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Abstract.

We investigated progestin and corticosteroid activation of the progesterone receptor (PR)
from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates.
Comparison with human PR provides insights into the evolution of steroid activation of
human PR. At 1 nM steroid, elephant shark PR is activated by progesterone, 17-hydroxy-
progesterone, 20B-hydroxy-progesterone, 11-deoxycorticosterone (21-hydroxyprogesterone)
and 11-deoxycortisol. Human PR, in comparison, is activated at 1 nM steroid, only by
progesterone and 11-deoxycorticosterone, indicating increased progestin and corticosteroid
specificity during the evolution of human PR. RU486, an important clinical antagonist of
human PR, did not inhibit progesterone activation of elephant shark PR. Cys-528 in
elephant shark PR corresponds to Gly-722 in human PR, which is essential for RU486
inhibition of human PR.  Confirming the importance of Cys-528 in elephant shark PR,
RU486 inhibited progesterone activation of the Cys528Gly mutant PR. Compared to wild-
type human PR, there was an increase in activation of human Gly722Cys PR by11-

deoxycortisol and a decrease in activation by corticosterone, which may have been important
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in selection for the mutation corresponding to human glycine-722 PR that first evolved in

platypus PR, a basal mammal.

Key words: elephant shark PR, progesterone receptor evolution, progestins, corticosteroids,
RU486

Running title: Evolution of steroid activation of elephant shark PR

Introduction

The progesterone receptor (PR) receptor belongs to the nuclear receptor family, a
diverse group of transcription factors that also includes the glucocorticoid receptor (GR),
mineralocorticoid receptor, androgen receptor (AR), and estrogen receptor (ER) (1-3). In
humans, the progesterone receptor (PR) mediates progesterone regulation of female
reproductive physiology in the uterus and mammary gland, including fertilization,
maintenance of pregnancy and preparation of the endometrium for implantation and
parturition (4-7). Moreover, progesterone has important physiological actions in males,
including in the prostate and testes (8—11). Further, progesterone activates the PR in the
brain, bone, thymus, lung and vasculature in females and males (12,13). Thus, progesterone
is a steroid with diverse physiological activities in many organs in females and males.

Although activation by progesterone of the PR in chickens (4,14) , humans (15) , and
zebrafish (16,17) has been examined, steroid activation of a PR in the more basal
cartilaginous fish lineage has not been fully investigated. To remedy this omission, we
studied the activation by a panel of progestins and corticosteroids (Figure 1) of the PR from
the elephant shark (Callorhinchus milii), a cartilaginous fish belonging to the oldest group of
jawed vertebrates, which diverged about 450 million years ago from bony vertebrates
(18,19).


https://doi.org/10.1101/2021.01.20.427507
http://creativecommons.org/licenses/by-nd/4.0/

64

65
66
67
68
69

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427507; this version posted July 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

(o)
20p-hydroxy-4-pregnen-3-one

Corticosterone RU486 (mifepristone)

Figure 1. Structures of corticosteroids and progestins.
Progesterone is female reproductive steroid that also is important in male physiology (4,11).
17,20B-dihydroxy-progesterone is a maturation inducing hormone of teleost fish (20-22).
17,20B,21-trihydroxy-progesterone is a major ovarian steroid produced by the teleost fish

3
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70  (23). Cortisol, corticosterone and 11-deoxycortisol are physiological glucocorticoids in
71 terrestrial vertebrates and ray-finned fish (24,25). 11-deoxycorticosterone is a
72  mineralocorticoid (25-28). RU486 is an antagonist of human PR (29,30).
73
74 Elephant shark PR is an attractive receptor to investigate the ancestral regulation of
75  steroid-mediated PR transcription because, in addition to its phylogenetic position as a
76  member of the oldest lineage of jawed vertebrates, genomic analyses reveal that elephant
77  shark genes are evolving slowly (19), making studies of its PR useful for studying ancestral
78  proteins, including the PR, for comparison for similarities and differences with human PR to
79  elucidate the evolution of steroid specificity for the PR in terrestrial vertebrates (19,31,32).
80 In addition, we were interested in the response of elephant shark PR to RU486
81  (Mifepristone), which is an antagonist for the human PR (29,30,33) and also a potential
82  anticancer drug for treating progesterone-dependent breast cancer (34).
83 We find that elephant shark PR is activated by progesterone, 17-hydroxy-
84  progesterone, 20B-hydroxy-progesterone, 17,203-dihydroxy-progesterone, corticosterone,
85  11-deoxycorticosterone (21-hydroxy-progesterone) and 11-deoxycortisol. In contrast
86  human PR is activated only by progesterone, 20p3-hydroxy-progesterone, 11-
87  deoxycorticosterone and corticosterone, indicating that human PR has increased specificity
88  for progestins and corticosteroids.
89 We also find that RU486 does not inhibit progesterone activation of elephant shark
90 PR. We show that this is due to cysteine-528 in elephant shark PR, which corresponds to
91  glycine-722 on human PR, an amino acid that Benhamou et al. (35) reported was essential for
92  antagonist activity of RU486. They found that mutation of glycine-722 to cysteine
93  abolished RU486 inhibition of progesterone activation of human PR.  Analyses of vertebrate
94  PRs reveals that an ancestor of human PR-Gly722 first appeared in platypus, a basal mammal
95 (31).
96 To search for functional changes in human PR that correlate with the evolution of
97  RUA486 antagonist activity, we constructed the elephant shark PR-Gly528 mutant and the
98  human PR-Cys722 mutant and studied their activation by several steroids. Elephant shark
99  PR-Gly528 had a weaker response to 11-deoxycortisol and 17-hydroxy-progesterone.
100  Human PR-Cys722 displayed increased activation by 11-deoxycortisol and decreased
101 activation by corticosterone. An altered response to one or more of these steroids may have
102  been selective for the evolution of an ancestor of glycine-722 in a PR in an ancestral platypus
103  at the base of the mammalian line.
104
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|
Elephant shark PR 520 LLTSLNRLCEKQLVSVVKWAKS 541

Human PR 714 ———————- G-R--L-—---- S-- 735
Mouse PR 707 --——--0-G-R--L-----S-- 728
Platypus PR 458 ------0-G-R--L-----S-- 479
Chicken PR 567 ---—---H-C-R--LC----S-L 588
Xenopus PR 513 --S---0-C-R--VC----S-- 534
Zebrafish PR 398 --N-----C-R--LWI-R-S-- 419
Coelacanth PR 544 ---——--Q0-C-R--L-----S-- 565
Little skate PR 8l ———————- C-R--VA-—————- 102
Lamprey PR 345 —-——-—-—-—- C-R--VP-————- V 366

105
106  Figure 2. Alignment of o helix-3, containing a key amino acid necessary for RU486

107  inhibition of human PR and activation of elephant shark PR.

108  Alignment of a-helix-3 in human PR, containing Gly-722 that is essential for RU486

109  inhibition of progesterone activation of human PR (35), the PR in elephant shark and other
110  selected vertebrates. RU486 activates elephant shark PR, which contains cysteine-528

111 corresponding to human PR Gly-722. A glycine first appears in this position in platypus
112 PR, a basal mammal. Amino acids that are identical to amino acids in elephant shark PR are
113  denoted by ().

114

115

116 Lastly, our studies provide an insight into the evolution of steroid activation of fish
117 PRs. In fish, instead of progesterone, it is 17,20B-dihydroxy-progesterone that is the

118  physiological ligand for the PR in zebrafish (16,17) and other teleosts (20-22,36,37). We
119  find that for elephant shark PR, the half-maximal response (EC50) of progesterone and

120 17,20B-dihydroxy-progesterone are 0.18 nM and 2.6 nM, respectively. This ten-fold higher
121 EC50 of elephant shark PR for 17,20B-dihydroxy-progesterone compared to progesterone,
122 indicates that the during the evolution of ray-finned fish, there was a reversal between

123 progesterone and 17,20B-dihydroxy-progesterone in their selectivity for elephant shark PR
124  and for zebrafish PR and other fish PRs, and that this role for 17,203-dihydroxy-

125  progesterone, instead of progesterone, as a ligand for fish PR evolved after the divergence of
126  ray-finned fish from cartilaginous fish (18,19).

127
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128

129  Materials and Methods

130  Chemical reagents

131 Cortisol, corticosterone, 11-deoxycorticosterone, 11-deoxycortisol, progesterone,

132 17a-hydroxy-progesterone, 17,203,21-tri-hydroxy-progesterone, 203-hydroxy-progesterone,
133  and 17,20B-dihydroxy-progesterone were purchased from Sigma-Aldrich. RU486 was

134  purchased from Cayman Chemical. For reporter gene assays, all hormones were dissolved
135  in dimethyl-sulfoxide (DMSO); the final DMSO concentration in the culture medium did not
136 exceed 0.1%.

137
138  Construction of plasmid vectors
139 The full-length PRs were amplified by PCR with KOD DNA polymerase. The PCR

140  products were gel-purified and ligated into pcDNA3.1 vector (Invitrogen).  Site-directed
141 mutagenesis was performed using KOD-Plus-mutagenesis kit (TOYOBO). All cloned DNA
142 sequences were verified by sequencing.

143

144  Transactivation assay and statistical methods

145 Transfection and reporter assays were carried out in HEK293 cells, as described
146  previously (38,39). All experiments were performed in triplicate. The values shown are
147  mean + SEM from three separate experiments, and dose-response data, which were used to
148  calculate the half maximal response (EC50) for each steroid, were analyzed using GraphPad
149  Prism. Comparisons between two groups were performed using paired ¢-test. P < 0.05
150  was considered statistically significant. The use of HEK293 cells and an assay temperature
151 of 37C does not replicate the physiological environment of elephant sharks. Nevertheless,
152  studies with HEK293 cells and other mammalian cell lines have proven useful for other

153  studies of transcriptional activation by steroids of steroid hormone receptors from non-

154  mammalian species (39-41).

155

156 Results

157  Transcriptional activation of full-length elephant shark PR by progestins and

158  corticosteroids.

159 We screened a panel of steroids for transcriptional activation of full-length elephant
160  shark and human PRs using HEK293 cells. At 10 nM, progesterone, 17-hydroxy-

161  progesterone, 17, 20B-dihydroxy-progesterone, a fish maturation hormone, and 203-hydroxy-
162  progesterone activated elephant shark PR (Figure 3A). At 10 nM, 11-deoxycorticosterone

6
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(21-hydroxyprogesterone), 11-deoxycortisol and corticosterone activated elephant shark PR
(Figure 3C) indicating that elephant shark PR responds to corticosteroids.

At 10 nM steroid, human PR responded only to progesterone and 20p-hydroxy-
progesterone and not to the other progestins (Figure 3B). At 10 nM, 11-deoxycorticosterone

and corticosterone activated human PR (Figure 3D).
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170  Figure 3. Transcriptional activation of elephant shark PR by progestins and

171 corticosteroids.

172 Elephant shark PR (A and C) and human PR (B and D) were expressed in HEK293 cells with
173  an MMTV-luciferase reporter. Cells were treated with 1 and 10 nM progestins

174  (progesterone, 170H-progesterone, 17,20B-dihydroxy-progesterone, 17,203,21-trihydroxy-
175  progesterone and 203-OH-progesterone), and 10 and 100 nM corticosteroids (cortisol, 11-
176  deoxycortisol, corticosterone, 11-deoxycorticosterone), or vehicle alone (DMSO). Results
177  are expressed as means = SEM, n=3. Y-axis indicates fold-activation compared to the

178  activity by vehicle (DMSO) alone as 1.

179

180

181  Concentration-dependent activation by progestins and corticosteroids of elephant shark
182 PR and human PR.

183  To gain a quantitative measure of progestin and corticosteroid activation of elephant shark
184 PR and human PR, we determined the concentration dependence of transcriptional activation
185 by progestins and corticosteroids of elephant shark PR (Figure 4A, C) and for comparison
186  activation of human PR (Figure 4B, D). Progesterone, 170OH-progesterone, 17,20[3-

187  dihydroxy-progesterone, 203-OH-progesterone, 11-deoxycortisol, corticosterone and 11-

188  deoxycorticosterone activated elephant shark PR, while human PR was stimulated only by
189  progesterone, 203-OH-progesterone, corticosterone and 11-deoxycorticosterone, a more

190  limited number of steroids.
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Figure 4. Concentration-dependent transcriptional activation of elephant shark and
human PRs by corticosteroids and progestins.

Elephant shark PR (A and C) and human PR (B and D) were expressed in HEK293 cells with
an MMT V-luciferase reporter. Cells were treated with increasing concentrations of
corticosteroids (A and B), progestins (C and D) or vehicle alone (DMSO). Y-axis indicates
fold-activation compared to the activity by vehicle (DMSO) alone as 1.

Table 1 summarizes the EC50s of progestins and corticosteroids for elephant shark
PR and human PR. We find that elephant shark PR has low EC50s for progesterone (0.18
nM), 17-OH-progesterone (0.36 nM), 203-OH-progesterone (048 nM), 17c,203-OH-
progesterone (2.6 nM), 11-deoxycortisol (0.47 nM) and 11-deoxycorticosterone (0.19 nM).
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203  In contrast, human PR has low EC50s for progesterone (0.13 nM), 203-OH-progesterone
204 (4.6 nM), 11-deoxycorticosterone (1.4 nM) and corticosterone (8.2 nM).

205

206  RU486 does not inhibit transactivation of elephant shark PR

207 Activation of human PR by progesterone is inhibited by RU486 (29,30,33). Indeed,
208 at 0.1 nM and 1 nM, RUA486 inhibits of activation by 1 nM progesterone of human PR

209  (Figure 5A). Benhamou et al. (35) reported that Gly-722 in human PR, is essential for the
210  inhibition of progesterone activation of human PR by of RU486. We confirm that RU486
211 does not inhibit the human PR Cys722 mutant (Figure 5C).

212 Cys-528 of elephant shark PR corresponds to Gly-722 of human PR, which predicts
213  that RU486 would not inhibit progesterone activation of wild type elephant shark PR, and
214 indeed, as shown in Figure 5B, activation by 1 nM progesterone of elephant shark PR was
215 not inhibited by 100 nM RU486. As expected, RU486 inhibits progesterone activation of
216  elephant shark PR Gly528 (Figure 5D).

217

218
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Table 1. EC50 values for steroid activation of elephant shark PR and human PR

Human Progestins
Progesterone 170H-Prog | 203-OH-Prog
EC50 (M) EC50 (M) EC50 (M)
Elephant shark PR 0.18 nM 0.36 nM 0.48 nM
95% confidence intervals 0.14-0.22nM 0.29-0.45nM 0.41-0.57nM
Human PR 0.13nM 113.0 nM 4.6 nM
95% confidence intervals | 0.094-0.18 nM 87.3-146 nM 3.2-6.6 nM

Fish Progestins

170.,203-DP 208-S
EC50 (M) EC50 (M)
Elephant shark PR 2.6 nM 34.4 nM
95% confidence intervals 2.2-3.2 nM 29.6-40.2nM
Human PR 408 nM -
95% confidence intervals 342-487 nM -

Corticosteroids
Cortisol 11-deoxycortisol | Corticosterone DOC
EC50 (M) EC50 (M) EC50 (M) EC50 (M)
Elephant shark PR 52.4 nM 0.47 nM 10.5nM 0.19 nM
95% confidence intervals 44.3-62 nM 0.35-0.63nM 9.0-12.3nM | 0.13-0.26nM
Human PR 826 nM 39.0 nM 8.2 nM 1.4 nM
95% confidence intervals | 516-1322nM 30-51 nM 5.5-12.1 nM 0.9-2.2 nM

Human Progestins: 170H-Prog= 17a-hydroxy-progesterone,
20p3-OH-Prog = 20B-hydroxy-progesterone,

Fish Progestins: 170,20B-DP = 17a,20B-dihydroxy-4-pregnene-3-one,
20B3-S = 17a,20p,21-trihydroxy-4-pregnen-3-one,

Corticosteroids: DOC =11-deoxycorticosterone,

219
220

11


https://doi.org/10.1101/2021.01.20.427507
http://creativecommons.org/licenses/by-nd/4.0/

221
222
223
224
225
226
227
228
229

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427507; this version posted July 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

A: Human PR-wt

Hl RU486
17-OH-pregnenolone
_150- —
X | *
-~ 1
120- T
g T L
S 90
'g E
— 60-
o
2 1
© 301
& ]
oL Il — ,
& & &
Q Q

(100% = activation by 1 nM progesterone)

C: Human PR-Gly722Cys

Hl RU486

17-OH-pregnenolone
120+

Relative Induction (%)

100- ! ! ==
80-
60-
401
20-

ol B : :
h9$$ QS* &
N\ Q

(100% = activation by 1 nM progesterone)

B: Elephant Shark PR-wt

Relative Induction (%)

140-
120
100
80-
60-
401
201

0-

Hl RU486
17-OH-pregnenolone
T
T
I I | |
N S
< o o 9
N K > N

(100% = activation by 1 nM progesterone)

D: Elephant Shark PR-Cys528Gly

Relative Induction (%)

1204
100-
80-
60-
40-
20-

0-

Il RU486
17-OH-pregnenolone
*
’—\ * T
T ——
& & &
o Q

(100% = activation by 1 nM progesterone)

Figure 5. Effect of RU486 for Prog-induced activation of PR.
Wild-type of human PR (A) or elephant shark PR (B) was expressed in HEK293 cells with an

MMT V-luciferase reporter. Cells with human PR were treated with 1 nM progesterone and
either 0.1 nM or 1 nM RU486, 170H- pregnenolone or DMSO. Cells with elephant shark
PR were treated with 1 nM progesterone and with either 1 nM, 10 nM or 100 nM RU486,
170H-pregnenolone or DMSO. Human PR-Gly722Cys (C) or elephant shark PR-
Cys528Gly (D) was expressed in HEK293 cells with an MMT V-luciferase reporter.
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230  with human PR-Gly722Cys were treated with 1 nM progesterone and with either 10 nM or
231 100 nM RU486, 170H-pregnenolone or DMSO. Cells with elephant shark PR-Cys528Gly
232 were treated with 1 nM progesterone and with either 0.1 nM or 1 nM RU486 or 170H-

233  Pregnenolone  Relative inductions were normalized between 0 and 100%, where 0 and 100
234  were defined as the bottom and tip value in vehicle-treated and 1 nM progesterone treated,
235  respectively. Results are expressed as means + SEM, n=3. * P <0.05 compared with
236  vehicle treatment (student’s z-test).

237

238

239  Steroid activation of human PR Gly722Cys and elephant shark PR Cys528Gly.

240 To search for a biological basis for the functional changes in human PR due to Gly-
241 722 in human PR we constructed a human PR-Cys722 mutant and an elephant shark PR-
242  Gly528 mutant and studied their activation by various progestins and corticosteroids (Figure
243  6). Elephant shark PR-Gly528 had a weaker response to 11-deoxycortisol and 17-hydroxy-
244  progesterone. Human PR-Cys722 displayed increased activation by 11-deoxycortisol and
245  decreased activation by corticosterone.

246

13
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247
248  Figure 6. Progestin and corticosteroid activation of elephant shark PR-Cys528Gly and
249  human PR-Gly722Cys.

250  Elephant shark PR (A and C), and human PR (B and D) were expressed in HEK293 cells

251  with an MMT V-luciferase reporter. Cells transfected with PRs were treated with increasing
252  concentrations of Prog or vehicle alone (DMSO) (A and B). Cells were treated with 10 nM
253  progestins (Prog, 170H-Progesterone, pregnenolone 17,20p3-dihydroxy-progesterone,

254  17,208,21-trihydroxy-progesterone, 203-OH-progesterone), corticosteroids (cortisol, 11-
255  deoxycortisol, corticosterone, 11-deoxycorticosterone), or vehicle alone (DMSO) (C and D).
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256  Results are expressed as means + SEM, n=4. Y-axis indicates fold-activation compared to
257  the activity of control vector with vehicle (DMSO) alone as 1.

258

259  Concentration-dependent transcriptional activation of elephant shark PR-Cys528Gly
260 and human PR-Gly722Clys.

261 To gain a quantitative measure of progestin and corticosteroid activation of the

262  cysteine-528 to glycine-528 mutation in elephant shark PR and the glycine-722 to cysteine-
263 722 mutation in human PR, we determined the concentration dependence of transcriptional
264  activation by progestins and corticosteroids of Cys528Gly elephant shark PR (Figure 7A, C)
265  and for comparison activation of Gly722Cys human PR (Figure 7B, D). In a separate

266  experiment we investigated the response of Cys528Gly elephant shark PR and Gly722Cys
267  human PR to corticosterone (Figure E, F).

268
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276  Figure 7. Concentration dependent transcriptional activation by progestins and

277  corticosteroids of elephant shark PR-Cys528Gly and human PR-Gly722Clys.

278  Elephant shark PR (A, C and E), and human PR (B, D and F) were expressed in HEK293

279  cells with an MMT V-luciferase reporter. Cells transfected with PRs were treated with

280 increasing concentrations of progesterone, 203-OH-progesterone, 11-deoxycortisol, 11-

281  deoxycorticosterone or corticosterone. Results are expressed as means + SEM, n=4. Y-
282  axis indicates fold-activation compared to the activity of control vector with vehicle (DMSO)
283  aloneas 1.

284

285 Table 2 shows the EC50s calculated from the curves in Figure 7. Progesterone, 203-
286  OH-progesterone, 11-deoxycortisol, corticosterone and 11-deoxycorticosterone activated

287  elephant shark PR, while human PR was stimulated only by progesterone, 203-OH-

288  progesterone, corticosterone and 11-deoxycorticosterone, a more limited number of steroids.
289  One or more of these changes may have been selective for the evolution an ancestor of

290  glycine-722 in a PR in an ancestral platypus at the base of the mammalian line.

291

292
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Table 2. EC50 values for steroid activation of wild-type and Cys528Gly mutant

elephant shark PR and Gly722Cys mutant human PR

Progestins
Progesterone | 170H-Prog 203-OH-Prog
EC50 (M) EC50 (M) EC50 (M)
Elephant shark PR 0.17 nM 0.4 nM -
95% confidence intervals 0.13-0.24nM | 0.29-0.56nM | -
Elephant shark PR-Cys528Gly | 1.1 nM 3.4nM -
95% confidence intervals 0.92-1.4 nM 2.8-4.0 nM -
Human PR 0.1 nM - 3.5nM
95% confidence intervals 0.07-0.15nM | - 2.6-4.7 nM
Human PR-Gly722Cys 0.095 nM - 6.4 nM
95% confidence intervals 0.05-0.2 nM - 4.4-9.3 nM
Corticosteroids
DOC 11-deoxycortisol | Corticosterone
EC50 (M) EC50 (M) EC50 (M)
Elephant shark PR 0.2 nM 0.55nM 9.4 nM
95% confidence intervals 0.14-0.28nM | 0.41-0.74nM 7.0-12.7 nM
Elephant shark PR-Cys528Gly | 2.7 nM 7.4 nM 12.5nM
95% confidence intervals 2.3-3.1 nM 6.2-8.9 nM 9.4-16.5 nM
Human PR 1.4 nM 49.2 nM 7.0 nM
95% confidence intervals 1.0-2.1 nM 36-68 nM 4.8-10.2 nM
Human PR-Gly722Cys 0.5nM 8.7nM 95.0 nM
95% confidence intervals 0.32-0.76nM | 5.7-13.4 nM 67-134 nM

Progestins: 177O0H-Prog=170-hydroxy-progesterone, 203-OH-Prog=20p-hydroxy-

progesterone.
293 Corticosteroids: DOC =11-deoxycorticosterone.
294
295
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296  Discussion

297 An ortholog of human PR along with the corticoid receptor (CR), the ancestor of the
298 MR and GR, first appears in the more ancient cyclostomes (jawless fish), which has

299  descendants in modern lamprey and hagfish (3,27,42). It is in cartilaginous fish that distinct
300 orthologs of human MR and GR first appear (43—45) along with the beginning of the

301  evolution of differences in the responses of the PR, MR and GR for progestins and

302  corticosteroids that appear in terrestrial vertebrates and ray-finned fish (16,17,24,40,41,43—
303  52).

304 Here we report that elephant shark PR has a strong response to progesterone (EC50
305 0.18 nM) and 17-OH-progesterone (EC50 0.36 nM), as well as to 11-deoxycorticosterone
306 (EC500.19 nM) (Figure 4, Table 1), a corticosteroid with close structural similarity to

307  progesterone (Figure 1). Elephant shark PR also is activated by 203-OH-progesterone

308 (EC500.48 nM) and 17,20B-dihydroxy-progesterone (EC50 2.6 nM) and 11-deoxycortisol
309 (EC500.47nM). This broad response to steroids contrasts with the selectivity of human
310 PR, which has a strong response to progesterone (EC50 0.13 nM) and 11-

311 deoxycorticosterone, (EC50 1.4 nM) and a weaker response to corticosterone, (EC50 8.2
312  nM). The advantage this selectivity of human PR is not known.

313 The evolution of the response of human PR to RU486 is intriguing because RU486 is
314  not a physiological ligand for the PR. The glycine-722 in human PR (Figure 2) that confers
315  antagonist activity for RU486 towards human PR first appears in platypus, a basal mammal
316  (Figure 2). Human PR with Cys722, to mimic an ancestral PR, had increased activation by
317  11-deoxycortisol and decreased activation by corticosterone.

318 The lower activation of elephant shark PR by 17,20B-dihydroxy-progesterone

319  compared to progesterone is intriguing because in zebrafish (16,17), this is reversed with
320  higher activity for 17,20B-dihydroxy-progesterone compared to progesterone indicating that
321  during the evolution of ray-finned fish the response of the PR to progesterone diminished and
322  the response to 17,20B-dihydroxy-progesterone increased (21,22,36,37). The absence of
323  progesterone as a ligand for ray-finned fish PR may be relevant for progesterone functioning
324  asaligand for fish MR (39,41,45,51,53).
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