverse fetal outcomes (38–40); however, a majority of women in these
82 studies (>80%) had a prior DENV exposure, and outcomes could not be stratified by pre-
83 existing anti-DENV titer. A retrospective study of microcephaly cases in Brazil indicated that
84 there was reduced risk of microcephaly in areas with a DENV epidemic in the 6 years prior,
85 but an increased risk of microcephaly in areas with a DENV epidemic >7 years prior,
86 suggesting that the role of DENV-specific antibodies in modulating risk of congenital Zika
87 syndrome (CZS) might change as antibody titers wane with time (41). Understanding the
88 potential impact of DENV immunity on ZIKV outcomes in pregnant women is critical, as
89 vaccines against DENV and ZIKV are being developed, licensed, and distributed (42–44).
90 The rollout of Dengvaxia offers a cautionary tale, as vaccine-induced immunity led to more
91 severe disease outcomes in seronegative individuals (45). If ZIKV acts functionally as a fifth
92 serotype of DENV, then one would expect that this vaccine would also enhance Zika
93 disease by the same mechanism. Therefore, understanding whether the severity of maternal
94 and fetal ZIKV infection increases in pregnant, DENV-immune individuals should be a public
95 health priority.

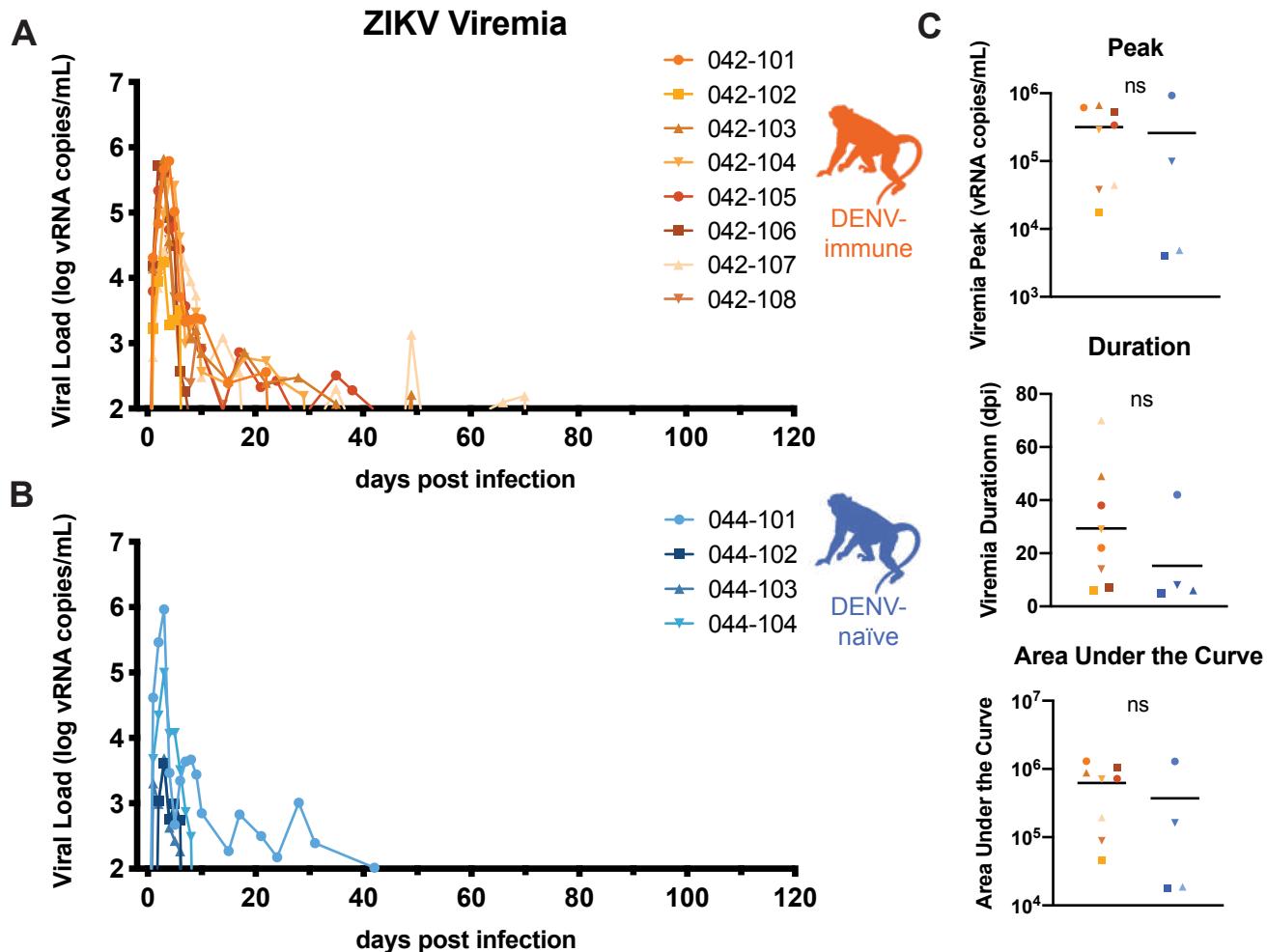
96

97 NHP development and placentation resemble those of humans more closely than these
98 processes do in other animal models, making NHPs particularly relevant to understanding
99 viral infections in pregnancy (46). Here we apply our established NHP model (47) to assess
00 the impact of DENV immunity on ZIKV pathogenesis in pregnancy. We do not detect a role
01 for DENV immunity in modulating fetal outcomes in ZIKV-infected pregnant macaques.
02 However, previous exposure to DENV did appear to increase ZIKV infection in tissues of the
03 maternal-fetal interface, a result that warrants further examination.



04
05 **Fig. 1. Experimental Overview.** A cohort of eight non-pregnant macaques were challenged with 10⁴ PFU
06 DENV-2 (orange). Approximately 1-3 months following DENV challenge, the eight DENV exposed macaques
07 were bred, became pregnant, and were challenged with 10⁴ PFU ZIKV-PRVABC59, an Asian-lineage ZIKV
08 isolate, on gestational day 45. A cohort of four pregnant, DENV-naïve macaques (blue) were challenged with
09 ZIKV-PRVABC59 on gestational day 45. A control cohort of four macaques (green) were mock-challenged with
10 PBS on gestational day 45. All three cohorts underwent the same experimental protocols for blood collection
11 and sedation for ultrasound. At approximately gestational day 160, infants were delivered via cesarean section,
12 and a set of maternal-fetal interface tissues with maternal biopsies were collected. Infants were placed with
13 their mothers for long-term behavioral analysis, data from which is part of a separate study.

14 15 RESULTS


16 Prior DENV immunity does not modulate ZIKV replication kinetics in plasma

17 To characterize the range of pathogenic outcomes of congenital ZIKV infection in DENV-
18 immune animals, we subcutaneously (s.c.) inoculated a cohort of eight non-pregnant,
19 Indian-origin rhesus macaques with 10⁴ PFU of DENV-2/US/BID-V594/2006, a low-passage
20 human isolate from Puerto Rico (Fig. 1). All eight macaques were productively infected with
21 DENV-2, with peak plasma viral loads ranging from 10⁵-10⁷ vRNA copies/mL occurring on
22 days 2-3 post-infection (Fig. 2). Following a biphasic decline in viral loads, all macaques
23 cleared infection by day 11 post-infection.

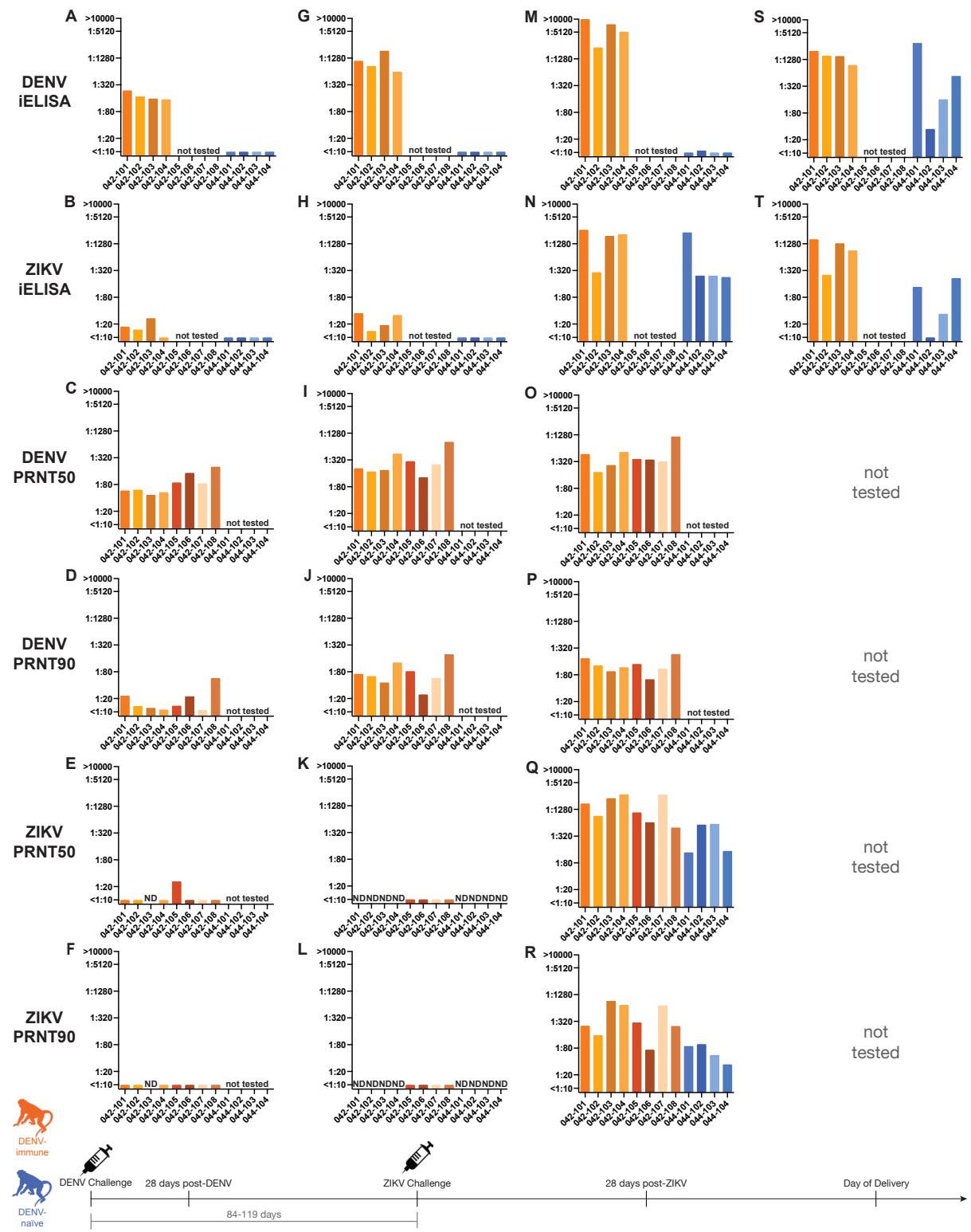
24
25 **Fig. 2. Replication of DENV-2.** Eight non-pregnant macaques were challenged with 10^4 PFU DENV-2/US/BID-
26 V594/2006, a 2006 human isolate from Puerto Rico. QRT-PCR was performed on plasma samples from 0-10,
27 14, 21, and 28 days post-infection. All values above the limit of quantification for the QRT-PCR assay (100
28 copies vRNA/mL plasma) are shown.

29
30 Macaques were bred 1-3 months following DENV inoculation. Once they became pregnant,
31 the animals were challenged with 10^4 PFU of ZIKV-PRVABC59 (ZIKV-PR), a human isolate
32 from Puerto Rico, on gestational day 45 (late first trimester). ZIKV challenge was 84-119
33 days following DENV inoculation in each case. This cohort of eight DENV-immune
34 macaques was compared to a cohort of four pregnant, DENV-naïve macaques that were
35 inoculated with ZIKV-PR at gestational day 45 and a cohort of four pregnant, DENV-naïve
36 macaques mock-challenged with phosphate-buffered saline (PBS) at gestational day 45.
37 Following challenge, all three cohorts (DENV-immune, DENV-naïve, and mock) underwent
38 the same blood sampling and fetal monitoring protocols (Fig. 1). All macaques inoculated
39 with ZIKV were productively infected. Peak plasma viremia occurred on days 2-4 post-
40 infection, with titers ranging from 10^4 - 10^5 vRNA copies/mL in DENV-immune animals and
41 10^3 - 10^5 vRNA copies/mL in DENV-naïve animals (Fig. 3A, 3B). An unpaired t-test did not
42 reveal significant differences between cohorts in the peak, area under the curve, or duration
43 of viremia (Fig. 3C). Since prolonged ZIKV viremia >21 days is only observed in pregnancy,
44 we assessed differences in duration both as a continuous variable and as a binary with
45 viremia greater than or less than 21 days. This suggests that prior DENV-2 immunity did not
46 alter ZIKV replication kinetics during gestation.
47

Fig. 3. ZIKV replication kinetics. Eight DENV-immune (A, orange) and four DENV-naïve (B, blue) macaques were challenged with 10^4 PFU of ZIKV-PRVABC59 at gestation day 45, which is late in the first trimester. Viral loads were assessed from plasma samples with ZIKV-specific QRT-PCR. All values above the limit of quantification (100 copies vRNA, mL plasma) are shown above. C. Graphs of the values for the peak, duration, and area under the curve of viremia for both DENV-immune and DENV-naïve macaques. An unpaired t-test was used for statistical comparison; ns = not significant ($p > 0.05$). Only values above the limit of quantification were used in statistical analyses.

DENV-immune macaques have low levels of ZIKV cross-reactive antibodies present at the time of challenge

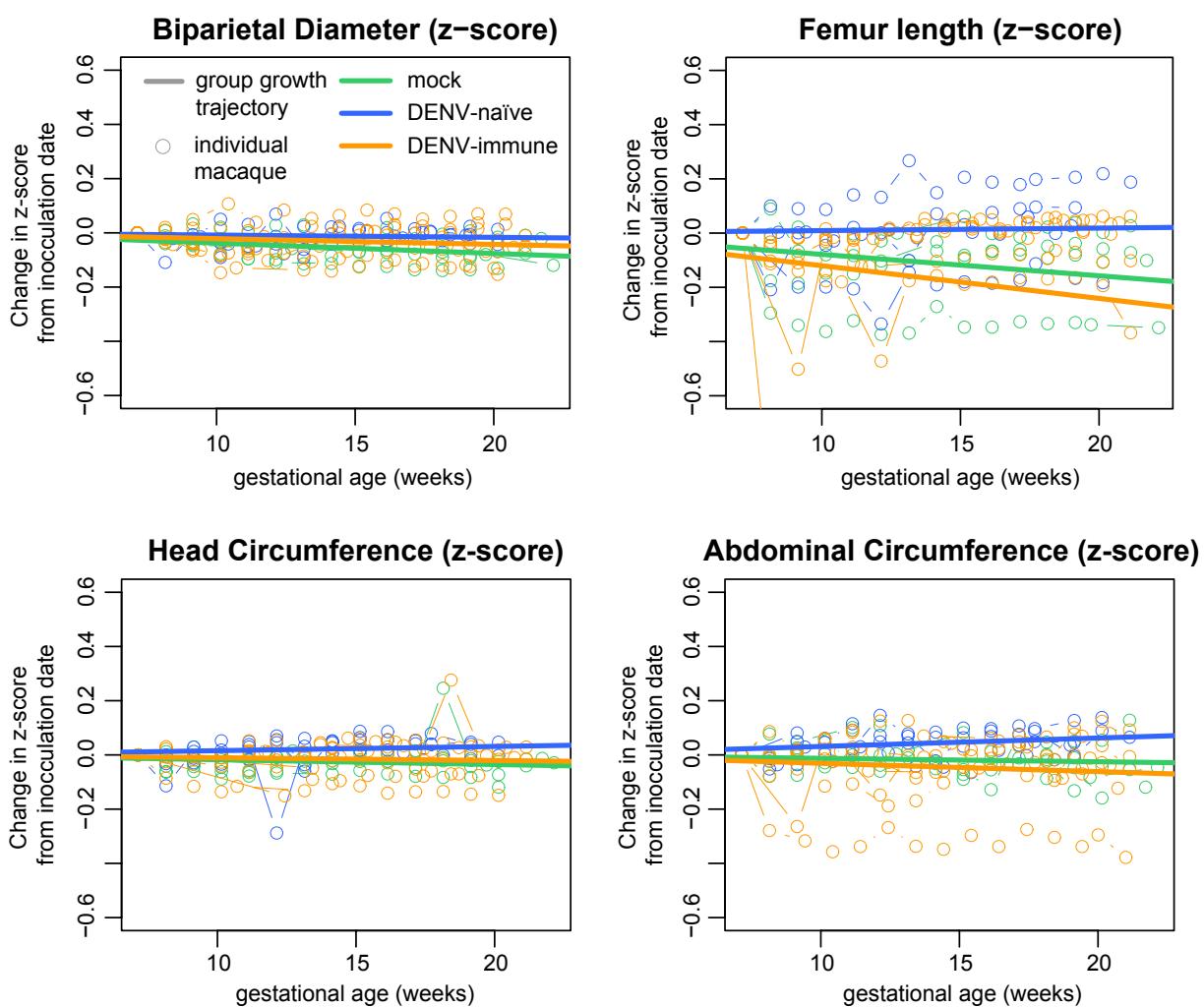
For DENV-1-4, specific antibody titer ranges have been shown to enhance viral replication. As measured by a DENV inhibition ELISA (iELISA) assay, an intermediate antibody titer range of 1:21-1:80 was associated with a greater risk of developing severe dengue disease upon secondary exposure in a human cohort study (2). In a separate human cohort study, a plaque reduction neutralization test (PRNT50) titer of $<1:100$ was associated with an increased risk of severe DENV disease upon secondary exposure (48). In order to assess how cross-reactive DENV antibodies impact ZIKV outcomes during pregnancy, we characterized DENV and ZIKV antibody dynamics throughout the experimental time course.


68 We collected serum samples from macaques at 28 days post-DENV challenge, the day of
69 ZIKV challenge, 28-35 days post-ZIKV challenge, and the day of c-section for measuring
70 antibody responses to DENV and ZIKV. We used PRNT and iELISA to measure neutralizing
71 antibodies or binding antibodies, respectively. In the PRNT, serial dilutions of serum
72 antibodies are incubated with DENV or ZIKV, plated on a confluent monolayer of cells, and
73 assessed for the dilution of antibodies required to reduce plaques by 50 or 90 percent
74 (Supplementary Fig. 1). In iELISA, serum is serially diluted with peroxidase-conjugated
75 DENV- or ZIKV-specific antibodies, which compete for binding to either an equal mixture of
76 DENV1-4 antigens or ZIKV antigen (2, 49). Due to the impact of COVID-19, only 4 of 8
77 DENV-immune macaques were assayed via iELISA.

78
79 At 28 days post-DENV challenge, all eight macaques seroconverted and developed a robust
80 antibody response to DENV-2 as measured by both DENV PRNT and DENV iELISA (Fig. 4A,
81 4C, 4D). At this time point, all macaques also showed a cross-reactive antibody response to
82 ZIKV in one or both assays (3 of 4 macaques by iELISA and 7 of 8 macaques by PRNT),
83 although generally below levels considered to be protective against subsequent ZIKV
84 challenge (Fig. 4B, 4E, 4F)(50).

85
86 At the time of the ZIKV challenge, which fell 84-119 days after primary DENV infection, the
87 DENV iELISA titers had increased four-fold in 6 of the 8 DENV-exposed macaques by PRNT
88 and 4 of 4 macaques by iELISA (Fig. 4G, 4I, 4J). The cross-reactive ZIKV antibody titers
89 remained stable or increased only modestly via ZIKV iELISA assay and PRNT (Fig. 4H, 4K,
90 4L) in the majority of macaques. However, cross-reactive ZIKV antibodies became
91 undetectable by PRNT in 3 of 4 macaques that previously showed cross-reactivity at 28
92 days post-DENV challenge (Fig. 4K, 4L). By using both assays, we detected low levels of
93 cross-reactive antibodies to ZIKV at the time of ZIKV challenge in all DENV-immune
94 macaques; 2 of 4 macaques had ZIKV iELISA titers that fell within the range 1:21-1:80,
95 which has previously been shown to increase risk of more severe DENV disease in humans.
96 At the time of ZIKV challenge, no antibody responses to either ZIKV or DENV were detected
97 using either assay in the DENV-naïve macaques (Fig. 4G, 4H, 4K, 4L).

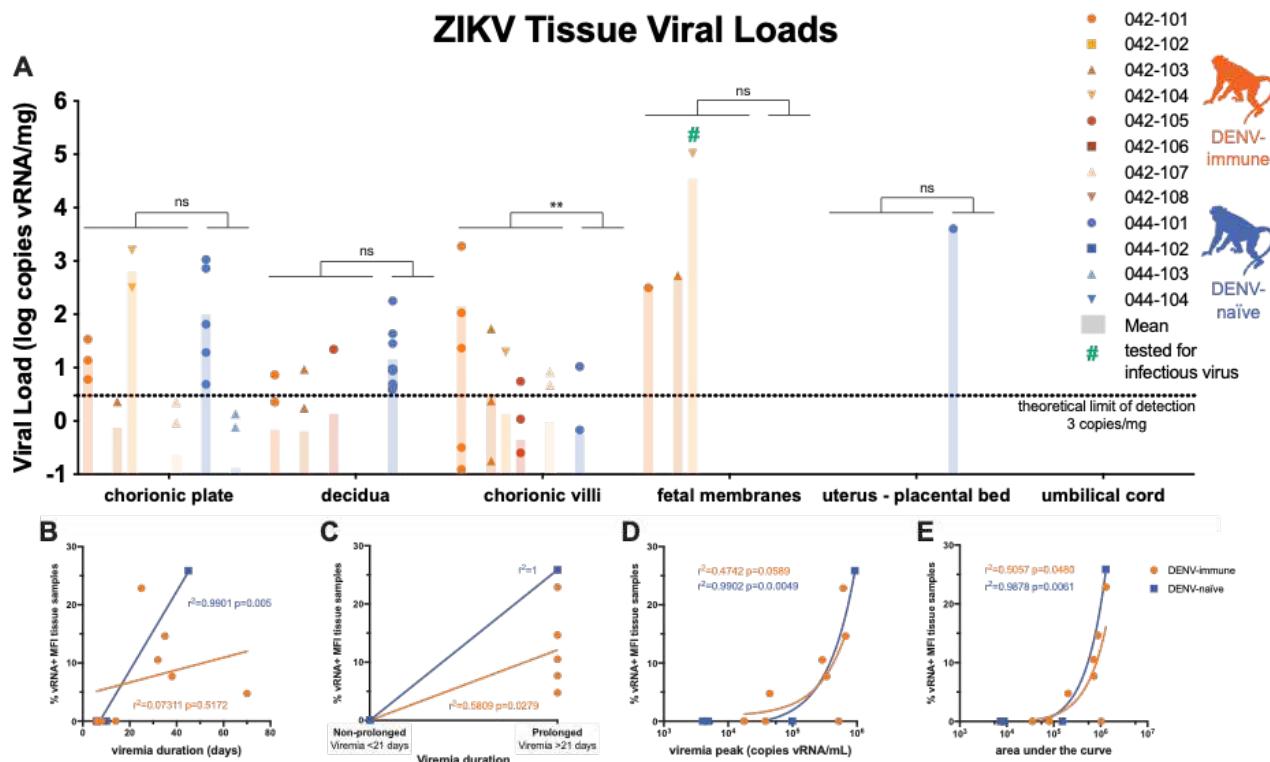
98
99 Between 28-35 days post-ZIKV challenge, DENV antibody titers increased approximately
00 four-fold following ZIKV challenge in DENV-immune macaques, as assessed by both DENV
01 iELISA and PRNT (Fig. 4M, 4O, 4P). DENV titers in DENV-naïve macaques were only
02 assessed via DENV iELISA, which revealed essentially no evidence of cross-reactive DENV
03 antibodies, with a low-level antibody titer (1:11) to DENV in only 1 of 4 macaques (Fig. 4M).
04 By 28-35 days post-ZIKV challenge, both DENV-immune and DENV-naïve macaques
05 developed robust ZIKV-specific responses as measured by both ZIKV iELISA and PRNT
06 (Fig. 4N, 4Q, 4R). Macaques in both cohorts that had viremia for a duration of >21 days
07 (042-101, 042-103, 042-104, 044-101) developed antibody titers more than four-fold higher
08 than those animals that had viremia for a duration of <21 days (042-102, 044-102, 044-103,
09 044-104) as determined by ZIKV iELISA. PRNT50 titers were significantly higher (p=0.0095)


10 in DENV-immune macaques than DENV-naïve animals 28-35 days after ZIKV challenge, but
 11 no significant differences were noted in PRNT90 titers between groups. Together, these
 12 data provide evidence that antibodies capable of cross-reacting with ZIKV were present at
 13 the time of ZIKV challenge in DENV immune animals and show that all animals, regardless of
 14 DENV exposure history, develop a robust antibody response to ZIKV.

17 **Fig. 4. DENV and ZIKV antibody dynamics.** iELISA titers against DENV and ZIKV 28 days post-DENV
18 challenge (A-F), the day of ZIKV challenge (G-L), 28-35 days post ZIKV challenge (M-Q), and the day of
19 delivery (S-T). iELISA titers from DENV-immune animals shown in orange and from DENV-naïve animals shown
20 in blue. Samples labeled “ND” were not detected. Using an unpaired t-test, PRNT50, but not PRNT90, titers
21 from the DENV-immune group were significantly higher than the PRNT50 titer of DENV-naïve animals at 28
22 days post-ZIKV-challenge (**p<0.01). Neutralization curves can be found in Supplementary Fig. 1.
23

24 **No evidence of fetal growth restriction during gestation**
25 To further characterize pathogenic outcomes during pregnancy, we define fetal health and
26 growth parameters throughout gestation. No gross abnormalities, such as microcephaly,
27 missing limbs, or hydrops fetalis were noted in any animals during gestation. Head
28 circumference and biparietal diameter measurements were used to assess head size; femur
29 length and abdominal circumference were used to assess overall fetal growth. Fetal
30 measurements were compared to previously collected normative data on fetal growth
31 trajectories in 55 pregnant rhesus macaques (51, 52). A z-score (number of standard
32 deviations from the normative data) was calculated for each measurement at each
33 timepoint. To account for animal-specific differences, z-scores were plotted as the change
34 from the baseline measurement (open circles, Fig. 5). Overall group growth trajectories were
35 calculated (solid line, Fig. 5) and used for statistical comparisons. Only the biparietal
36 diameter of the mock-infected cohort was significantly lower than the normative data
37 (p=0.01713). There were no significant differences noted in pairwise comparisons of growth
38 trajectories between groups. Taken together, these extensive fetal growth measurements
39 suggest that there was no significant reduction in fetal growth in ZIKV-exposed macaques,
40 regardless of their DENV immune history.
41

42 **No evidence of vertical transmission in either DENV-immune or DENV-naïve macaques**
43 At approximately gestational day 160 (term = gestational day 165), infants were delivered via
44 cesarean section. During the surgery, a biopsy of the maternal mesenteric lymph node was
45 taken to look for ZIKV vRNA in the dam. None of the mesenteric lymph node biopsies were
46 positive in the DENV-immune cohort and only one of four mesenteric lymph node biopsies
47 was positive in the DENV-naïve cohort, a difference which was not significant
48 (Supplementary Table 1). Fetal tissues are not available for virological analysis because
49 infants were placed with their mothers for long-term behavioral analysis, data from which
50 will be part of a forthcoming study. We collected fetal plasma, umbilical cord plasma, and
51 amniotic fluid; none of the fluid samples from infants in either cohort tested positive for ZIKV
52 vRNA (Supplementary Table 1). There was no robust evidence to support direct infection of
53 the fetus in either cohort, although the possibility of vertical transmission with viral clearance
54 by the time of delivery cannot be ruled out.


Fig. 5. Fetal Growth. Comprehensive ultrasounds were performed weekly throughout gestation to monitor fetal health and perform four measurements of fetal growth: biparietal diameter and head circumference to evaluate head size; abdominal circumference and femur length to evaluate overall fetal growth. Using normative data from the California National Primate Research Center, a z-score was calculated for each measurement and the change in z-score from baseline is plotted for each measurement with an open circle. The overall growth trajectory for each group was quantified by calculating the regression slope parameters from baseline (solid line). When compared to the normative data, mock-infected animals had significantly reduced biparietal diameter growth ($p=0.01713$). No other significant differences were detected in comparisons to the normative data or in comparisons between the experimental groups.

Enhanced infection of the maternal-fetal interface in DENV-immune macaques

We performed an extensive dissection of both discs of the placenta in order to understand the distribution of ZIKV in placental tissues. Positive tissue samples were detected above the theoretical limit of detection of our QRT-PCR assay in 5 of 8 DENV-immune macaques and only 1 of 4 DENV-naïve macaques (Fig. 6A). Using a Mann-Whitney U test, there was a significantly higher burden of ZIKV RNA in the chorionic plate in the DENV-immune group as compared to the DENV-naïve group ($p<0.01$). Although there was a trend toward a greater burden of ZIKV in the fetal membranes in DENV-immune macaques, there were no statistically significant differences between cohorts in vRNA burden in the other MFI tissues (decidua, chorionic villi, umbilical cord, fetal membranes, and uterine placental bed). The

76 highest ZIKV RNA burden detected in a fetal membrane sample was from DENV-immune
 77 animal 042-104, which had a viral load of 1.03×10^5 vRNA copies/ml. We could not recover
 78 infectious virus from this specimen; we did not attempt virus isolation from other specimens,
 79 which had much lower viral loads ($<10^3$ copies/mg).

80
 81 To determine whether the presence of vRNA in the MFI was associated with duration, peak,
 82 or area under the curve of viremia, we performed a Pearson correlation analysis. When
 83 prolonged viremia was defined as >21 days and non-prolonged viremia as <21 days (Fig.
 84 6B) there was a significant positive correlation between prolonged viremia and presence of
 85 vRNA in the MFI for both the DENV-immune and DENV-naïve cohorts. When viremia is
 86 assessed as a continuous variable, the correlation is no longer significant for the DENV-
 87 immune cohort (Fig. 6C). There was a significant correlation between area under the curve
 88 and presence of vRNA in the MFI in both cohorts (Fig. 6D, 6E). There was a significant
 89 correlation between peak viremia and presence of vRNA in the MFI only in DENV-naïve
 90 animals (Fig. 6E).

91
 92 **Fig. 6. Maternal-Fetal Interface Viral Loads.** All tissue samples were tested for the presence of viral RNA
 93 using ZIKV-specific QRT-PCR. A. All tissues >0.1 copy vRNA/mg tissue are shown above; only tissues with
 94 viral loads greater than the theoretical limit of quantification (3 copies vRNA/mg) were used for statistical
 95 analysis. A Mann-Whitney U test was used to assess statistically significant differences between the
 96 experimental groups ($**p<0.01$). B-E. Pearson correlation analysis was performed to assess correlation
 97 between the percent of tissues collected that were vRNA positive and the duration (B and C), peak (D), and
 98 area under the curve (E) of viremia.

00 **More-severe histopathological changes inconsistently detected in DENV-immune**
01 **macaques**

02 Placental insufficiency due to virus-mediated damage could lead to poor fetal outcomes
03 (53). In order to assess the impact of ZIKV infection on MFI health, we quantified
04 inflammation and infarctions within the MFI. Qualitative pathological findings included
05 transmural infarctions and neutrophilic deciduitis in the central cross-section of both
06 placental discs examined, but these findings were observed in animals of all groups,
07 including mock-infected animals, with no consistent patterns distinguishing groups. In order
08 to quantitatively analyze placental pathology and identify any trends within and between
09 cohorts, the center section of each placental disc was scored for 22 pathologic changes
10 associated with fetal vascular malperfusion, maternal vascular malperfusion, and
11 generalized placental disease (Supplementary Table 2). DENV-immune macaques had
12 significantly higher scores in four pathologic changes in disc 1 (% transmural infarction,
13 chronic villitis, avascular villi, and chronic retroplacental hemorrhage) and one pathologic
14 change in disc 2 (chronic villitis) as compared to the mock-infected cohort (Supplemental
15 Fig. 2) There were no significant differences between DENV-naïve animals and mock-
16 infected animals.

17
18 **Table 1. Placental cotyledon pathology**

Group	Dam	% CHIV+ cotyledons	Infarcted cotyledons/total cotyledons (%)	Villous stromal calcifications (present/absent)	Vasculopathy (present/absent)	Placental weight (g)
Mock	044-105	0.0	5.88	Present	Absent	111.08
	044-106	0.0	12.5	Present	Absent	106.5
	044-107	0.0	0.0	Present	Present	144.48
	044-108	0.0	45.5	Present	Absent	122.92
DENV-naïve	044-101	0.0	25.0	Present	Absent	172.59
	044-102	0.0	33.3	Present	Absent	123.87
	044-103	0.0	0.0	Absent	Absent	134.49
	044-104	0.0	18.2	Absent	Absent	120.48
DENV-immune	042-101	0.0	21.43	Present	Absent	104.4
	042-102	7.69	7.69	Present	Absent	111.9
	042-103	0.0	0.00	Present	Absent	120.06
	042-104	0.0	26.67	Present	Absent	95.33
	042-105	0.0	25.00	Absent	Absent	119.97
	042-106	0.0	53.33	Present	Present	120.14
	042-107	0.0	28.57	Present	Absent	139.74
	042-108	0.0	33.33	Present	Absent	129.54

19

20 We also assessed a cross-section of each of the individual placental cotyledons, including
21 the decidua basalis, for the presence of chronic histiocytic intervillitis (CHIV), infarctions,
22 villous stromal calcifications, and vasculopathy (Table 1). Although infarctions and villous
23 stromal calcifications were present in DENV-immune and DENV-naïve macaques, they were
24 also present in mock-infected animals. There were no statistically significant differences
25 between any of the groups for any of these pathologic features or placental weight. This
26 suggests that the presence of some changes, such as multifocal areas of villous
27 mineralization, may be a result of normal placental aging or a result of stress from
28 experimental procedures, rather than from viral infection. These data underscore the
29 necessity of mock-infected controls when assessing pathology.

30

31 **DISCUSSION**

32 This study provides the first comprehensive assessment of the impact of pre-existing DENV
33 immunity on ZIKV pathogenesis during pregnancy in a translational NHP model. Macaques
34 with previous DENV-2 infection supported robust replication of ZIKV and developed a
35 robust neutralizing antibody response to ZIKV, suggesting that primary DENV-2 infection
36 had no protective effect. We did not observe evidence of enhanced ZIKV replication in
37 DENV-immune macaques as compared to DENV-naïve macaques. Neither intrauterine
38 growth restriction nor adverse fetal outcomes were observed in either cohort. However, we
39 did observe ZIKV RNA in the MFI in a greater number of DENV-immune macaques and a
40 significantly greater burden of ZIKV RNA in the chorionic plate in DENV-immune macaques
41 as compared to DENV-naïve macaques. Although we do not have any evidence of direct
42 fetal infection, the increased presence of ZIKV in the chorionic plate in DENV-immune
43 macaques suggests that the virus is capable of crossing the placental barrier and reaching
44 the chorionic plate, which is on the fetal side of the placenta (54). This enhanced infection is
45 consistent with prior studies that have shown increased replication of ZIKV in the placenta
46 of mice and placental cells in the presence of DENV antibodies (34, 36, 37). The implications
47 of increased infection of the placenta on fetal outcomes is unclear, since we observed no
48 fetal demise nor any of the other clinical sequelae associated with CZS in offspring. This
49 also suggests that the presence of ZIKV in the maternal-fetal interface is not a robust
50 indicator of significant fetal harm in this model. Future studies will define the effects of
51 DENV and ZIKV on infant outcomes, as developmental deficits are the most common
52 adverse outcome of prenatal ZIKV exposure in humans (55).

53

54 We did observe an association between prolonged viremia, defined as lasting >21 days, and
55 the presence of ZIKV vRNA in the maternal-fetal interface. Since 5 of 8 DENV-immune
56 macaques had viremia greater than 21 days, while only 1 of 4 DENV-naïve animals did, it is
57 tempting to speculate that prior DENV immunity may lead to longer viral replication and
58 therefore greater ZIKV burden in the placenta. However, since we did not observe any
59 statistically significant differences in the duration of viremia between the two groups,

60 perhaps due to a small sample size, we cannot make any definitive conclusions about the
61 impact of prior DENV immunity on the duration of ZIKV viremia.

62
63 A significant strength of this study was our ability to assess ZIKV pathogenesis in a
64 translational model in macaques with known infection histories. This allowed us to report
65 detailed antibody dynamics throughout the course of infection, historical data that can be
66 challenging to obtain in human cohort studies particularly during pregnancy. We confirmed
67 the presence of low levels of cross-reactive antibodies present at the time of ZIKV challenge
68 in our DENV-immune cohort. Twenty-eight days after ZIKV-challenge, we determined that
69 PRNT50, but not PRNT90, titers were significantly higher in our DENV-immune cohort. We
70 were particularly interested in this finding, since a higher ZIKV neutralization titer at the time
71 of delivery has been associated with CZS in human cohort studies (39). However, at the
72 time of delivery there were no significant differences in iELISA titers between cohorts.

73
74 As is common to non-human primate studies, ethical and financial constraints limited the
75 number of variables that we were able to test in this study. A significant limitation of this
76 study is the small group sizes used. Since the most severe effects of ZIKV only occur in a
77 minority of cases, it is difficult to model the full spectrum of disease that women experience
78 when infected with ZIKV during pregnancy. Small group sizes further limited our statistical
79 power to detect significant differences between groups. In this study, we only tested a
80 single DENV serotype; there is considerable evidence that the sequence of infecting DENV
81 serotypes has an effect on subsequent enhancement or protection (for review see (20)).
82 There is also considerable evidence that the pre-existing antibody titer at the time of
83 secondary infection is associated with the risk of developing severe disease (2, 48). In this
84 study, we had a relatively short window (1-3 months) between DENV and ZIKV infection,
85 and a different interval between infection may have affected the titer of cross-reactive
86 antibodies present at the time of ZIKV challenge. We tested a single ZIKV isolate, dose, and
87 inoculation time point in gestation; changes to any of these parameters could have elicited
88 more significant differences in maternal or fetal outcomes.

89
90 The relationship between flavivirus antibodies and disease outcomes is complex, depending
91 on factors including antibody titer, specificity, and degree of sequence conservation among
92 viruses. It is therefore difficult to comprehensively disentangle all these factors in a single
93 experiment. More work is needed to understand the relationship between DENV immunity,
94 viral infection of the placenta, and prolonged viremia. While there is a growing consensus
95 that DENV may not enhance ZIKV in non-pregnant individuals, this study provides evidence
96 that more research is needed to understand the risks associated with prior DENV immunity
97 on ZIKV pathogenesis in pregnancy.

99 **METHODS**

00 **Experimental design**

01 This study was designed to assess the impact of pre-existing DENV immunity on ZIKV
02 pathogenesis during pregnancy in a non-human primate model. Eight female non-pregnant
03 Indian origin rhesus macaques (*Macaca mulatta*) were inoculated subcutaneously with 1×10^4
04 PFU of DENV-2/US/BID-V594/2006. Approximately 1-3 months following DENV challenge,
05 macaques were bred and became pregnant. All eight macaques were then inoculated
06 subcutaneously with 1×10^4 PFU of ZIKV-PRVABC59 (ZIKV-PR) between 44-50 days of
07 gestation (term is 165 ± 10 days). Macaques were monitored throughout the remainder of
08 gestation. At approximately gestation day 160, infants were delivered via cesarean section
09 and monitored for long-term development. A comprehensive set of maternal biopsies and
10 maternal-fetal interface were collected for analysis. For the DENV-naïve group, four
11 pregnant Indian origin rhesus macaques (*Macaca mulatta*) were inoculated subcutaneously
12 with 1×10^4 PFU of ZIKV-PR between 44-50 days of gestation (term is 165 ± 10 days).
13 Macaques were monitored throughout the remainder of gestation. At approximately
14 gestation day 160, infants were delivered via cesarean section and monitored for long-term
15 development. A comprehensive set of maternal biopsies and maternal-fetal interface were
16 collected for analysis. A cohort of four pregnant PBS-inoculated animals served as a control
17 group and underwent the same experimental regimen, including the sedation for all blood
18 draws and ultrasounds, as the ZIKV-infected cohort. In order to minimize the number of
19 animals used in studies of ZIKV pathogenesis, the DENV-naïve and mock-infected cohort
20 have served as a control group for other studies (56).

21

22 **Ethical approval**

23 This study was approved by the University of Wisconsin College of Letters and Sciences
24 and Vice Chancellor for Research and Graduate Education Centers Institutional Animal Care
25 and Use Committee (Protocol numbers: G005401 and G006139).

26

27 **Care and use of macaques**

28 All macaque monkeys used in this study were cared for by the staff at the WNNPRC in
29 accordance with the regulations and guidelines outlined in the Animal Welfare Act and the
30 Guide for the Care and Use of Laboratory Animals and the recommendations of the
31 Weatherall report (<https://royalsociety.org/topics-policy/publications/2006/weatherall-report/>). All macaques used in the study were free of *Macacine herpesvirus 1*, simian
32 retrovirus type D (SRV), simian T-lymphotropic virus type 1 (STLV), and simian
33 immunodeficiency virus (SIV). For all procedures (including physical examinations, virus
34 inoculations, ultrasound examinations, and blood collection), animals were anaesthetized
35 with an intramuscular dose of ketamine (10 mg/kg). Blood samples were obtained using a
36 vacutainer system or needle and syringe from the femoral or saphenous vein.
37

38

39 **Cells and viruses**

40 DENV-2/US/BID-V594/2006 was originally isolated from a human in Puerto Rico with one
41 round of amplification on C6/36 cells. This DENV-2 isolate was obtained from BEI resources
42 (NR-43280, Manassas, VA). Zika-virus/H.sapiens-tc/PUR/2015/PRVABC59_v3c2 (ZIKV-PR)
43 was originally isolated from a human in Puerto Rico in 2015, with three rounds of
44 amplification on Vero cells, was obtained from Brandy Russell (CDC, Fort Collins, CO, USA).
45 African Green Monkey kidney cells (Vero; ATCC #CCL-81) were maintained in Dulbecco's
46 modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Hyclone,
47 Logan, UT), 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 100 U/ml penicillin, 100 µg/ml
48 of streptomycin, and incubated at 37°C in 5% CO₂. *Aedes albopictus* mosquito cells (C6/36;
49 ATCC #CRL-1660) were maintained in DMEM supplemented with 10% fetal bovine serum
50 (FBS; Hyclone, Logan, UT), 2mM L-glutamine, 1.5 g/L sodium bicarbonate, 100 U/ml
51 penicillin, 100 µg/ml of streptomycin, and incubated at 28°C in 5% CO₂. The cell lines were
52 obtained from the American Type Culture Collection, were not further authenticated, and
53 were not specifically tested for mycoplasma. Virus stocks were prepared by inoculation onto
54 a confluent monolayer of C6/36 cells; a single, clarified stock was harvested for each virus,
55 with a titer of 1.55 x 10⁵ PFU/ml for DENV-2 and 1.58 x 10⁷ PFU/ml for ZIKV-PR. Deep
56 sequencing with limited PCR cycles confirmed that the DENV-2 virus stock was identical to
57 the reported sequence in GenBank (EU482725) at the consensus level. Twelve nucleotide
58 variants were detected at 5.3-16.1% frequency. Amplicon deep sequencing of ZIKV-PR
59 virus stock using the methods described in Quick, et al. (57) revealed two consensus-level
60 nucleotide substitutions in the stock as compared to the reported sequence in GenBank
61 (KU501215), as well as seven other minor nucleotide variants detected at 5.3-30.6%
62 frequency. Details on accessing sequence data can be found in the Data Accessibility
63 section.

64

65 **Plaque Assay**

66 All titrations for virus quantification from virus stocks and screens for infectious ZIKV from
67 macaque tissue were completed by plaque assay on Vero cell cultures as previously
68 described (58). Briefly, duplicate wells were infected with 0.1 ml aliquots from serial 10-fold
69 dilutions in growth media and virus was adsorbed for one hour. Following incubation, the
70 inoculum was removed, and monolayers were overlaid with 3ml containing a 1:1 mixture of
71 1.2% oxoid agar and 2X DMEM (Gibco, Carlsbad, CA) with 10% (vol/vol) FBS and 2%
72 (vol/vol) penicillin/streptomycin (100 U/ml penicillin, 100 µg/ml of streptomycin). Cells were
73 incubated at 37°C in 5% CO₂ for four days for plaque development. Cell monolayers were
74 then stained with 3 ml of overlay containing a 1:1 mixture of 1.2% oxoid agar and 2X DMEM
75 with 2% (vol/vol) FBS, 2% (vol/vol) penicillin/streptomycin, and 0.33% neutral red (Gibco).
76 Cells were incubated overnight at 37 °C and plaques were counted.

77

78 **Inoculations**

79 Inocula were prepared from a viral stock propagated on a confluent monolayer of C6/36
80 cells. The stocks were thawed, diluted in PBS to 10^4 PFU/ml and loaded into a 1 mL syringe
81 that was kept on ice until challenge. Animals were anesthetized as described above and 1
82 mL of inocula was delivered subcutaneously over the cranial dorsum. Animals were
83 monitored closely following inoculation for any signs of an adverse reaction.

84

85 **Ultrasound measurements**

86 Ultrasound measurements were taken according to the procedures described previously
87 (47). Briefly, dams were sedated with ketamine hydrochloride (10mg/kg) for weekly
88 sonographic assessment to monitor the health of the fetus (heart rate) and to take fetal
89 growth measurements, including the fetal femur length (FL), biparietal diameter (BPD), head
90 circumference (HC), and abdominal circumference (AC). Weekly fetal measurements were
91 plotted against mean measurement values and standard deviations for fetal macaques
92 developed at the California National Primate Research Center (51, 52). Additional Doppler
93 ultrasounds were taken as requested by veterinary staff.

94

95 Gestational age standardized growth parameters for fetal HC, BPD, AC, and FL were
96 evaluated by calculating gestational age specific z-values from normative fetal growth
97 parameters. Linear mixed effects modeling with animal-specific random effects was used to
98 analyze the fetal growth trajectories with advancing gestational age. In order to account for
99 differences in fetal growth parameters at the date of inoculation, changes in fetal growth
00 parameters from date of inoculation (~day 50) were analyzed. That is, changes in fetal
01 growth parameters from date of inoculation were regressed on gestational age (in weeks).
02 An autoregressive correlation structure was used to account for correlations between
03 repeated measurements of growth parameters over time. The growth trajectories were
04 quantified by calculating the regression slope parameters which were reported along with
05 the corresponding 95% confidence intervals (CI). Fetal growth was evaluated both within
06 and between groups. All reported P-values are two-sided and $P < 0.05$ was used to define
07 statistical significance. Statistical analyses were conducted using SAS software (SAS
08 Institute, Cary NC), version 9.4.

09

10 **Viral RNA isolation from blood**

11 Viral RNA was isolated from macaque blood samples as previously described (58, 59).
12 Briefly, plasma was isolated from EDTA-anticoagulated whole blood on the day of collection
13 either using Ficoll density centrifugation for 30 minutes at $1860 \times g$ if the blood was being
14 processed for PBMC, or it was centrifuged in the blood tube at $1400 \times g$ for 15 minutes. The
15 plasma layer was removed and transferred to a sterile 15 mL conical and spun at $670 \times g$ for
16 an additional 8 minutes to remove any remaining cells. Viral RNA was extracted from a 300
17 μL plasma aliquot using the Viral Total Nucleic Acid Kit (Promega, Madison, WI) on a
18 Maxwell 16 MDx or Maxwell RSC 48 instrument (Promega, Madison, WI).

19

20 **Viral RNA isolation from tissues**

21 Tissue samples, cut to 0.5 cm thickness on at least one side, were stored in RNAlater at 4°C
22 for 2-7 days. RNA was recovered from tissue samples using a modification of the method
23 described by Hansen et al., 2013 (60). Briefly, up to 200 mg of tissue was disrupted in
24 TRIzol (Lifetechnologies) with 2 x 5 mm stainless steel beads using the TissueLyser (Qiagen)
25 for 3 minutes at 25 r/s twice. Following homogenization, samples in TRIzol were separated
26 using Bromo-chloro-propane (Sigma). The aqueous phase was collected, and glycogen was
27 added as a carrier. The samples were washed in isopropanol and ethanol precipitated. RNA
28 was fully re-suspended in 5 mM tris pH 8.0.

29

30 **Quantitative reverse transcription PCR (QRT-PCR)**

31 vRNA isolated from both fluid and tissue samples was quantified by QRT-PCR as previously
32 described (61). The RT-PCR was performed using either the SuperScript III Platinum One-
33 Step Quantitative RT-PCR system (Invitrogen, Carlsbad, CA) or Taqman Fast Virus 1-step
34 master mix (Applied Biosystems, Foster City, CA) on a LightCycler 96 or LightCycler 480
35 instrument (Roche Diagnostics, Indianapolis, IN). Viral RNA concentration was determined
36 by interpolation onto an internal standard curve composed of seven 10-fold serial dilutions
37 of a synthetic ZIKV RNA fragment based on a ZIKV strain derived from French Polynesia
38 that shares >99% similarity at the nucleotide level to the Puerto Rican strain used in the
39 infections described in this manuscript.

40

41 **Statistical analysis of viral loads**

42 Plasma viral load curves were generated using GraphPad Prism software. The area under
43 the curve of 0-10 d.p.i. was calculated using GraphPad software and a two-sample t-test
44 was performed to assess differences in the peak, duration, and area under the curve of ZIKV
45 viremia between DENV-immune and DENV-naïve macaques. Duration was calculated both
46 as a raw number of days and as a binary, with >21 days of viremia considered “prolonged”
47 and <21 days considered “non-prolonged.” To compare differences in the viral burden in
48 the maternal-fetal interface, a non-parametric Mann-Whitney U test was used to assess
49 differences in each of the maternal-fetal interface tissues. GraphPad Prism 8 software was
50 used for these analyses.

51

52 **Plaque reduction neutralization test (PRNT)**

53 Macaque serum was isolated from whole blood on the same day it was collected using a
54 serum separator tube (SST) or clot activator (CA) tube. The SST or CA tube was centrifuged
55 for at least 20 minutes at 1400 x g, the serum layer was removed and placed in a 15 ml
56 conical and centrifuged for 8 minutes at 670 x g to remove any additional cells. Serum was
57 screened for ZIKV neutralizing antibody utilizing a plaque reduction neutralization test
58 (PRNT) on Vero cells as described in (62) against DENV-2 and ZIKV-PR. Neutralization
59 curves were generated using GraphPad Prism 8 software. The resulting data were analyzed

60 by non-linear regression to estimate the dilution of serum required to inhibit 50% and 90%
61 of infection.

62
63 **Inhibition ELISA (iELISA assay)** The DENV iELISA was performed on serum samples as
64 previously described (2, 63, 64). Briefly, ELISA plates were coated with anti-DENV
65 polyclonal IgG to capture a mixture of DENV 1-4 antigen (DENV prototype strains, GenBank
66 Accession #s: KM204119, KM204118, KU050695, KR011349) diluted in Phosphate Buffer
67 Saline + 0.05% Tween 20 at pH 7.4 (PBS-T)(65). After blocking and additional washes,
68 macaque serum was added in 10-fold serial dilutions (1:10, 1:100, 1:1000, 1:10,000) and
69 incubated for two hours at 37°C. Thereafter, a set concentration of horseradish peroxidase
70 (HRP)-conjugated polyclonal anti-DENV IgG to each well and incubated for 30 minutes at
71 37°C. Following washes, peroxidase substrate TMB was added to wells and incubated for
72 30 minutes at room temperature, then stopped with sulfuric acid. Plates were read on an
73 ELISA reader, and iELISA titers were estimated relative to negative controls (conjugated
74 antibody only) using the Reed-Muench method (66). The ZIKV iELISA is similar in design to
75 the DENV iELISA and was performed as described previously (67). ZIKV-specific
76 monoclonal antibody ZKA64 (68) is used to capture ZIKV antigen prepared as described by
77 (65), macaque serum was added in serial dilutions and competed with HRP-conjugated
78 mAb ZKA64, and iELISA titers were also estimated using the Reed-Muench method.
79

80 **Cesarean section and tissue collection**

81 Between 159-161 days gestation, infants were delivered via cesarean section and tissues
82 were collected. The fetus, placenta, fetal membranes, umbilical cord, and amniotic fluid
83 were collected at surgical uterotomy and maternal tissues were biopsied during laparotomy.
84 These were survival surgeries for the dams and offspring. Amniotic fluid was removed from
85 the amniotic sac, then infant was removed from the amniotic sac, the umbilical cord
86 clamped, and neonatal resuscitation performed as needed. The placenta and fetal
87 membranes were then collected. Infants were placed with their mothers following the dam's
88 recovery from surgery.

89
90 Tissues were dissected as previously described (47) using sterile instruments that were
91 changed between each organ and tissue type to minimize possible cross contamination.
92 Each organ/tissue was evaluated grossly, dissected with sterile instruments in a sterile
93 culture dish, and sampled for histology, viral burden assay, and/or banked for future assays.
94 A comprehensive listing of all specific tissues collected and analyzed is presented in Fig. 6A
95 (maternal-fetal interface tissues) and Supplementary Table 2 (maternal biopsies and fetal
96 fluids). Biopsies of the placental bed (uterine placental attachment site containing deep
97 decidua basalis and myometrium), maternal liver, spleen, and a mesenteric lymph node
98 were collected aseptically during surgery into sterile petri dishes, weighed, and further
99 processed for viral burden and when sufficient sample size was obtained, histology.

01 In order to more accurately capture the distribution of ZIKV in the placenta, each placental
02 disc was separated, fetal membranes sharply dissected from the margin, weighed,
03 measured, and placed in a sterile dish on ice. A 1-cm-wide cross section was taken from
04 the center of each disc, including the umbilical cord insertion on the primary disc, and
05 placed in 4% paraformaldehyde. Individual cotyledons, or perfusion domains, were
06 dissected using a scalpel and placed into individual petri dishes. From each cotyledon, a
07 thin center cut was taken using a razor blade and placed into a cassette in 4%
08 paraformaldehyde. Once the center cut was collected, the decidua and the chorionic plate
09 were removed from the remaining placenta. From each cotyledon, pieces of decidua,
10 chorionic plate, and chorionic villi were collected into two different tubes – one with
11 RNAlater for vRNA isolation and one with 20% FBS/PBS for other virological assays.

12

13 **Histology**

14 Following collection, tissues were handled as described previously (58). All tissues were
15 fixed in 4% paraformaldehyde for 24 hours and transferred into 70% ethanol until
16 processed and embedded in paraffin. Paraffin sections (5 μ m) were stained with
17 hematoxylin and eosin (H&E). Pathologists were blinded to vRNA findings when tissue
18 sections were evaluated microscopically. Photomicrographs were obtained using a bright
19 light microscope Olympus BX43 and Olympus BX46 (Olympus Inc., Center Valley, PA) with
20 attached Olympus DP72 digital camera (Olympus Inc.) and Spot Flex 152 64 Mp camera
21 (Spot Imaging) and captured using commercially available image-analysis software (cellSens
22 DimensionR, Olympus Inc. and spot software 5.2).

23

24 **Placental Histology Scoring**

25 Pathological evaluation of the cross-sections of each of the individual placental cotyledons
26 were performed by Dr. Terry Morgan who was blinded to experimental condition. Each of
27 the cross sections were evaluated for the presence of chronic histiocytic intervilllositis
28 (CHIV), infarctions, villous stromal calcifications, and vasculopathy. A three-way ANOVA was
29 performed to assess statistical significance among groups for each parameter, including
30 placental weight.

31

32 Two of three boarded veterinary pathologists, blinded to vRNA findings, independently
33 reviewed the central cross section of each placental disc and quantitatively scored the
34 placentas on 22 independent criteria. Six of the criteria are general criteria assessing
35 placental function, two assess villitis, three criteria assess the presence of fetal vascular
36 malperfusion, and 11 criteria assess the presence of maternal vascular malperfusion. The
37 scoring system was developed by Dr. Michael Fritsch, Dr. Heather Simmons, and Dr.
38 Andres Mejia. A summary table of the criteria scored, and the scale used for each criterion
39 can be found in Supplementary Table 3. Once initial scores were assigned, all pathologists
40 met to discuss and resolve any significant discrepancies in scoring. Scores were assigned
41 to each placental disc unless the criteria scored corresponded to the function of the entire
42 placenta.

43

44 For criteria measured on a quantitative scale, median scores and interquartile range were
45 calculated for each experimental group. For criteria measured on a binary “present/not
46 present” scale, the cumulative incidence in each experimental group was calculated as a
47 frequency and a percentage. For quantitative criteria, a non-parametric Wilcoxon rank test
48 was used to calculate statistical significance between each of the groups and between the
49 mock-infected group and the two ZIKV-infected groups. For binary features, Fisher’s exact
50 test was used to calculate statistical significance between each of the groups and between
51 the mock-infected group and the two ZIKV-infected groups. To determine whether chronic
52 villitis correlated with the criteria assessing fetal malperfusion and whether chronic
53 deciduitis correlated with the criteria assessing maternal malperfusion, scores were adjusted
54 to be on the same scale (i.e., converting measures on a 0-1 scale to a 0-2 scale) so that
55 each parameter carried equal weight in the combined score. A nonparametric Spearman’s
56 correlation was used to determine the correlation.

57

58 REFERENCES

1. Ngono, A. E., and S. Shresta. 2018. Immune Response to Dengue and Zika. *Annu Rev Immunol* 36: 279-308.
2. Katzelnick, L. C., L. Gresh, M. E. Halloran, J. C. Mercado, G. Kuan, A. Gordon, A. Balmaseda, and E. Harris. 2017. Antibody-dependent enhancement of severe dengue disease in humans. *Science* 358: 929-932.
3. Halstead, S. B., and E. J. O’Rourke. 1977. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. *J Exp Med* 146: 201-217.
4. Whitehead, S. S., J. E. Blaney, A. P. Durbin, and B. R. Murphy. 2007. Prospects for a dengue virus vaccine. *Nat Rev Microbiol* 5: 518-528.
5. Halstead, S. B. 2014. Dengue Antibody-Dependent Enhancement: Knowns and Unknowns. In *Antibodies for Infectious Diseases*, ed. American Society of Microbiology, p. 249-271.
6. Kam, Y. W., C. Y. Lee, T. H. Teo, S. W. Howland, S. N. Amrun, F. M. Lum, P. See, N. Q. Kng, R. G. Huber, M. H. Xu, H. L. Tan, A. Choo, S. Maurer-Stroh, F. Ginhoux, K. Fink, C. I. Wang, L. F. Ng, and L. Rénia. 2017. Cross-reactive dengue human monoclonal antibody prevents severe pathologies and death from Zika virus infections. *JCI Insight* 2:
7. Bardina, S. V., P. Bunduc, S. Tripathi, J. Duehr, J. J. Frere, J. A. Brown, R. Nachbagauer, G. A. Foster, D. Krysztof, D. Tortorella, S. L. Stramer, A. García-Sastre, F. Krammer, and J. K. Lim. 2017. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. *Science* 356: 175-180.
8. Castanha, P. M. S., E. J. M. Nascimento, B. Cynthia, M. T. Cordeiro, O. V. de Carvalho, L. R. de Mendonça, E. A. N. Azevedo, R. F. O. França, D. Rafael, and E. T. A. Marques. 2017. Dengue virus (DENV)-specific antibodies enhance Brazilian Zika virus (ZIKV) infection. *Journal of Infectious Diseases* jiw638.

84 9. Londono-Renteria, B., A. Troupin, J. C. Cardenas, A. Hall, O. G. Perez, L. Cardenas, A.
85 Hartstone-Rose, S. B. Halstead, and T. M. Colpitts. 2017. A relevant in vitro human
86 model for the study of Zika virus antibody-dependent enhancement. *Journal of General*
87 *Virology* 98: 1702-1712.

88 10. Priyamvada, L., K. M. Quicke, W. H. Hudson, N. Onlamoon, J. Sewatanon, S.
89 Edupuganti, K. Pattanapanyasat, K. Chokephaibulkit, M. J. Mulligan, P. C. Wilson, R.
90 Ahmed, M. S. Suthar, and J. Wrammert. 2016. Human antibody responses after dengue
91 virus infection are highly cross-reactive to Zika virus. *Proc Natl Acad Sci U S A* 113:
92 7852-7857.

93 11. Li, M., L. Zhao, C. Zhang, X. Wang, W. Hong, J. Sun, R. Liu, L. Yu, J. Wang, F. Zhang,
94 and X. Jin. 2018. Dengue immune sera enhance Zika virus infection in human peripheral
95 blood monocytes through Fc gamma receptors. *PLoS One* 13: e0200478.

96 12. Dejnirattisai, W., P. Supasa, W. Wongwiwat, A. Rouvinski, G. Barba-Spaeth, T.
97 Duangchinda, A. Sakuntabhai, V.-M. Cao-Lormeau, P. Malasit, F. A. Rey, J.
98 Mongkolsapaya, and G. R. Screamton. 2016. Dengue virus sero-cross-reactivity drives
99 antibody-dependent enhancement of infection with zika virus. *Nature Immunology* 17:
00 1102-1108.

01 13. Swanstrom, J. A., J. A. Plante, K. S. Plante, E. F. Young, E. McGowan, E. N. Galichotte,
02 D. G. Widman, M. T. Heise, A. M. de Silva, and R. S. Baric. 2016. Dengue Virus Envelope
03 Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective
04 against Zika Virus. *mBio* 7:

05 14. Collins, M. H., E. McGowan, R. Jadi, E. Young, C. A. Lopez, R. S. Baric, H. M. Lazear,
06 and A. M. de Silva. 2017. Lack of Durable Cross-Neutralizing Antibodies Against Zika
07 Virus from Dengue Virus Infection. *Emerg Infect Dis* 23: 773-781.

08 15. Montoya, M., M. Collins, W. Dejnirattisai, L. C. Katzelnick, H. Puerta-Guardo, R. Jadi, S.
09 Schildhauer, P. Supasa, S. Vasanawathana, P. Malasit, J. Mongkolsapaya, A. D. de
10 Silva, H. Tissera, A. Balmaseda, G. Screamton, A. M. de Silva, and E. Harris. 2018.
11 Longitudinal Analysis of Antibody Cross-neutralization Following Zika Virus and Dengue
12 Virus Infection in Asia and the Americas. *J Infect Dis* 218: 536-545.

13 16. Zhang, S., T. Loy, T. S. Ng, X. N. Lim, S. V. Chew, T. Y. Tan, M. Xu, V. A. Kostyuchenko,
14 F. Tukijan, J. Shi, K. Fink, and S. M. Lok. 2020. A Human Antibody Neutralizes Different
15 Flaviviruses by Using Different Mechanisms. *Cell Rep* 31: 107584.

16 17. Regla-Nava, J. A., A. Elong Ngono, K. M. Viramontes, A. T. Huynh, Y. T. Wang, A. T.
17 Nguyen, R. Salgado, A. Mamidi, K. Kim, M. S. Diamond, and S. Shresta. 2018. Cross-
18 reactive Dengue virus-specific CD8⁺ T cells protect against Zika virus during pregnancy.
19 *Nat Commun* 9: 3042.

20 18. Wen, J., A. Elong Ngono, J. A. Regla-Nava, K. Kim, M. J. Gorman, M. S. Diamond, and
21 S. Shresta. 2017. Dengue virus-reactive CD8⁺ T cells mediate cross-protection against
22 subsequent Zika virus challenge. *Nat Commun* 8: 1459.

23 19. Wen, J., Y. T. Wang, K. M. Valentine, R. P. Dos Santos Alves, Z. Xu, J. A. Regla-Nava, A.
24 E. Ngono, M. P. Young, L. C. S. Ferreira, and S. Shresta. 2020. CD4⁺ T Cells Cross-

Reactive with Dengue and Zika Viruses Protect against Zika Virus Infection. *Cell Rep* 31: 107566.

Katzelnick, L. C., S. Bos, and E. Harris. 2020. Protective and enhancing interactions among dengue viruses 1-4 and Zika virus. *Curr Opin Virol* 43: 59-70.

Rodriguez-Barraquer, I., F. Costa, E. J. M. Nascimento, N. Nery, P. M. S. Castanha, G. A. Sacramento, J. Cruz, M. Carvalho, D. De Olivera, J. E. Hagan, H. Adhikarla, E. A. Wunder, D. F. Coêlho, S. R. Azar, S. L. Rossi, N. Vasilakis, S. C. Weaver, G. S. Ribeiro, A. Balmaseda, E. Harris, M. L. Nogueira, M. G. Reis, E. T. A. Marques, D. A. T. Cummings, and A. I. Ko. 2019. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. *Science* 363: 607-610.

Santiago, G. A., T. M. Sharp, E. Rosenberg, I. I. Sosa Cardona, L. Alvarado, G. Paz-Bailey, and J. L. Muñoz-Jordán. 2019. Prior Dengue Virus Infection Is Associated With Increased Viral Load in Patients Infected With Dengue but Not Zika Virus. *Open Forum Infect Dis* 6:

Gordon, A., L. Gresh, S. Ojeda, L. C. Katzelnick, N. Sanchez, J. C. Mercado, G. Chowell, B. Lopez, D. Elizondo, J. Coloma, R. Burger-Calderon, G. Kuan, A. Balmaseda, and E. Harris. 2019. Prior dengue virus infection and risk of Zika: A pediatric cohort in Nicaragua. *PLoS Med* 16: e1002726.

Michlmayr, D., E. Y. Kim, A. H. Rahman, R. Raghunathan, S. Kim-Schulze, Y. Che, S. Kalayci, Z. H. Gümüş, G. Kuan, A. Balmaseda, A. Kasarskis, S. M. Wolinsky, M. Suárez-Fariñas, and E. Harris. 2020. Comprehensive Immunoprofiling of Pediatric Zika Reveals Key Role for Monocytes in the Acute Phase and No Effect of Prior Dengue Virus Infection. *Cell Rep* 31: 107569.

Tonnerre, P., J. G. Melgaço, A. Torres-Cornejo, M. A. Pinto, C. Yue, J. Blümel, P. S. F. de Sousa, V. D. M. de Mello, J. Moran, A. M. B. de Filippis, D. Wolski, A. Grifoni, A. Sette, D. H. Barouch, R. C. Hoogeveen, S. A. Baylis, G. M. Lauer, and L. L. Lewis-Ximenez. 2020. Evolution of the innate and adaptive immune response in women with acute Zika virus infection. *Nat Microbiol* 5: 76-83.

McCracken, M. K., G. D. Gromowski, H. L. Friberg, X. Lin, P. Abbink, R. De La Barrera, K. H. Eckles, L. S. Garver, M. Boyd, D. Jetton, D. H. Barouch, M. C. Wise, B. S. Lewis, J. R. Currier, K. Modjarrad, M. Milazzo, M. Liu, A. B. Mullins, J. R. Putnak, N. L. Michael, R. G. Jarman, and S. J. Thomas. 2017. Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques. *PLoS Pathog* 13: e1006487.

Pantoja, P., E. X. Pérez-Guzmán, I. V. Rodríguez, L. J. White, O. González, C. Serrano, L. Giavedoni, V. Hodara, L. Cruz, T. Arana, M. I. Martínez, M. A. Hassert, J. D. Brien, A. K. Pinto, A. de Silva, and C. A. Sariol. 2017. Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. *Nat Commun* 8: 15674.

Breitbach, M. E., C. M. Newman, D. M. Dudley, L. M. Stewart, M. T. Aliota, M. R. Koenig, P. M. Shepherd, K. Yamamoto, C. M. Crooks, G. Young, M. R. Semler, A. M. Weiler, G. L. Barry, H. Heimsath, E. L. Mohr, J. Eichkoff, W. Newton, E. Peterson, N. Schultz-Darken, S. R. Permar, H. Dean, S. Capuano, J. E. Osorio, T. C. Friedrich, and D. H.

66 O'Connor. 2019. Primary infection with dengue or Zika virus does not affect the severity
67 of heterologous secondary infection in macaques. *PLoS Pathog* 15: e1007766.

68 29. Abbink, P., R. A. Larocca, W. Dejnirattisai, R. Peterson, J. P. Nkolola, E. N. Borducchi, P.
69 Supasa, J. Mongkolsapaya, G. R. Scream, and D. H. Barouch. 2018. Therapeutic and
70 protective efficacy of a dengue antibody against Zika infection in rhesus monkeys. *Nat
71 Med*

72 30. Cao-Lormeau, V. M., C. Roche, M. Aubry, A. Teissier, S. Lastere, E. Daudens, H. P.
73 Mallet, D. Musso, and J. Aaskov. 2011. Recent emergence of dengue virus serotype 4 in
74 French Polynesia results from multiple introductions from other South Pacific Islands.
75 *PLoS One* 6: e29555.

76 31. Savage, H. M., C. L. Fritz, D. Rutstein, A. Yolwa, V. Vorndam, and D. J. Gubler. 1998.
77 Epidemic of dengue-4 virus in Yap State, Federated States of Micronesia, and
78 implication of Aedes hensilli as an epidemic vector. *Am J Trop Med Hyg* 58: 519-524.

79 32. Durand, M. A., M. Bel, I. Ruwey, M. Marfel, L. Yug, and V. Ngaden. 2005. An outbreak of
80 dengue fever in Yap State. *Pac Health Dialog* 12: 99-102.

81 33. Dupont-Rouzeyrol, M., O. O'Connor, E. Calvez, M. Daurès, M. John, J. P. Grangeon, and
82 A. C. Gourinat. 2015. Co-infection with Zika and dengue viruses in 2 patients, New
83 Caledonia, 2014. *Emerg Infect Dis* 21: 381-382.

84 34. Zimmerman, M. G., K. M. Quicke, J. T. O'Neal, N. Arora, D. Machiah, L. Priyamvada, R.
85 C. Kauffman, E. Register, O. Adekunle, D. Swieboda, E. L. Johnson, S. Cordes, L.
86 Haddad, R. Chakraborty, C. B. Coyne, J. Wrammert, and M. S. Suthar. 2018. Cross-
87 Reactive Dengue Virus Antibodies Augment Zika Virus Infection of Human Placental
88 Macrophages. *Cell Host Microbe* 24: 731-742.e6.

89 35. Hermanns, K., C. Göhner, A. Kopp, A. Schmidt, W. M. Merz, U. R. Markert, S. Junglen,
90 and C. Drosten. 2018. Zika virus infection in human placental tissue explants is
91 enhanced in the presence of dengue virus antibodies in-vitro. *Emerg Microbes Infect* 7:
92 198.

93 36. Brown, J. A., G. Singh, J. A. Acklin, S. Lee, J. E. Duehr, A. N. Chokola, J. J. Frere, K. W.
94 Hoffman, G. A. Foster, D. Krysztof, R. Cadagan, A. R. Jacobs, S. L. Stramer, F.
95 Krammer, A. García-Sastre, and J. K. Lim. 2019. Dengue Virus Immunity Increases Zika
96 Virus-Induced Damage during Pregnancy. *Immunity* 50: 1-12.

97 37. Rathore, A. P. S., W. A. A. Saron, T. Lim, N. Jahan, and A. L. St John. 2019. Maternal
98 immunity and antibodies to dengue virus promote infection and Zika virus-induced
99 microcephaly in fetuses. *Sci Adv* 5: eaav3208.

00 38. Halai, U. A., K. Nielsen-Saines, M. L. Moreira, P. C. de Sequeira, J. P. P. Junior, A. de
01 Araujo Zin, J. Cherry, C. R. Gabaglia, S. L. Gaw, K. Adachi, I. Tsui, J. H. Pilotto, R. R.
02 Nogueira, A. M. B. de Filippis, and P. Brasil. 2017. Maternal Zika Virus Disease Severity,
03 Virus Load, Prior Dengue Antibodies, and Their Relationship to Birth Outcomes. *Clin
04 Infect Dis* 65: 877-883.

05 39. Moreira-Soto, A., M. Sarno, C. Pedroso, E. M. Netto, A. Rockstroh, E. Luz, M. Feldmann,
06 C. Fischer, F. A. Bastos, B. M. Kümmerer, X. de Lamballerie, C. Drosten, S. Ulbert, C.
07 Brites, and J. F. Drexler. 2017. Evidence for Congenital Zika Virus Infection From

Neutralizing Antibody Titers in Maternal Sera, Northeastern Brazil. *J Infect Dis* 216: 1501-1504.

40. Castanha, P. M. S., W. V. Souza, C. Braga, T. V. B. Araújo, R. A. A. Ximenes, M. F. P. M. Albuquerque, U. R. Montarroyos, D. B. Miranda-Filho, M. T. Cordeiro, R. Dhalia, E. T. A. Marques, L. C. Rodrigues, C. M. T. Martelli, and E. R. G. Microcephaly. 2019. Perinatal analyses of Zika- and dengue virus-specific neutralizing antibodies: A microcephaly case-control study in an area of high dengue endemicity in Brazil. *PLoS Negl Trop Dis* 13: e0007246.

41. Carvalho, M. S., L. P. Freitas, O. G. Cruz, P. Brasil, and L. S. Bastos. 2020. Association of past dengue fever epidemics with the risk of Zika microcephaly at the population level in Brazil. *Sci Rep* 10: 1752.

42. Diamond, M. S., J. E. Ledgerwood, and T. C. Pierson. 2019. Zika Virus Vaccine Development: Progress in the Face of New Challenges. *Annu Rev Med* 70: 121-135.

43. Barba-Spaeth, G., W. Dejnirattisai, A. Rouvinski, M. C. Vaney, I. Medits, A. Sharma, E. Simon-Lorière, A. Sakuntabhai, V. M. Cao-Lormeau, A. Haouz, P. England, K. Stiasny, J. Mongkolsapaya, F. X. Heinz, G. R. Screaton, and F. A. Rey. 2016. Structural basis of potent Zika-dengue virus antibody cross-neutralization. *Nature* 536: 48-53.

44. Rey, F. A., K. Stiasny, M. C. Vaney, M. Dellarole, and F. X. Heinz. 2018. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. *EMBO Rep* 19: 206-224.

45. Halstead, S. B. 2017. Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. *Vaccine* 35: 6355-6358.

46. Newman, C., T. C. Friedrich, and D. H. O'Connor. 2017. Macaque monkeys in Zika virus research: 1947-present. *Curr Opin Virol* 25: 34-40.

47. Nguyen, S. M., K. M. Antony, D. M. Dudley, S. Kohn, H. A. Simmons, B. Wolfe, M. S. Salamat, L. B. C. Teixeira, G. J. Wiepz, T. H. Thoong, M. T. Aliota, A. M. Weiler, G. L. Barry, K. L. Weisgrau, L. J. Vosler, M. S. Mohns, M. E. Breitbach, L. M. Stewart, M. N. Rasheed, C. M. Newman, M. E. Graham, O. E. Wieben, P. A. Turski, K. M. Johnson, J. Post, J. M. Hayes, N. Schultz-Darken, M. L. Schotzko, J. A. Eudailey, S. R. Permar, E. G. Rakasz, E. L. Mohr, S. Capuano, A. F. Tarantal, J. E. Osorio, S. L. O'Connor, T. C. Friedrich, D. H. O'Connor, and T. G. Golos. 2017. Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. *PLoS Pathog* 13: e1006378.

48. Salje, H., D. A. T. Cummings, I. Rodriguez-Barraquer, L. C. Katzelnick, J. Lessler, C. Klungthong, B. Thaisomboonsuk, A. Nisalak, A. Weg, D. Ellison, L. Macareo, I. K. Yoon, R. Jarman, S. Thomas, A. L. Rothman, T. Endy, and S. Cauchemez. 2018. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. *Nature* 557: 719-723.

49. Katzelnick, L. C., C. Narvaez, S. Arguello, B. Lopez Mercado, D. Collado, O. Ampie, D. Elizondo, T. Miranda, F. Bustos Carillo, J. C. Mercado, K. Latta, A. Schiller, B. Segovia-Chumbez, S. Ojeda, N. Sanchez, M. Plazaola, J. Coloma, M. E. Halloran, L. Premkumar, A. Gordon, F. Narvaez, A. M. de Silva, G. Kuan, A. Balmaseda, and E. Harris. 2020. Zika virus infection enhances future risk of severe dengue disease. *Science* 369: 1123-1128.

50. Abbink, P., R. A. Larocca, K. Visitsunthorn, M. Boyd, A. Rafael, G. D. Gromowski, M.
51. Kirilova, R. Peterson, Z. Li, and O. Nanayakkara. 2017. Durability and correlates of
52. vaccine protection against Zika virus in rhesus monkeys. *Science translational medicine*
53. 9:

54. 51. Tarantal, A. F., and A. G. Hendrickx. 1988. Prenatal growth in the cynomolgus and
55. rhesus macaque (*Macaca fascicularis* and *Macaca mulatta*): A comparison by
56. ultrasonography. *Am J Primatol* 15: 309-323.

57. 52. Tarantal, A. F. 2005. Ultrasound Imaging in Rhesus (*Macaca Mulatta*) and Long-Tailed
58. (*Macaca fascicularis*) Macaques. Reproductive and Research Applications. The
59. Laboratory Primate: 317-352.

60. 53. Gynecologists, A. C. O. O. A. 2019. ACOG Practice Bulletin No. 204: fetal growth
61. restriction. *Obstetrics and gynecology* 133: e97-e109.

62. 54. Arora, N., Y. Sadovsky, T. S. Dermody, and C. B. Coyne. 2017. Microbial Vertical
63. Transmission during Human Pregnancy. *Cell Host Microbe* 21: 561-567.

64. 55. Nielsen-Saines, K., P. Brasil, T. Kerin, Z. Vasconcelos, C. R. Gabaglia, L. Damasceno, M.
65. Pone, L. M. Abreu de Carvalho, S. M. Pone, A. A. Zin, I. Tsui, T. R. S. Salles, D. C. da
66. Cunha, R. P. Costa, J. Malacarne, A. B. Reis, R. H. Hasue, C. Y. P. Aizawa, F. F.
67. Genovesi, C. Einspieler, P. B. Marschik, J. P. Pereira, S. L. Gaw, K. Adachi, J. D. Cherry,
68. Z. Xu, G. Cheng, and M. E. Moreira. 2019. Delayed childhood neurodevelopment and
69. neurosensory alterations in the second year of life in a prospective cohort of ZIKV-
70. exposed children. *Nat Med* 25: 1213-1217.

71. 56. Crooks, C. M., A. M. Weiler, S. L. Rybarczyk, M. I. Bliss, A. S. Jaeger, M. E. Murphy, H.
72. A. Simmons, A. Mejia, M. K. Fritsch, J. M. Hayes, J. C. Eickhoff, A. M. Mitzey, E. Razo,
73. K. Braun, E. A. Brown, K. Yamamoto, P. M. Shepard, A. Possell, K. Weaver, K. M.
74. Antony, T. K. Morgan, D. Dudley, E. Peterson, N. Schultz-Darken, D. H. O'Connor, E. L.
75. Mohr, T. G. Golos, M. Aliota, and T. C. Friedrich. 2020. African-lineage Zika virus
76. replication dynamics and maternal-fetal interface infection in pregnant rhesus macaques.
77. *biorxiv*

78. 57. Quick, J., N. D. Grubaugh, S. T. Pullan, I. M. Claro, A. D. Smith, K. Gangavarapu, G.
79. Oliveira, R. Robles-Sikisaka, T. F. Rogers, N. A. Beutler, D. R. Burton, L. L. Lewis-
80. Ximenez, J. G. de Jesus, M. Giovanetti, S. C. Hill, A. Black, T. Bedford, M. W. Carroll, M.
81. Nunes, L. C. Alcantara, E. C. Sabino, S. A. Baylis, N. R. Faria, M. Loose, J. T. Simpson,
82. O. G. Pybus, K. G. Andersen, and N. J. Loman. 2017. Multiplex PCR method for MinION
83. and Illumina sequencing of Zika and other virus genomes directly from clinical samples.
84. *Nat Protoc* 12: 1261-1276.

85. 58. Aliota, M. T., D. M. Dudley, C. M. Newman, J. Weger-Lucarelli, L. M. Stewart, M. R.
86. Koenig, M. E. Breitbach, A. M. Weiler, M. R. Semler, G. L. Barry, K. R. Zarbock, A. K. Haj,
87. R. V. Moriarty, M. S. Mohns, E. L. Mohr, V. Venturi, N. Schultz-Darken, E. Peterson, W.
88. Newton, M. L. Schotzko, H. A. Simmons, A. Mejia, J. M. Hayes, S. Capuano, M. P.
89. Davenport, T. C. Friedrich, G. D. Ebel, S. L. O'Connor, and D. H. O'Connor. 2018.
90. Molecularly barcoded Zika virus libraries to probe in vivo evolutionary dynamics. *PLoS*
91. *Pathog* 14: e1006964.

92 59. Dudley, D. M., M. T. Aliota, E. L. Mohr, A. M. Weiler, G. Lehrer-Brey, K. L. Weisgrau, M.
93 S. Mohns, M. E. Breitbach, M. N. Rasheed, C. M. Newman, D. D. Gellerup, L. H. Moncla,
94 J. Post, N. Schultz-Darken, M. L. Schotzko, J. M. Hayes, J. A. Eudailey, M. A. Moody, S.
95 R. Permar, S. L. O'Connor, E. G. Rakasz, H. A. Simmons, S. Capuano, T. G. Golos, J. E.
96 Osorio, T. C. Friedrich, and D. H. O'Connor. 2016. A rhesus macaque model of Asian-
97 lineage Zika virus infection. *Nat Commun* 7: 12204.

98 60. Hansen, S. G., M. Piatak, A. B. Ventura, C. M. Hughes, R. M. Gilbride, J. C. Ford, K.
99 Oswald, R. Shoemaker, Y. Li, M. S. Lewis, A. N. Gilliam, G. Xu, N. Whizin, B. J. Burwitz,
00 S. L. Planer, J. M. Turner, A. W. Legasse, M. K. Axthelm, J. A. Nelson, K. Früh, J. B.
01 Sacha, J. D. Estes, B. F. Keele, P. T. Edlefsen, J. D. Lifson, and L. J. Picker. 2013.
02 Immune clearance of highly pathogenic SIV infection. *Nature* 502: 100-104.

03 61. Jaeger, A. S., R. A. Murrieta, L. R. Goren, C. M. Crooks, R. V. Moriarty, A. M. Weiler, S.
04 Rybarczyk, M. R. Semler, C. Huffman, A. Mejia, H. A. Simmons, M. Fritsch, J. E. Osorio,
05 J. C. Eickhoff, S. L. O'Connor, G. D. Ebel, T. C. Friedrich, and M. T. Aliota. 2019. Zika
06 viruses of African and Asian lineages cause fetal harm in a mouse model of vertical
07 transmission. *PLoS Negl Trop Dis* 13: e0007343.

08 62. Lindsey, H. S., C. H. Calisher, and J. H. Mathews. 1976. Serum dilution neutralization
09 test for California group virus identification and serology. *J Clin Microbiol* 4: 503-510.

10 63. Balmaseda, A., S. N. Hammond, Y. Tellez, L. Imhoff, Y. Rodriguez, S. I. Saborío, J. C.
11 Mercado, L. Perez, E. Vide, E. Almanza, G. Kuan, M. Reyes, L. Saenz, J. J. Amador,
12 and E. Harris. 2006. High seroprevalence of antibodies against dengue virus in a
13 prospective study of schoolchildren in Managua, Nicaragua. *Trop Med Int Health* 11:
14 935-942.

15 64. Fernández, R. J., and S. Vázquez. 1990. Serological diagnosis of dengue by an ELISA
16 inhibition method (EIM). *Mem Inst Oswaldo Cruz* 85: 347-351.

17 65. CLARKE, D. H., and J. CASALS. 1958. Techniques for hemagglutination and
18 hemagglutination-inhibition with arthropod-borne viruses. *Am J Trop Med Hyg* 7: 561-
19 573.

20 66. Reed, L. J., and H. Muench. 1938. A simple method of estimating fifty per cent
21 endpoints. *American journal of epidemiology* 27: 493-497.

22 67. Balmaseda, A., J. V. Zambrana, D. Collado, N. García, S. Saborío, D. Elizondo, J. C.
23 Mercado, K. Gonzalez, C. Cerpas, and A. Nuñez. 2018. Comparison of four serological
24 methods and two reverse transcription-PCR assays for diagnosis and surveillance of
25 Zika virus infection. *Journal of clinical microbiology* 56:

26 68. Stettler, K., M. Beltramello, D. A. Espinosa, V. Graham, A. Cassotta, S. Bianchi, F.
27 Vanzetta, A. Minola, S. Jaconi, F. Mele, M. Foglierini, M. Pedotti, L. Simonelli, S. Dowall,
28 B. Atkinson, E. Percivalle, C. P. Simmons, L. Varani, J. Blum, F. Baldanti, E. Cameroni, R.
29 Hewson, E. Harris, A. Lanzavecchia, F. Sallusto, and D. Corti. 2016. Specificity, cross-
30 reactivity, and function of antibodies elicited by Zika virus infection. *Science* 353: 823-
31 826.

33 **ACKNOWLEDGEMENTS**

34

35 **General:** We thank the Veterinary Services, Colony Management, Scientific Protocol
36 Implementation, and the Pathology Services staff at the Wisconsin National Primate
37 Research Center (WNPRC) for their contributions to this study. We thank Brandy Russell for
38 providing virus isolates. The following reagent was obtained through BEI Resources, NIAID,
39 NIH: Dengue Virus Type 2, DENV-2/US/BID-V594/2006, NR-43280.

40

41 **Funding:** This work was supported by 5 R01AI132563-04 from the National Institute of
42 Allergy and Infectious Disease and 5 P51OD011106-59 from the Office of the Director, NIH
43 to the Wisconsin National Primate Research Center. Chelsea M. Crooks was supported by
44 T32 AI007414 from the National Institute of Allergy and Infectious Disease.

45

46 **Author contributions:**

47 C.M.C. contributed conceptualization, data curation, formal analysis, investigation,
48 methodology, project administration, visualization, validation, writing – original draft, writing
49 – review and editing

50 A.M.W. contributed data curation, investigation, validation, writing – review and editing

51 S.L.R. contributed data curation, investigation, validation, writing – review and editing

52 M.I.B contributed data curation, investigation, validation, writing – review and editing

53 A.S.J. contributed investigation, writing – review and editing

54 M.E.M. contributed data curation, investigation, project administration, validation, writing
55 – review and editing

56 H.A.S. contributed data curation, formal analysis, investigation, methodology, validation,
57 writing – review and editing

58 A.M. contributed investigation, methodology, validation, writing – review and editing

59 M.K.F. contributed investigation, methodology, validation, writing – review and editing

60 J.M.H. contributed investigation, project administration, writing – review and editing

61 J.C.E. contributed formal investigation, methodology, software, visualization, writing –
62 review and editing

63 A.M.M. contributed data curation, investigation, project administration, writing – review and
64 editing

65 E.R. contributed study data curation, investigation, project administration, writing – review
66 and editing

67 K.M.B. contributed investigation, writing – review and editing

68 E.A.B. contributed project administration, writing – review and editing

69 K.Y. contributed data curation, investigation, project administration, writing – review and
70 editing

71 P.M.S. contributed data curation, investigation, project administration, writing – review and
72 editing

73 A.P. contributed investigation, writing – review and editing

74 K.W. contributed investigation, writing – review and editing

75 K.M.A. formal analysis, investigation, writing – review and editing
76 T.K.M. contributed data curation, formal analysis, investigation, methodology, writing –
77 review and editing
78 C.M.N. contributed conceptualization, methodology, writing – review and editing
79 D.M.D. contributed conceptualization, methodology, project administration, writing – review
80 and editing
81 N.S-D. contributed investigation, project administration, writing – review and editing
82 E.P. contributed investigation, project administration, writing – review and editing
83 L.C.K. contributed methodology, project administration, writing – review and editing
84 A.B. contributed data curation, methodology, writing – review and editing
85 E.H. contributed methodology, project administration, writing – review and editing
86 D.H.O. contributed conceptualization, data curation, funding acquisition, methodology,
87 project administration, resources, software, supervision, writing – review and editing
88 E.L.M. contributed conceptualization, data curation, funding acquisition, methodology,
89 project administration, resources, supervision, writing – review and editing
90 T.G.G contributed conceptualization, data curation, funding acquisition, methodology,
91 project administration, resources, supervision, writing – review and editing
92 T.C.F. contributed conceptualization, data curation, funding acquisition, methodology,
93 project administration, resources, supervision, writing – review and editing
94 M.T.A contributed conceptualization, data curation, funding acquisition, investigation,
95 methodology, project administration, resources, supervision, writing – review and editing
96

97 **Competing interests:** The authors declare no competing interests.
98

99 **Data and materials availability:** All of the data used for figure generation and statistical
00 analysis in this manuscript can also be found at <https://github.com/cmc0043/impact-of->
01 [denv-on-zikv-during-pregnancy-in-macaques](https://github.com/cmc0043/impact-of-denv-on-zikv-during-pregnancy-in-macaques). Primary data that support the findings of this
02 study will be available in the future at the Zika Open Research Portal
03 (<https://openresearch.labkey.com/project/ZEST/>). Data for the DENV-immune infected
04 cohort can be found under study ZIKV-042; data for DENV-naïve and mock-infected cohorts
05 can be found under ZIKV-044. Raw FASTQ reads of the challenge stock of DENV-2/US/BID-
06 V594/2006 are available at the Sequence Read Archive, BioProject accession number
07 PRJNA435432. Raw FASTQ reads of the challenge stock of ZIKV PRVABC59 are available
08 at the Sequence Read Archive, BioProject accession number PRJNA392686. The authors
09 declare that all other data supporting the findings of this study are available within the article
10 and its supplementary information files.

11
12 **List of Supplementary Material**

13 Fig. S1. PRNT neutralization curves.
14 Fig. S2. Placental pathology scoring.
15 Table S1. Maternal and Fetal Tissue and Fluid ZIKV RNA Detection
16 Table S2. Placental Pathology Scoring System (central section)