

1

2

3 **Effect of mutations in the SARS-CoV-2 spike protein on protein stability,
4 cleavage, and cell-cell fusion function**

5

6

7 Chelsea T. Barrett¹, Hadley E. Neal¹, Kearstin Edmonds¹, Carole L. Moncman¹, Rachel
8 Thompson¹, Jean M. Branttie¹, Kerri Beth Boggs¹, Cheng-Yu Wu¹, Daisy W. Leung²,
9 and Rebecca E. Dutch^{1*}

10

11 ¹Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington,
12 Kentucky, USA

13 ²Division of Infection Diseases, Department of Medicine, Washington University School
14 of Medicine in St. Louis, St. Louis, Missouri, USA

15

16

17 *Address correspondence and materials requests to Rebecca E. Dutch,
18 rdutc2@uky.edu; Tel.: +1.859.323.1795

19

20

21 **Running Title:** SARS-CoV-2 spike protein stability, cleavage, and fusion

22

23

24 **Keywords:**

25 Fusion protein, membrane fusion, virology, viral protein, virus entry, coronavirus, SARS-
26 CoV-2, COVID-19

27

28

29 **Abstract**

30 The SARS-CoV-2 spike protein (S) is the sole viral protein responsible for both
31 viral binding to a host cell and the membrane fusion event needed for cell entry. In
32 addition to facilitating fusion needed for viral entry, S can also drive cell-cell fusion, a
33 pathogenic effect observed in the lungs of SARS-CoV-2 infected patients. While several
34 studies have investigated S requirements involved in viral particle entry, examination of
35 S stability and factors involved in S cell-cell fusion remain limited. We demonstrate that
36 S must be processed at the S1/S2 border in order to mediate cell-cell fusion, and that
37 mutations at potential cleavage sites within the S2 subunit alter S processing at the
38 S1/S2 border, thus preventing cell-cell fusion. We also identify residues within the
39 internal fusion peptide and the cytoplasmic tail that modulate S cell-cell fusion.
40 Additionally, we examine S stability and protein cleavage kinetics in a variety of
41 mammalian cell lines, including a bat cell line related to the likely reservoir species for
42 SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the
43 S trimer. This work therefore offers insight into S stability, proteolytic processing, and
44 factors that mediate S cell-cell fusion, all of which help give a more comprehensive
45 understanding of this highly sought-after therapeutic target.

46

47 **Introduction**

48 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative
49 viral agent of the ongoing coronavirus disease of 2019 (COVID-19) global pandemic.
50 Thus far, COVID-19 has impacted over 86 million people globally, resulting in the death
51 of more than one and a half million individuals [1]. Due to the widespread global impact
52 of this pandemic, a concerted effort has been made to rapidly develop a vaccine or
53 antiviral treatment.

54 The SARS-CoV-2 spike (S) protein is the major transmembrane glycoprotein
55 studding the surface of the viral particle, and is exclusively responsible for viral
56 attachment and cell entry, thus making it the major target of current vaccine strategies
57 and antiviral therapeutics [2]. The S protein consists of two distinct subunits: the S1
58 subunit, which binds to the known host receptor, angiotensin converting enzyme 2
59 (ACE2) [3-11], and the S2 subunit that promotes the viral-to-host cell membrane fusion
60 event needed for viral infection [2, 8, 12-18]. Most known coronavirus (CoV) S proteins
61 undergo two post-translational proteolytic cleavage events, one at the border of the S1
62 and S2 subunits, and one downstream within the S2 subunit (termed S2') [2, 13, 15-21].

63 Similar to several other CoVs, SARS-CoV-2 likely utilizes bats as a reservoir
64 species, specifically *Rhinolophus affinis* or horseshoe bats [11, 22-25]. SARS-CoV-2
65 has 96% sequence identity to a CoV found in this bat population, RaTG13, with limited
66 differences between them [25]. One difference is the polybasic, PRRA, insertion at the
67 S1/S2 border which gives this site the canonical sequence requirements for cleavage by
68 the cellular proprotein convertase furin [26-29]. This change may be a key factor in the
69 zoonotic transmission of SARS-CoV-2. The presence of a furin consensus sequence at

70 the cleavage site has been observed in other human infecting CoVs [26, 30-32],
71 including highly pathogenic forms of influenza [33, 34] and previous studies have
72 demonstrated its functional significance. For SARS-CoV-2, the insertion is suggested to
73 allow for expanded cellular tropism and infectivity [13, 26, 35, 36]. For most CoVs,
74 cleavage at a downstream S2' site may be carried out by a number of cellular
75 proteases, including serine proteases like transmembrane serine protease 2
76 (TMPRSS2), or endopeptidases, including members of the cathepsin family [13, 14, 19-
77 21].

78 Following receptor binding by the S1 subunit and priming by proteolytic cleavage,
79 the S2 subunit of S promotes the critical membrane fusion step of viral entry by
80 undergoing dynamic conformational changes to promote merging of the viral and host
81 cell membranes [10, 35, 37]. For entry of SARS-CoV-2, cleavage at the S1/S2 border
82 (by furin or a similar protease), is critical for TMPRSS2 cleavage and entry at the
83 plasma membrane. However, when S1/S2 border cleavage is blocked, viral entry can
84 be mediated through endosomal compartments with proteolytic cleavage carried out by
85 a member of the cathepsin family, similar to the entry pathway of SARS-CoV [10, 35,
86 37-39]. In addition to promoting virus-cell fusion during viral particle entry, S can also
87 promote cell-cell fusion, a pathogenic effect observed in the lungs of COVID-19 patients
88 where neighboring cells fuse together to form large multi-nucleated cells, termed
89 syncytia [40-45]. While the role of cellular proteases and S cleavage in viral entry is
90 being extensively investigated, insight into the cleavage requirements for cell-cell fusion
91 in SARS-CoV-2 remains more limited. Recent studies have suggested that S cleavage
92 at the S1/S2 border is critical for cell-cell fusion, and TMPRSS2, while not required,

93 appears to enhance this cell-cell fusion [37, 40, 46, 47]. However, relatively little is
94 known about the timing and efficiency of these cleavage events, and how mutations in S
95 may affect the process.

96 Though CoVs mutate at a slower rate than most RNA viruses due to the
97 presence of viral proofreading machinery, a meta-analysis of genomes of SARS-CoV-2
98 strains found several mutations within S circulating in significant percentages of the
99 analyzed populations [48, 49]. The most common mutation, now found in most of the
100 global population, is an aspartate to glycine mutation at residue 614 (D614G) in the S1
101 subunit. Additional mutations throughout the S1 and S2 subunits of S have been found
102 in a smaller percentage of the viral population. Since S2 contains the fusion machinery,
103 mutations in this region may have an impact on overall protein stability and fusion.
104 Understanding the effects of mutations in this region will allow for a more
105 comprehensive understanding of the overall S function.

106 We tested wild-type (wt) SARS-CoV-2 S and variants in different host cell strains
107 to analyze the effects on stability, proteolytic processing, and cell-cell fusion. Here we
108 demonstrate that furin cleavage of S at the S1/S2 border is required for efficient cell-cell
109 fusion, and that the presence of TMPRSS2 in target cells enhances S mediated cell-cell
110 fusion, consistent with previous studies [37, 46]. We also show that mutations of the
111 cleavage sites at the S1/S2 border, S2' site, or a cathepsin L (cath L) cleavage site,
112 conserved from SARS-CoV S, all reduce initial cleavage at the S1/S2 border during viral
113 protein synthesis, suggesting that mutations downstream of the S1/S2 border likely alter
114 the overall conformation of the protein. Additionally, we identify two S2 subunit
115 residues, one in the internal fusion peptide and another in the cytoplasmic tail, that alter

116 protein fusion function when mutated without changing overall protein expression and
117 cleavage, providing more insight into regions of the protein important for the regulation
118 of the fusion process. Finally, we demonstrate protein turnover and cleavage kinetics in
119 a range of host cells, as well as in the presence of several exogenous proteases,
120 providing a more comprehensive picture of the S protein.

121 **Results**

122 *Stability and proteolytic cleavage of SARS-CoV-2 Spike in Various Cell Lines*

123 To examine the stability and cleavage patterns of SARS-CoV-2 S in a range of
124 mammalian cell lines, the following cells were transiently transfected with pCAGGS-S:
125 Vero, A549, MEFs, Cath L- MEFs, and LoVo cells (a human colon carcinoma line that
126 does not express functional furin). Stability of S and the timing of proteolytic processing
127 were determined by pulse-chase labeling and immunoprecipitation. S protein detected
128 from immunoprecipitation was observed as two bands, a band around 150 kDa
129 corresponding to an un-cleaved full-length species of the protein, labeled S, and a band
130 around 97 kDa corresponding to a species of S cleaved at the border of the S1 and S2
131 subunits, labeled S2 (Fig. 1a). After a one-hour chase, a band corresponding to S2 was
132 observed in Vero, A549, and both MEF cell lines (Fig. 1a). In LoVo cells, a band
133 corresponding to the S2 subunit did not appear until four hours of chase, verifying that
134 lack of furin impedes efficient processing at S1/S2, and that the S1/S2 border can be
135 cleaved by cellular protease other than furin (Fig. 1a) in a slower and less efficient
136 process. Vero, A549s, MEFs, and Cath L- MEFs displayed similar cleavage patterns
137 over time, while LoVo cells displayed significantly less cleavage at two and four hours.
138 LoVo cells had only 2% cleavage at two hours and 18% cleavage at four hours,

139 compared to about 20-40% at two hours and 30-60% at four hours for all other cell
140 types ($p<0.05$). However, LoVo cells reached cleavage levels similar to the other cell
141 lines at later chase time points (Fig. 1b). Bands smaller than 90 kDa that would
142 correspond to cleavage at the S2' site were not observed in any cell line. In the
143 examined cell lines, expressed S remained stable through the first four hours (Fig. 1c).
144 By 24 hours post label, only 20-30% of the original labeled protein remained for all cell
145 lines.

146 Several studies have examined the cellular proteases involved in the cleavage of
147 S. Furin and TMPRSS2 appear to play key roles in cleavage at the S1/S2 border and
148 S2' site, respectively [26, 35, 50-52]. Additionally, lysosomal proteases such as cathepsin L/B
149 can be utilized for viral entry in TMPRSS2 deficient cells [10, 38, 46]. To examine how
150 higher expression levels of these proteases affect S stability and cleavage, Vero and
151 A549 cells were transiently transfected with S alone or S with TMPRSS2, furin, or cathepsin
152 L. Pulse-chase analysis demonstrated that the transient expression of TMPRSS2 or
153 cathepsin L did not affect the cleavage pattern of S (Fig. 1d and 1e, S1b), and a band
154 corresponding to S2' cleavage was not observed in either Vero or A549s. However,
155 transient over-expression of furin increased the cleavage observed at the S1/S2 border
156 in Vero at four and eight hours of chase ($p<0.05$) and at all times after zero for A549s
157 ($p<0.01$ for one- and eight-hour chase, $p<0.0001$ for two- and four-hour chase times)
158 (Fig. 1e and 1f). This suggests that the normal levels of cellular furin can eventually
159 promote maximal levels of S1/S2 cleavage in both Vero and A549s, but over-
160 expression of furin facilitates more rapid cleavage of the S1/S2 border. Interestingly, in
161 both experiments (Fig. 1a and 1d) some un-cleaved S remains even after 24 hours,

162 indicating that a small portion of the S population is not cleaved by furin or other
163 endogenous proteases in these cell lines. Finally, overall protein stability was not
164 affected by co-expression of any tested proteases (Fig. S1b).

165 *Spike Mediated Cell-Cell Fusion*

166 The S2 subunit of S mediates both viral-cell fusion and cell-cell fusion [40-42],
167 with cell-cell fusion readily observed both in a laboratory setting and in the lungs of
168 SARS-CoV-2 infected patients [40-45]. To better understand the requirements and
169 contribution of cellular proteases to S2 mediated cell-cell fusion, we performed syncytia
170 and reporter gene assays. For syncytia analysis, a small number of syncytia, were
171 observed at 24 hpt in all samples (Fig. 2a). At 48 hpt, similar numbers of large syncytia
172 were observed with S alone or S co-expressed with TMPRSS2 or cath L (Fig. 2b).
173 However, co-expression of S with furin resulted in increased syncytia formation. The
174 cells exhibited nearly complete fusion, suggesting that the presence of exogenous furin
175 further increases S mediated cell-cell fusion (Fig. 2b, panel 3).

176 To quantitate S mediated cell-cell fusion, luciferase reporter gene fusion assays
177 were performed (Fig. S2a), using a nine hour overlay that was determined to be optimal
178 (Fig. S2b). To characterize the role of cellular proteases in the hACE2 expressing target
179 cells, S-expressing effector cells were overlaid with target cells containing hACE2 alone
180 or hACE2 with TMPRSS2, furin, or cath L. The amount of plasmid transfected was kept
181 constant by supplementing with a plasmid encoding an empty expression vector (EV).
182 When Vero cells were used as the S-expressing effector cell and TMPRSS2 was
183 present in the target cells, a significant increase in fusion was observed. This is
184 consistent with the concept that TMPRSS2 plays a role in fusion after or during the

185 hACE2 (receptor) binding step in the fusion cascade (Fig. 2c) [10, 12, 32, 37, 46],
186 although the presence of TMPRSS2 in these target cells also appeared to process
187 hACE2 (Fig. S2c, also observed in[40]). In samples with cath L or furin in the target
188 cells, fusion levels were similar to hACE2+EV (Fig. 2c). When A549 cells were used as
189 the S-expressing effector cell, none of the conditions produced statistically significant
190 differences from background levels (Fig. 2c), so Vero cells were used as the effector
191 cells for the remainder of the experiments performed.

192 Having analyzed the function of proteases in the target cells, we were also
193 interested in the role of proteases present in the S-expressing effector cells. To test
194 this, EV, TMPRSS2, cath L, or furin were co-expressed with S and samples were
195 overlaid with target cells expressing hACE2. Similar to what we observed in syncytia
196 assays, only co-expression of S and furin produced a statistically significant increase in
197 fusion. This increase is likely due to the increase in the amount of cleaved protein
198 present when S is co-expressed with furin (Fig. 1e).

199 Neuropilin-1 has been suggested as a co-receptor for SARS-CoV-2 S and may
200 be important for the viral infection infiltrating the neuronal network [53-55]. To assess
201 the contribution of neuropilin in cell-cell fusion, effector cells were transfected with S and
202 either EV, furin, neuropilin, or furin and neuropilin (F+N). Target cells were transfected
203 with EV, hACE2, neuropilin, or hACE2 and neuropilin. However, no significant increase
204 in fusion was observed when neuropilin was present in either the target or effector cells
205 (Fig. 2e), suggesting that neuropilin does not appear to play a significant role in cell-cell
206 mediated fusion. Interestingly, when neuropilin is co-expressed in S containing effector
207 cells, there is no difference observed in fusion compared to samples with S+EV,

208 suggesting that neuropilin also does not have an inhibitory effect (Fig. 2e). Additionally,
209 when neuropilin alone is expressed in the target cells, fusion levels above background
210 levels are not observed. This indicates that in cell-cell fusion, S binding hACE2 appears
211 to be the major interaction during the receptor attachment function.

212 *Importance of CoV-2 cleavage sites*

213 Early protein sequence analysis of CoV-2 S protein demonstrated the presence
214 of three potential cleavage sites [26]: a putative furin cleavage site at the S1/S2 border;
215 a conserved site 10 residues downstream from the S1/S2 border, shown to be cleaved
216 by cathepsin L in SARS-CoV; and the S2' site which is potentially cleaved by TMPRSS2 [26].
217 To functionally understand the role of each cleavage site in S cell-cell fusion, a series of
218 mutants were made. Alanine mutations of all the residues within each potential
219 cleavage site (S1/S2 AAAAA, Cathepsin L AAAA, S2' AA), and single alanine mutations at
220 the terminal arginine of the S1/S2 border and S2' site (S1/S2 PRRAA, S2' KA) were
221 created. Finally, a mutant with residues (PRRA) upstream of the S1/S2 border deleted
222 (del. PRRA), leaving a single R residue at this site, was made, creating an S1/S2 border
223 similar to SARS-CoV S (Fig. 3A). Pulse-chase analysis (Fig. 3b) showed that all
224 mutants had similar protein turnover compared to wt S in Vero cells. However, in A549s
225 several mutants demonstrated more rapid protein turnover than wt S at later chase time
226 points. Surprisingly, mutations at all three sites led to either a complete loss or
227 significant delay in the proteolytic processing of the S protein at the S1/S2 border,
228 indicated by the lack of a band corresponding to the S2 subunit. This suggests that
229 mutations at distal sites can strongly influence cleavage at S1/S2. After an eight-hour
230 chase, no cleavage at the S1/S2 border was observed for the mutants del. PRRA and

231 S1/S2 AAAAA, confirming that deletion or mutation of the furin consensus prevents
232 cleavage at this site. For all other mutants, cleavage at the S1/S2 border reached 30-
233 50% of wt levels in both Vero and A549 cells the eight-hour time point (Fig. 3c and 3d).
234 Accurate analysis of protein cleavage was not possible by the 24-hour time point, since
235 only 20-30% of protein remained (Fig. S1b). Finally, surface biotinylation showed that
236 both total and cell surface expression of all mutants were similar to wt S levels (Fig. 3e,
237 f, and g).

238 To assess the effects of the mutations on cell-cell fusion, syncytia formation
239 assays in Vero cells were performed. While syncytia were readily observed in all
240 samples containing wt S, none of the mutants exhibited syncytia formation at 24 or 48
241 hpt when expressed alone (Fig. S3, panel 2). Addition of TMPRSS2 did not recover
242 syncytia formation in any mutant (Fig. S3, panel 3), and the addition of furin only
243 recovered syncytia formation in the S1/S2 PRRAA mutant (Fig. S3, panel 4, syncytia
244 denoted with black arrows). To analyze this result, cells were lysed following the 48-
245 hour imaging and protein levels examined by western blot. Results showed that co-
246 expression of furin with the S1/S2 PRRAA mutant restored cleavage at the S1/S2
247 border, while all other mutants did not show cleavage at this site (data not shown). This
248 suggests that cleavage at the S1/S2 border is critical for cell-cell fusion, and that the
249 double R motif in the PRRAA mutant can be cleaved by over-expressed furin.

250 Luciferase reporter gene analysis of fusion in Vero cells transfected with wt S or each
251 mutant showed similar results to the syncytia assays, with none of the mutants showing
252 fusion levels above background (Fig. 3h). Interestingly, the S2' AA mutant displayed
253 high background levels, suggesting this mutant may have a conformational change, or

254 characteristics that increase receptor binding or alter S2 trimeric association, leading to
255 higher background signals. Reporter gene assays were also carried out with addition of
256 transiently expressed furin in the S-expressing effector cells, but no significant
257 increases in fusion were observed. Since all cleavage mutants created reduced
258 cleavage at the S1/S2 subunit border, the reductions in cell-cell fusion may be
259 attributable to loss of cleavage at this site.

260 *Effect of Circulating S Mutations on Protein Stability, Cleavage, and Fusion*

261 An early examination revealed several mutations in the S protein gene in
262 circulating viral strains [48, 49], including the D614G substitution now found in most of
263 the global SARS-CoV-2 strains [48, 56-62]. The D614G mutation lies in the S1 subunit
264 of the protein, just downstream of the receptor binding domain, and is proposed to play
265 a critical role in receptor binding by alteration of the positioning of the receptor binding
266 domain. Other mutations in circulating strains were found throughout the S2 subunit
267 [49]. To assess the effect(s) of these mutations, we created the mutants D614G,
268 A831V, D839Y/N/E, S943P, and P1263L (Fig. 4a). Pulse-chase analysis in VeroS and
269 A549s (Fig. 4b, c) demonstrated that all circulating mutants tested exhibited protein
270 turnover at similar rates as wt S in both cell lines (Fig. S1d). Surface biotinylation
271 confirmed that all tested mutants displayed total protein and surface protein levels
272 comparable to wt S, suggesting that none of the mutants caused major defects or
273 enhancement of protein trafficking to the cell surface (Fig. 4d, e). Syncytia formation
274 and evaluation of protein location by immunofluorescence were similar between all
275 mutants and wt S (Fig. S4). Interestingly, cellular extensions containing the S protein
276 were observed for the wt and each of the mutants (Fig. S4, white arrows) [63]. Finally,

277 luciferase reporter gene assays were performed. While most of the mutants displayed
278 fusion levels similar to wt S, three mutants exhibited significant changes (Fig. 4f).
279 D839Y and D839N displayed significantly reduced levels of fusion compared to wt
280 ($p<0.01$ and $p<0.05$, respectively), and P1263L showed a significant increase in fusion
281 compared to wt ($p<0.05$). These changes in fusion cannot be attributed to differences in
282 cell surface protein expression or cleavage levels, suggesting that residues near the
283 internal fusion peptide, where D839 is located, and residues in the cytoplasmic tail,
284 where P1263 is located, may play an important role in controlling the fusion cascade.

285 *Trypsin accessibility and protein-protein association in select Spike mutants*

286 Since all the S cleavage site mutants exhibited defects in cleavage at the S1/S2
287 border, we evaluated the accessibility of this site using a trypsin treatment assay to
288 determine if the lack of cleavage was due to misfolding in the S1/S2 border region.
289 Veros or A549s were transfected with wt S or each cleavage mutant and metabolically
290 labeled. Cell surface proteins were biotinylated and then cells were either left untreated
291 or treated with 0.3 μ g/ μ l of TPCK-Trypsin prior to lysis. When treated with exogenous
292 TPCK-Trypsin, both the del. PRRA and S1/S2 PRRAA mutants were efficiently cleaved
293 at the S1/S2 border, shown by the appearance of a band corresponding to S2 in the
294 lanes treated with trypsin (Fig. 5a, quantified in Fig. 5b). This suggests that the
295 observed defects in cleavage at the S1/S2 border are not due to inaccessibility at the
296 site, but rather to the removal of the furin consensus sequence. Interestingly, mutations
297 at the downstream cathepsin L or S2' potential cleavage sites also render defects in protein
298 cleavage at the S1/S2 border site. However, treatment with exogenous trypsin did not

299 significantly affect the amount of cleavage observed, a result consistent with a change
300 in conformation that renders the S1/S2 border cleavage site inaccessible.

301 CoV S proteins associate as homo-trimmers shortly after synthesis and remain in
302 this trimeric form throughout the fusion cascade [12, 15]. To determine if proteolytic
303 processing affects the stability of S trimer association, Veros or A549s transfected with
304 wt S or mutants D614G, S1/S2 AAAAA, S2'AA, or wt S plus additional furin, were
305 metabolically labeled. After lysis and immunoprecipitation, samples were then treated at
306 50°C or 100°C prior to separation on non-reducing SDS-PAGE. When wt S was
307 incubated at 50°C prior to separation, species that correspond to a full-length S
308 monomer, dimer, and trimer were observed (Fig. 5c). Interestingly, species that fall in
309 between sizes corresponding to a monomer, dimer, and trimer (Fig. 5c, red and purple
310 *) were also observed. These intermediate species may be the result of dimers or
311 trimers made up of a mixture of full-length S protomers and cleaved S protomers.
312 When wt S was incubated at 100°C prior to separation, bands corresponding only to full
313 length S monomer, dimer, trimers, and cleaved S2 monomers were apparent. Similar
314 results were also observed in D614G samples, suggesting that species containing
315 cleaved protomers may be less stable. Consistent with this data, the S1/S2 AAAAA
316 mutant, which cannot undergo cleavage at the S1/S2 border site, migrated primarily as
317 a trimeric species after 50°C incubation, with little monomer or dimer observed.
318 Additionally, when wt S was co-expressed with furin (shown to increase S cleavage in
319 Fig. 1e and 1f), the predominant observed species was monomeric, after both 50°C and
320 100°C incubation. Overall, these results suggest that cleavage at the S1/S2 border
321 alters the stability of S trimeric association.

322 *Furin or furin-like proteases in bat cells can cleave the S1/S2 border of SARS-CoV-2*

323 *Spike*

324 *Rhinolophus affinis* horseshoe bats have been identified as the likely reservoir
325 species for the novel SARS-CoV-2 [25]. To understand the proteolytic processing,
326 expression, and stability of CoV-2 S in a cell line closely related to its reservoir host, we
327 utilized *Pteropus alecto* fetus (pt. fetus) or lung (pt. lung) cells [64] that have a furin
328 enzyme with ~90% sequence homology to bats in the *Rhinolophus* family. Our previous
329 studies on paramyxovirus virus fusion protein cleavage have shown that efficient furin
330 and cathepsin cleavage occurs in these cells, although the furin cleavage occurs with
331 delayed kinetics compared to Vero or A549s [65].

332 Surface biotinylation demonstrated that wt S and the del. PRRA mutant were
333 readily expressed at the surface at similar levels in both cell lines, with cleavage at the
334 S1/S2 border only observed for wt S and not for the del. PRRA mutant (Fig. 6a and 6b).
335 Pulse-chase analysis showed that S expressed in both pt. lung and pt. fetus cells was
336 cleaved at the S1/S2 border by one hour, with cleavage extent reaching approximately
337 40% at eight-hours, and 60% at 24 hours (Fig. 6c and 6d). Thus, furin or other
338 proteases in *P. alecto* cells are able to process S, although this processing occurred
339 more slowly than in other mammalian cell lines (compare to Fig. 1b). Interestingly,
340 some cleavage was also observed in both pt. lung and pt. fetus cells for the del. PRRA
341 mutation (Fig. 6c and 6d). Additionally, the wt S and del. PRRA mutant were slightly
342 less stable in the *P. alecto* cells, demonstrating about 30-50% protein remaining at eight
343 hours, and about 20% at 24 hours (Fig. 6e). In contrast, previously used mammalian

344 cells lines showed 60-90% of wt S remained at eight hours, with 30-50% at 24 hours of
345 chase (Fig. 1c).

346 **Discussion**

347 In this study, we present a detailed characterization of the cleavage patterns,
348 protein stability, and cell-cell fusion function of the SARS-CoV-2 S protein, as well as
349 analysis of mutations within the S2 subunit that may affect these important protein
350 properties. Consistent with recently published work [26, 35, 47, 50, 51, 66], our analysis
351 confirms that S is readily cleaved at the S1/S2 border in a variety of mammalian cell
352 lines. Additionally, we show for the first time, that cleavage occurs in a bat cell line
353 similar to the SARS-CoV-2 reservoir species. While cleavage appears to be primarily
354 carried about by the cellular protease furin, the sequence at this border does have the
355 ability to be cleaved by other members of the pro-protein convertase family when furin is
356 not present [47], and this likely accounts for the small amount of cleavage we observed
357 in furin-negative LoVo cells.

358 Additionally, we carefully assessed the role different proteases play in cell-cell
359 fusion, finding that furin increases cell-cell fusion when present in the same cell as S,
360 and TMPRSS2 increases cell-cell fusion when present in a target cell, consistent with
361 previous studies [37, 46]. Interestingly, when cell-cell fusion assays were performed
362 using A549 cells as the effector cell (Fig. 2c), high background fusion levels were
363 observed. This could be due to high endogenous levels of TMPRSS2 in this cell line
364 compared to Veros, that were ultimately used for this experiment (Fig. S2c). High
365 TMPRSS2 expression or exogenous treatment with trypsin has been shown to restore
366 cell-cell fusion in low ACE2 receptor expression environments for SARS-CoV S [67, 68].

367 It is also worth noting that the presence of TMPRSS2 in the target (BSR/T7) cells also
368 appears to process hACE2 (Fig. S2c, [40]). Therefore, we cannot exclude the possibility
369 that the increase in fusion observed when TMPRSS2 is present in these cells is due to
370 an effect on hACE2. In addition to the effect of proteases on cell-cell fusion, we also
371 assessed the effect of Neuropilin-1, which has been suggested to be a co-receptor for
372 SARS-CoV-2 viral entry and may be key for SARS-CoV-2 infiltration of the neuronal
373 network [53-55]. We show that the presence of Neuropilin-1 with hACE2 in target cells
374 does not impact S mediated cell-cell fusion (Fig. 2e). Additionally, co-expressing
375 Neuropilin-1 with S in effector cells did not have an inhibitory effect on cell-cell fusion.
376 While reports suggest Neuropilin-1 plays a role in viral entry of SARS-CoV-2, this
377 indicates it does not play a significant role in S cell-cell fusion in our assay, although this
378 was not investigated in neuronal cells.

379 The viral entry and cell-cell fusion pathways of SARS-CoV, MERS-CoV, and
380 SARS-CoV-2 have several noteworthy commonalities, but do have marked differences.
381 They all share the ability to facilitate entry through endosomal pathways, with S
382 proteolytic activation mediated by endosomal/lysosomal proteases [10, 19, 35, 37-39,
383 69-72]. Additionally, they all can utilize cell surface (such as TMPRSS2) or extracellular
384 proteases (trypsin) for S activation and subsequent viral entry [10, 37, 38, 47, 67, 72-
385 78]. SARS-CoV-2 and MERS-CoV S differ from SARS-CoV S in that their S1/S2 border
386 harbors a canonical furin cleavage motif [26, 27, 32], resulting in S pre-activation by
387 furin during synthesis and cellular trafficking, prior to reaching the cell surface or being
388 incorporated into viral particles [19, 35, 37, 39, 75]. This pre-activation by furin likely
389 enhances the ability of SARS-CoV-2 and MERS-CoV S to participate in cell-cell

390 mediated fusion without over-expression of cell surface or extracellular proteases [37,
391 46]. Addition of this cleavage sequence in SARS-CoV S allows SARS-S to facilitate cell-
392 cell fusion without exogenous proteases [37, 79]. We show an increase in both syncytia
393 formation and luciferase reporter gene assay fusion when cleavage at the S1/S2 border
394 is enhanced by overexpression of furin (Fig. 2b and 2c), confirming that furin cleavage
395 of SARS-CoV-2 S plays a critical role in cell-cell fusion. Interestingly, furin cleavage is
396 not required for SARS-CoV-2 infection [10, 35, 37, 47], although removal of the site or
397 inhibition of furin does appear to attenuate the virus [35, 39, 47] and reduce cellular
398 tropism [46].

399 The presence of a furin consensus sequence is not only a marked difference
400 between SARS-CoV and SARS-CoV-2, but it is also one of the differences between
401 SARS-CoV-2 and a similar CoV circulating in a bat population [25]. Analysis of SARS-
402 CoV-2 wt S in *P. alecto* cells demonstrates that this motif can be recognized and
403 cleaved by furin in these cells (Fig. 6c and 6d), although the kinetics of this cleavage are
404 noticeably slower than in other mammalian cell lines (compare to Fig. 1b). Previous
405 work has shown that the fusion proteins of Hendra virus, processed by cathepsins, and
406 parainfluenza virus 5, processed by furin, are also cleaved in *P. alecto* cells [65]. Pulse-
407 chase analysis in this prior study demonstrated an increase in processing kinetics,
408 although this kinetic difference can be accounted for by differences in protease
409 expression levels between different bat cell lines (pt. kidney cells in [65], and pt. lung
410 and pt. fetus cells in our work), suggesting there may be cellular differences in protein
411 trafficking or furin activity. Intriguingly, a CoV-2 S mutant with a deletion of the inserted
412 PRRA residues still demonstrated some cleavage in both utilized bat cell lines (Fig. 6c

413 and 6d), while not showing any in Veros or A549s (Fig. 3c and 3d). Earlier work on
414 MERS-CoV S showed that furin or other proprotein convertases in bat cells can process
415 MERS S S1/S2 border without the presence of a canonical recognition motif [80]. Taken
416 together, these results suggest that mutations in circulating bat CoVs that allow for
417 human protease recognition at critical cleavage sites may be an important factor for
418 zoonotic transmission of several CoVs.

419 Two other potential cleavage sites have been identified in work with other CoVs.
420 The S2' site is essential for both SARS and MERS infection [12, 32, 81-83] while a cath
421 L activated site play a critical role for SARS-CoV S [13, 20, 84, 85]. Interestingly,
422 mutations made at the S2' site of SARS-CoV-2 S significantly reduce S1/S2 border
423 cleavage, both in our study and others (Fig. 3b-d, [46, 86]), even though the sites are
424 distal from each other. A similar reduction in cleavage is observed when the conserved
425 cathepsin site is mutated (Fig. 3b-d). Our analysis of the published structures [3, 4, 87,
426 88] indicates that a full alanine mutation of this site may simply collapse the exposed
427 S1/S2 loop. Our finding that exogenous trypsin treatment of cells expressing the S2' or
428 cathepsin site mutants does not restore cleavage at the S1/S2 border (Fig. 5a and 5b)
429 suggests that these mutations result in proteins with altered furin loop structure [87],
430 rendering it inaccessible. However, these mutants are still synthesized and trafficked to
431 the surface despite not being cleaved (Fig. 3e-g), thus this change in conformation is
432 unlikely to have drastically misfolded the protein. These results suggest that there may
433 be a dynamic interaction between the S1/S2 border and S2' cleavage sites in SARS-
434 CoV-2 S needed to facilitate viral entry and cell-cell fusion. This dynamic control could

435 also be regulated by S receptor binding exposing cryptic protease sites, although
436 studies analyzing this in SARS and MERS S conflict on this topic [19, 70, 77, 89, 90].

437 We also assessed the effect on protein stability, cleavage, and cell-cell fusion
438 function of a series of mutations in other regions of S. The D614G mutation emerged
439 during 2020, and is now found in most circulating strains globally [48]. D614G has been
440 shown to increase S incorporation into viral particles [91], increase receptor binding [92,
441 93], and reduce S1 subunit shedding and particle infectivity [94]. Importantly, the
442 D614G mutant shifts S to favor a “heads up” conformation of the receptor binding
443 domain [93, 95, 96]. In our study, the D614G mutation did not impact the cell-cell fusion
444 function (Fig. 4f), expression, or stability of the protein (Fig. 4d/e, and Fig. S1),
445 consistent with one previous study [86]. Our fusion results however conflict with two
446 previous studies that demonstrated D614G increases cell-cell fusion, measured by cell
447 depletion in flow cytometry [92], and syncytia formation in 293T and Hela cells stably
448 expressing hACE2 [97]. These discrepancies may be due to differences in
449 experimental conditions or cell types utilized. We are, however, the first to date to
450 utilize a luciferase reporter gene assay to quantitate cell-cell fusion of a D614G S
451 mutant. Using this assay, we also show that mutations found at two other residues
452 (discovered in small, non-dominant population subsets [49]) alter the cell-cell fusion
453 activity of S (Fig. 4f) without changing the overall protein expression or stability levels
454 (Fig. 4d-e, Fig. S1d). Mutations at D839, a residue within the internal fusion peptide, to
455 the polar amino acids, tyrosine or asparagine, significantly reduce fusion. Interestingly,
456 a mutation at this residue that conserves the negative charge, D839E, has no effect on
457 fusion activity. The negative charge at this residue may play a role in the regulation of S

458 mediated fusion due to its location in the internal fusion peptide. Alternatively, this
459 residue is in close proximity to C840, which may participate in a disulfide bond, so
460 mutations at D839 may disrupt this disulfide bond, destabilizing the protein and
461 changing fusion activity. Additionally, mutation of residue P1263 to a leucine
462 significantly increases S mediated cell-cell fusion, suggesting that residues in the
463 cytoplasmic tail may play a role in the S-promoted cell-cell fusion process. Notably, a
464 study that removed the entire S cytoplasmic tail still observed syncytia formation at
465 levels similar to wt S [86], indicating that regulation by the cytoplasmic tail may be
466 complex or that the role of the cytoplasmic tail in fusion is not regulation, but interaction
467 with cellular host factors [98].

468 In this work, we also provide critical insight into the kinetics of protein cleavage
469 and overall stability of CoV-2 S. S protein processing at the S1/S2 border occurs within
470 two hours of synthesis (Fig. 1a and 1b; one hour of label, one hour of chase) in several
471 mammalian cell lines (Vero, MEF, A549), and continues to increase over time, reaching
472 60-80% protein cleavage by eight hours of chase time, depending on the cell type.
473 Overexpression of furin increased the efficiency of S1/S2 border cleavage (Fig. 1d-f),
474 and this increase in cleavage may account for the increase in cell-cell fusion observed
475 when furin is co-expressed with S (Fig. 2a-c, [37, 46]). Additionally, we show that
476 transiently transfected S is stable in several mammalian cells for 4-5 hours post-protein
477 synthesis with demonstrable turnover after this point, (Fig. 1c, Fig. S1). This protein
478 turnover is similar to turnover rates seen in PIV5 fusion protein, also activated by
479 cellular furin [99], and slightly slower turnover than Hendra fusion protein, activated by
480 cellular cathepsins [100, 101]. Over-expression of cellular proteases that may process

481 S did not affect these protein turnover rates. Interestingly, analysis of S in non-reducing
482 conditions found that cleavage of the S1/S2 border appears to destabilize trimeric
483 interactions (Fig. 5b). In these non-reducing conditions, no differences were observed
484 in oligomeric stability between wt S and the D614G S mutations, despite the D614G
485 favoring a ‘heads up’ conformation [93, 95, 96] and Vero cells having sufficient levels of
486 endogenous ACE2 to facilitate syncytia formation (Fig. S2c), suggesting that changes in
487 receptor binding do not alter overall protein trimeric association. Notably, in these non-
488 reducing conditions after a 50°C treatment for wt S, the D614G mutant, and wt S+furin,
489 bands between monomer, dimer, and trimer species are observed (Fig. 5b, indicated
490 with *). These intermediate species are not observed after treatment at 100°C. These
491 may represent protein oligomers that are not identically cleaved and are therefore
492 partially destabilized, a phenomenon proposed for MERS-CoV S [32], and murine
493 hepatitis virus CoV S, [102]. Protein oligomers with differential proteolytic processing
494 may also account for the small population of un-cleaved protein we observed at the cell
495 surface in our experiments (Fig. 3e, Fig. 4d, Fig. 5a, and Fig. 6a).

496 Through biochemical and cell biological analysis of the SARS-CoV-2 S protein,
497 we have provided important observations about the stability, proteolytic processing, and
498 requirements for cell-cell fusion of this highly sought-after therapeutic target. This
499 information may be helpful in directing treatments that inhibit S protein fusion, or for
500 discerning methods to stabilize CoV-2 S in therapeutic development. Additional studies
501 are needed to understand the potential interplay between S cleavage sites and how that
502 may contribute to S protein function, as well as to further investigate spike S2 subunit
503 regions that are critical for protein function.

504 **Experimental procedures**

505 **Cell lines and culture.** Vero (ATCC), BSR T7/5 cells (provided by Karl-Klaus
506 Conzelmann, Pettenkofer Institut), mouse embryonic fibroblasts (MEFs) from cathepsin
507 L knockout mice (Cath L- MEFs) (a gift from Terence Dermody, University of
508 Pittsburgh), and *P. alecto* bat cells harvested from fetus (pt. fetus) and lung (pt. lung) (a
509 gift from Linfa Wang, Duke-NUS) [64] were all maintained in Dulbecco's modified
510 Eagle's medium (DMEM, GE Healthcare), with 10% fetal bovine serum (FBS) and 1%
511 penicillin/streptomycin. Every third passage, 0.5mg/ml of G-418 (Invitrogen) was added
512 to the culture media of BSR T7/5 cells to select for the expression of the T7 polymerase.
513 A549 and human colon carcinoma LoVo cells (both purchased from ATCC) were
514 cultured in F12 Kaighns Modification media (GE Healthcare) with 10% FBS and 1%
515 penicillin/streptomycin.

516 **Plasmids, Antibodies, and Mutagenesis.** pCAGGS-SARS-CoV-2 spike was obtained
517 from BEI Resources. pcDNA3.1(+)-hACE2 and pcDNA3.1(+)-TMPRSS2 were provided
518 by Gaya Amarasinghe (Washington University). Human Neuropilin-1 was expressed
519 with an exogenous PTP α signal sequence from the pLEXm vector (from Craig Vander
520 Kooi, University of Kentucky). SARS-CoV-2 S was subcloned into pUC57 and all S
521 mutants were created in pUC57 using the QuikChange site-directed mutagenesis kit
522 (Stratagene) with primers purchased from Eurofins. Constructs were then subcloned
523 back into the pCAGGS expression vector. Other plasmids utilized include pSG5-
524 Cathepsin L (from Terence Dermody, University of Pittsburgh), pCAGGS-furin
525 (Promega), and T7 promoted-luciferase (Promega). Antibodies anti-SARS spike

526 glycoprotein (ab252690) and anti-hACE2 (ab15348) were purchased from Abcam, and
527 anti-TMPRSS2 (H-4) was purchased from Santa Cruz Biotechnology, Inc.

528 **Gel electrophoresis and western blotting.** Proteins were separated on a 10% sodium
529 dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). For western blot
530 analysis, proteins were transferred to a polyvinylidene difluoride (PVDF) membrane
531 (Fisher Scientific) at 60V for 100 minutes. After blocking with 5% milk in tris-buffered
532 saline + Tween-20 (tTBS) for 1 hour, membranes were incubated with respective
533 antibodies (anti-SARS S 1:5000 dilution, anti-TMPRSS2 1:1000 dilution, anti-hACE2
534 1:1000 dilution) at 4°C overnight. Membranes were then washed with tTBS and
535 incubated with (Li-Cor) secondary antibodies at 1:10000 dilution in 5% milk solution for
536 1 hour. Membranes were washed again with tTBS and diH₂O, before being imaged on
537 the Odyssey Image Analyzer (Li-Cor).

538 **Syncytia Assay.** Cells (Vero or A549s) in 6 well plates were transiently transfected with
539 2μg of either wild-type or mutant SARS-CoV-2 S protein plasmid with Lipofectamine
540 3000 (Invitrogen) at a ratio of 1:2:2 DNA: P3000: Lipofectamine 3000. For experiments
541 with the addition of proteases, the total DNA transfected was kept constant at 2μg, in
542 those cases we used 1μg of S and 1μg of the indicated protease. Syncytia formation
543 was imaged at 24 and 48 hours post transfection on a Nikon Ti2 at 20X magnification.

544 **Luciferase Reporter Gene Assay** Effector cells (Vero or A549s) were plated in 12-well
545 plates at 70-90% confluency and transfected with 1μg of total DNA (0.4μg of a T7
546 promoted luciferase plasmid, 0.6μg of wild-type (wt) or mutant S protein or S protein
547 with additional proteases). At the same time BSR cells (constitutively expressing a T7
548 promoter) seeded in 6-well plates were transfected with 2μg either empty pCAGGS or

549 pcDNA3.1(+-)hACE2. Eighteen to twenty-four hours post transfection BSR cells were
550 lifted using trypsin, centrifuged for five minutes at 1500 rpm, resuspended in normal
551 DMEM+10% FBS, and overlaid onto the S expressing cells at a ratio of 1:1. Overlaid
552 samples were then incubated at 37°C for 9 hours (or as described in the text). Samples
553 were lysed in 100µL of Reporter Gene Lysis buffer (Promega) and frozen overnight.
554 Plates were then scraped on ice, lysates were vortexed for 10 seconds, centrifuged at
555 13,000 rpm for 1 minute at 4°C, and 20µL of the supernatant was added to an opaque
556 96 well plate. Luciferase activity was measured on a SpectraMax iD3 (Molecular
557 Devices) using a Luciferase Assay System (Promega). Background values were
558 subtracted (empty pCAGGS in BSRs and effector cells) and luciferase activity was
559 expressed as a percentage of wt S (effector cells) and hACE2 (BSR cells).
560 **Surface Biotinylation.** Two µg of wt or mutant S protein was transfected into Vero or
561 A549 cells using the Lipofectamine 3000 system (Invitrogen; ratios described above).
562 Eighteen to twenty-four hours post transfection, cells were starved in Cys⁻/Met⁻ media
563 (Gibco) for 45 minutes, and metabolically labelled for six hours using 50µCi of S³⁵
564 (PerkinElmer) incorporated into Cys and Met (S³⁵ Cys/Met). After the label, cells were
565 washed once with PBS (pH 8) and incubated with 1 mg/ml of EZ-link Sulfo-NHS-biotin
566 (Thermo Fisher) in PBS (pH 8) at 4°C for 35 minutes, and then at room temperature for
567 15 minutes. Next the cells were lysed in 500µl of RIPA buffer (100 mM Tris-HCl [pH
568 7.4], 0.1% SDS, 1% Triton X-100, 1% deoxycholic acid) containing 150 mM NaCl,
569 protease inhibitors (1 U aprotinin, 1mM PMSF, [both from Sigma-Aldrich]), 5 mM
570 iodoacetamide, and cOmplete EDTA-free Protease Inhibitor Cocktail Tablets (all from
571 Sigma-Aldrich). Cell lysates were centrifuged at 55,000 rpm for 10 minutes, and the

572 supernatant was incubated with anti-SARS S polyclonal antibody at 4°C for three hours.
573 Following incubation, Protein A conjugated to Sepharose beads (Cytiva) were added to
574 the samples, and incubated at 4°C for an additional 30 minutes. Post-incubation
575 samples were washed two times with each RIPA Buffer+0.3M NaCl, RIPA Buffer+0.15M
576 NaCl, and SDS-Wash II buffer (50mM Tris-HCl [pH 7.4], 150mM NaCl, and 2.5mM
577 EDTA). After buffer aspiration and addition of 10% SDS, samples were boiled for 10
578 minutes. The supernatant was removed to a separate tube. 15 μ l of supernatant was
579 removed and added to an equal portion of 2X SDS loading buffer and labeled “TOTAL”.
580 Biotinylation buffer (20 mM Tris [pH 8], 150mM NaCl, 5mM EDTA, 1% Triton X-100, and
581 0.2% BSA) and Streptavidin conjugated beads were added to the remaining
582 supernatant, and this was incubated at 4°C for one hour. Samples were again washed
583 as described above and 2X SDS loading buffer was added following the washes.
584 Samples were boiled for 15 minutes and run on a 10% SDS-PAGE gel. Gels were dried
585 and exposed on a phosphoscreen for two to four days, then visualized using a Typhoon
586 Imaging System (GE Healthcare). Bands were quantified using band densitometry
587 using the ImageQuant software (GE Healthcare).

588 **Time Course Immunoprecipitation.** 2 μ g of wt or mutant S was transfected into Vero
589 or A549 cells using the Lipofectamine 3000 system (Invitrogen; ratios described above).
590 Eighteen to twenty-four hours post transfection, cells were starved in Cys⁻/Met⁻ media
591 (Gibco) for 45 minutes, and metabolically label for one hour using 50 μ Ci of S³⁵ Cys/Met.
592 After the one-hour label, cells were washed once with PBS and normal DMEM + 10%
593 FBS was added for indicated times. Cells were then lysed in 500 μ l of RIPA lysis buffer.
594 Anti-SARS S polyclonal antibodies were used to immunoprecipitate the CoV-2 S protein

595 as previously described and the protein was analyzed on a 10% SDS-PAGE gel. Gels
596 were dried and exposed on a phosphoscreen for 2-4 days and visualized using a
597 Typhoon Imaging System (GE Healthcare). Bands were quantified using band
598 densitometry using the ImageQuant software (GE Healthcare).

599 **Non-reducing Gel Electrophoresis.** Two μ g of wild-type or mutant S was transfected
600 into Vero or A549 cells using the Lipofectamine 3000 system (Invitrogen; ratios
601 described above). Eighteen to twenty-four hours post transfection, cells were starved in
602 Cys-/Met media (Gibco) for 45 minutes, and metabolically labeled for six hours using
603 50 μ Ci of S³⁵ Cys/Met. Lysed cells were immunoprecipitated as described above,
604 however after the washing steps, 30 μ l of 2X SDS loading buffer without dithiothreitol
605 (DTT) was added to each sample. Samples were treated at 50°C or 100°C, as
606 indicated, for 20 minutes and analyzed on a 3.5% acrylamide gel under non-reducing
607 conditions. The gel was dried, exposed, and imaged as described for surface
608 biotinylation.

609 **Immunofluorescence experiments.** Sub-confluent cells on coverslips in 6 well plates
610 were transfected with 2 μ g of DNA using the Lipofectamine 3000 transfection system
611 (Invitrogen). Eighteen to twenty-four hours post transfection cells were fixed with 4%
612 PFA for 15 minutes at room temperature. Cells were permeabilized in a solution of 1%
613 Triton X-100 in PBS+0.02% Sodium Azide (PBSN) for 15 minutes at 4°C. After
614 permeabilization, coverslips were moved to a humidity chamber and blocked with 1%
615 normal goat serum (NGS) in PBSN for 1 hour at 4°C. Cells were labeled with anti-
616 SARS S antibody (1:2000 dilution) in blocking buffer overnight at 4°C or for three to five
617 hours at room temperature. Samples were washed with PBSN+0.01% Tween-20 seven

618 times and incubated for 1 hour at 4°C with goat anti-rabbit FITC (1:2000 dilution).
619 Samples were again washed with PBSN+0.01% Tween seven times and mounted onto
620 slides using Vectashield mounting media (Vector Laboratories). Slides were imaged on
621 an Axiovert 200M (Zeiss) at 63x magnification using Metamorph to collect Z-stacks and
622 processed using Nikon NIS Elements.

623 **Statistical analysis** Statistical analysis was performed using Prism 7 for Windows
624 (GraphPad). A *p* value of <0.05 was considered statistically significant. Multiple
625 comparison tests were generated using one-way or two-way analysis of variance
626 (ANOVA) with Dunnett's multiple comparison test. *: *p*<0.05, **: *p*<0.01, ***: *p*<0.0005,
627 ****: *p*<0.0001

628

629 **Data availability**

630 The datasets generated during and/or analyzed during the current study are available
631 upon request from the corresponding author, Rebecca Dutch (rdutc2@uky.edu), on
632 reasonable request.

633

634 **Acknowledgments**

635 We would like to thank Craig Vander Kooi (University of Kentucky) for providing the
636 Neuropilin-1 expression plasmid and for providing structural insight. We would also like
637 to thank Gaya K. Amarasinghe (Washington University School of Medicine) for
638 providing the TMPRSS2 and hACE2 expression plasmids, and providing feedback
639 regarding experimental design.

640

641 **Funding and additional information**

642 Financial support was provided by the CCTS CURE Alliance pilot award from the
643 University of Kentucky, NIAID grant R01AI051517 to R.E.D. and NIAID grant
644 R01AI140758 to R.E.D and D.W. L.

645

646 **Conflict of interest**

647 The authors declare that they have no conflicts of interest with the contents of this
648 article.

649

650

651

652

653

654

655

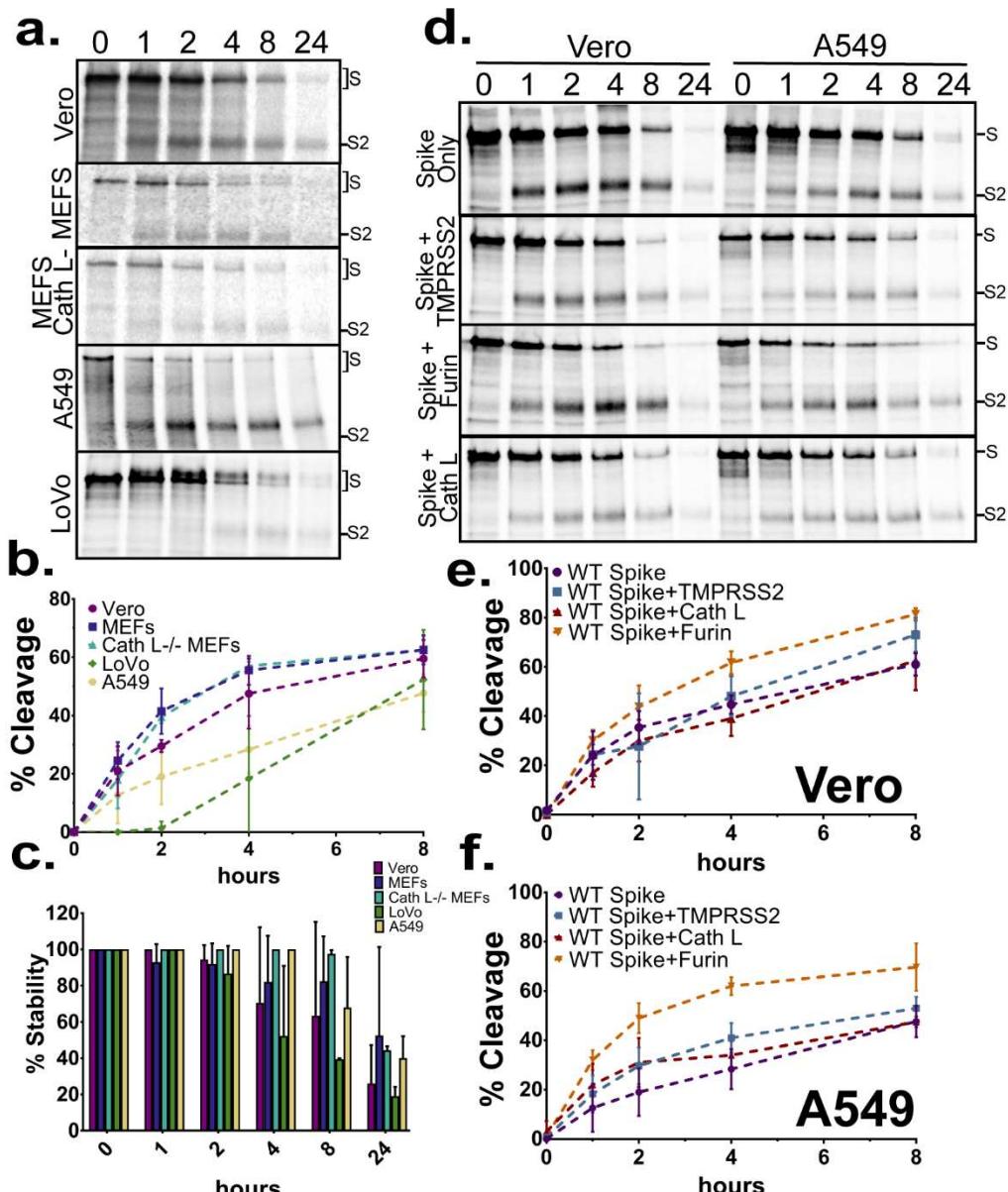
656

657

658

659

660

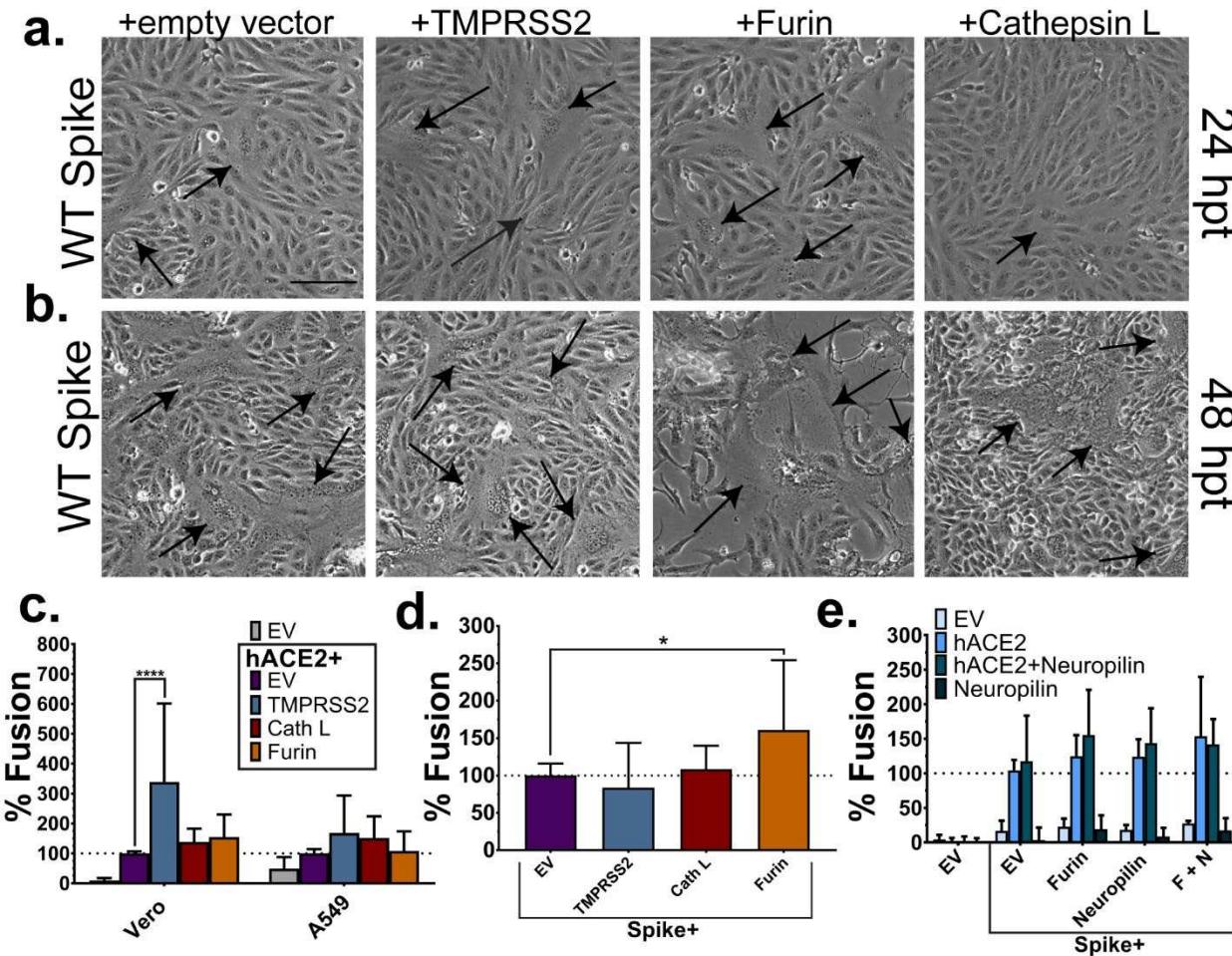

661

662

663

664 **Figures**

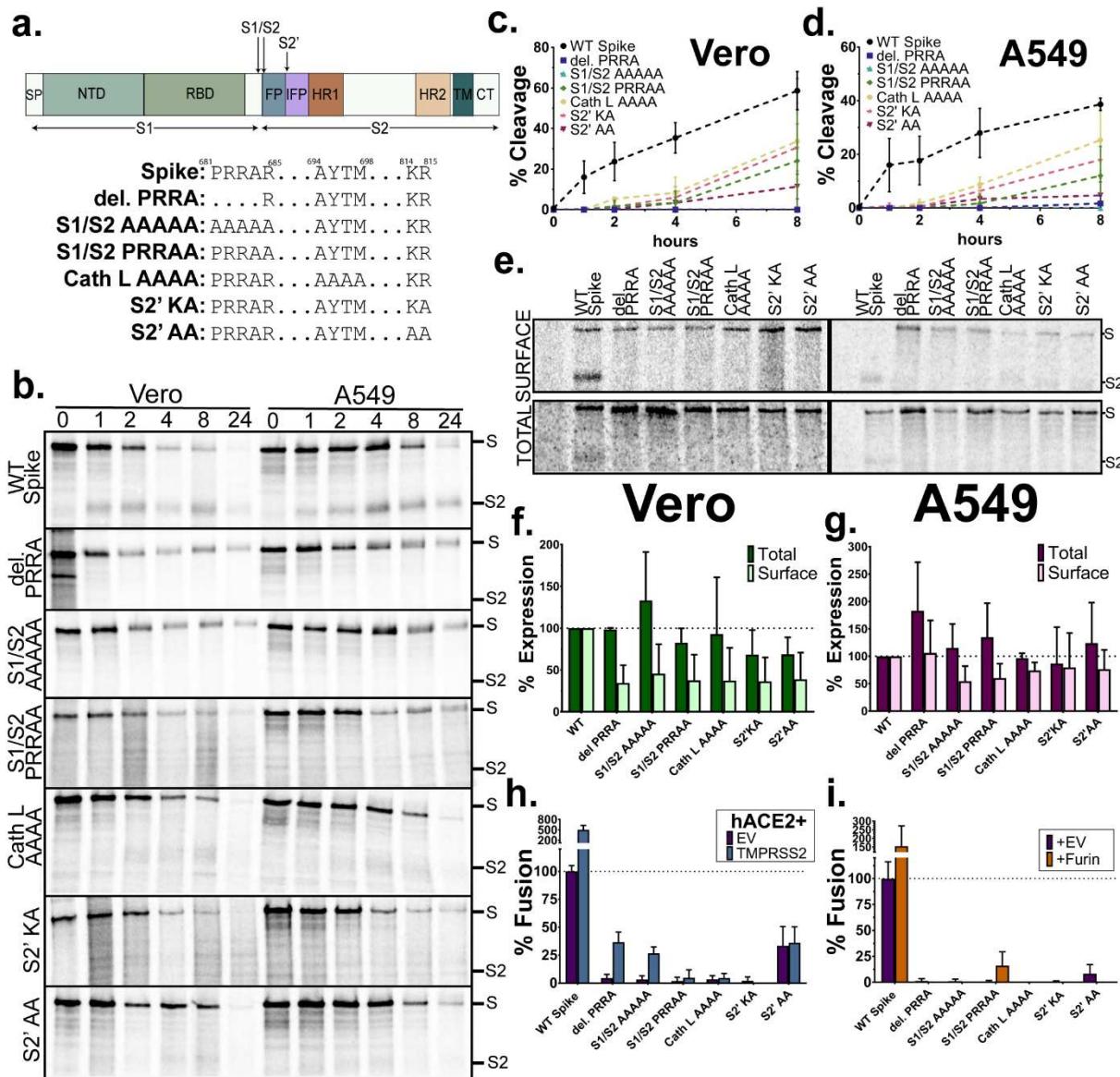
665



666

667 **Figure 1: SARS-CoV-2 Spike is cleaved at the S1/S2 subunit border in a variety of cell**
668 **lines.** a) The indicated cell types transiently expressing S were metabolically labeled for one
669 hours, and chased for times indicated (hours). Band densitometry was used to quantify bands
670 representing full length S or S cleaved at the S1/S2 border (S2) (b) Percent cleavage [S2
671 divided by S plus S2] and (b) Overall protein stability [Total S, S plus S2, for each time point,
672 normalized to time point 0] were calculated for spike in each cell line (n=3). d) S alone, or S
673 with proteases transiently expressed in Vero and A549 cells, cells were metabolically labeled,
674 and chased for the times indicated (hours). Percent cleavage was measured using band

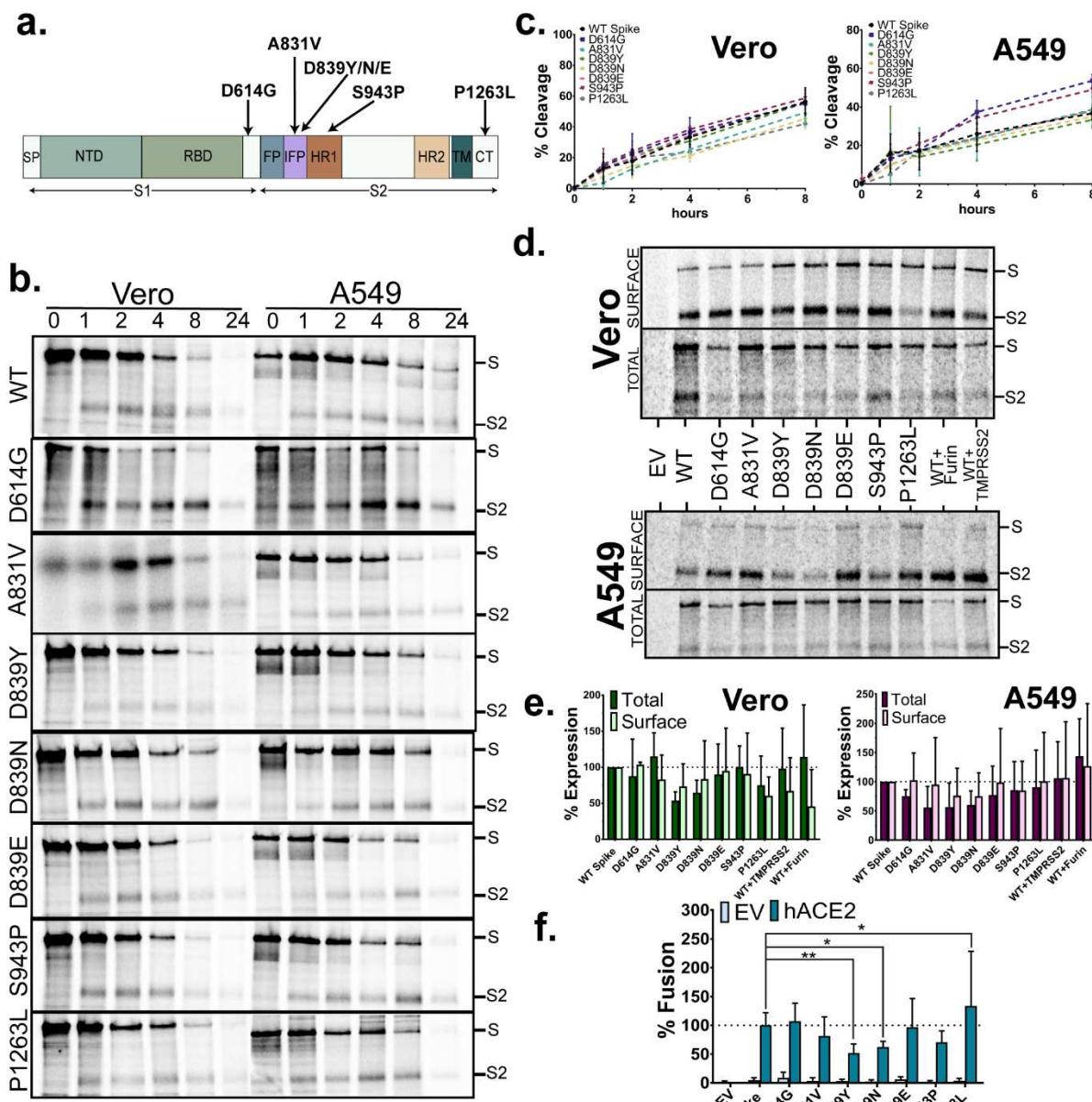
675 densitometry in both (e) Vero and (f) A549 cells (b, c, e, f are represented as the average \pm SD
676 for 3 independent experiments).


677

678

679 **Figure 2: CoV-2 spike alone mediates cell-cell fusion.** Vero cells expressing S and TMPRSS2,
680 furin, or cathepsin L were imaged at 24 (a) and 48 (b) hpt for syncytia formation (black arrows).
681 Magnification bar is 100 μ M. c) A luciferase reporter gene assay was performed with target cells
682 (BSR/T7s expressing hACE2 and additional proteases) overlaid onto effector cells (Vero or
683 A549s expressing S) for 9 hours. d) Luciferase reporter gene experiment was performed with
684 additional proteases co-expressed with S in Vero and overlaid with target cells expressing
685 hACE2. e) The effect of Neuropilin in both target and effector (Vero) cells was examined with a
686 luciferase reporter gene assay. Effector cells expression is listed along the x-axis. Target cell
687 expression is listed in the graph legend. Results expressed as the percent fusion normalized to
688 samples with S in the effector cells, and hACE2 only in the target cells (c-e are average \pm SD for
689 3 independent experiments, performed in duplicate). Significance was determined by two-way
690 ANOVA. *: p < 0.05, ****: p < 0.0001

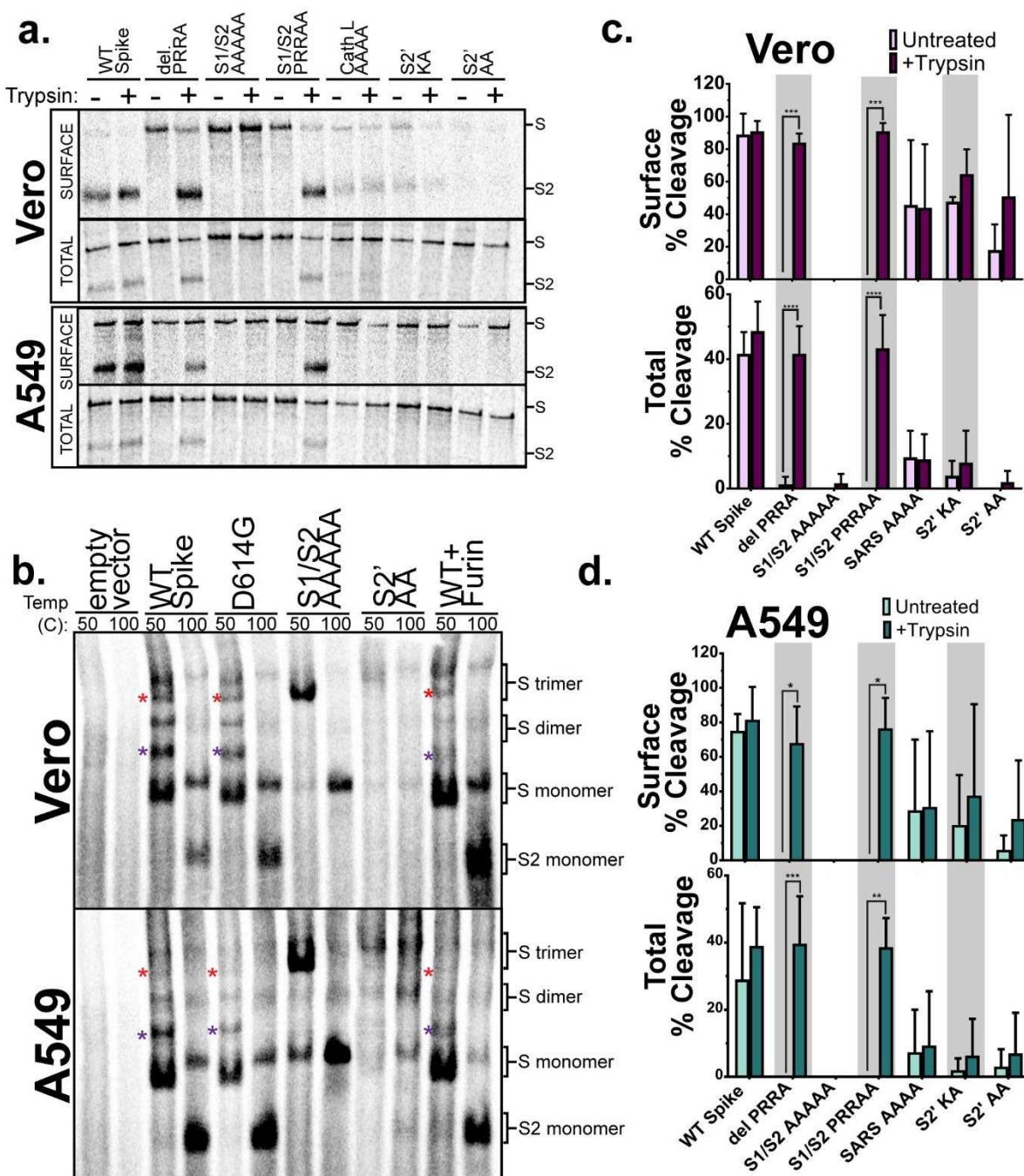
691


692

693

694 **Figure 3: Mutations at all three potential spike cleavage sites reduce cleavage at the**
 695 **S1/S2 subunit border.** a) Full or partial alanine substitution mutations were made at each of
 696 the three potential cleavage sites. b) Plasmids expressing wt S or mutants were transfected into
 697 Vero and A549s, cells were metabolically labeled for one hour, and chased for the times
 698 indicated. Percent cleavage was determined in (c) Vero and (d) A549s (average \pm SD for 3
 699 independent experiments) e) Surface biotinylation was performed on cells expressing wt S and
 700 each mutant. Cells were radiolabeled for 6 hours. Protein expression in (f) Vero and (g) A549
 701 cells, results are normalized to wt S, and error bars represent the standard deviation (average \pm
 702 SD for 3 independent experiments). h) A luciferase reporter gene assay was performed using
 703 target cells expressing hACE2 and EV or TMPRSS2, and effector (Vero) cells with wt S or
 704 each mutant. i) Luciferase reporter gene analysis with cells expressing hACE2 and effector

705 (Vero) cells transfected with S or S mutants and EV or furin expressing plasmids. Results of
706 both reporter gene assays are shown normalized to samples with wt S in the effector with
707 hACE2 in target cells (average \pm SD for 3 independent experiments, performed in duplicate).


708

709

710 **Figure 4: Spike S2 subunit mutations found in circulating strains variably affect spike**
711 **mediated cell-cell fusion.** a) Mutations in the S2 subunit of S identified in circulating SARS-
712 CoV-2 strains, b) Wt S or the mutants were transfected into Veros and A549s, metabolically
713 labeled for one hour, and chased for the times indicated. Percent cleavage was determined in
714 (c) Veros and A549s (average \pm SD for 3 independent experiments). d) Surface biotinylation on
715 cells expressing wt S or each mutant. e) Total and surface protein expression normalized to wt
716 S (average \pm SD for 3 independent experiments). f) A luciferase reporter gene assay was
717 performed using target cells expressing EV or hACE2, overlaid onto effector cells transfected
718 with wt S or each mutant. Results are normalized to samples with wt S in the effector cells and
719 hACE2 in target cells (average \pm SD for 3 independent experiments, performed in duplicate).
720 Significance was determined by two-way ANOVA, *: p<0.05, **: p<0.01.

721


722

723 **Figure 5: Mutations at downstream potential cleavage sites render the S1/S2 border**
724 **cleavage site less accessible to proteases.** a) Vero or A549s expressing wt S or S
725 cleavage mutants were metabolically labeled for 6 hours. Surface proteins were biotinylated,
726 and samples were either treated for 10 minutes with TPCK-Trypsin or left as untreated controls
727 (as indicated). b) Vero or A549s expressing indicated proteins were metabolically labeled for 6
728 hours. Samples were treated at the indicated temperatures before separation on a nonreducing
729 SDS-PAGE. Oligomers are labeled on the right based on size, and colored * represents

730 potential intermediate species (n=3). Using band densitometry to quantify the bands in (a),
731 percent cleavage was measured in (c) Vero and (d) A549 cells for both the surface (top graphs)
732 and total (bottom graphs) populations (average \pm SD for 3 independent experiments).
733 Significance was determined by two-way ANOVA, *: p<0.05, **: p<0.01, ***: p<0.0005, ****:
734 p<0.0001.

735

736

737

738 **Figure 6: Furin or furin-like proteases in pteropus bat cells can cleave the S1/S2 border**
739 **site of SARS-CoV-2 Spike.** a) Surface biotinylation was performed on pteropus lung and

740 pteropus fetus cells transfected with wt S or the del. PRRA mutant. b) Surface or total protein

741 expression levels were quantified using band densitometry and normalized to wt S levels. c) pt.

742 lung and pt. fetus cells were transfected with wt S or del. PRRA mutant, metabolically labeled

743 for one hour, and chased for the times indicated. Again, using band densitometry to quantify

744 bands results were expressed as (d) protein cleavage and (e) protein stability over time. (b,d,e)

745 average \pm SD for 3 independent experiments)

746

747

748 References

- 749 1. World Health Organization. *WHO Coronavirus Disease (COVID-19) Dashboard*. 2020 [cited 2020
750 12/2/2020]; Available from: <https://covid19.who.int/>.
- 751 2. Tortorici, M.A. and D. Veesler, *Structural insights into coronavirus entry*. *Adv Virus Res*, 2019.
752 **105**: p. 93-116.
- 753 3. Walls, A.C., et al., *Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein*.
754 *Cell*, 2020. **181**(2): p. 281-292.e6.
- 755 4. Lan, J., et al., *Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2*
756 *receptor*. *Nature*, 2020. **581**(7807): p. 215-220.
- 757 5. Luan, J., et al., *Spike protein recognition of mammalian ACE2 predicts the host range and an*
758 *optimized ACE2 for SARS-CoV-2 infection*. *Biochem Biophys Res Commun*, 2020. **526**(1): p. 165-
759 169.
- 760 6. Wang, Q., et al., *Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2*. *Cell*,
761 2020. **181**(4): p. 894-904.e9.
- 762 7. Yan, R., et al., *Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2*.
763 *Science*, 2020. **367**(6485): p. 1444-1448.
- 764 8. Benton, D.J., et al., *Receptor binding and priming of the spike protein of SARS-CoV-2 for*
765 *membrane fusion*. *Nature*, 2020.
- 766 9. Shang, J., et al., *Structural basis of receptor recognition by SARS-CoV-2*. *Nature*, 2020. **581**(7807):
767 p. 221-224.
- 768 10. Hoffmann, M., et al., *SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a*
769 *Clinically Proven Protease Inhibitor*. *Cell*, 2020. **181**(2): p. 271-280.e8.
- 770 11. Zhou, P., et al., *A pneumonia outbreak associated with a new coronavirus of probable bat origin*.
771 *Nature*, 2020. **579**(7798): p. 270-273.
- 772 12. Millet, J.K. and G.R. Whittaker, *Physiological and molecular triggers for SARS-CoV membrane*
773 *fusion and entry into host cells*. *Virology*, 2018. **517**: p. 3-8.
- 774 13. Millet, J.K. and G.R. Whittaker, *Host cell proteases: Critical determinants of coronavirus tropism*
775 *and pathogenesis*. *Virus Res*, 2015. **202**: p. 120-34.
- 776 14. Hulswit, R.J., C.A. de Haan, and B.J. Bosch, *Coronavirus Spike Protein and Tropism Changes*. *Adv*
777 *Virus Res*, 2016. **96**: p. 29-57.
- 778 15. Harrison, S., *Viral Membrane Fusion*. *Virology* 2015. **479**: p. 498-507.
- 779 16. Belouzard, S., et al., *Mechanisms of coronavirus cell entry mediated by the viral spike protein*.
780 *Viruses*, 2012. **4**(6): p. 1011-33.
- 781 17. Gallagher, T.M. and M.J. Buchmeier, *Coronavirus spike proteins in viral entry and pathogenesis*.
782 *Virology*, 2001. **279**(2): p. 371-4.
- 783 18. Shang, J., et al., *Cell entry mechanisms of SARS-CoV-2*. *Proc Natl Acad Sci U S A*, 2020. **117**(21): p.
784 11727-11734.
- 785 19. Li, F., *Structure, Function, and Evolution of Coronavirus Spike Proteins*. *Annu Rev Virol*, 2016.
786 **3**(1): p. 237-261.
- 787 20. Matsuyama, S., et al., *Protease-mediated enhancement of severe acute respiratory syndrome*
788 *coronavirus infection*. *Proc Natl Acad Sci U S A*, 2005. **102**(35): p. 12543-7.
- 789 21. Zheng, Y., et al., *Lysosomal Proteases Are a Determinant of Coronavirus Tropism*. *J Virol*, 2018.
790 **92**(24).
- 791 22. Lu, G., Q. Wang, and G.F. Gao, *Bat-to-human: spike features determining 'host jump' of*
792 *coronaviruses SARS-CoV, MERS-CoV, and beyond*. *Trends Microbiol*, 2015. **23**(8): p. 468-78.
- 793 23. Menachery, V.D., et al., *Trypsin Treatment Unlocks Barrier for Zoonotic Bat Coronavirus*
794 *Infection*. *J Virol*, 2020. **94**(5).

795 24. Zhou, H., et al., *A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural*
796 *Insertions at the S1/S2 Cleavage Site of the Spike Protein*. *Current Biology*, 2020. **30**(11): p. 2196-
797 2203.e3.

798 25. Boni, M.F., et al., *Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the*
799 *COVID-19 pandemic*. *Nature Microbiology*, 2020. **5**(11): p. 1408-1417.

800 26. Coutard, B., et al., *The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like*
801 *cleavage site absent in CoV of the same clade*. *Antiviral Res*, 2020. **176**: p. 104742.

802 27. Braun, E. and D. Sauter, *Furin-mediated protein processing in infectious diseases and cancer*. *Clin*
803 *Transl Immunology*, 2019. **8**(8): p. e1073.

804 28. Izaguirre, G., *The Proteolytic Regulation of Virus Cell Entry by Furin and Other Proprotein*
805 *Convertases*. *Viruses*, 2019. **11**(9).

806 29. Seidah, N.G. and A. Prat, *The biology and therapeutic targeting of the proprotein convertases*.
807 *Nat Rev Drug Discov*, 2012. **11**(5): p. 367-83.

808 30. Chan, C.M., et al., *Spike protein, S, of human coronavirus HKU1: role in viral life cycle and*
809 *application in antibody detection*. *Exp Biol Med (Maywood)*, 2008. **233**(12): p. 1527-36.

810 31. Le Coupanec, A., et al., *Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein*
811 *by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central*
812 *Nervous System*. *PLoS Pathog*, 2015. **11**(11): p. e1005261.

813 32. Millet, J.K. and G.R. Whittaker, *Host cell entry of Middle East respiratory syndrome coronavirus*
814 *after two-step, furin-mediated activation of the spike protein*. *Proc Natl Acad Sci U S A*, 2014.
815 **111**(42): p. 15214-9.

816 33. Claas, E.C., et al., *Human influenza A H5N1 virus related to a highly pathogenic avian influenza*
817 *virus*. *Lancet*, 1998. **351**(9101): p. 472-7.

818 34. Kido, H., et al., *Role of host cellular proteases in the pathogenesis of influenza and influenza-*
819 *induced multiple organ failure*. *Biochim Biophys Acta*, 2012. **1824**(1): p. 186-94.

820 35. Johnson, B.A., et al., *Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis*. *bioRxiv*, 2020.

821 36. Sun, X., et al., *Modifications to the hemagglutinin cleavage site control the virulence of a*
822 *neurotropic H1N1 influenza virus*. *J Virol*, 2010. **84**(17): p. 8683-90.

823 37. Hoffmann, M., H. Kleine-Weber, and S. Pöhlmann, *A Multibasic Cleavage Site in the Spike*
824 *Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells*. *Mol Cell*, 2020. **78**(4): p.
825 779-784.e5.

826 38. Ou, T., et al., *Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by*
827 *TMPRSS2*. *bioRxiv*, 2020: p. 2020.07.22.216150.

828 39. Zhu, Y., et al., *The S1/S2 boundary of SARS-CoV-2 spike protein modulates cell entry pathways*
829 *and transmission*. *bioRxiv*, 2020: p. 2020.08.25.266775.

830 40. Buchrieser, J., et al., *Syncytia formation by SARS-CoV-2-infected cells*. *Embo j*, 2020: p. e106267.

831 41. Bussani, R., et al., *Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of*
832 *advanced COVID-19 pathology*. *EBioMedicine*, 2020. **61**: p. 103104.

833 42. Stadlmann, S., R. Hein-Kuhnt, and G. Singer, *Viropathic multinuclear syncytial giant cells in*
834 *bronchial fluid from a patient with COVID-19*. *J Clin Pathol*, 2020. **73**(9): p. 607-608.

835 43. Oprinca, G.C. and L.A. Muja, *Postmortem examination of three SARS-CoV-2-positive autopsies*
836 *including histopathologic and immunohistochemical analysis*. *Int J Legal Med*, 2020: p. 1-11.

837 44. Tian, S., et al., *Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19)*
838 *Pneumonia in Two Patients With Lung Cancer*. *J Thorac Oncol*, 2020. **15**(5): p. 700-704.

839 45. Xu, Z., et al., *Pathological findings of COVID-19 associated with acute respiratory distress*
840 *syndrome*. *Lancet Respir Med*, 2020. **8**(4): p. 420-422.

841 46. Hörnich, B.F., et al., *SARS-CoV-2 and SARS-CoV spike-mediated cell-cell fusion differ in the*
842 *requirements for receptor expression and proteolytic activation and are not inhibited by*
843 *Bromhexine*. bioRxiv, 2020: p. 2020.07.25.221135.

844 47. Papa, G., et al., *Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection*
845 *and cell-cell fusion*. bioRxiv, 2020: p. 2020.08.13.243303.

846 48. Korber, B., et al., *Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases*
847 *Infectivity of the COVID-19 Virus*. Cell, 2020. **182**(4): p. 812-827.e19.

848 49. Korber, B., et al., *Spike mutation pipeline reveals the emergence of a more transmissible form of*
849 *SARS-CoV-2*. bioRxiv, 2020: p. 2020.04.29.069054.

850 50. Cheng, Y.W., et al., *Furin Inhibitors Block SARS-CoV-2 Spike Protein Cleavage to Suppress Virus*
851 *Production and Cytopathic Effects*. Cell Rep, 2020. **33**(2): p. 108254.

852 51. Li, W., *Delving deep into the structural aspects of a furin cleavage site inserted into the spike*
853 *protein of SARS-CoV-2: A structural biophysical perspective*. Biophys Chem, 2020. **264**: p.
854 106420.

855 52. Hoffmann, M., et al., *SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a*
856 *Clinically Proven Protease Inhibitor*. Cell, 2020. **181**(2): p. 271-280.e8.

857 53. Cantuti-Castelvetri, L., et al., *Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity*.
858 Science, 2020. **370**(6518): p. 856-860.

859 54. Daly, J.L., et al., *Neuropilin-1 is a host factor for SARS-CoV-2 infection*. Science, 2020. **370**(6518):
860 p. 861-865.

861 55. Davies, J., et al., *Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the*
862 *neurologic features and central nervous system involvement of COVID-19*. Mol Med Rep, 2020.
863 **22**(5): p. 4221-4226.

864 56. Biswas, N.K. and P.P. Majumder, *Analysis of RNA sequences of 3636 SARS-CoV-2 collected from*
865 *55 countries reveals selective sweep of one virus type*. Indian J Med Res, 2020. **151**(5): p. 450-
866 458.

867 57. Gong, Y.N., et al., *SARS-CoV-2 genomic surveillance in Taiwan revealed novel ORF8-deletion*
868 *mutant and clade possibly associated with infections in Middle East*. Emerg Microbes Infect,
869 2020. **9**(1): p. 1457-1466.

870 58. Isabel, S., et al., *Evolutionary and structural analyses of SARS-CoV-2 D614G spike protein*
871 *mutation now documented worldwide*. Sci Rep, 2020. **10**(1): p. 14031.

872 59. Islam, O.K., et al., *Emergence of European and North American mutant variants of SARS-CoV-2 in*
873 *South-East Asia*. Transbound Emerg Dis, 2020.

874 60. Koyama, T., D. Platt, and L. Parida, *Variant analysis of SARS-CoV-2 genomes*. Bull World Health
875 Organ, 2020. **98**(7): p. 495-504.

876 61. Koyama, T., et al., *Emergence of Drift Variants That May Affect COVID-19 Vaccine Development*
877 *and Antibody Treatment*. Pathogens, 2020. **9**(5).

878 62. Mercatelli, D. and F.M. Giorgi, *Geographic and Genomic Distribution of SARS-CoV-2 Mutations*.
879 Front Microbiol, 2020. **11**: p. 1800.

880 63. Caldas, L.A., et al., *Ultrastructural analysis of SARS-CoV-2 interactions with the host cell via high*
881 *resolution scanning electron microscopy*. Scientific Reports, 2020. **10**(1): p. 16099.

882 64. Crameri, G., et al., *Establishment, immortalisation and characterisation of pteropid bat cell lines*.
883 PLoS One, 2009. **4**(12): p. e8266.

884 65. El Najjar, F., et al., *Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion*
885 *protein activation in cells of the bat reservoir host*. PLoS One, 2015. **10**(2): p. e0115736.

886 66. Örd, M., I. Faustova, and M. Loog, *The sequence at Spike S1/S2 site enables cleavage by furin*
887 *and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV*. Sci Rep, 2020. **10**(1):
888 p. 16944.

889 67. Glowacka, I., et al., *Evidence that TMPRSS2 activates the severe acute respiratory syndrome*
890 *coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune*
891 *response.* J Virol, 2011. **85**(9): p. 4122-34.

892 68. Simmons, G., et al., *Different host cell proteases activate the SARS-coronavirus spike-protein for*
893 *cell-cell and virus-cell fusion.* Virology, 2011. **413**(2): p. 265-74.

894 69. Huang, I.C., et al., *SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to*
895 *infect ACE2-expressing cells.* J Biol Chem, 2006. **281**(6): p. 3198-203.

896 70. Simmons, G., et al., *Inhibitors of cathepsin L prevent severe acute respiratory syndrome*
897 *coronavirus entry.* Proc Natl Acad Sci U S A, 2005. **102**(33): p. 11876-81.

898 71. Simmons, G., et al., *Characterization of severe acute respiratory syndrome-associated*
899 *coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry.* Proc Natl Acad Sci U S A, 2004.
900 **101**(12): p. 4240-5.

901 72. Qian, Z., S.R. Dominguez, and K.V. Holmes, *Role of the spike glycoprotein of human Middle East*
902 *respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation.* PLoS One,
903 2013. **8**(10): p. e76469.

904 73. Bertram, S., et al., *Cleavage and activation of the severe acute respiratory syndrome coronavirus*
905 *spike protein by human airway trypsin-like protease.* J Virol, 2011. **85**(24): p. 13363-72.

906 74. Gierer, S., et al., *The spike protein of the emerging betacoronavirus EMC uses a novel*
907 *coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing*
908 *antibodies.* J Virol, 2013. **87**(10): p. 5502-11.

909 75. Gierer, S., et al., *Inhibition of proprotein convertases abrogates processing of the middle eastern*
910 *respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral*
911 *infectivity.* J Infect Dis, 2015. **211**(6): p. 889-97.

912 76. Kam, Y.W., et al., *Cleavage of the SARS coronavirus spike glycoprotein by airway proteases*
913 *enhances virus entry into human bronchial epithelial cells in vitro.* PLoS One, 2009. **4**(11): p.
914 e7870.

915 77. Shirato, K., M. Kawase, and S. Matsuyama, *Middle East respiratory syndrome coronavirus*
916 *infection mediated by the transmembrane serine protease TMPRSS2.* J Virol, 2013. **87**(23): p.
917 12552-61.

918 78. Shulla, A., et al., *A transmembrane serine protease is linked to the severe acute respiratory*
919 *syndrome coronavirus receptor and activates virus entry.* J Virol, 2011. **85**(2): p. 873-82.

920 79. Follis, K.E., J. York, and J.H. Nunberg, *Furin cleavage of the SARS coronavirus spike glycoprotein*
921 *enhances cell-cell fusion but does not affect virion entry.* Virology, 2006. **350**(2): p. 358-69.

922 80. Yang, Y., et al., *Two Mutations Were Critical for Bat-to-Human Transmission of Middle East*
923 *Respiratory Syndrome Coronavirus.* J Virol, 2015. **89**(17): p. 9119-23.

924 81. Belouzard, S., V.C. Chu, and G.R. Whittaker, *Activation of the SARS coronavirus spike protein via*
925 *sequential proteolytic cleavage at two distinct sites.* Proc Natl Acad Sci U S A, 2009. **106**(14): p.
926 5871-6.

927 82. Belouzard, S., I. Madu, and G.R. Whittaker, *Elastase-mediated activation of the severe acute*
928 *respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain.* J Biol

929 *Chem, 2010. **285**(30): p. 22758-63.*

930 83. Heald-Sargent, T. and T. Gallagher, *Ready, set, fuse! The coronavirus spike protein and*
931 *acquisition of fusion competence.* Viruses, 2012. **4**(4): p. 557-80.

932 84. Bosch, B.J., W. Bartelink, and P.J. Rottier, *Cathepsin L functionally cleaves the severe acute*
933 *respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the*
934 *fusion peptide.* J Virol, 2008. **82**(17): p. 8887-90.

935 85. Matsuyama, S., et al., *Efficient activation of the severe acute respiratory syndrome coronavirus*
936 *spike protein by the transmembrane protease TMPRSS2.* J Virol, 2010. **84**(24): p. 12658-64.

937 86. Nguyen, H.T., et al., *Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and*
938 *cytopathic effects*. bioRxiv, 2020: p. 2020.10.22.351569.

939 87. Lemmin, T., et al., *Structures and dynamics of the novel S1/S2 protease cleavage site loop of the*
940 *SARS-CoV-2 spike glycoprotein*. J Struct Biol X, 2020. **4**: p. 100038.

941 88. Wrapp, D., et al., *Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation*.
942 *Science*, 2020. **367**(6483): p. 1260-1263.

943 89. Beniac, D.R., et al., *Conformational reorganization of the SARS coronavirus spike following*
944 *receptor binding: implications for membrane fusion*. PLoS One, 2007. **2**(10): p. e1082.

945 90. Li, F., et al., *Conformational states of the severe acute respiratory syndrome coronavirus spike*
946 *protein ectodomain*. J Virol, 2006. **80**(14): p. 6794-800.

947 91. Zhang, L., et al., *SARS-CoV-2 spike-protein D614G mutation increases virion spike density and*
948 *infectivity*. Nat Commun, 2020. **11**(1): p. 6013.

949 92. Ogawa, J., et al., *The D614G mutation in the SARS-CoV2 Spike protein increases infectivity in an*
950 *ACE2 receptor dependent manner*. bioRxiv, 2020.

951 93. Yurkovetskiy, L., et al., *Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein*
952 *Variant*. Cell, 2020. **183**(3): p. 739-751.e8.

953 94. Zhang, L., et al., *The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and*
954 *increases infectivity*. bioRxiv, 2020.

955 95. Mansbach, R.A., et al., *The SARS-CoV-2 Spike Variant D614G Favors an Open Conformational*
956 *State*. bioRxiv, 2020.

957 96. Plante, J.A., et al., *Spike mutation D614G alters SARS-CoV-2 fitness and neutralization*
958 *susceptibility*. bioRxiv, 2020.

959 97. Jiang, X., et al., *Bimodular effects of D614G mutation on the spike glycoprotein of SARS-CoV-2*
960 *enhance protein processing, membrane fusion, and viral infectivity*. Signal Transduct Target Ther,
961 2020. **5**(1): p. 268.

962 98. Buonvino, S. and S. Melino, *New Consensus pattern in Spike CoV-2: potential implications in*
963 *coagulation process and cell-cell fusion*. Cell Death Discov, 2020. **6**(1): p. 134.

964 99. Branttie, J.M. and R.E. Dutch, *Parainfluenza virus 5 fusion protein maintains pre-fusion stability*
965 *but not fusogenic activity following mutation of a transmembrane leucine/isoleucine domain*. J
966 *Gen Virol*, 2020. **101**(5): p. 467-472.

967 100. Slaughter, K.B. and R.E. Dutch, *Transmembrane Domain Dissociation Is Required for Hendra*
968 *Virus F Protein Fusogenic Activity*. J Virol, 2019. **93**(22).

969 101. Webb, S., et al., *Hendra virus fusion protein transmembrane domain contributes to pre-fusion*
970 *protein stability*. Journal of Biological Chemistry, 2017. **292**(14): p. 5685-5694.

971 102. Kawase, M., et al., *Biochemical Analysis of Coronavirus Spike Glycoprotein Conformational*
972 *Intermediates during Membrane Fusion*. J Virol, 2019. **93**(19).

973

974