

1 **Individuality, as well as genotype, affects characteristics and**
2 **temporal consistency of courtship songs in male mice**

3 Luca Melotti^{1*}, Sophie Siestrup¹, Maja Peng¹, Valerio Vitali², Daniel Dowling², Norbert
4 Sachser¹, Sylvia Kaiser¹, S. Helene Richter¹

5 ¹Department of Behavioural Biology, University of Münster, Badestrasse 13, 48149 -
6 Münster, Germany

7 ²Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 –
8 Münster, Germany

9

10 **ABSTRACT**

11 Courtship songs in mice have been investigated to understand the mechanisms and
12 ecological relevance of vocal communication. There is evidence that courtship song
13 characteristics vary between different genotypes, but little is known on whether individuals,
14 even within the same genotype, differ from each other in the composition, complexity, and
15 temporal consistency of their songs. In a first study, we aimed to systematically identify song
16 features typical of different genotypes, by assessing the composition and complexity (i.e.,
17 entropy) of the syllabic sequences of male laboratory mice from four different strains (*Mus*
18 *musculus* f. *domestica*: C57BL/6J, BALB/c, DBA/2 and B6D2F1). Mice were individually
19 presented with a swab containing fresh female urine for 5 minutes to elicit courtship songs.
20 The four strains differed not only in the composition but also in the complexity of their syllabic
21 sequences. In a second study, we investigated within-strain individual differences in temporal
22 consistency and recurring motifs (i.e., identical sets of syllables that are repeated within a
23 song), using BALB/c and DBA/2 mice. The same procedure as in the first study was
24 followed, but in addition testing was repeated weekly over three weeks. Both strains showed

25 some level of individual temporal consistency; BALB/c in the overall amount of emitted
26 vocalisations and DBA/2 in the expression of specific syllable types. However, hierarchical
27 cluster analysis revealed remarkable individual variability in how consistent song
28 characteristics were over time. Furthermore, recurring motifs were expressed at varying
29 levels depending on the individual. Taken together, not only genotype but also individuality
30 can affect variability in courtship songs in mice, suggesting the existence of different
31 courtship strategies (e.g., higher song consistency to facilitate individual identification)
32 related to varying levels of behavioural plasticity.

33

34 **HIGHLIGHTS**

35 • Courtship songs in mice can serve as a model to study vocal communication
36 • We explore how genotype and individuality affect courtship songs' characteristics
37 • Genotypes differ in composition and also in complexity of syllabic sequences
38 • We find remarkable individual variability in how consistent songs are over time
39 • Results suggest the existence of variation in male courting behaviour

40

41 **KEYWORDS**

42 Laboratory Mouse; Genetic Background; Strain Differences; Ultrasonic Vocalisations; Intra-
43 individual Variability; Personality; Signature Calls; Social Communication; Mating Strategy;
44 Song Syntax.

45

46 INTRODUCTION

47 Auditory signals are one of the most universal and important means of communication
48 across animal species (Portfors & Perkel, 2014). One form, vocal communication, is defined
49 by specific frequency and temporal properties of the vocal signals. Within the context of
50 courtship and mating, some species produce long sequences of vocalisations, also termed
51 "songs" (Holy & Guo, 2005). Songs emitted for courtship serve the function of signalling the
52 presence and identity of the courting individual, in order to attract a potential mate (Simmons
53 et al., 2002).

54 Mice (*Mus musculus* f. *domestica*) emit vocalizations in a variety of social contexts, including
55 courtship (Ehret, 2018; Portfors, 2007). In their seminal study, Holy and Guo (2005)
56 demonstrated that the ultrasonic vocalisations of male mice during courtship have the
57 characteristics of a song similar to those found in birds or insects but in only few species of
58 mammals (i.e., humans, whales and bats). These songs consist of different syllable types,
59 organised in repeated phrases (i.e., sequences of syllables emitted in close succession; Holy
60 & Guo, 2005). Courtship songs in male mice have been studied to give insight into the
61 ecological relevance of such behaviour and its relationship to reproductive success (e.g.,
62 Chabout et al., 2015; Musolf et al., 2010; Nicolakis et al., 2020). Yet the ecological relevance
63 of courtship songs in laboratory mice has been questioned by some authors (Musolf et al.,
64 2010).

65 The genome of the most common mouse laboratory strains mainly derives from the *Mus*
66 *musculus domesticus* subspecies, with minor contributions from other subspecies, including
67 *Mus musculus musculus* (Yang et al., 2007, 2011). Laboratory strains were subjected to
68 substantial inbreeding at various stages (Chesler, 2014; Yang et al., 2011), thus reducing the
69 overall genetic and phenotypic variation compared to wild subspecies. The courtship
70 vocalisation repertoire of different laboratory strains, together with the one of wild-derived
71 mice, has only been investigated more in depth in recent years (e.g., Hoffmann et al., 2012;
72 Sugimoto et al., 2011; van Segbroeck et al., 2017), and it is still unclear how exactly the

73 process of artificial selection has affected it. So far, studies conducted with laboratory mice
74 have indicated that male courtship songs emitted in response to fresh female urine have
75 greater syntactical complexity compared to songs produced in the direct presence of a
76 female, and that females are more attracted by and show preference for the urine-related,
77 more complex songs (Chabout et al., 2015). A first study comparing the courtship songs of
78 several laboratory and wild-derived male mice in response to the direct presence of a female
79 indicated that certain syllabic features and their rhythm reduce rejection behaviour by the
80 female and are preferred by females when played back to them (Sugimoto et al., 2011).
81 However, we do not know whether the same syllabic features would also be effective in
82 attracting a female from distance (i.e. via songs triggered by fresh female urine) or whether
83 there are other syntactical characteristics that could influence female preference. Thus,
84 further research is needed to systematically identify the song features typical of a strain
85 and/or individual.

86 A very small number of studies indicate that courtship songs may have specific
87 characteristics unique to individuals, even when these individuals have the same genotype.
88 The concept of individuality applied to courtship songs can be regarded as the propensity of
89 an individual to maintain similar song characteristics over time and / or across different
90 contexts, (cf. to broader definitions of animal personality; Carere & Maestripieri, 2013). The
91 number of phrases emitted in courtship songs by wild-derived mice has been found to
92 correlate across different social contexts, including the encounter between male and female
93 from either the same or a different population (von Merten et al., 2014). Further, some
94 quantitative features of simpler syllable types (i.e., those syllables without steps), such as
95 duration and average pitch, were suggested to be good indicators of individual identity in
96 courtship songs induced by fresh female urine (Hoffmann et al., 2012). However, the results
97 of this study were based on only one 90 minute session, thus the consistency over time of
98 these individual characteristics was not tested. Only one study so far has shown some level
99 of individual consistency across repeated test sessions for the syllabic composition and the
100 transition probabilities within syllabic sequences (Holy & Guo, 2005), but these findings were

101 based on a small sub-sample of animals and test trials. Taken together, there is a
102 considerable lack of knowledge on the influence of individuality on courtship songs in mice.
103 Concerning the adaptive value, individuality in courtship songs may play an important role in
104 reflecting different courting strategies towards reproductive success (e.g., higher consistency
105 of song characteristics to facilitate individual identification and choice by the female). Thus, if
106 individuality explains at least part of the variation in courtship songs, it is important to assess
107 to what extent this is the case, and to identify those song characteristics that are unique to
108 the individual.

109 Using a syntactical analysis approach (e.g., Chabout et al., 2015), the aim of this study was
110 twofold. First, we aimed at adding confirmatory evidence of the effects of the genetic
111 background of adult male mice on courtship songs. To do this, we presented males from four
112 different laboratory strains (C57BL/6J, BALB/c, DBA/2 and B6D2F1) with fresh female urine
113 and assessed not only the syllabic composition of the resulting song sequences, but also the
114 complexity of these sequences, using more novel techniques (i.e., entropy analysis;
115 Experiment 1). Second, we selected two strains (BALB/c and DBA/2) based on the
116 information obtained from Experiment 1, and we investigated whether mice having the same
117 genotype showed individual differences in how consistent their syllabic sequences were over
118 time, and in their expression of recurring motifs (i.e., identical sets of syllables that are
119 repeated within a song; Experiment 2). Based on the limited previous evidence, we expected
120 individuality to emerge even within the same genotype.

121

122 **METHODS**

123

124 *Animal Housing and Husbandry*

125

126 The subject male mice from both experiments (Experiment 1: N = 24; Experiment 2: N = 24;
127 see Experimental Design section for details on strain composition) were purchased from
128 Charles River Laboratories, Sulzfeld, Germany and were delivered to the Department of
129 Behavioural Biology, University of Münster, Germany, at postnatal day (PND) 28. Until PND
130 63 they were housed in groups of three animals from the same strain, then they were
131 individually housed in transparent Makrolon type III cages (l × b × h: 37 cm × 21 cm × 15 cm)
132 until the end of the experiment. Mice were tested between PND 132 – 232, after undergoing
133 a battery of non-invasive behavioural phenotyping tests as part of a separate study (PND 76
134 – 93).

135 The female mice used for the social encounter sessions and for urine collection originated
136 from the stock of the Department of Behavioural Biology, University of Münster, Germany (5-
137 HTT +/- and 5-HTT +/+ mice with a C57BL/6J genetic background; Experiments 1 and 2) or
138 were purchased at PND 21 from Charles River Laboratories, Sulzfeld, Germany (Experiment
139 2; see appendix A1, Social Encounter and Urine Collection sub-sections). They were housed
140 in groups of two to five females in transparent Makrolon type III cages with enrichment (see
141 appendix A1).

142 All animals had *ad libitum* access to water and food pellets (Altromin 1324, Altromin
143 Spezialfutter GmbH & Co. KG, Lage, Germany) and were kept at a room temperature of
144 about 22°C and relative humidity of about 50%. For details of cage furnishing and enrichment
145 see appendix A1. A 12:12 light:dark cycle (lights off at 9:00 a.m. for males and at 10:00 a.m.
146 for females) was maintained and experimental procedures were conducted during the dark
147 phase under red light. Male and female mice were housed in separate rooms.

148 All procedures complied with the regulations covering animal experimentation within
149 Germany (Animal Welfare Act) and the EU (European Communities Council DIRECTIVE
150 2010/63/EU) and were approved by the local (Amt für Gesundheit, Veterinär- und
151 Lebensmittelangelegenheiten, Münster, Nordrhein-Westfalen, reference number: 39.32.7.1)
152 and federal authorities (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-

153 Westfalen “LANUV NRW”).

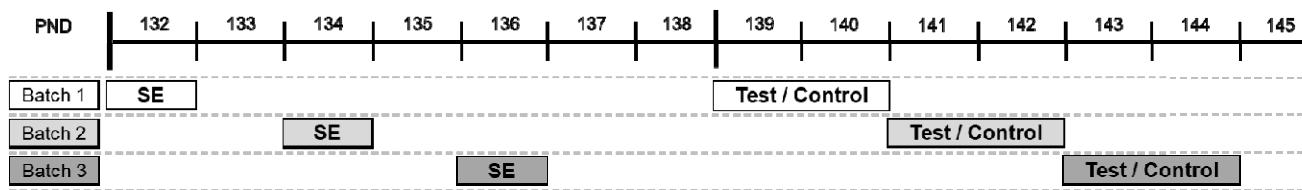
154 Individual ear cuts were used to identify all mice. Each mouse received one partial punch at
155 the margin of one ear (no risk of injury / getting stuck) after mild anaesthesia using specific
156 ear punch forceps. No swelling or bleeding was noticed. At the end of the experiment, mice
157 remained within our facility or were handed over to a cooperation partner.

158

159 *Experimental Design*

160

161 This study consisted of two experiments. Experiment 1 aimed at assessing whether the
162 genetic background of male mice from four different strains affected the syllabic composition
163 and complexity of courtship songs. Experiment 2 investigated individuality in the consistency
164 over time of song characteristics and in the expression of recurring motifs in two different
165 mouse strains.


166

167 *Experiment 1*

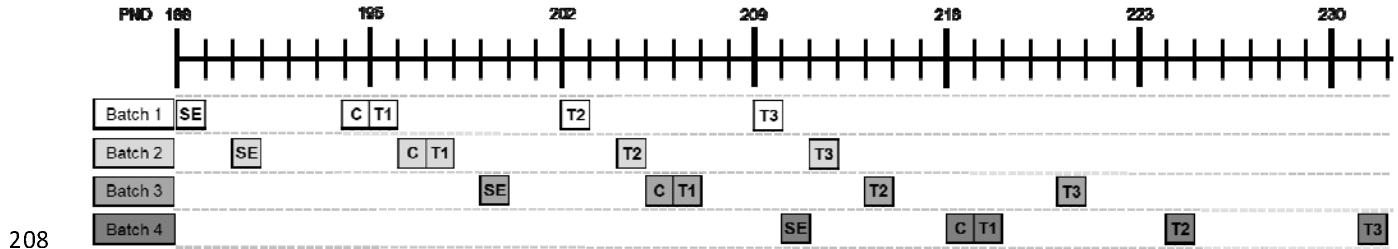
168 Subjects were 24 adult male mice from four different strains (six mice per strain), namely the
169 inbred strains C57BL/6J, BALB/c and DBA/2 and the hybrid strain B6D2F1 (C57BL/6J x
170 DBA/2). The experiment was carried out in three partially overlapping batches, where two
171 male mice of each strain were randomly assigned to each batch (Fig. 1). Between PND 132 -
172 136, each mouse experienced a 20 minute social encounter with an adult female mouse
173 (genetic background: C57BL/6J), which has been shown to elicit the emission of courtship
174 ultrasonic vocalisations in males (Dizinno et al., 1978; Nyby et al., 1978; Sipos et al., 1992).
175 One week later, testing was conducted over two consecutive days and consisted of one test
176 session and one control session, the order of which was counterbalanced for each strain and
177 batch. During the test session mice were individually presented with fresh female urine on a
178 cotton swab for five minutes in order to elicit the emission of courtship songs; in the control

179 session they were presented with a clean cotton swab without urine to control for any effect
180 of the experimental procedure on vocalisations emission. Vocalisations emitted during both
181 sessions were recorded and analysed. For further details on vocalisations recording setup
182 and experimental procedures (social encounter, test / control sessions, and urine collection)
183 see appendix A1.

184

185
186

187 **Figure 1.** Timeline of Experiment 1. The experiment was carried out in three partially overlapping
188 batches during a time period of two weeks. Each batch was comprised of two male mice from each of
189 the C57BL/6J, BALB/c, DBA/2 and B6D2F1 strains. All males experienced a 20 minute social
190 encounter (SE) with an adult female with a C57BL/6J genetic background. Seven days later, males
191 were individually presented with either a cotton swab containing fresh female urine (test session) or a
192 clean cotton swab without urine (control session). Control and test sessions were performed over two
193 consecutive days, and their order was counterbalanced within each strain.


194

195 *Experiment 2*

196 Subjects were 24 adult male mice from the BALB/c and DBA/2 strains (12 mice per strain).
197 These two strains were chosen based on the differences in syllabic composition found in
198 Experiment 1 and on the relatively high number of vocalisations emitted. The experimental
199 procedures were carried out between PND 188 - 231 and were the same as in Experiment 1,
200 but this time males underwent three weekly test sessions (instead of only one test session)
201 to assess individual consistency over time in courtship song features. Also, the control
202 session always preceded the first test session, based on evidence from Experiment 1 of a
203 carry-over effect in the transition between first test session and control session (see

204 appendix A1, Comparison of Control and Test Sessions). The experiment was carried out in
205 four partially overlapping batches, where three mice of each strain were randomly assigned
206 to each batch (Fig. 2; see appendix A1, Experimental Procedures section, for more details).

207

208

209 **Figure 2.** Timeline of Experiment 2. This experiment was carried out in four partially overlapping
210 batches, where three adult male mice of two strains (BALB/c and DBA/2) were randomly assigned to
211 each batch. Every mouse experienced a 20 minute social encounter (SE) with an adult female with a
212 C57BL/6J genetic background. Six days later, a control session (C) was performed where the animal
213 was presented with a clean cotton swab without urine for five minutes. On the following day and
214 weekly for three weeks (T1, T2 and T3), each mouse was presented with fresh female urine on a
215 cotton swab for five minutes in order to elicit the emission of courtship songs.

216

217 *Vocalisations Analysis*

218

219 All vocalisation recordings were blinded and their order randomised to avoid experimenter
220 bias during the analysis. Vocalisations were analysed using the software Avisoft - SASLab
221 Pro (Version 5.2.10; Avisoft Bioacoustics, Germany). Spectrograms were generated with a
222 FFT-length of 512 points (e.g., Musolf et al., 2010) and a time window overlap of 75 % (e.g.,
223 Scattoni et al., 2008). The frame size was 100 % and a flat-top window was used (e.g.,
224 Musolf et al., 2010).

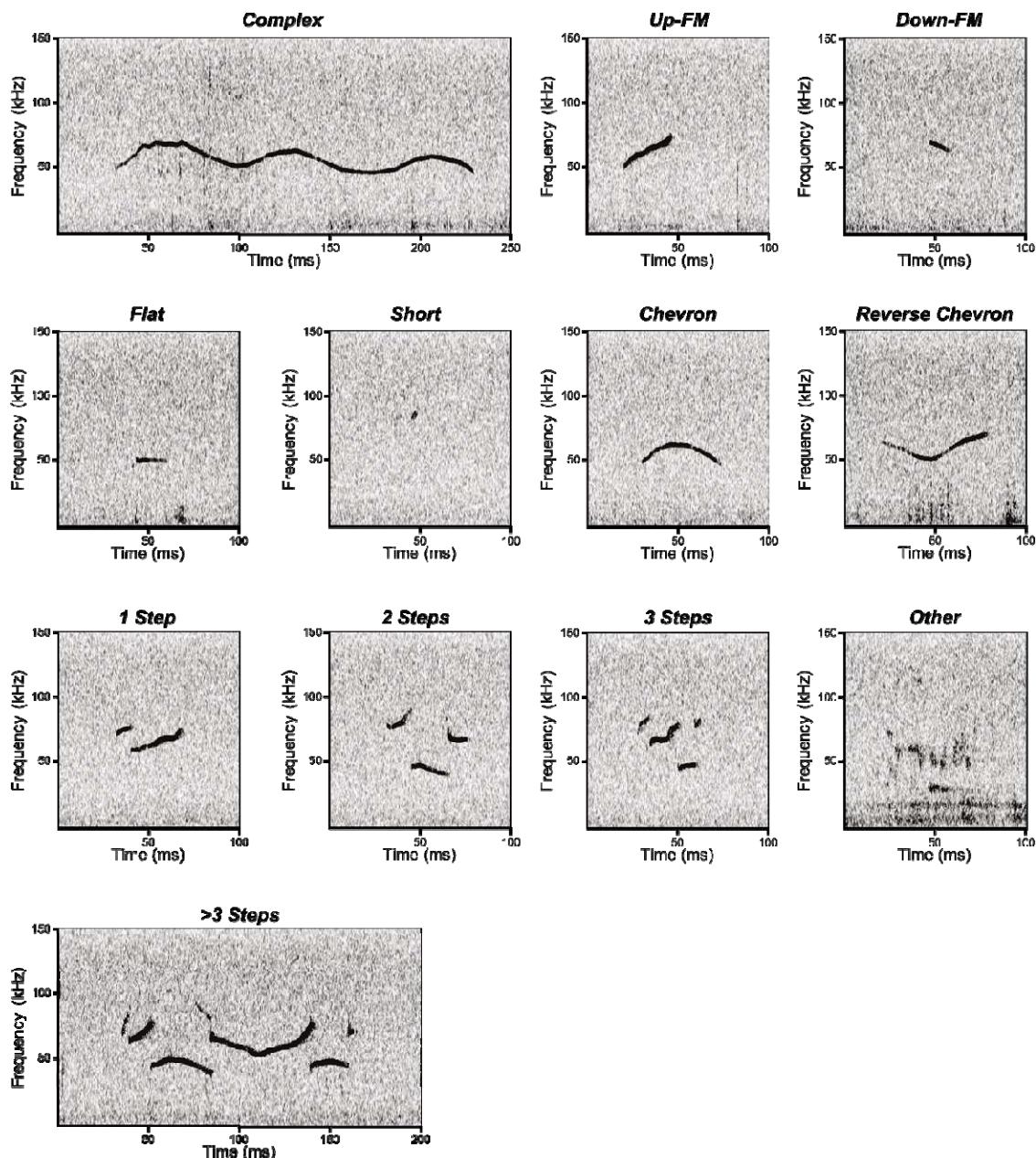
225 In Experiment 1, the whole five minutes recorded for each test / control session were
226 analysed. Based on the finding in Experiment 1 that BALB/c and DBA/2 mice emitted

227 relatively high levels of vocalisations, in Experiment 2 only the last four minutes (out of the
228 five minutes recorded) of each session were analysed. We excluded the first minute based
229 on the observation that not all animals started to vocalise at the very start of the recording
230 session.

231 Based on previous literature (Grimsley et al., 2011), 12 syllables types were identified and
232 counted manually using the “standard marker” (for durations) and “free reticular” (for
233 frequencies) cursors within the Avisoft - SASLab Pro software. Definitions of the syllable
234 types and examples of their spectrograms are provided in Table 1 and Fig. 3, respectively.
235 The total number of emitted syllables and the percentages of syllable types on the total
236 number of syllables were calculated for each recording session. Furthermore, the sequences
237 of emitted syllables within each recording session were recorded in temporal order to allow
238 for sequence analysis.

239

Syllable type	Definition*
Complex syllable	A syllable with only one element with two or more directional changes in frequency > 6 kHz.
<i>Upward Frequency Modulated (Up-FM) syllable</i>	A syllable that is upwardly frequency modulated with a frequency change ≥ 6 kHz.
<i>Downward Frequency Modulated (Down-FM) syllable</i>	A syllable that is downwardly frequency modulated with a frequency change ≥ 6 kHz.
Flat syllable	A syllable of constant frequency with modulations < 6 kHz.
Short syllable	A syllable with a duration of ≤ 5 ms.
Chevron syllable	A syllable that is shaped like an inverted U, the highest frequency is at least 6 kHz greater than the starting and ending frequencies.
Reverse Chevron syllable	A syllable that is shaped like a U, the lowest frequency is at least 6 kHz less than the starting and ending frequencies.
1 Frequency Step (1 Step) syllable	A syllable with two elements, in which the second element is ≥ 10 kHz different from the preceding element. The maximum time separation between steps is 2.5 ms.
2 Frequency Step (2 Steps) syllable	A syllable with three elements, in which the second element


	is \geq 10 kHz different from the first and the third element is \geq 10 kHz different from the second element. The maximum time separation between steps is 2.5 ms.
3 Frequency Step (3 Steps) syllable	A syllable with four elements, in which the second, third and fourth element are \geq 10 kHz different from the preceding element. The maximum time separation between steps is 2.5 ms.
>3 Frequency Step (>3 Steps) syllable	A syllable with more than four elements, in which all elements are \geq 10 kHz different from the preceding element. The maximum time separation between steps is 2.5 ms.
Other syllable	A syllable that does not fit any definition described above (for example because it is not recognisable).

*Definitions are based on those given by Grimsley et al., (2011).

240

241 **Table 1.** Definitions of counted syllable types.

242

243

244 **Figure 3.** Spectrogram examples of each syllable type identified and counted during the analysis of
245 the recordings. The x axis indicates the duration of the syllable and the y axis its frequency (kHz).

246

247 *Data Analysis*

248

249 Data were analysed using IBM SPSS (version 25) and R (version 3.4.4). In Experiment 1, the
250 comparisons between control and test sessions and the analysis of strain differences in
251 syllabic composition and sequence complexity were carried out using non-parametric tests,
252 as the data did not meet the assumptions for parametric statistics. To allow for better
253 comparability of results between Experiments, the same was done for Experiment 2. Data for
254 these variables were thus summarised as median (M) and interquartile range (IQR). Principal
255 component analysis was used to provide a visual summary of the strain differences in
256 syllabic composition (Experiment 1). Consistency of song characteristics across time was
257 assessed by calculating intraclass correlation coefficients; similarity between song
258 sequences, within both strain and individual, was visualised using hierarchical cluster
259 analysis (Experiment 2). See below for a detailed description of the data analysis.

260

261 *Measures of Internal Validity*

262 Intra- and inter- rater reliability of syllable counts was assessed using intraclass correlation
263 coefficients (see appendix A1 for details).
264 To confirm that courtship songs were emitted specifically in the presence of female urinary
265 cues, control and test sessions were compared using related-samples Wilcoxon signed rank
266 tests (Experiment 1) and related-samples Friedman's tests (Experiment 2; see appendix A1
267 for details).

268

269 *Strain Differences in Syllabic Composition and Sequence Complexity*

270 In Experiment 1, independent samples Kruskal-Wallis tests were used to compare the total
271 numbers of syllables and the percentages of different syllable types emitted during the test
272 sessions across the four strains. Because of the positive dependency of the p values
273 obtained with the Kruskal-Wallis tests, the p values were corrected with the Benjamini-
274 Hochberg procedure, allowing a false discovery rate of 10 % (Benjamini & Hochberg, 1995;

275 Benjamini & Yekutieli, 2001). In the cases where the Kruskal-Wallis test indicated a
276 significant strain effect, pairwise strain comparisons were carried out via Dunn's post hoc
277 tests, and the resulting p values were adjusted using the Bonferroni correction for multiple
278 comparisons (Armstrong, 2014). Strain differences were visualised using principal
279 component analysis (PCA), which was performed with the R package *FactoMineR* (version
280 2.3). The relative frequencies of syllable types from each song were used to construct the
281 PCA object. Values were scaled to unit variance before multidimensionality reduction. The
282 PCA output was visualised with the R package *factoextra* (version 1.0.7).

283 In Experiment 2, differences in total numbers of syllables and in percentages of different
284 syllable types (average across the three test sessions) between BALB/c and DBA/2 were
285 assessed using Mann-Whitney U tests. P values were corrected with the Benjamini-
286 Hochberg procedure as described for Experiment 1.

287 Complexity of the song sequences was investigated in both experiments. A Shannon entropy
288 analysis (*DescTools* package in R) was performed and entropy scores were generated, with
289 and without correction for sequence length. Correction for sequence length consisted of
290 dividing the entropy score by the total number of syllables emitted within the same song.
291 Relatively higher entropy scores indicated greater complexity (e.g., greater variability in
292 syllable expression) of the song sequence. The effect of strain on sequence complexity was
293 assessed using an independent samples Kruskal-Wallis test (four strains, Experiment 1) and
294 a Mann-Whitney U test (two strains, Experiment 2). In Experiment 2, the entropy scores from
295 the three test sessions were averaged.

296

297 *Individuality in Consistency over Time, Sequence Complexity and Recurring Motifs*

298 Experiment 2, being comprised of three repeated test sessions, allowed for the investigation
299 of individual differences in temporal consistency, complexity (entropy) and recurring motifs of
300 the song sequences.

301 Individual consistency over time in total number of syllables and in percentages of syllable
302 types across the three test sessions was assessed using the intraclass correlation coefficient
303 (ICC). For each strain, the total number of syllables and the four most frequent syllable types
304 were analysed. The ICC was calculated using a two way mixed design assessing the
305 consistency of the mean of the test sessions (Koo & Li, 2016; Landers, 2015; Shrout &
306 Fleiss, 1979). Consistency was evaluated based on the ICC estimate and on the lower
307 bound of the 95% confidence interval (Koo & Li, 2016). To graphically show individuality
308 based on similarity between song sequences, hierarchical cluster analysis was used. The
309 distances between song sequences were calculated using the *stringdist* package in R using
310 the qgram method (q = 3 consecutive syllables). This method uses sub-sequences (qgrams)
311 of a defined length (q) to calculate the similarity between two or more sequences. The
312 distances between each song sequence were then used to build a dendrogram.

313 To assess individual consistency in complexity of the song sequences, intraclass correlation
314 coefficients (ICC) were calculated for each strain using the individual entropy scores from the
315 three test sessions. ICC calculation and interpretation were the same as for the assessment
316 of consistency in syllabic composition.

317 In order to investigate individual variation in the production of recurring motifs within
318 courtship songs, we implemented an *ad hoc* algorithm in R (see S1). This algorithm
319 extracted all the identical sub-strings (motifs) that had a minimum length of four syllables and
320 that were repeated at least four times within the same song, and tested their statistical over-
321 representation. Briefly, the algorithm reshuffled each song sequence multiple times (n = 1000
322 randomisation replicates) and counted the occurrence of motifs in the reshuffled sequences.
323 For each motif, the total motif count across randomisation replicates and its sample space
324 were used to calculate the expected frequency of motifs in the randomised sequences. The
325 sample space (number of all possible sequence substrings of a given length) was calculated
326 as: (sequence length – motif length) * randomization replicates. The statistical over-
327 representation of the observed motifs was computed with one-sided binomial tests, so that
328 only the motifs that occurred significantly more often than chance were retained. p values

329 were adjusted for multiple comparisons using Bonferroni correction, which was performed on
330 a *per-sequence* basis, with the number of comparisons equal to the number of motifs
331 observed in each song sequence. This motif extraction procedure led to a final sample of 337
332 selected recurring motifs across all song recordings. The number of unique motifs produced
333 *per animal* and test session was counted as a measure of individual variability in motif
334 expression. Furthermore, the ratio between the number of unique syllables in each motif and
335 the total number of syllables in the same motif was calculated as a measure of motif
336 complexity. Ratios that belonged to the same animal were averaged to obtain a motif
337 complexity score *per animal*. Finally, the number of repetitions of each motif within a test
338 session was counted. Counts that belonged to the same animal were averaged to obtain a
339 motif repetition score *per animal*.

340

341 *Exclusion Criteria*

342 In Experiment 1, two out of six C57BL/6J males only emitted four syllables during the test
343 session and were thus excluded from the analysis of syllabic composition.

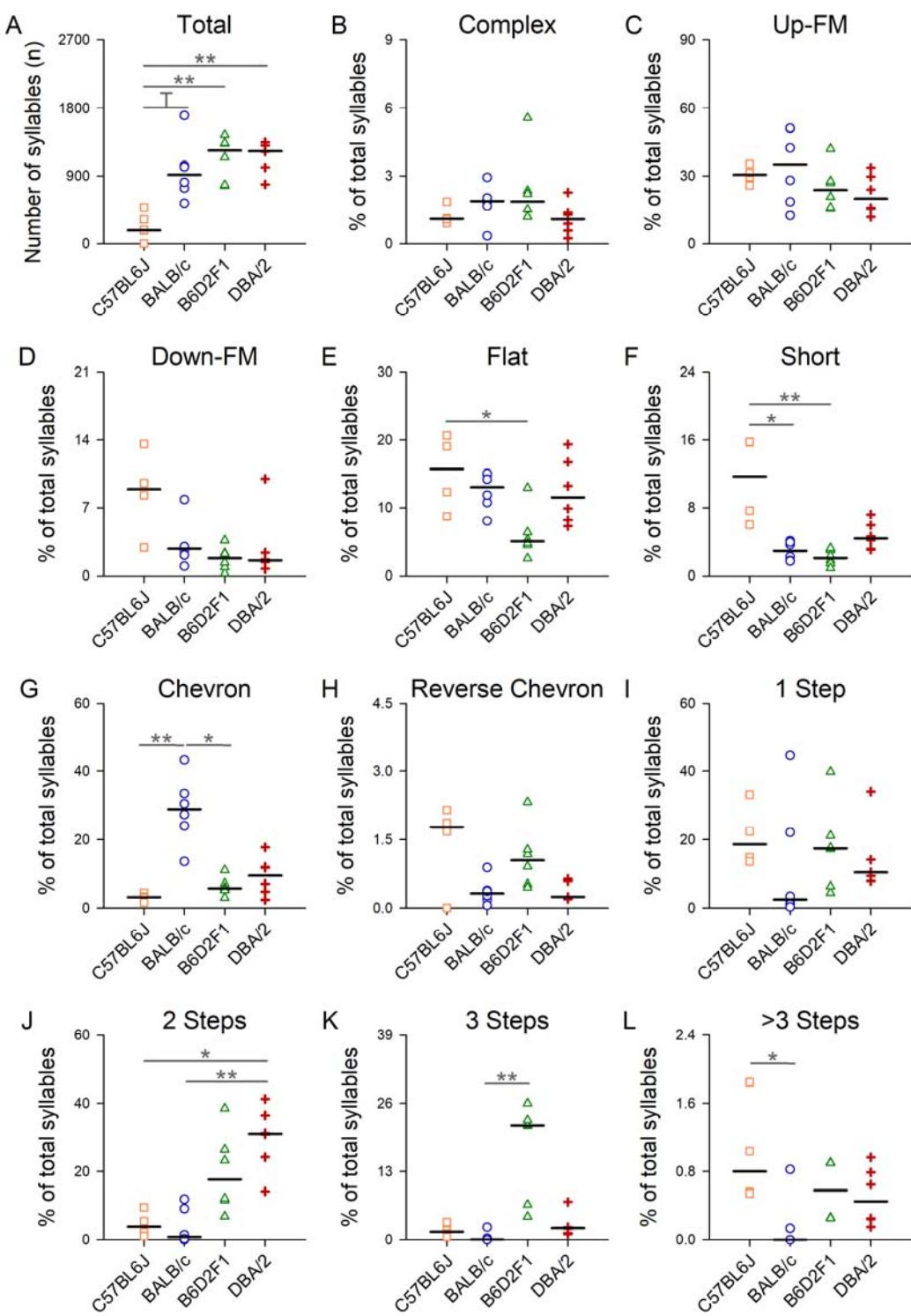
344 As for the entropy, principal component, hierarchical cluster, and recurring motifs analyses,
345 the minimum length below which a song sequence was excluded from the analysis was set
346 to 150 syllables, leading to the exclusion of two C57BL/6J mice (Experiment 1) and of four
347 song sequences of BALB/c mice in the third test session (Experiment 2). This threshold was
348 chosen being the shortest substring of a scrambled sequence (random string) for which the
349 syllable frequency distribution is representative of the distribution of the whole sequence. The
350 same criterion was applied for the ICC analysis of syllabic composition (Experiment 2); the
351 fact that only the total number of syllables and the four most frequent syllable types were
352 analysed allowed to set a lower minimum threshold of 50 syllables. This led to the exclusion
353 of two BALB/c mice which emitted less than 50 syllables in the third test session.

354

355 **RESULTS**

356

357 *Strain Differences in Syllabic Composition and Complexity of Song Sequences*

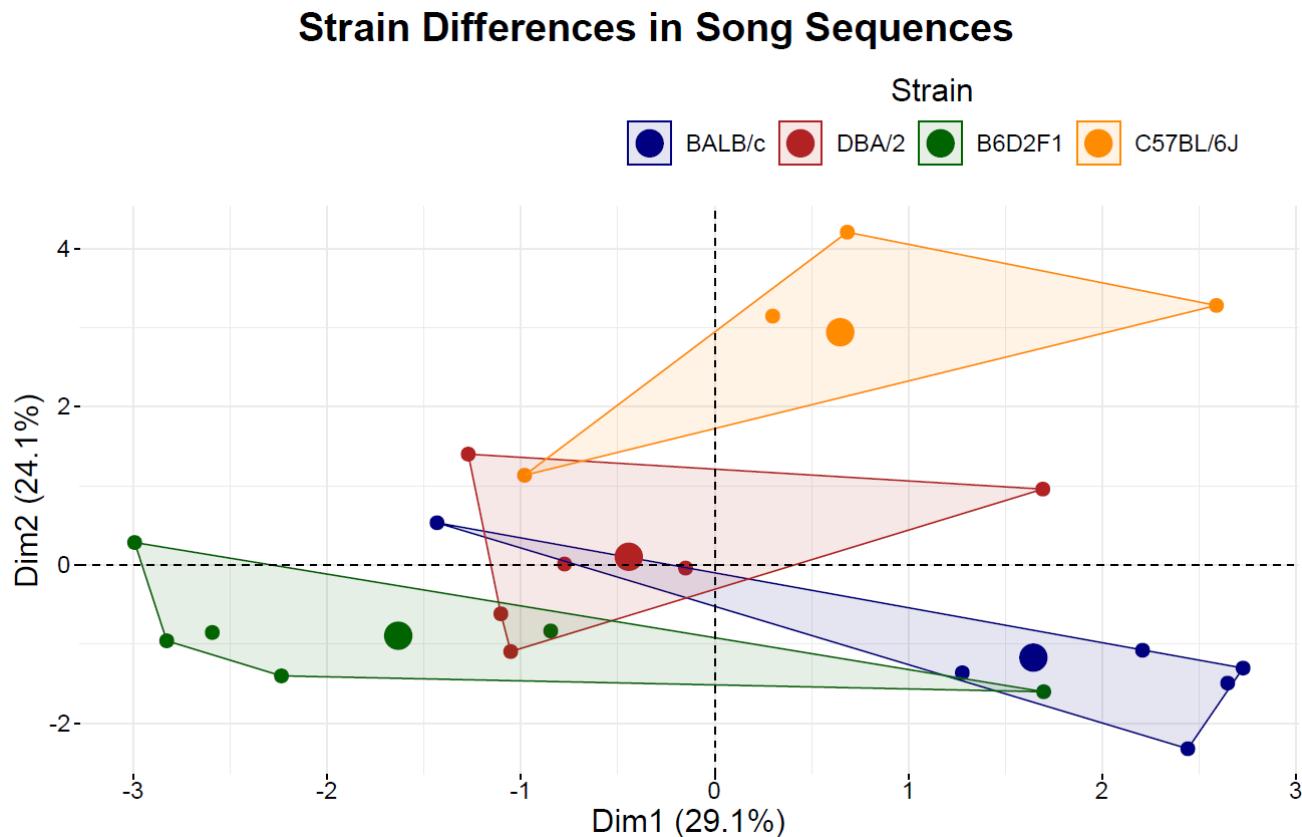

358

359 *Experiment 1 – Differences between Four Strains*

360 The total number of syllables emitted during the test session was affected by strain (H(3) =
361 13.81, Benjamini-Hochberg adjusted $p = 0.007$), with C57BL/6J mice vocalising less than the
362 other strains (significant Bonferroni-corrected comparisons: C57BL/6J < B6D2F1, DBA/2;
363 trend: C57BL/6J < BALB/c; Fig. 4A). Strain significantly affected the percentages of *Flat*
364 syllables (H(3) = 9.21, adj. $p = 0.046$; significant Bonferroni-corrected comparisons:
365 C57BL/6J > B6D2F1; Fig. 4E), *Short* syllables (H(3) = 14.39, adj. $p = 0.006$; significant
366 Bonferroni-corrected comparisons: C57BL/6J > BALB/c, B6D2F1; Fig. 4F), *Chevron* syllables
367 (H(3) = 14.88, adj. $p = 0.006$; significant Bonferroni-corrected comparisons: BALB/c >
368 C57BL/6J, B6D2F1; Fig. 4G), *2 Steps* syllables (H(3) = 14.89, adj. $p = 0.006$; significant
369 Bonferroni-corrected comparisons: DBA/2 > C57BL/6J, BALB/c; Fig. 4J), *3 Steps* syllables
370 (H(3) = 15.35, adj. $p = 0.006$; significant Bonferroni-corrected comparisons: B6D2F1 >
371 BALB/c; Fig. 4K) and *>3 Steps* syllables (H(3) = 9.52, adj. $p = 0.046$; significant Bonferroni-
372 corrected comparisons: C57BL/6J > BALB/c; Fig. 4L). A trend for a strain effect was found
373 for the percentages of *Down-FM* syllables (H(3) = 7.71, adj. $p = 0.07$). From visual inspection
374 of Fig. 4D, C57BL/6J mice tended to emit a higher percentage of *Down-FM* syllables than the
375 mice of the other strains. Another trend for a strain effect was found on the percentages of
376 *Reverse Chevron* syllables (H(3) = 7.71, adj. $p = 0.07$). Visual inspection of Fig. 4H indicates
377 that C57BL/6J and B6D2F1 mice showed a higher percentage of *Reverse Chevron* syllables
378 than BALB/c and DBA/2 mice. There was no significant strain effect on the percentages of
379 *Complex* syllables (H(3) = 5.10, adj. $p = 0.20$), *Up-FM* syllables (H(3) = 3.54, adj. $p = 0.34$)
380 and *1 Step* syllables (H(3) = 3.20, adj. $p = 0.36$; Fig. 4B, 4C, 4I). Fig. 4 also shows that the

381 courtship songs of the hybrid strain B6D2F1 were more similar to those of the maternal strain
382 (DBA/2) overall, indicating a dominant, rather than intermediate, inheritance pattern.
383 However, the expression of syllables with frequency jumps varying in complexity (2, 3, and
384 >3 Steps syllables) suggests the presence of a rather intermediate inheritance, since
385 B6D2F1 mice produced more 3 Steps syllables, while the (parental) DBA/2 and C57BL/6J
386 strains emitted more 2 Steps and >3 Steps syllables, respectively. A visual display of the
387 overall effect of strain on the syllabic composition is given in Fig. 5, as a result of principal
388 component analysis. From this figure it can be seen that, overall, strain differences are
389 present with some overlap, confirming previous findings. The C57BL/6J strain appears to
390 differ the most from the other strains.

391



392

393 **Figure 4.** Plots showing strain differences (C57BL/6J, BALB/c, DBA/2 and B6D2F1) in the total
 394 number of syllables and in the percentages of different syllable types emitted during the test sessions.
 395 Horizontal lines indicate medians, dots show individual data points ($N_{C57BL/6J} = 4$, $N_{BALB/c} = N_{B6D2F1} =$
 396 $N_{DBA/2} = 6$). $T = p < 0.1$, $*$ = $p < 0.05$, $** = p < 0.01$, $*** = p < 0.001$. Test for strain effect: independent

397 samples Kruskal-Wallis test corrected with Benjamini-Hochberg procedure. Pairwise comparisons:
398 asymptotic Dunn's post hoc test, p-values adjusted with Bonferroni correction.

399

401 **Figure 5.** Strain differences in song sequences displayed using principal component analysis of
402 syllable proportions. Animals (individual small dots) from the same strain are assigned the same
403 colour, and the maximum area covered by connecting the individual dots from the same strain is
404 highlighted. Strain differences are shown across the two dimensions explaining the majority of
405 variation (53.3 % of the variance). Larger dots indicate the mean value for each strain. The less the
406 highlighted areas overlap the more different are the strains.

407

408 Shannon entropy analysis of song sequences indicated that complexity was lower in the
409 BALB/c strain compared to the other strains ($H(3) = 13.00$, $p = 0.005$; significant Bonferroni-
410 corrected comparisons: BALB/c < C57BL/6J, B6D2F1; trend: BALB/c < DBA/2). However,
411 when correcting the entropy scores for song sequence length, it was the C57BL/6J strain

412 which showed relatively higher complexity overall ($H(3) = 9.78$, $p = 0.02$; significant
413 Bonferroni-corrected comparisons: C57BL/6J > B6D2F1, DBA/2; appendix A2), suggesting
414 that the extent to which sequence length and sequence entropy contribute to the overall
415 sequence complexity differs between strains.

416

417 *Experiment 2 – Differences between Two Strains*

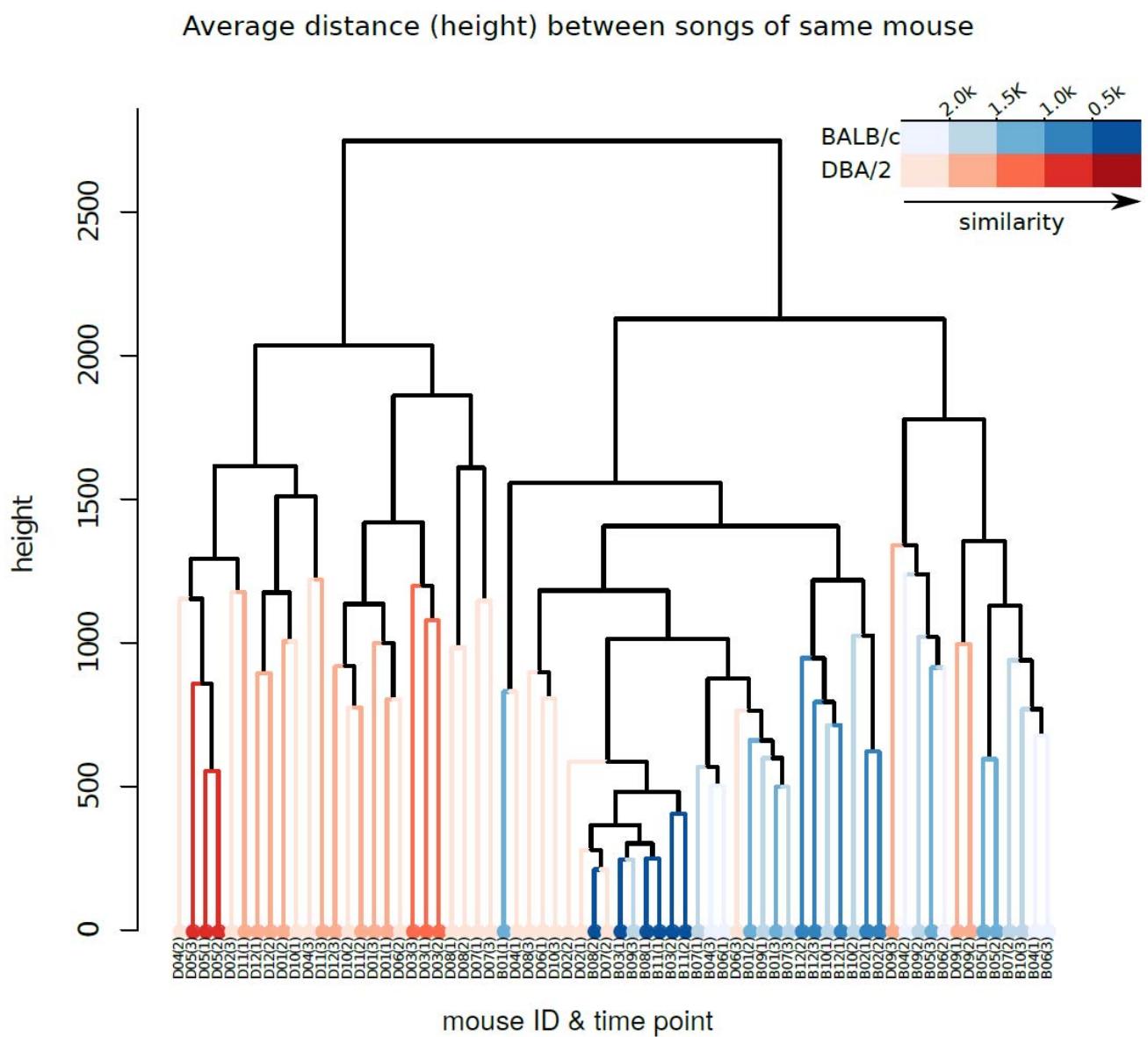
418 Strain differences between BALB/c and DBA/2 mice in the total number of syllables produced
419 and in the percentages of different syllable types emitted at testing (as average of the three
420 test sessions) are displayed in appendix A3. The same strain differences as in Experiment 1
421 were observed; in addition, some differences that were only indicated graphically but not
422 statistically in Experiment 1, were found to be statistically significant (with a larger sample
423 size) in Experiment 2.

424 The total number of syllables emitted during the test sessions was affected by strain ($U =$
425 113.0, adj. $p = 0.03$), with DBA/2 vocalising more than BALB/c overall. BALB/c mice emitted
426 more *Up-FM* ($U = 29.0$, adj. $p = 0.03$) and *Chevron* ($U = 19.0$, adj. $p = 0.003$) syllable types
427 than DBA/2 mice, while DBA/2 mice produced more *1 Step* ($U = 111.0$, adj. $p = 0.04$), *2*
428 *Steps* ($U = 143.0$, adj. $p < 0.001$), *3 Steps* ($U = 142.0$, adj. $p < 0.001$) and *>3 Steps* ($U =$
429 141.5, adj. $p < 0.001$) syllable types than BALB/c. No significant strain differences were
430 found for the syllable types *Complex* ($U = 51.5$, adj. $p = 0.29$), *Down-FM* ($U = 42.0$, adj. $p =$
431 0.13), *Flat* ($U = 64.0$, adj. $p = 0.73$), *Short* ($U = 98.0$, adj. $p = 0.19$) and *Reverse Chevron* (U
432 = 73.0, adj. $p = 1.00$).

433 In accordance with Experiment 1, Shannon entropy analysis of song sequences showed that
434 complexity was greater in DBA/2 mice than BALB/c mice ($U = 126.0$, $p = 0.001$). However,
435 when correcting the entropy scores for song sequence length, there was no significant
436 difference between the two strains ($U = 47.0$, $p = 0.16$), suggesting that sequence length
437 alone explains the differences in sequence complexity between these two strains.

438

439 *Individuality in Syllabic Composition, Sequence Complexity and Recurring Motifs*


440

441 *Syllabic Composition*

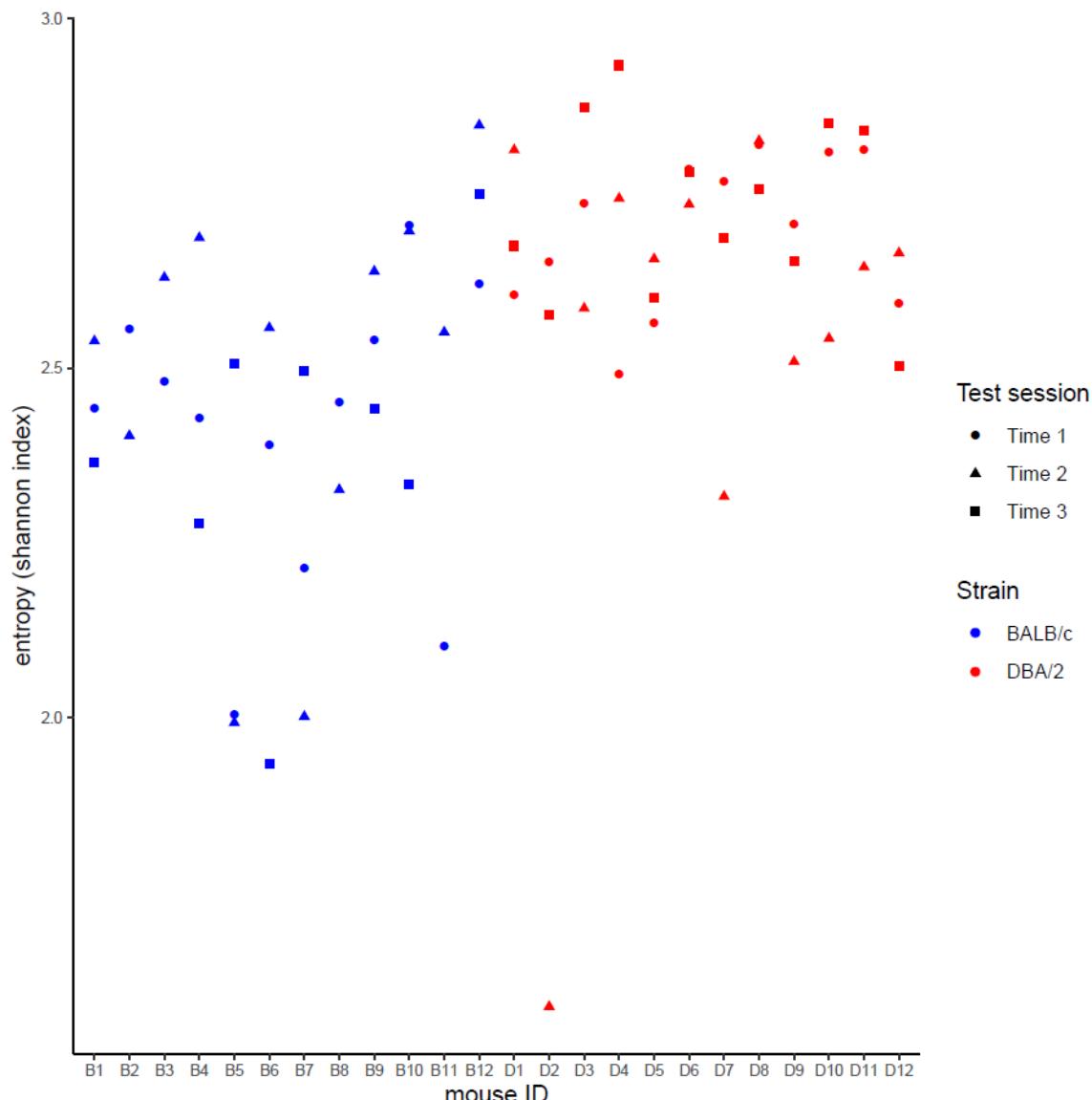
442 In Experiment 2, intraclass correlations revealed that individual temporal consistency of
443 songs' syllabic composition varied according to the strain. Temporal consistency in BALB/c
444 mice was moderate to excellent for the total number of syllables ($ICC_{average} = 0.859$; CI lower
445 bound = 0.626), while in DBA/2 mice it was moderate to excellent for the *2 Steps* syllable
446 type ($ICC_{average} = 0.823$; CI lower bound = 0.531) and good to excellent for the *Up-FM* syllable
447 type ($ICC_{average} = 0.915$; CI lower bound = 0.775). All the other variables analysed (BALB/c:
448 *Up-FM, Chevron, Flat* and *1 Step* syllable types; DBA/2: Total number of syllables, *Flat* and *1*
449 *Step* syllable types) showed poor individual temporal consistency across the three test
450 sessions (all CI lower bounds < 0.5; see appendix A4).

451 The dendrogram illustrating the similarity between song sequences from the same strain and
452 from the same individual (Fig. 6) illustrates the presence of a gradient across individuals
453 ranging from high to low individual consistency over time in both strains. Examples of high or
454 low temporal consistency in syllabic composition are shown in appendix A5 for individuals of
455 each strain. This suggests a remarkable individual variation in how similar courtship songs
456 are within the same individual, a finding which could be generalised across the two different
457 strains.

458

459

460 **Figure 6.** Dendrogram showing the hierarchical clustering of the song sequences from Experiment 2.


461 Each ID corresponds to the song sequence of a mouse during one of the three test sessions. Different
462 colours indicate to which strain the sequence belongs (red: DBA/2; blue: BALB/c), while the colour
463 shade indicates if the sequences are relatively similar (darker shade) or relatively dissimilar (lighter
464 shade) within the same individual. The further away sequences are in the tree (i.e., the higher is the
465 level on the y axis at which two or more sequences are connected), the more dissimilar their syllabic
466 composition is.

467

468 *Sequence Complexity*

469 Intraclass correlation analysis revealed poor individual consistency of entropy scores across
470 the three test sessions in both BALB/c and DBA/2 mice ($ICC_{average} = 0.551$; CI lower bound =
471 -0.517 ; $ICC_{average} = 0.331$; CI lower bound = -0.770 ; respectively; Fig. 7).

472

473

474 **Figure 7.** Individual entropy levels across test sessions. Shown are the entropy scores of the three
475 test sessions (dots) for each mouse. Different colours indicate BALB/c and DBA strains, while the
476 different dot shapes specify the test session.

477

478 *Recurring Motifs*

479 The number of unique and non-random recurring motifs identified ranged from 0 to 26 *per*
480 animal and test session, indicating a relatively large variation across animals (mean \pm SD;
481 BALB/c: 4.28 ± 4.30 ; DBA/2: 5.31 ± 2.88). However, the structure of the motifs had low
482 complexity (i.e., only about one third of a motif, on average, comprised unique syllables,
483 while the rest consisted of repetitions of the same syllable) and low variation across animals
484 (BALB/c: 0.344 ± 0.042 ; DBA/2: 0.367 ± 0.048). Similarly, motif repetition scores indicated
485 low variation across individuals (i.e., each individual repeated the same motif a similar
486 number of times; BALB/c: 5.12 ± 1.04 ; DBA/2: 4.92 ± 0.54).

487

488 **DISCUSSION**

489

490 This study investigated the influence of genotype and individuality on courtship songs in the
491 male mouse (*Mus musculus* f. *domestica*), with a focus on the syntactical characteristics of
492 the song sequences. The four laboratory strains (C57BL/6J, BALB/c, DBA/2 and B6D2F1)
493 investigated in Experiment 1 differed not only in the composition but also in the complexity
494 (entropy) of their syllabic sequences. In Experiment 2, we found that the syllabic sequences
495 of mice with the same genotype (either BALB/c or DBA/2 strain) showed some level of
496 temporal consistency at the individual level; BALB/c mice in the total number of syllables
497 produced, and DBA/2 mice in the expression of specific syllable types (2 *Steps* and *Up-FM*
498 syllables). However, hierarchical cluster analysis of the syllabic sequences highlighted a
499 remarkable individual variability in consistency across test sessions in both strains.
500 Furthermore, we identified recurring, non-random song motifs which were expressed at
501 different levels depending on the individual; when emitted, motifs were characterised by a
502 simple structure and similar levels of repetition within a song.

503

504 *Effect of Genotype on Syllabic Composition and Complexity of Songs*

505

506 Genotype strongly affected the syllabic composition of courtship songs in both experiments.
507 Our results, consistent with previous literature, indicate that in the laboratory mouse,
508 genotype can be predictive not only of the length of a song sequence (i.e., the rate at which
509 syllables are emitted), but also of which syllables are used and how often. C57BL/6J mice,
510 for instance, produced relatively higher levels of *Short* and *>3 Steps* syllables, in line with
511 findings from previous studies comparing C57BL/6J with BALB/c mice (Kikusui et al., 2011;
512 Sugimoto et al., 2011). However, they vocalised at a lower rate overall, compared to the
513 other strains. Based on principal component analysis, which took into account the variation of
514 the whole syllabic composition of a song, the C57BL/6J strain appeared to differ the most
515 from the other strains in this study. The fact that C57BL/6J mice vocalised the least may
516 indicate that this strain vocalises less in general, as shown in other contexts (male-male
517 interactions: van Segbroeck et al., 2017; mother-pup interactions: Bell et al., 1972; D'Amato
518 et al., 2005). BALB/c mice, instead, emitted relatively higher levels of *Chevron* syllables,
519 supporting previous findings that this specific syllable may be typical of this strain (Kikusui et
520 al., 2011; Sugimoto et al., 2011).

521 The complexity of the syllabic sequences, measured as sequence entropy, varied across
522 strains and was affected by sequence length (syllable emission rate). C57BL/6J mice emitted
523 syllabic sequences at a lower rate but with higher complexity, while BALB/c mice vocalised at
524 a higher rate but with less complex syllabic sequences, and the DBA/2 and B6D2F1 strains
525 showed intermediate patterns. While the biological significance of this finding should be
526 empirically tested in future studies, our result suggests that both sequence entropy and
527 sequence length should be evaluated together when determining the overall sequence
528 complexity of a genotype.

529 The observed strain differences in composition and complexity of the syllabic sequences
530 could be used in future studies to better understand how domestication has influenced
531 courtship songs. Only a few studies investigated courtship songs of wild-derived mice (*Mus*
532 *musculus musculus*) in response to unfamiliar female urine. Comparing these studies with
533 our findings, it appears that wild mice emit courtship vocalisations at a lower rate compared
534 to laboratory strains (all strains combined in our study: M = 916 syllables in 5 min; Musolf et
535 al., 2010: M < 300 syllables in 30 min; Hoffmann et al., 2012: M = 1122 syllables in 90 min).
536 This confirms previous evidence that generally domestication may lower the threshold for the
537 display of courtship behaviour (e.g., Künzl & Sachser, 1999; Price, 1984).
538 Furthermore, the proportion of syllables which could be classified as “more complex” (i.e.,
539 those containing steps; Chabout et al., 2015) appears to be much greater in laboratory
540 strains (Fig. 4 and appendix A3), as only about 2 % of the emitted vocalisations over a 90
541 minute exposure to unfamiliar female urine consisted of 1 Step and 2 Steps syllables in wild
542 male mice (Hoffmann et al., 2012). Also, the inter-individual variation in the number of
543 syllables emitted in our laboratory strains appears to be comparable, or only marginally
544 lower, to that of wild-derived mice tested within the same context (see Musolf et al., 2010 for
545 comparison). Therefore, the relatively high complexity and inter-individual variation of
546 courtship songs observed make laboratory mice an ideal model for understanding the basics
547 of vocal communication. In addition, there is some evidence that wild-derived female mice
548 are able to discriminate between courtship songs of different mouse species (Musolf et al.,
549 2015), and that female laboratory mice can distinguish between songs of different strains
550 (Nomoto et al., 2020). Similarly, the typical syllabic composition (and temporal features,
551 Sugimoto et al., 2011) of courtship songs of a laboratory strain, together with the combined
552 assessment of syllabic emission rate and sequence entropy, could be used to assess if
553 females use this information to also discriminate between males from the same strain.

554

555 *Individuality in Courtship Songs*

556

557 When assessing the individual consistency over time of syllabic composition and sequence
558 complexity within the same genotype, we found that the degree of expression of certain
559 syllable types, but not the overall complexity of the song sequence, were repeatable across
560 test sessions. These markers for individuality however differed depending on the strain
561 considered. The consistency over time in the total number of syllables observed in BALB/c
562 mice appears to somehow relate to the finding in wild-derived mice that the number of
563 emitted phrases is consistent across different social contexts (von Merten et al., 2014).
564 Instead, the consistency over time of two specific syllable types (2 Steps and *Up-FM*
565 syllables) observed in DBA/2 mice partly supports the preliminary finding by Holy and Guo
566 (2005) that for a sub-sample of B6D2F1 mice, the choice of syllable types was consistent
567 over the same three week period as in the present study. At a first glance it would appear
568 that, similar to signature calls being found in other mammals and birds (e.g., bottlenose
569 dolphins: Janik & Slater, 1998; common marmosets: Jones et al., 1993; chiffchaffs: Naguib et
570 al., 2001), the courtship songs of laboratory mice also contain individual signatures which
571 vary between strains and could potentially serve for signalling identity and for promoting
572 individual recognition by the female.

573 However, differently from the preliminary indications from Holy and Guo (2005), our
574 hierarchical cluster analysis assessing the similarity across the whole song sequences
575 revealed a remarkable individual variation in how similar courtship songs actually are within
576 the same individual. We observed a gradient ranging from low to high individual consistency
577 over time, and this finding could be generalised across the two different mouse strains. The
578 concept of intra-individual variability, intended as a short-term, reversible behavioural
579 variability of an individual in response to being repeatedly exposed to the same context
580 (Nesselroade, 1991; Ram & Gerstorf, 2009; J. A. Stamps et al., 2012) may help explain our
581 finding. Individuals can differ in how sensitive they are to different external stimuli (Aron &
582 Aron, 1997; Dingemanse et al., 2010; J. Stamps & Groothuis, 2010) so that a context that is
583 presented multiple times (i.e., repeated presentation of fresh female urine) may be perceived

584 as the same or as a different one depending on the individual's sensitivity to subtle changes
585 (e.g., urinary cue coming from a different female in each test). Intra-individual variability can
586 be regarded as differences in behavioural plasticity that are stable across individuals; such
587 differences may be maintained by natural selection as they can contribute to the stability and
588 persistence of a population in the face of a changeable environment (Dingemanse & Wolf,
589 2013). Thus, it is possible that different courtship strategies consisting of showing either low,
590 medium or high phenotypic plasticity in song characteristics may be equally rewarded by
591 bringing about different but complementary advantages for mating and reproduction. On the
592 one hand, individual consistency of song sequences over time can be an advantage to
593 ensure individual recognition and identification by a potential mate (Simmons et al., 2002); on
594 the other hand, individual plasticity in song composition and sequence entropy may increase
595 the overall complexity of the singing repertoire of an individual, and in turn be more attractive
596 to a potential mate (Chabout et al., 2015; Leitão et al., 2006; Morisaka et al., 2008). This
597 hypothesis should be empirically and systematically tested, for example by assessing
598 whether one strategy is consistently favoured over the other by different female mice.
599 The identification within the song sequences of recurring, non-random motifs, which were
600 previously identified as an integrant part of courtship songs in mice (Holy & Guo, 2005),
601 highlighted again a large individual variation. The analysis of the syllabic structure of the
602 motifs revealed that in both the strains studied, motifs had low complexity on average (i.e.,
603 simple structure with many repeated syllables) and showed similar levels of repetition within
604 a song. These motif characteristics may be typical of the mouse species (see also similar
605 examples in Holy & Guo, 2005). The high repetition of identical syllables and consequent
606 simple structure of the motifs may imply that songs containing motifs may increase the
607 chance that a song is heard in a "noisy" environment (Brumm & Slater, 2006).

608

609 *Conclusions*

610

611 Taken together, not only genotype but also individuality can affect courtship songs in male
612 mice. Our measures of length, composition and complexity of syllabic sequences contribute
613 significantly to the general understanding of vocal communication, and could be used as
614 tools to address ecologically relevant questions related to mate choice and reproductive
615 success.

616 Our finding that certain syllabic features of an individual are overall consistent over time
617 supports preliminary evidence that individuals can be identified based on syntactical
618 characteristics of their songs. However, the considerable variation across individuals in how
619 similar their song sequences are over time, suggests the presence of complementary
620 courtship strategies related to different levels of behavioural plasticity. The adaptive value of
621 this diversity in vocal communication is an area for future study.

622

623 **ACKNOWLEDGMENTS**

624 The authors would like to thank the Ministry of Innovation, Science and Research of the state
625 of North Rhine-Westphalia (MIWF) for supporting the implementation of a professorship for
626 behavioural biology and animal welfare to SHR (Project: “Refinement of Animal
627 Experiments”).

628 Furthermore, this project was supported by grants from the Deutsche
629 Forschungsgemeinschaft (DFG, German Science Foundation) to SHR (281125614/GRK
630 2220, Project B6).

631 We are also very grateful to Prof. Franz Goller for his insightful and constructive feedback on
632 a preliminary version of this manuscript.

633

634 **REFERENCES**

635

636 Armstrong, R. A. (2014). When to use the Bonferroni correction. *Ophthalmic & Physiological*
637 *Optics*, 34(5), 502–508. <https://doi.org/10.1111/opo.12131>

638 Aron, E. N., & Aron, A. (1997). Sensory-Processing Sensitivity and Its Relation to
639 Introversion and Emotionality. *Journal of Personality and Social Psychology*, 73(2),
640 345–368. <https://doi.org/10.1037/0022-3514.73.2.345>

641 Bell, R. W., Nitschke, W., & Zachman, T. A. (1972). Ultra-sounds in three inbred strains of
642 young mice. *Behavioral Biology*, 7(6), 805–814. [https://doi.org/10.1016/S0091-6773\(72\)80172-X](https://doi.org/10.1016/S0091-6773(72)80172-X)

644 Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and
645 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B*
646 (*Methodological*), 57(1), 289–300. <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>

647 Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
648 under dependency. *Annals of Statistics*, 29(4), 1165–1188.
649 <https://doi.org/10.1214/AOS/1013699998>

650 Brumm, H., & Slater, P. J. B. (2006). Ambient noise, motor fatigue, and serial redundancy in
651 chaffinch song. *Behavioral Ecology and Sociobiology*, 60(4), 475–481.
652 <https://doi.org/10.1007/s00265-006-0188-y>

653 Carere, C., & Maestripieri, D. (Eds.) (2013). *Animal personalities: behavior, physiology, and*
654 *evolution*. University of Chicago Press.

655 Chabout, J., Sarkar, A., Dunson, D. B., & Jarvis, E. D. (2015). Male mice song syntax
656 depends on social contexts and influences female preferences. *Frontiers in Behavioral*
657 *Neuroscience*, 9(APR), 76. <https://doi.org/10.3389/fnbeh.2015.00076>

658 Chesler, E. J. (2014). Out of the bottleneck: The Diversity Outcross and Collaborative Cross
659 mouse populations in behavioral genetics research. In: *Mammalian Genome* (Vol. 25,
660 Issues 1–2, pp. 3–11). Springer New York LLC. <https://doi.org/10.1007/s00335-013-9492-9>

662 D'Amato, F. R., Scalera, E., Sarli, C., & Moles, A. (2005). Pups call, mothers rush: Does
663 maternal responsiveness affect the amount of ultrasonic vocalizations in mouse pups?
664 *Behavior Genetics*, 35(1), 103–112. <https://doi.org/10.1007/s10519-004-0860-9>

665 Dingemanse, N. J., Kazem, A. J. N., Réale, D., & Wright, J. (2010). Behavioural reaction
666 norms: animal personality meets individual plasticity. *Trends in Ecology and Evolution*,
667 25(2), 81–89. <https://doi.org/10.1016/j.tree.2009.07.013>

668 Dingemanse, N. J., & Wolf, M. (2013). Between-individual differences in behavioural
669 plasticity within populations: Causes and consequences. *Animal Behaviour*, 85(5),
670 1031–1039. <https://doi.org/10.1016/j.anbehav.2012.12.032>

671 Dizinno, G., Whitney, G., & Nyby, J. (1978). Ultrasonic vocalizations by male mice (*Mus*
672 *musculus*) to female sex pheromone: Experiential determinants. *Behavioral Biology*,
673 22(1), 104–113. [https://doi.org/10.1016/S0091-6773\(78\)92094-1](https://doi.org/10.1016/S0091-6773(78)92094-1)

674 Ehret, G. (2018). Characteristics of Vocalization in Adult Mice. In: *Handbook of Behavioral*
675 *Neuroscience* (Vol. 25, pp. 187–195). Elsevier B.V. <https://doi.org/10.1016/B978-0-12-809600-0.00018-4>

677 Grimsley, J. M. S., Monaghan, J. J. M., & Wenstrup, J. J. (2011). Development of Social
678 Vocalizations in Mice. *PLoS ONE*, 6(3), e17460.
679 <https://doi.org/10.1371/journal.pone.0017460>

680 Hoffmann, F., Musolf, K., & Penn, D. J. (2012). Spectrographic analyses reveal signals of
681 individuality and kinship in the ultrasonic courtship vocalizations of wild house mice.
682 *Physiology and Behavior*, 105(3), 766–771.
683 <https://doi.org/10.1016/j.physbeh.2011.10.011>

684 Holy, T. E., & Guo, Z. (2005). Ultrasonic Songs of Male Mice. *PLoS Biology*, 3(12), e386.
685 <https://doi.org/10.1371/journal.pbio.0030386>

686 Janik, V. M., & Slater, P. J. B. (1998). Context-specific use suggests that bottlenose dolphin
687 signature whistles are cohesion calls. *Animal Behaviour*, 56(4), 829–838.
688 <https://doi.org/10.1006/anbe.1998.0881>

689 Jones, B. S., Harris, D. H. R., & Catchpole, C. K. (1993). The stability of the vocal signature
690 in phee calls of the common marmoset, *Callithrix jacchus*. *American Journal of*
691 *Primateology*, 31(1), 67–75. <https://doi.org/10.1002/ajp.1350310107>

692 Kikusui, T., Nakanishi, K., Nakagawa, R., Nagasawa, M., Mogi, K., & Okanoya, K. (2011).
693 Cross Fostering Experiments Suggest That Mice Songs Are Innate. *PLoS ONE*, 6(3),
694 e17721. <https://doi.org/10.1371/journal.pone.0017721>

695 Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation
696 Coefficients for Reliability Research. *Journal of Chiropractic Medicine*, 15(2), 155–163.
697 <https://doi.org/10.1016/j.jcm.2016.02.012>

698 Künzl, C., & Sachser, N. (1999). The behavioral endocrinology of domestication: A
699 comparison between the domestic guinea pig (*Cavia aperea f. porcellus*) and its wild
700 ancestor, the cavy (*Cavia aperea*). *Hormones and Behavior*, 35(1), 28–37.
701 <https://doi.org/10.1006/hbeh.1998.1493>

702 Landers, R. (2015). Computing Intraclass Correlations (ICC) as Estimates of Interrater
703 Reliability in SPSS. *The Winnower*, 2:e143518.81744.
704 <https://doi.org/10.15200/winn.143518.81744>

705 Leitão, A., ten Cate, C., & Riebel, K. (2006). Within-song complexity in a songbird is
706 meaningful to both male and female receivers. *Animal Behaviour*, 71(6), 1289–1296.
707 <https://doi.org/10.1016/j.anbehav.2005.08.008>

708 Morisaka, T., Katahira, K., & Okanoya, K. (2008). Variability in preference for conspecific
709 songs with syntactical complexity in female Bengalese Finches: towards an
710 understanding of song evolution. *Ornithological Science*, 7(1), 75–84.
711 [https://doi.org/10.2326/1347-0558\(2008\)7\[75:VIPFCS\]2.0.CO;2](https://doi.org/10.2326/1347-0558(2008)7[75:VIPFCS]2.0.CO;2)

712 Musolf, K., Hoffmann, F., & Penn, D. J. (2010). Ultrasonic courtship vocalizations in wild
713 house mice, *Mus musculus musculus*. *Animal Behaviour*, 79(3), 757–764.
714 <https://doi.org/10.1016/j.anbehav.2009.12.034>

715 Musolf, K., Meindl, S., Larsen, A. L., Kalcounis-Rueppell, M. C., & Penn, D. J. (2015).
716 Ultrasonic Vocalizations of Male Mice Differ among Species and Females Show
717 Assortative Preferences for Male Calls. *PLOS ONE*, 10(8), e0134123.
718 <https://doi.org/10.1371/journal.pone.0134123>

719 Naguib, M., Hammerschmidt, K., & Wirth, J. (2001). Microgeographic Variation, Habitat
720 Effects and Individual Signature Cues in Calls of Chiffchaffs *Phylloscopus collybita*
721 *canarensis*. *Ethology*, 107(4), 341–355. <https://doi.org/10.1046/j.1439-0310.2001.00669.x>

723 Nesselroade, J. R. (1991). The warp and the woof of the developmental fabric. In: *Visions of
724 aesthetics, the environment & development: The legacy of Joachim F. Wohlwill*. (pp.
725 213–240). Lawrence Erlbaum Associates, Inc.

726 Nicolakis, D., Marconi, M. A., Zala, S. M., & Penn, D. J. (2020). Ultrasonic vocalizations in
727 house mice depend upon genetic relatedness of mating partners and correlate with
728 subsequent reproductive success. *Frontiers in Zoology*, 17(1), 10.
729 <https://doi.org/10.1186/s12983-020-00353-1>

730 Nomoto, K., Hashiguchi, A., Asaba, A., Osakada, T., Kato, M., Koshida, N., Mogi, K., &
731 Kikusui, T. (2020). Female C57BL/6 and BALB/c mice differently use the acoustic
732 features of male ultrasonic vocalizations for social preferences. *Experimental Animals*.
733 <https://doi.org/10.1538/expanim.19-0119>

734 Nyby, J., Whitney, G., Schmitz, S., & Dizinno, G. (1978). Postpubertal experience
735 establishes signal value of mammalian sex odor. *Behavioral Biology*, 22(4), 545–552.
736 [https://doi.org/10.1016/S0091-6773\(78\)92745-1](https://doi.org/10.1016/S0091-6773(78)92745-1)

737 Portfors, C. V. (2007). Types and Functions of Ultrasonic Vocalizations in Laboratory Rats
738 and Mice. *Journal of the American Association for Laboratory Animal Science*, 46(1),
739 28–34.

740 Portfors, C. V., & Perkel, D. J. (2014). The role of ultrasonic vocalizations in mouse
741 communication. *Current Opinion in Neurobiology*, 28, 115–120.
742 <https://doi.org/10.1016/j.conb.2014.07.002>

743 Price, E. O. (1984). Behavioral aspects of animal domestication. *Quarterly Review of
744 Biology*, 59(1), 1–32. <https://doi.org/10.1086/413673>

745 Ram, N., & Gerstorf, D. (2009). Time-Structured and Net Intraindividual Variability: Tools for
746 Examining the Development of Dynamic Characteristics and Processes. *Psychology
747 and Aging*, 24(4), 778–791. <https://doi.org/10.1037/a0017915>

748 Scattoni, M. L., Gandhy, S. U., Ricceri, L., & Crawley, J. N. (2008). Unusual Repertoire of
749 Vocalizations in the BTBR T+tf/J Mouse Model of Autism. *PLoS ONE*, 3(8), e3067.
750 <https://doi.org/10.1371/journal.pone.0003067>

751 Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability.
752 *Psychological Bulletin*, 86(2), 420–428. <https://doi.org/10.1037/0033-2909.86.2.420>

753 Simmons, A. M., Popper A. N., & Fay, R. R. (Eds.) (2002). *Acoustic communication* (Vol. 16).
754 Springer Science & Business Media.

755 Sipos, M. L., Kerchner, M., & Nyby, J. G. (1992). An ephemeral sex pheromone in the urine
756 of female house mice (*Mus domesticus*). *Behavioral and Neural Biology*, 58(2), 138–
757 143. [https://doi.org/10.1016/0163-1047\(92\)90375-E](https://doi.org/10.1016/0163-1047(92)90375-E)

758 Stamps, J. A., Briffa, M., & Biro, P. A. (2012). Unpredictable animals: Individual differences in
759 intraindividual variability (IIV). *Animal Behaviour*, 83(6), 1325–1334.
760 <https://doi.org/10.1016/j.anbehav.2012.02.017>

761 Stamps, J., & Groothuis, T. G. G. (2010). The development of animal personality: Relevance,
762 concepts and perspectives. *Biological Reviews*, 85(2), 301–325.
763 <https://doi.org/10.1111/j.1469-185X.2009.00103.x>

764 Sugimoto, H., Okabe, S., Kato, M., Koshida, N., Shiroishi, T., Mogi, K., Kikusui, T., & Koide,
765 T. (2011). A Role for Strain Differences in Waveforms of Ultrasonic Vocalizations during
766 Male–Female Interaction. *PLoS ONE*, 6(7), e22093.
767 <https://doi.org/10.1371/journal.pone.0022093>

768 van Segbroeck, M., Knoll, A. T., Levitt, P., & Narayanan, S. (2017). MUPET - Mouse
769 Ultrasonic Profile ExTraction: A Signal Processing Tool for Rapid and Unsupervised
770 Analysis of Ultrasonic Vocalizations. *Neuron*, 94(3), 465-485.e5.
771 <https://doi.org/10.1016/j.neuron.2017.04.005>

772 von Merten, S., Hoier, S., Pfeifle, C., & Tautz, D. (2014). A Role for Ultrasonic Vocalisation in
773 Social Communication and Divergence of Natural Populations of the House Mouse
774 (*Mus musculus domesticus*). *PLoS ONE*, 9(5), e97244.
775 <https://doi.org/10.1371/journal.pone.0097244>

776 Yang, H., Bell, T. A., Churchill, G. A., & De Villena, F. P. M. (2007). On the subspecific origin
777 of the laboratory mouse. *Nature Genetics*, 39(9), 1100–1107.
778 <https://doi.org/10.1038/ng2087>

779 Yang, H., Wang, J. R., Didion, J. P., Buus, R. J., Bell, T. A., Welsh, C. E., Bonhomme, F., Yu,
780 A. H. T., Nachman, M. W., Pialek, J., Tucker, P., Boursot, P., McMillan, L., Churchill, G.
781 A., & De Villena, F. P. M. (2011). Subspecific origin and haplotype diversity in the
782 laboratory mouse. *Nature Genetics*, 43(7), 648–655. <https://doi.org/10.1038/ng.847>

783

784 **Appendix A1 – Additional Methods**

785

786 *Cage Furnishing and Enrichment*

787

788 Cages of male mice were provided with wood chips (TierWohl Super, J. RETTENMAIER &
789 SÖHNE GmbH, Rosenberg, Germany) as bedding material, a nestlet (BIOSCAPE GmbH,
790 Castrop-Rauxel, Germany; Experiment 1) or a paper towel (Experiment 2) as nesting
791 material and a transparent red plastic mouse house (Mouse House™, Tecniplast
792 Deutschland GmbH, Hohenpeißenberg, Germany) and a wooden stick (approximately 1.5
793 cm x 1.5 cm x 10 cm) as environmental enrichment.

794 Cages of female mice contained the same items used for the males, except for the bedding
795 material which consisted of wood shavings (females, Allspan, Höveler GmbH & Co.KG,
796 Langenfeld, Germany), and the nesting material which always consisted of a paper towel.

797

798 *Vocalisations Recording Setup*

799

800 All recordings of vocalisations were obtained in a dedicated testing room under red light
801 conditions. Each male mouse was individually tested directly in its home cage, which was
802 positioned in a noise cancelling box made of cardboard (l x b x h: 64 x 36 x 34 cm). The
803 inside of the box was covered with corrugated acoustic foam (thickness: 2.5 – 3.5 cm) to
804 improve the quality of the recordings. To allow an easy observation of the mouse inside its
805 home cage, the front of the box was open. A high quality condenser microphone (Avisoft
806 UltraSoundGate CM16/CMPA, Avisoft Bioacoustics, Germany) was placed inside the box
807 over the centre of the home cage, pointing downwards and at a distance of 16 cm from the
808 cage floor. The microphone was connected to a recording device (Avisoft UltraSoundGate

809 416Hb, Avisoft Bioacoustics, Germany) controlled by the software Avisoft-RECODER
810 (Version 4.2.27). Frequency range was set to 5 – 150 kHz, sampling rate to 300 kHz and
811 resolution to 16 bit (Ferhat et al., 2016).

812

813 *Experimental Procedures*

814

815 The experimental procedures below were carried out during the dark active phase, under red
816 light conditions. The testing order of males was randomised within each batch and was kept
817 the same across social encounter and test / control sessions. Whenever the experimenter
818 touched a female mouse or its urine, gloves were changed immediately afterwards to avoid
819 odour contamination within the testing room and across housing rooms.

820

821 *Social Encounter*

822 One week before testing, each male experienced a 20 minute social encounter session with
823 an unfamiliar female to induce the emission of courtship vocalisations by the male (Dizinno et
824 al., 1978; Nyby et al., 1978; Sipos et al., 1992). The females used for these sessions were
825 either 5-HTT +/- mice with a C57BL/6J genetic background (N = 24, PND 58 – 234;
826 Experiment 1) or C57BL/6 mice (N = 16, PND 216; Experiment 2). A different female was
827 randomly assigned to each male and in Experiment 2, where 16 females were used for 24
828 males, males from the same batch were always presented with females from different cages.

829 The social encounter took place in a Makrolon type III cage divided lengthways into two
830 equal compartments by a perforated and transparent Plexiglas divider. This cage had wood
831 chips as bedding and one water bottle for each compartment. First, one female was
832 transported from the female housing room to the testing room and placed in one cage
833 compartment, then the assigned male was transported in its home cage from the male
834 housing room to the testing room and placed in the other compartment. The small holes in

835 the divider (diameter: 5 mm) allowed for olfactory, auditory and limited physical contact
836 between the two animals (similar to Musolf et al., 2010). The social encounter cage was then
837 placed in the noise cancelling box and vocalisations were recorded to monitor the successful
838 initial emission of courtship songs in response to female presence. The experimenter sat in
839 front of the noise cancelling box to habituate the males to her presence in the testing room,
840 and to check for any signs of severe stress (e.g., repeated escape attempts) by the animals,
841 which however never occurred. After 20 minutes, both animals were returned to their housing
842 rooms, and a new social encounter cage was prepared for the next mice pair.

843

844 *Test and Control Sessions*

845 At the beginning of a test session, each male mouse was transported in its home cage to the
846 testing room and the cage was placed in the noise cancelling box. The experimenter then left
847 the room for 20 minutes to allow the animal to habituate to the novel environment. Another
848 habituation period of 10 minutes followed in which the experimenter sat in front of the noise
849 cancelling box. Then, fresh female urine was collected on a cotton swab in the female
850 housing room, as described in the Urine Collection section. The cotton swab was
851 immediately taken to the testing room and inserted through the grid of the cage lid onto one
852 end of the home cage floor. Vocalisations were recorded for the five minutes following the
853 presentation of the cotton swab. During this time, the experimenter recorded with a
854 stopwatch the time that the animal spent sniffing the cotton swab. Sniffing time was
855 measured to assess whether the animal was interested and therefore aware of the presence
856 of the cotton swab in the cage. It was defined as having the snout in direct contact with the
857 cotton swab, which also included carrying the swab around with the mouth. After the five
858 minutes had passed, vocalisation recording was stopped and the animal was moved to a
859 clean home cage. The cage lid was not replaced but was cleaned with ethanol to avoid
860 contamination with female urinary cues. The animal was then taken back to the male housing
861 room.

862 Differently from the test sessions, in the control sessions the animal was presented with a
863 clean cotton swab without female urine. To account for the variable time the males had to
864 wait during urine collection in the test sessions (Urine Collection section), in the control
865 sessions the initial 30 minutes of habituation to testing room and experimenter were followed
866 by a randomly varying waiting time (5 – 30 minutes) during which the experimenter was
867 outside the testing room.

868 If the mouse did not sniff the cotton swab during the whole test or control session, it was
869 assumed that the mouse may have not been aware of the swab presence in the cage (e.g.,
870 because it was resting in the nest), thus the session was repeated either at the end of the
871 day or on the next day, so that the same animal was always tested at a similar time of day
872 across testing sessions. This occurred three times in Experiment 1 (2 x C57BL/6J and 1 x
873 B6D2F1 mice) and two times in Experiment 2 (2 x DBA/2 mice).

874

875 *Urine Collection*

876 The females used for urine collection were 5-HTT +/+ mice with a C57BL/6J genetic
877 background in Experiment 1 (N = 16, PND 65 – 221 at testing) or 5-HTT +/+ and 5-HTT +/-
878 mice with a C57BL/6J genetic background in Experiment 2 (N = 21 and 14, respectively;
879 PND 75 - 350 at testing). This was done to have a similar genetic background among female
880 urine donors, and based on evidence that females' genetic background does not have to
881 match the male's one for courtship songs to be induced (Holy & Guo, 2005; Sugimoto et al.,
882 2011). It has been shown that male mice emit less vocalisations in response to cues from
883 familiar females (Musolf et al., 2010) and that the oestrous stage of the cue female might
884 influence vocalisation production as well (Barthelemy et al., 2004; Hanson & Hurley, 2012).
885 Consequently, urinary cues were always obtained from unfamiliar, non-oestrous females. A
886 list of the donor females was created before the start of the experiment and was followed in
887 the same order throughout the study. Urine collection was performed in the female housing
888 room. First, one female was taken out from its home cage and a vaginal smear was obtained

889 with a clean plastic loop to determine the oestrous cycle stage, according to the methods
890 from Byers and colleagues (2012). Briefly, the smear was suspended in a drop of water on a
891 slide and vaginal cells were immediately investigated with a microscope (100x magnification
892 under bright field illumination without staining). The predominant presence of cornified
893 epithelial cells over leukocytes and nucleated epithelial cells indicated that the female was in
894 the oestrus stage. If this was the case, the female was returned to its home cage and the
895 next female on the list was collected for vaginal smear. If the female was in a stage different
896 than oestrus, it was immediately placed in a clean Makrolon type II cage the floor of which
897 was covered with a new sheet of aluminium foil for urine collection. In case the female had
898 not urinated after three minutes, handling procedures such as tail handling, manual restraint
899 by the nape and/or gentle stroking of the ventral area (Nyby et al., 1979) were performed to
900 elicit urination. If urine could not be obtained within seven additional minutes, the female was
901 returned to its home cage and the next female on the list was collected. As soon as the
902 female urinated, 25 to 50 µl of urine were collected (Holy & Guo, 2005; Musolf et al., 2010)
903 and transferred to a clean cotton swab by pipetting half the volume of urine on the centre of
904 each side of the swab. The swab was then placed in a plastic container and transported to
905 the testing room, so that no more than five minutes passed between urine sample collection
906 and testing.

907 To prevent the risk that the emission of vocalisations within a strain could be affected by
908 urine samples from a specific female, the priority was to collect urine samples from as many
909 females as possible. Therefore, urine samples were taken from the same females only when
910 all females from the list had donated one urine sample, or the ones that had not were in
911 oestrous that day.

912

913 *Intra- and Inter- Rater Reliability*

914

915 In Experiment 1, all syllables were counted by the same experimenter (S. Siestrup). Intra-
916 rater reliability was assessed by recounting the syllables of one session for every set of five
917 sessions analysed (20 % of all recordings; $n = 10$). It was randomly chosen which recording
918 out of the last five was reanalysed. The intraclass correlation coefficient (ICC) was calculated
919 using a two-way mixed design assessing the absolute agreement of the average of the
920 counts (Landers, 2015; Shrout & Fleiss, 1979). The ICC was computed for the total counts of
921 syllables and the counts of each syllable type. Reliability was evaluated based on the ICC
922 estimate and on the lower bound of the 95% confidence interval (Koo & Li, 2016). Intra-rater
923 reliability was excellent for all the syllable types counted (all $ICC_{\text{average}} > 0.994$; all CI lower
924 bounds > 0.981).

925 In Experiment 2, syllables were counted by two experimenters (S. Siestrup and M. Peng).
926 Intra-rater reliability of the second experimenter (M. Peng) was assessed by recounting the
927 syllables of one session for every set of eight sessions analysed (12 % of all recordings; $n =$
928 7). Inter-rater reliability was assessed on eight randomly chosen sessions that were analysed
929 by both experimenters. Reliability was evaluated in the same way as in Experiment 1. Intra-
930 rater reliability was good to excellent (all $ICC_{\text{average}} > 0.946$; all CI lower bounds > 0.728).
931 Inter-rater reliability was good to excellent for *Complex*, *Up-FM*, *Flat*, *Chevron*, *1 Step*, *2*
932 *Steps*, *3 Steps* and total number of syllables ($ICC_{\text{average}} > 0.962$; CI lower bounds > 0.796)
933 and was moderate to excellent for *Down-FM* and *Reverse Chevron* syllable types (ICC_{average}
934 > 0.911 ; CI lower bounds > 0.512). *>3 Steps*, *Short* and *Other* syllable types had a good
935 average intraclass correlation ($ICC_{\text{average}} = 0.853$, 0.811 , 0.792 ; respectively) but relatively
936 poor lower bound of the 95 % confidence interval (CI lower bounds = 0.305 , 0.171 , -0.074 ;
937 respectively). Therefore, the syllable type *Other* was excluded from further analysis as it also
938 occurred very rarely (less than 0.05 % of all emitted syllables), while the reliability of *>3*
939 *Steps* and *Short* syllable types was considered acceptable since the relative proportions of
940 emitted syllables between BALB/c and DBA/2 remained similar between Experiment 1 and 2
941 (see Fig. 4 and appendix A3).

942

943 *Comparison of Control and Test Sessions*

944

945 In Experiment 1, related-samples Wilcoxon signed rank tests were used to compare the total
946 number of syllables produced during test and control sessions, and whether the difference
947 between control and test sessions depended on the order of these two conditions. The same
948 test was used to compare the time the animals spent sniffing the swab during test and
949 control sessions. Significantly fewer syllables were emitted during control sessions ($M =$
950 127.5, $IQR = 431.0$) than during test sessions ($M = 916.0$, $IQR = 792.0$; $z = 3.71$, $p < 0.001$).
951 When considering only the animals for which the control session preceded the test session,
952 significantly more syllables were produced during the test ($M = 787.5$, $IQR = 772.0$) than
953 during the control ($M = 7.0$, $IQR = 95.0$; $z = -3.06$, $p = 0.002$). Instead, when the test session
954 preceded the control one, the number of emitted syllable during the test only tended to be
955 greater than control ($M = 1017.5$, $IQR = 1016.0$ vs. $M = 418.0$, $IQR = 729.0$; $z = -1.73$, $p =$
956 0.08), indicating a carry-over effect from the test day to the control day. There was no
957 significant difference between the time spent sniffing the swab during control ($M = 195.0$ s,
958 $IQR = 92.0$ s) and test sessions ($M = 186.0$ s, $IQR = 77.0$ s; $z = -0.36$, $p = 0.72$), indicating
959 that the animals showed similar interest in the cotton swab in either condition, and their
960 vocalisations occurred in response to the urinary cue.

961 In Experiment 2, based on the results from Experiment 1, the control session always
962 preceded the test sessions. The same comparisons as in Experiment 1 were made, but since
963 the control session was followed by three test sessions, related-samples Friedman's tests
964 were used. BALB/c mice emitted fewer syllables in the control session compared to the test
965 sessions overall, but also produced comparatively fewer syllables in the third test session
966 ($\chi^2(3) = 26.10$, $p < 0.001$; significant Bonferroni-corrected comparisons: Control < Time 1,
967 Time 2; Time 2 > Time 3). DBA/2 mice also emitted fewer syllables in the control session
968 than in the test sessions, and this difference was maintained across all test sessions ($\chi^2(3) =$
969 20.70, $p < 0.001$; significant Bonferroni-corrected comparisons: Control < Time 1, Time 2,

970 Time 3). In BALB/c mice, the time spent sniffing the cotton swab was overall greater in the
971 control session than in the test sessions ($\chi^2(3) = 17.57$, $p = 0.001$; significant Bonferroni-
972 corrected comparisons: Control > Time 1, Time 3; as a trend: Control > Time 2), while in the
973 DBA/2 mice no difference was found between control and test sessions ($\chi^2(3) = 4.09$, $p =$
974 0.25). Again, these results indicate that the time spent exploring the cotton swab did not
975 affect the emission of vocalisations.

976

977 *Reference List – Appendix A1*

978

979 Barthelemy, M., Gourbal, B. E. F., Gabrion, C., & Petit, G. (2004). Influence of the female
980 sexual cycle on BALB/c mouse calling behaviour during mating. *Naturwissenschaften*,
981 91(3), 135–138. <https://doi.org/10.1007/s00114-004-0501-4>

982 Byers, S. L., Wiles, M. v., Dunn, S. L., & Taft, R. A. (2012). Mouse Estrous Cycle
983 Identification Tool and Images. *PLoS ONE*, 7(4), e35538.
984 <https://doi.org/10.1371/journal.pone.0035538>

985 Dizinno, G., Whitney, G., & Nyby, J. (1978). Ultrasonic vocalizations by male mice (*Mus*
986 *musculus*) to female sex pheromone: Experiential determinants. *Behavioral Biology*,
987 22(1), 104–113. [https://doi.org/10.1016/S0091-6773\(78\)92094-1](https://doi.org/10.1016/S0091-6773(78)92094-1)

988 Ferhat, A. T., Torquet, N., le Sourd, A. M., de Chaumont, F., Olivo-Marin, J. C., Faure, P.,
989 Bourgeron, T., & Ey, E. (2016). Recording mouse ultrasonic vocalizations to evaluate
990 social communication. *Journal of Visualized Experiments*, 2016(112), 53871.
991 <https://doi.org/10.3791/53871>

992 Hanson, J. L., & Hurley, L. M. (2012). Female Presence and Estrous State Influence Mouse
993 Ultrasonic Courtship Vocalizations. *PLoS ONE*, 7(7), e40782.
994 <https://doi.org/10.1371/journal.pone.0040782>

995 Holy, T. E., & Guo, Z. (2005). Ultrasonic Songs of Male Mice. *PLoS Biology*, 3(12), e386.
996 <https://doi.org/10.1371/journal.pbio.0030386>

997 Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation
998 Coefficients for Reliability Research. *Journal of Chiropractic Medicine*, 15(2), 155–163.
999 <https://doi.org/10.1016/j.jcm.2016.02.012>

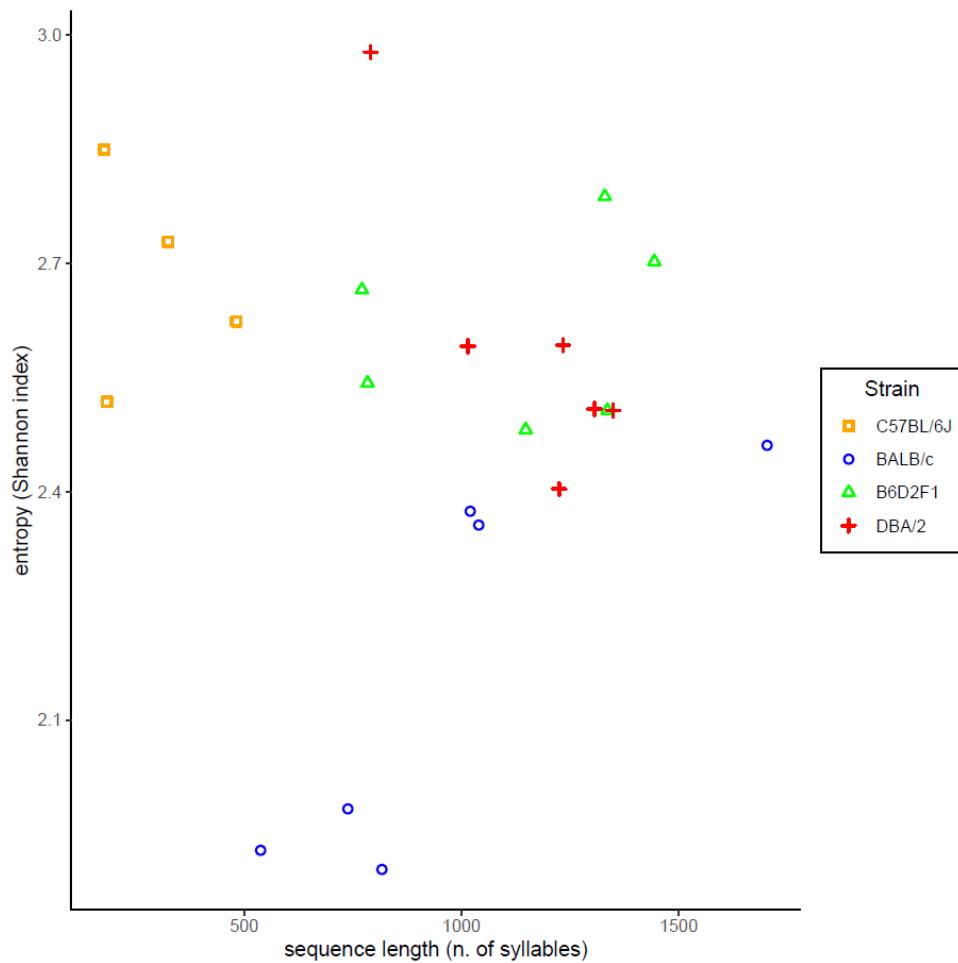
1000 Landers, R. (2015). Computing Intraclass Correlations (ICC) as Estimates of Interrater
1001 Reliability in SPSS. *The Winnower*, 2:e143518.81744.
1002 <https://doi.org/10.15200/winn.143518.81744>

1003 Musolf, K., Hoffmann, F., & Penn, D. J. (2010). Ultrasonic courtship vocalizations in wild
1004 house mice, *Mus musculus musculus*. *Animal Behaviour*, 79(3), 757–764.
1005 <https://doi.org/10.1016/j.anbehav.2009.12.034>

1006 Nyby, J., Whitney, G., Schmitz, S., & Dizinno, G. (1978). Postpubertal experience
1007 establishes signal value of mammalian sex odor. *Behavioral Biology*, 22(4), 545–552.
1008 [https://doi.org/10.1016/S0091-6773\(78\)92745-1](https://doi.org/10.1016/S0091-6773(78)92745-1)

1009 Nyby, J., Wysocki, C. J., Whitney, G., Dizinno, G., & Schneider, J. (1979). Elicitation of male
1010 mouse (*Mus musculus*) ultrasonic vocalizations: I. Urinary cues. *Journal of Comparative
1011 and Physiological Psychology*, 93(5), 957–975. <https://doi.org/10.1037/h0077623>

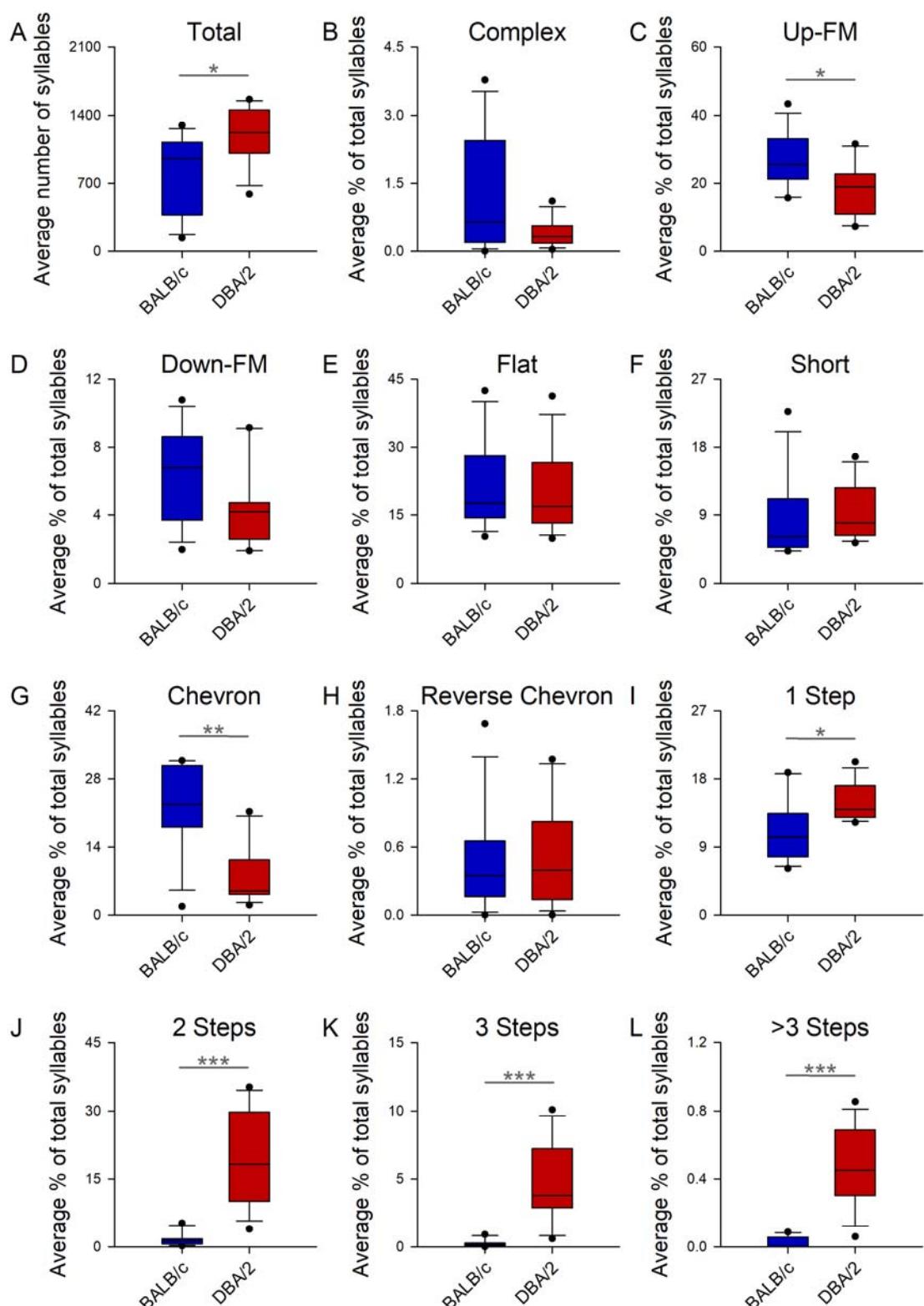
1012 Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability.
1013 *Psychological Bulletin*, 86(2), 420–428. <https://doi.org/10.1037/0033-2909.86.2.420>


1014 Sipos, M. L., Kerchner, M., & Nyby, J. G. (1992). An ephemeral sex pheromone in the urine
1015 of female house mice (*Mus domesticus*). *Behavioral and Neural Biology*, 58(2), 138–
1016 143. [https://doi.org/10.1016/0163-1047\(92\)90375-E](https://doi.org/10.1016/0163-1047(92)90375-E)

1017 Sugimoto, H., Okabe, S., Kato, M., Koshida, N., Shiroishi, T., Mogi, K., Kikusui, T., & Koide,
1018 T. (2011). A Role for Strain Differences in Waveforms of Ultrasonic Vocalizations during
1019 Male–Female Interaction. *PLoS ONE*, 6(7), e22093.
1020 <https://doi.org/10.1371/journal.pone.0022093>

1022 **Appendix A2 - Sequence Entropy and Sequence Length (Experiment 1)**

1023


1024

1025 **Appendix A2.** Scatter plot showing the relationship between sequence entropy and sequence length
1026 for each strain. Individuals (dots) from the same strain are assigned a dedicated symbol and colour.
1027 The sequence complexity of each strain appears to be differentially affected by these two measures.

1028

1029 **Appendix A3 – Syllabic Composition (Experiment 2)**

1030

1031

1032 **Appendix A3.** Box plots showing strain differences (BALB/c vs. DBA/2) in the total number of
1033 syllables and in the percentages of different syllable types emitted at testing (as average of the three
1034 test sessions). The boxes represent the middle 50% of the data, while the upper and lower whiskers
1035 include the middle 80% of the data; the upper and lower round dots indicate the 95th and 5th
1036 percentiles, respectively. T = $p < 0.1$, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$.

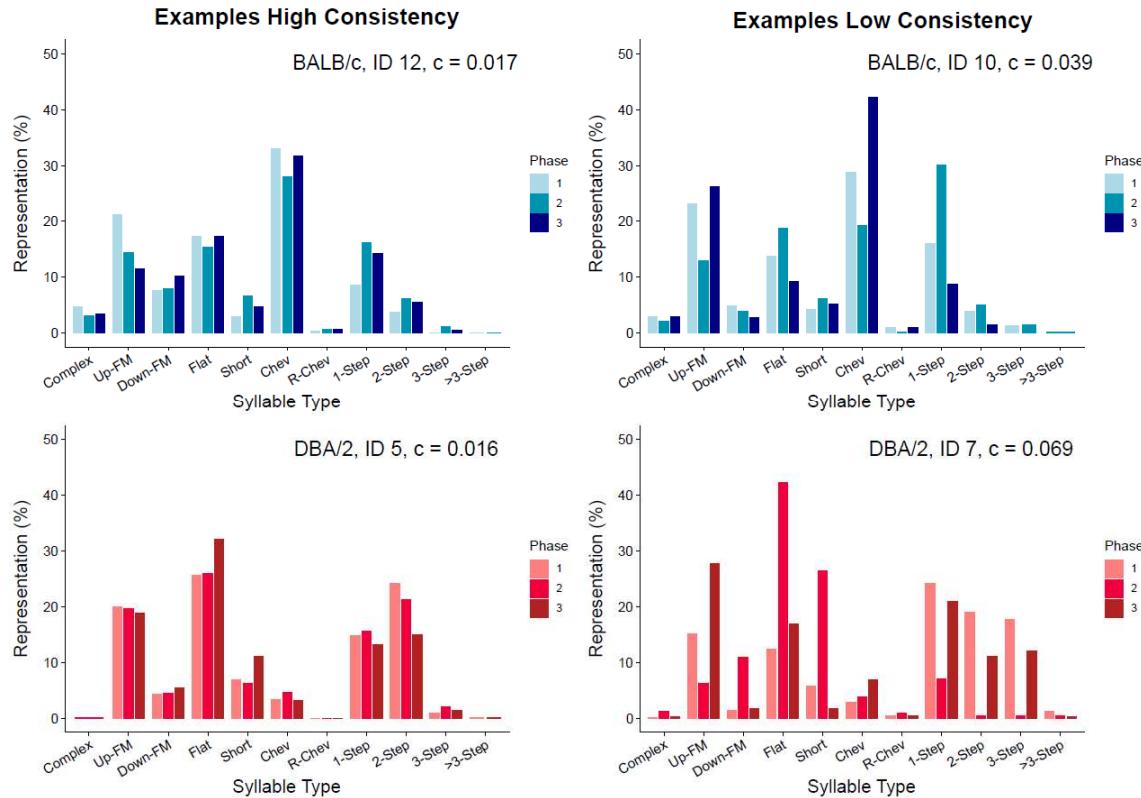
1037

1038 **Appendix A4 – Temporal Consistency of Syllables**

1039

Strain	Syllable Type	Average ICC	95 % Confidence Interval		ICC Interpretation*
			Lower Bound	Upper Bound	
BALB/c	<i>Total Syllables</i>	0.859	0.626	0.956	Moderate/Excellent
	<i>Up-FM</i>	0.734	0.220	0.928	Poor
	<i>Chevron</i>	0.341	-0.931	0.822	Poor
	<i>Flat</i>	0.828	0.495	0.953	Poor
	<i>1 Step</i>	0.415	-0.714	0.842	Poor
DBA/2	<i>Total Syllables</i>	0.624	0.006	0.883	Poor
	<i>2 Steps</i>	0.823	0.531	0.945	Moderate/Excellent
	<i>Up-FM</i>	0.915	0.775	0.973	Good/Excellent
	<i>Flat</i>	0.653	0.082	0.891	Poor
	<i>1 Step</i>	0.010	-1.619	0.690	Poor

*Based on Koo & Li (2016).


1040

1041 **Appendix A4.** Summary table showing the consistency over time of the total number of syllables
1042 emitted and of the four most frequent syllable types for each strain. Interpretation of the intraclass
1043 correlation (ICC) was based on the average ICC across the three test sessions and on the lower
1044 bound of the 95 % confidence interval; lower bounds below 0.5 indicated poor consistency (Koo & Li
1045 2016). Lower bounds of the confidence interval which were above the 0.5 threshold are shown in bold.

1046

1047 **Appendix A5 – Examples of High or Low Temporal Consistency in**
1048 **Syllabic Composition**

1049

1050

1051 **Appendix A5.** Examples of individual mice (two per strain) showing high or low temporal consistency
1052 in syllabic composition of courtship songs. For each individual, the consistency score “c” was
1053 determined by first calculating the standard deviation of the percentages of each syllable type across
1054 the three test sessions, and then averaging these standard deviations across all syllable types. The
1055 smaller the c score, the more consistent is the syllabic composition across test sessions.

1056