

1 **Dissecting the localization of *Tilapia tilapinevirus* in the brain of the experimentally infected**
2 **Nile tilapia (*Oreochromis niloticus*)**

3 Nguyen Dinh-Hung^{1,2}, Pattiya Sangpo^{3,4}, Thanapong Kruangkum^{4,5}, Pattanapon Kayansamruaj⁶,
4 Tilladit Rung-ruangkijkrai⁷, Saengchan Senapin^{4,8}, Channarong Rodkhum^{1,2*}, Ha Thanh Dong^{3*}

5

6 ¹Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of
7 Veterinary Science, Chulalongkorn University, Bangkok, Thailand

8 ²The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary
9 Science, Chulalongkorn University, Bangkok, Thailand

10 ³Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand.

11 ⁴Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of
12 Science, Mahidol University, Bangkok, Thailand

13 ⁵Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand

14 ⁶Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University,
15 Bangkok, Thailand

16 ⁷Department of Veterinary Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok,
17 Thailand

18 ⁸National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology
19 Development Agency (NSTDA), Khlong Nueng, Pathum Thani, Thailand

20

21 *Corresponding authors:

22 C. Rodkhum, Channarong.R@chula.ac.th

23 H.T. Dong, hathanh.do@ssru.ac.th

24 **Running head:** Localization of TiLV in the brain of Nile tilapia

25 **Abstract**

26 *Tilapia tilapinevirus* or tilapia lake virus (TiLV) is an emerging virus that inflicts significant
27 mortality on farmed tilapia globally. Previous studies reported detection of the virus in
28 multiple organs of the infected fish; however, little is known about the in-depth localization of the
29 virus in the central nervous system. Herein, we determined the distribution of TiLV in the entire
30 brain of experimentally infected Nile tilapia. *In situ* hybridization (ISH) using TiLV-specific
31 probes revealed that the virus was broadly distributed throughout the brain. The strongest positive
32 signals were dominantly detected in the forebrain (responsible for learning, appetitive behavior,
33 and attention) and the hindbrain (involved in controlling locomotion and basal physiology). The
34 permissive cell zones for viral infection were observed mostly to be along the blood vessels and
35 the ventricles. This indicates that the virus may productively enter into the brain through the
36 circulatory system and widen broad regions, possibly through the cerebrospinal fluid along the
37 ventricles, and subsequently induce the brain dysfunction. Understanding the pattern of viral
38 localization in the brain may help elucidate the neurological disorders of the diseased fish. This
39 study revealed the distribution of TiLV in the whole infected brain, providing new insights into
40 fish-virus interactions and neuropathogenesis.

41

42 **Keywords:** Tilapia lake virus, *in situ* hybridization, brain, neuropathogenesis, localization,
43 ventricles, cerebrospinal fluid

44 1. Introduction

45 An unknown viral disease associated with abnormal mortalities (>80%) of farm-bred tilapia
46 Chitralada during 2011-2012 was first reported in Ecuador in May 2013. The disease was initially
47 named syncytial hepatitis of tilapia (SHT) based on the pathognomonic lesion in the liver
48 (Ferguson et al., 2014). At the same time, similar mysterious disease episodes occurred in Israel
49 and a novel virus was subsequently discovered and initially termed tilapia lake virus (TiLV)
50 (Eyngor et al., 2014). The causative viruses from these cases were later confirmed to be identical
51 (Bacharach et al., 2016; Del-Pozo et al., 2017). Since then, the virus has been recognized as an
52 emerging virus causing disease problems in 16 countries across the continents of Asia, Africa, and
53 South America and severely impacts the tilapia industry (FAO, 2018; Jansen, Dong, & Mohan,
54 2019; OIE, 2017). The virus was initially described as a novel *Orthomyxo*-like virus with a 10
55 negative sense, single-stranded RNA segmented genome (Bacharach et al., 2016; Eyngor et al.,
56 2014) and was later classified as *Tilapia tilapinevirus*, a single species belonging to the
57 *Tilapinevirus* genus, under the *Amnoonviridae* family (ICTV, 2019). However, TiLV remains a
58 common name in both scientific and non-scientific documents.

59 Tilapia lake virus is a severe contagious pathogen that causes high mortality (20-90%) in both
60 farmed and wild tilapines (Al-Hussinee et al., 2019; Bacharach et al., 2016; Dong et al., 2017;
61 Eyngor et al., 2014; Ferguson et al., 2014; Jansen et al., 2019). The infected fish exhibited variable
62 gross signs i.e. skin erosion, scale protrusion, or gill pallor to abdominal distension, anemia,
63 exophthalmia as well as abnormal behaviors. The latter included lethargy, loss of appetite,
64 swimming at the water surface, erratic swimming, stoppage of schooling, swirling or loss of
65 balance (Bacharach et al., 2016; Dong et al., 2017; Fathi et al., 2017; Ferguson et al., 2014; Jansen
66 et al., 2019; Surachetpong et al., 2017; Tattiayapong, Dachavichitlead, & Surachetpong, 2017).
67 These unusual behaviors may have involved damages within the central nervous system. The
68 previous studies have demonstrated various histopathological changes in the brain of infected fish
69 notably as congestion of blood vessels and perivascular cuffing of lymphocytes (Behera et al.,
70 2018; Eyngor et al., 2014; Fathi et al., 2017; Ferguson et al., 2014; Jansen et al., 2019).
71 Furthermore, the presence of the TiLV genomic RNA in the infected brain has also been
72 determined by using *in situ* hybridization (Bacharach et al., 2016; Dong et al., 2017). However,
73 these findings were limited at suggesting that the brain is one of the target tissues for transcription
74 and replication of the virus. In fact, the fish brain divides into different regions and each part is
75 responsible for certain functions (Table 1) (Baldisserotto, Urbinati, & Cyrino, 2019; Roberts,
76 2012). Unfortunately, currently available data is unclear as to which part of the brain is affected

77 and whether the possible injuries are linked to the brain function, as well as the possible route of
78 viral entry into the brain. Therefore, elucidating the localization of the virus in the brain is an
79 important background for better understanding the neuropathogenesis induced by TiLV infection.
80 Thus, the present study investigated the spatial localization of TiLV in the entire infected brain
81 detected by ISH using the two different specific probes. Additionally, brain histopathological
82 changes caused by TiLV are also described. In drawing things to a close, the potential route of
83 TiLV to the fish brain was suggested. To our best knowledge, this is the first in-depth study of the
84 distribution of TiLV and its possible effects in infected fish brains, in cooperation with the
85 histopathological study, providing an initial step for further understanding the disease
86 manifestation and host-pathogen interaction.

87

88 **2. Materials and methods**

89 **2.1. Viral preparation**

90 Tilapia lake virus strain NV18R isolated from diseased hybrid red tilapia (*Oreochromis* sp.) using
91 E11 cell line (Dong et al., 2020) was used for challenge test in this study. Prior to the experiment,
92 the viral stock ($10^{7.5}$ TCID₅₀ per mL) preserved at -80 °C was thawed and diluted 1:10 with saline
93 solution (0.9% NaCl) to be used as an inoculum dose of $10^{5.5}$ TCID₅₀ per fish.

94 **2.2. Experimental setup**

95 Apparently normal Nile tilapia (*Oreochromis niloticus*) fingerlings ($10\text{ g} \pm 1\text{ g}$ body weight) were
96 obtained from a tilapia hatchery with no history of TiLV infection. The fish were acclimatized in
97 a laboratory rearing facility for 10 days and water temperature was set at $28^\circ\text{C} \pm 1^\circ\text{C}$. Prior to
98 challenge test, ten fish were randomly selected for the detection of TiLV by semi-nested RT-PCR
99 (Dong et al., 2017) to warrant TiLV negative status. These fish were divided into three groups with
100 20 individuals in a 50 L fiberglass tank. Each tank was provided with a separate water supply,
101 drainage, and air stones. The tilapia fish were fed with commercial tilapia feed pellets (Charoen
102 Pokphand, Thailand) containing 28% crude protein twice daily (9.00 am and 16.00 pm) at 3%
103 biomass per day. Every three days, 50% of the water in each tank was replaced. The fish in group
104 1 and group 2 were intraperitoneally injected with 0.1 mL TiLV to receive a dose of $10^{5.5}$ TCID₅₀
105 per fish, while the fish in the group 3 were injected with 0.1 mL of normal saline solution as
106 control.

107 **2.3. Clinical observation and brain collection**

108 Following experimental infection, the fish in group 1 were observed continuously for 16 days to
109 record gross pathology and mortality. While, in the group 2, moribund fish that showed clear signs,
110 which prioritized neurological manifestation such as loss of appetite, lethargy and abnormal
111 behavior (e.g. swimming at the surface, stoppage of schooling, erratic swimming, or loss of
112 balance), were euthanized with an overdose of (150 ppm) of clove oil before necropsy. The intact
113 brain of diseased fish (n = 6) were carefully isolated and preserved in 10% neutral buffered
114 formalin for 24 hr and then immersed in 70% ethanol before being processed for routine histology
115 and *in situ* hybridization, as described below.

116 **2.4. Tissue processing and histopathology**

117 The preserved tissues were dehydrated by incubating in several increasing concentrations of
118 ethanol (70–100%) and then transferred to xylene automatically by Leica TP1020 Tissue Processor
119 (Leica Biosystems, US). The tissues were infiltrated and embedded in paraffin. Each paraffin-
120 embedded tissue was sequentially sectioned at 5 μ m thickness into 5 consecutive sections and were
121 mounted on HistoGrip (Invitrogen, US) coated glass slides. The purposed tissue sections included
122 2 slides for ISH with TiLV specific probes derived from TiLV genome segment 1 and segment 3
123 (see below), 2 slides for ISH with negative controls (unrelated probe and no probe), and one slide
124 for hematoxylin and eosin (H&E) staining. To analyze the distribution of TiLV in the whole-brain,
125 the samples were sectioned toward horizontal and parasagittal sides and the results were
126 interpreted in parallel.

127 **2.5. *In situ* hybridization (ISH) assay**

128 *2.5.1. Preparation of probes*

129 Two TiLV-specific DIG-labelling probes targeting two different TiLV genomic segments were
130 used for comparison and double confirmation of viral localization in this study. The 274 bp probe
131 derived from TiLV segment 1 was prepared using primers TiLV/nSeg1F; 5'-TCT GAT CTA TAG
132 TGT CTG GGC C-3' and TiLV/nSeg1RN; 5'-CCA CTT GTG ACT CTG AAA CAG-3'
133 (Taengphu et al., 2020) while the 250 bp probe derived from TiLV segment 3 employed primers
134 ME1; 5'-GTT GGG CAC AAG GCA TCC TA-3' and 7450/150R; 5'-TAT CAC GTG CGT ACT
135 CGT TCA GT-3' (Eyngor et al., 2014; Tsofack et al., 2017). An unrelated probe 282 bp acquired
136 from a shrimp virus namely infectious myonecrosis virus (IMNV) (F13N; 5'-TGT TTA TGC TTG
137 GGA TGG AA-3' and R13N; 5'-TCG AAA GTT GTT GGC TGA TG-3') (Senapin, Phewsaiya,
138 Briggs, & Flegel, 2007) and no probe were used as negative controls. The probes were prepared

139 using Digoxigenin (DIG), a commercial PCR DIG-labeling mix (Roche Molecular Biochemicals,
140 Germany). Briefly, RNA extracted from internal organs of tilapia infected with TiLV were used
141 as a template for one step of RT-PCR to amplify 274 bp and 250 bp of genomic segments 1 and 3
142 as described previously (Dong et al., 2017; Taengphu et al., 2020). The targeted fragments were
143 cloned into pGEM®-T Easy (Promega, US). The plasmids containing TiLV segments 1 and 3,
144 were then used as templates for labeling reaction with DIG by PCR. The PCR reaction of 25 μ L
145 was composed of 200 ng of plasmid template, 1 μ M of each primer, 0.5 μ L of Platinum® Taq
146 polymerase (Invitrogen, US), and 1 \times of the supplied buffer, dNTP in the reaction was replaced by
147 0.5 μ L DIG-labeling mix. The reactions were heat activated at 94°C for 5 min. PCR cycling then
148 was carried out for 30 cycles at 94°C for 30 s, 55°C for 30 s, 72 °C for 30 s, final extension step
149 at 72 °C for 5 min. The DIG-labeled TiLV probes for each segment was obtained after purifying
150 amplified product by NucleoSpin™ Gel PCR Clean-up Kit (Fisher Scientific, US) according to
151 the manufacturer's protocol. The purified probes were measured for concentration by NanoDrop™
152 One Spectrophotometer (Fisher Scientific, US) and stored at -20 °C until use.

153 *2.5.2. Prehybridization and hybridization*

154 Unstained 5 μ m sections on HistoGrip coated slide was deparaffinized three times in xylene for 5
155 min followed by a graded series of ethanol (95%, 80%, 75% twice each for 5 min), distilled water,
156 and finally in TNE buffer (100 mM Tris–HCl, 10 mM EDTA, pH 8.1). Tissues were digested with
157 proteinase K (prepared just prior to use) at a final concentration of 10 μ g mL $^{-1}$ for 15 min at 37°C,
158 then treated by 4% paraformaldehyde for 5 min at 4°C and immersed in distilled water for 5 min.
159 After rapidly treating with acid acetic for 20 s and washing in distilled water, each section was
160 then covered with pre-hybridization buffer (4 \times SSC containing 50% (v/v) deionized formamide)
161 at 37 °C for at least 10 min. Each probe was diluted in hybridization buffer (50% deionized
162 formamide, 50% dextran sulfate, 50 \times Denhardt's solution (Sigma, Germany), 20 \times SSC, 10 mg
163 mL $^{-1}$ salmon sperm DNA (Invitrogen, US), heated at 95°C for 10 min, and then chilled on ice.
164 Each specific probe was added to the tissue sections, then covered by coverslips, and incubated
165 overnight at 42°C in a humid chamber.

166 *2.5.3. Post-hybridization*

167 Post-hybridization was performed by sequentially washing twice each, with 2 \times , 1 \times and 0.5 \times SSC
168 at 42°C, 37°C, 37°C for 15 min, respectively, equilibrated by 5 min washing with buffer I (1 M
169 Tris–HCl, 1.5 M NaCl, pH 7.5). Tissue sections were then blocked with blocking solution buffer
170 II (containing 0.1% Triton X-100 and 2% normal sheep serum) at room temperature for 30 min

171 before covering with anti-DIG alkaline phosphatase conjugate anti-digoxigenin antibody (Roche,
172 diluted 1:500 in buffer II) for 1 h at 45°C. After washing twice for 10 min each with Buffer I, the
173 sections were treated for 10 min in buffer III (100 mM Tris-HCl, 1.5 M NaCl, 50 mM MgCl₂, pH
174 9.5). The sections were incubated for 1 to 24 hr in the dark at room temperature with development
175 solution (NBT/BCIP substrate, Roche)

176 *2.5.4. Detection and visualization*

177 The antibody-antigen complexes were subsequently revealed by NBT/BCIP substrate. Once the
178 optimal color was observed the reaction was then stopped by washing tissue sections with 1× TE
179 buffer at room temperature for 15 min and afterward dripped in distilled water. The slides were
180 then counterstained with 0.5% Bismarck Brown (Sigma Aldrich, US) for 2 min. The sections were
181 washed under running water for 5 min then dried at room temperature before immersing twice in
182 100% xylene for 5 min each. The slides were then mounted, coverslipped, observed and
183 photographed under a light microscope BX51 (Olympus, Japan). Localization of TiLV was
184 interpreted in parallel with the slides of TiLV-specific probes, negative controls (unrelated probe
185 and no probe), and H&E stained sections. TiLV signal density in the brain was subjectively scored
186 on a four-point scale as follows: + + + (*high signal*), + + (*moderate signal*), + (*low signal*), and –
187 (*absent signal*) following Cham et al (2017). Nomenclatures for the brain area (Table 1) were
188 based on those described by Wullimann et al (1996), Simoes et al (2012), Ogawa et al (2016), and
189 Cham et al (2017).

190

191 **3. Results**

192 **3.1. Clinical observations and cumulative mortality**

193 After experimental infection, the fish showed no remarkable abnormalities in appetitive behavior
194 as well as swimming activity during the first two days. Starting at 3 days post-infection (dpi), some
195 of the fish showed lost of appetite, separated from the group, and swimming near the water surface.
196 At 4 dpi, some fish became lethargic and stopped eating. Mortality started at 5 dpi and lasted until
197 11 dpi with cumulative mortality at 95% (Figure 1A). Prior to death, approximately 20% of fish
198 displayed erratic swimming, swirling, or loss of balance during 7-10 dpi (Figure S1). A majority
199 of the fish died within 24 hr after appearance of abdominal swelling, exophthalmia and dark
200 discoloration of the skin (Figure 1B). In addition, some sick fish also displayed scale protrusion
201 and skin erosion (data not shown). Internally, post-mortem changes including necrotic and pale

202 liver; and enlarged spleen were frequently noticed as well as ascitic fluid was observed (Figure
203 1C). In contrast, no clinical signs of infection or mortality were observed in the control group.

204 **3.2. TiLV Localization in the fish brain**

205 The results of ISH using two specific probes targeting TiLV genome segment 1 and segment 3
206 exhibited similar localization of TiLV positive signals but difference in intensities. In contrast, no
207 signal was detected in the sections from the same samples assayed with an unrelated probe and no
208 probe. ISH positive signals (dark color) were widely distributed in various parts of the brain.
209 However, the forebrain and hindbrain showed higher signal densities and stronger signal intensities
210 compared to that of the midbrain. Details on the distribution of the TiLV positive signals and their
211 densities are described below and summarized in Table 1. Representative microphotographs of the
212 horizontal and parasagittal whole-brain from diseased fish are shown in Figure 2 and Figure 3,
213 respectively. Results were read from four consecutive sections of the fish brains subjected to H&E
214 staining and ISH with either segment 1 probe, segment 3 probe or unrelated probe. There were no
215 ISH positive signals detected in the brain of non-infected control fish that were assayed in the same
216 manner (Figure S2).

217 **The forebrain (prosencephalon)**

218 The forebrain comprises of two main parts, namely telencephalon (or cerebrum) and diencephalon
219 (approximately defined by areas [1] and [2] in Figure 2B.1 and 3B.1). In the telencephalon [1], all
220 subdivisions; the olfactory bulbs (OB), hemispheres of telencephalon (HT), and periventricular
221 zone (PZT), were positively reacted with the TiLV probes. OB and HT had more intense signals
222 in the granular cell layer while dense positive staining was observed in a large number of cells
223 localized in the PZT (Table 1, Figure 2B.2, 2B.3, 3B.2 and 3B.3). In the diencephalon [2], there
224 were relatively few positively labelled cells in the thalamus, optic nerve, and diffuse nucleus of
225 the inferior lobe. Strong positive staining was found throughout the hypothalamus (Hyp),
226 specifically along the periventricular zone of hypothalamus (PZH) (Table 1, Figure 3C.2 and 3C.3).
227 Note that signals from the probe prepared from TiLV genomic segment 3 were stronger than that
228 from segment 1 probe.

229 **The midbrain (mesencephalon)**

230 The midbrain or mesencephalon (marked as area [3] in Figure 2B.1 and 3B.1) divides mainly into
231 parts including optic tectum (TeO), torus longitudinalis (TL), torus semicircularis (TS),
232 tegmentum (Teg), and periventricular grey zone of the optic tectum (PGZ) (Figure 2B.1 and 3B.1).
233 Diffuse staining of positively TiLV labelled cells was observed in TeO and TS. Stronger signals

234 were observed in PGZ and TL (Table 1, Figure 2B.2, 2B.3, 3B.2 and 3B.3). In the Teg, positive
235 signals were weaker compared to other areas (Figure 3B.2 and 3B.3).

236 **The hind brain (rhombencephalon)**

237 The hindbrain consists of metencephalon (or cerebellum) and medulla oblongata (areas [4] and
238 [5], respectively in Figure 2B.1 and 3B.1). There were relative stronger positively TiLV labelled
239 cells in the hindbrain compared to the midbrain. Within the cerebellum [4], positive staining
240 signals were abundantly observed in the granular layers of the corpus cerebellum (CCeG) (Table
241 1, Figure 2B.2, 2B.3, 3B.2 and 3B.3). In the medulla oblongata [5], TiLV signals were densely
242 localized in the vagal lobe (LX) (Figure 2B.2 and 2B.3). Fewer TiLV-positive signals were seen
243 in the molecular zone of corpus cerebellum (CCeM), intermediate reticular formation (IMRF), and
244 inferior reticular formation (IRF) (Figure 2B.2, 2B.3, 3B.2 and 3B.3).

245 **3.3. The permissive cell zones and pattern of TiLV distribution area**

246 Although the viral positive signals were presented throughout the brain, ISH revealed strong
247 positive signals of TiLV infected location in the primitive meninges (PM) (Figure 4) and in the
248 periventricular regions (Figure 5) (both areas close to cerebrospinal fluid). Additionally, the heavy
249 ISH signals were also detected in the epithelium of the blood vessels (arrowheads in Figure 4A,
250 4B, and 5C). In the periventricular region, the signal intensity indicated a distinctive pattern with
251 a gradual decrease from the strongest signals localizing close to the ventricle to lesser infected
252 cells in the area farther away from the ventricle (see Table 1). In particular, TiLV signals were
253 detected in the ependymal cells lining the ventricles and in the choroid plexus epithelial cells
254 (Figure 5).

255 **3.4. Histopathological assessment of the infected brain**

256 Examination of histopathological alterations in correlation with TiLV positive signals in the
257 infected brain revealed the presence of cells dissociation and degeneration within the infected sites
258 including the internal cellular layer of the olfactory bulb in the telencephalon (Figure 6A),
259 periventricular grey zone (PGZ) of the optic tectum in the mesencephalon (Figure 6B), granular
260 layer of the corpus cerebellum (Figure 6C), the motor layer, sensory layer and fiber layer of the
261 vagal lobe in the medulla oblongata (Figure 6D). No apparent histological alterations were visible
262 in the respective areas of the normal brain (first column panel in Figure 6). In addition, we found
263 some other obvious histopathology alterations in various areas of the infected brain such as
264 inflammation of meninges (Figure 4B.1), congestion of blood vessels (Figure 4A.1, 4B.1, 7A and

265 7B) and cell aggregation (Figure 7C). Cell aggregation can be found in the granular layer of the
266 cerebellum and the olfactory bulb.

267

268 **4. Discussion**

269 Localization of TiLV was initially investigated by ISH in a previous study, however, only one part
270 of the brain resembling to optic tectum of the midbrain was explored (Dong et al., 2017). In this
271 study, the localization of TiLV in the whole-brain of infected Nile tilapia was comprehensively
272 dissected for the first time. Distribution of positive signals was detected throughout the brain,
273 however, the viral positive signals appeared to be more concentrated in some particular areas of
274 the forebrain and hindbrain. These findings suggest that these regions possibly contain more
275 permissive cells for propagation of TiLV than that of the midbrain. With respect to disease
276 diagnosis, these findings imply that the fore- and hindbrain might be the target tissues with
277 predominant of the virus. It should be noted that, when two TiLV-specific probes targeting
278 different genome segments of TiLV in parallel for ISH assay were used, similar distribution of the
279 positive signals double confirmed the localization of the virus in major parts of the brain. However,
280 minor differences in signal distribution and intensities may possibly be derived from frequency of
281 Digoxigenin-11-dUTP incorporated into newly synthesized DNA probes. It is also possible that
282 relatively higher %GC content and melting temperature (Tm) of segment 3 probe (52.0% GC, Tm
283 83.5 °C) makes it more effective in hybridization reaction than that of segment 1 probe (48.5%
284 GC, Tm 82.3 °C).

285 Despite the fact that this study did not focus on functional study of the fish brain, basic science
286 revealed that the brain is a central nervous system that controls important living activities of the
287 fish and different regions of the brain are responsible for different biological functions (Table 1)
288 (Baldisserotto et al., 2019; Ferguson, 2006; Northcutt, 1981; Northcutt, 1995; Roberts, 2012).
289 Therefore, heavy viral infection (indicated by density of ISH signals) in particular brain regions
290 may result in neurological cell damages and impairment of the brain function and thus possibly
291 explain for abnormal behaviors observed in infected fish during the course of infection. The
292 abnormal behaviors such as lethargy, loss of appetite, erratic swimming, stoppage of schooling
293 were consistently recorded in this study and several previous studies (Table 1) (Dong et al., 2017;
294 Tattiayapong et al., 2017). Indeed, based on literature, the teleost brain regions in the fore-, mid-,
295 and hindbrain are involved with specific physiological and behavioral outputs. Specifically, the
296 forebrain contains the telencephalon and the diencephalon in which the telencephalon

297 encompasses control of sensory and motor as well as cognitive tasks like memory, learning, and
298 emotion (Table 1) (Baldisserotto et al., 2019; Northcutt, 1981; Northcutt, 1995; Roberts, 2012).
299 Heavy TiLV infection in this important brain part could thus result in some described symptoms
300 such as lethargy, stoppage of schooling, and swimming at the water surface. The diencephalon
301 function mainly as correlation centers for sensory inputs such as gustation and olfaction (Ferguson,
302 2006; Muñoz-Cueto & College, 2001). With respect to the symptoms of loss of appetite and
303 stoppage of eating, it is interesting that the intense TiLV signals were observed in the
304 hypothalamus, which controls feeding behavior, receives both olfactory and appetite information,
305 and appears to be able to control movement over the jaw muscles involved in feeding (Roberts,
306 2012). The middle brain (mesencephalon) is the region particularly involved in the reception and
307 coordination of optic nerve inputs, such as interpretation of motor and visual signals (Baldisserotto
308 et al., 2019; Roberts, 2012). Therefore, we speculate that TiLV infection and neuron damage in
309 this area may be related to behavioral disorders of food and prey seeking, navigating around
310 obstacles in the environment and avoidance of approaching objects. On the other hand, the
311 cerebellum and medulla oblongata are located within the hindbrain (rhombencephalon) and are
312 generally associated with the regulation of locomotion and balance stimuli as well as basal
313 physiology (Baldisserotto et al., 2019; Roberts, 2012). Therefore, it was possible that the strong
314 densities of TiLV in these areas were linked with erratic swimming or loss of balance. An
315 earlier study also suggested that *Streptococcus agalactiae* infection caused damage in the
316 cerebellum of tilapia and led to the erratic swimming symptoms (Palang, Withyachumnarnkul,
317 Senapin, Sirimanapong, & Vanichviriyakit, 2020). Taken together, localization of TiLV with high
318 density detected in important regions of the brain may contribute to an array of well-described
319 abnormal symptoms, especially neurological disorder signs during the course of infection, and
320 result in high mortality.

321 Although TiLV was localized in the brain of infected fish (Bacharach et al., 2016; Dong et al.,
322 2017), the mechanism of viral entry to the central nervous system remains unclear. Dong et al
323 (2020) proposed that TiLV causes a systemic infection where the viral particles spread to other
324 organs perhaps via the circulatory system. In this study, the localization of the virus was found in
325 the endothelial cells of the blood vessels, which provided supporting evidence of the virus spread
326 through a hematogenous route resulting in systemic infection (Keller et al., 2003). One of the
327 highlight findings of the TiLV localization in the brain was the gradual increase in the detection
328 of virus-infected cells close to the ventricle. We also noticed that the virus was primarily detected
329 near the periventricular regions, while the area farther away from the ventricle has less detectable

330 infected cells. There has been no report on the infection routes of TiLV into the central nervous
331 system of the fish. However, in case of *Orthomyxovirus*, the possibility that the influenza virus
332 infected the brain of ferrets (Yamada et al., 2012) and chickens (Chaves et al., 2011) through
333 cerebrospinal fluid (CSF) by crossing the blood-CSF barrier has been suggested. Those results
334 have demonstrated that the influenza virus was detected in CSF from infected animals and viral
335 antigen was found in either ependymal cells in the ventricle or choroid plexus epithelial cells
336 (Chaves et al., 2011; Yamada et al., 2012). Similar to the influenza virus invasion, this study
337 revealed that the strong positive signals were dominantly observed in the periventricular regions
338 including the choroid plexus and the ventricular ependymal cells. This suggests that one of the
339 possible routes that the virus can enter to the brain is through the ventricles. Moreover, it is possible
340 that CSF plays an important role in TiLV spreading to broad regions of the brain.

341 Histopathological alterations in the TiLV infected brain observed in this study included
342 inflammation of the primitive meninges, cell degeneration and blood congestion in multiple
343 regions of the brain, as well as cell aggregation. The latter histopathological feature resembles
344 syncytial cell formation, a pathognomonic change described in liver of TiLV-infected fish
345 (Ferguson et al., 2014), that is occasionally observed in the brain (Behera et al., 2017; Debnath et
346 al., 2020). These damages in the central nervous system might directly or indirectly affect normal
347 functions and homeostasis of the fish brain.

348 In conclusion, our investigation provided new information on the TiLV distribution in the brain of
349 the experimentally infected Nile tilapia. These findings contribute to the basic knowledge of the
350 disease pathogenesis caused by TiLV and host-pathogen interactions. We also discussed the
351 possible link between TiLV-infected brain regions and abnormal behavioral changes. In addition,
352 we suggested that the ventricles and cerebrospinal fluid are important conduits of TiLV to the
353 brain. However, we have not been able to accurately determine the infected neuronal cells and the
354 spreading pathway. The pathogenesis and distribution of the virus in the central nervous system at
355 the neuronal cellular levels and at various times points of post-infection therefore need to be
356 elucidated in further studies.

357 **ACKNOWLEDGEMENTS**

358 Nguyen Dinh-Hung acknowledges the scholarship program of Chulalongkorn University for
359 ASEAN and Non-ASEAN countries and the 90th year anniversary of Chulalongkorn University
360 Fund (Ratchadaphiseksomphot Endowment Fund). This study was supported by Mahidol
361 University and TSRI fund (CU FRB640001 01316) from Chulalongkorn University. The authors
362 thank Dr. Vuong Viet Nguyen and Ms. Suwimon Taengphu for their technical assistance.

363

364 **CONFLICT OF INTEREST**

365 The authors declare no conflict of interest.

366

367 **AUTHOR CONTRIBUTIONS**

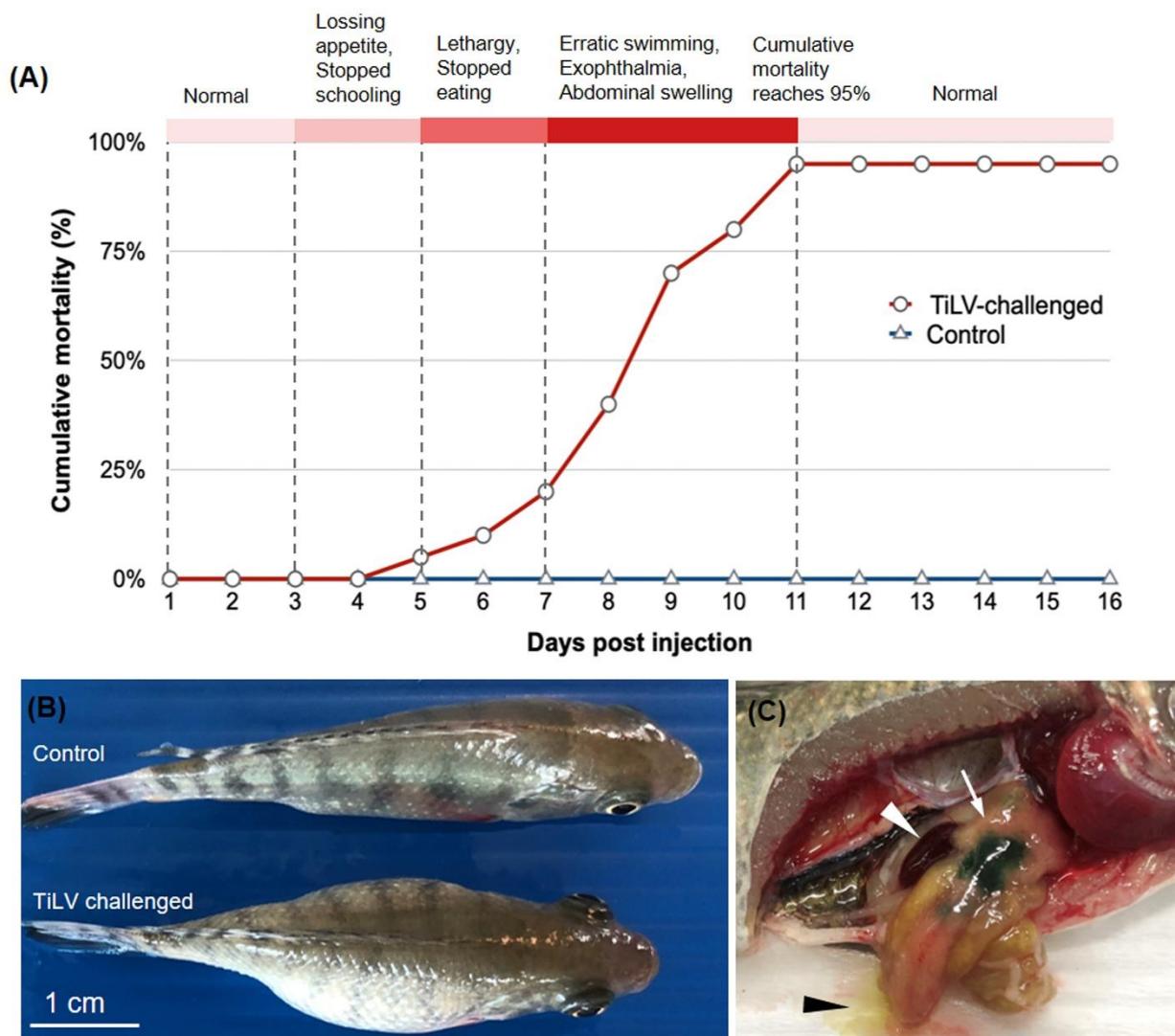
368 Conceptualization, H.T.D.; investigation, N.D.H., P.S.; formal analysis, N.D.H., T.K., H.T.D.;
369 methodology, S.S., P.S., N.D.H., H.T.D.; supervision; H.T.D., C.R.; writing - original draft,
370 N.D.H., H.T.D.; review & editing, C.R., S.S., T.K., P.K., T.R.R. All authors have read and agreed
371 to the current version of the manuscript.

372 **Reference**

- 373
- 374 Al-Hussinee, L., Subramaniam, K., Surachetpong, W., Popov, V., Hartman, K., Starzel, K., . . .
375 Waltzek, T. (2019). Tilapia Lake Virus (TiLV): a Globally Emerging Threat to Tilapia
376 Aquaculture 1. *EDIS*, 2019. doi:10.32473/edis-fa213-2019
- 377 Bacharach, E., Mishra, N., Briese, T., Zody, M. C., Kembou Tsofack, J. E., Zamostiano, R., . . .
378 Lipkin, W. I. (2016). Characterization of a Novel Orthomyxo-like Virus Causing Mass
379 Die-Offs of Tilapia. *mBio*, 7(2), e00431-00416. doi:10.1128/mBio.00431-16
- 380 Baldissarro, B., Urbinati, E. C., & Cyrino, J. E. P. (2019). *Biology and Physiology of Freshwater
381 Neotropical Fish*: Elsevier Science.
- 382 Behera, B. K., Pradhan, P. K., Swaminathan, T. R., Sood, N., Paria, P., Das, A., . . . Jena, J. K.
383 (2018). Emergence of Tilapia Lake Virus associated with mortalities of farmed Nile Tilapia
384 *Oreochromis niloticus* (Linnaeus 1758) in India. *Aquaculture*, 484, 168-174.
385 doi:10.1016/j.aquaculture.2017.11.025
- 386 Cham, K. L., Soga, T., & Parhar, I. S. (2017). RING Finger Protein 38 Is a Neuronal Protein in the
387 Brain of Nile Tilapia, *Oreochromis niloticus*. *Frontiers in Neuroanatomy*, 11(72).
388 doi:10.3389/fnana.2017.00072
- 389 Chaves, A. J., Busquets, N., Valle, R., Rivas, R., Vergara-Alert, J., Dolz, R., . . . Majo, N. (2011).
390 Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally
391 infected chickens. *Veterinary Research*, 42. doi:Artn 106
392 10.1186/1297-9716-42-106
- 393 Del-Pozo, J., Mishra, N., Kabuusu, R., Cheetham, S., Eldar, A., Bacharach, E., . . . Ferguson, H.
394 W. (2017). Syncytial Hepatitis of Tilapia (*Oreochromis niloticus* L.) is Associated With
395 Orthomyxovirus-Like Virions in Hepatocytes. *Vet Pathol*, 54(1), 164-170.
396 doi:10.1177/0300985816658100
- 397 Dong, H. T., Senapin, S., Gangnonngiw, W., Nguyen, V. V., Rodkhum, C., Debnath, P. P., . . .
398 Mohan, C. V. (2020). Experimental infection reveals transmission of tilapia lake virus
399 (TiLV) from tilapia broodstock to their reproductive organs and fertilized eggs.
400 *Aquaculture*, 515, 8. doi:10.1016/j.aquaculture.2019.734541
- 401 Dong, H. T., Siriroob, S., Meemetta, W., Santimanawong, W., Gangnonngiw, W., Pirarat, N., . . .
402 Senapin, S. (2017). Emergence of tilapia lake virus in Thailand and an alternative semi-
403 nested RT-PCR for detection. *Aquaculture*, 476, 111-118.
404 doi:10.1016/j.aquaculture.2017.04.019

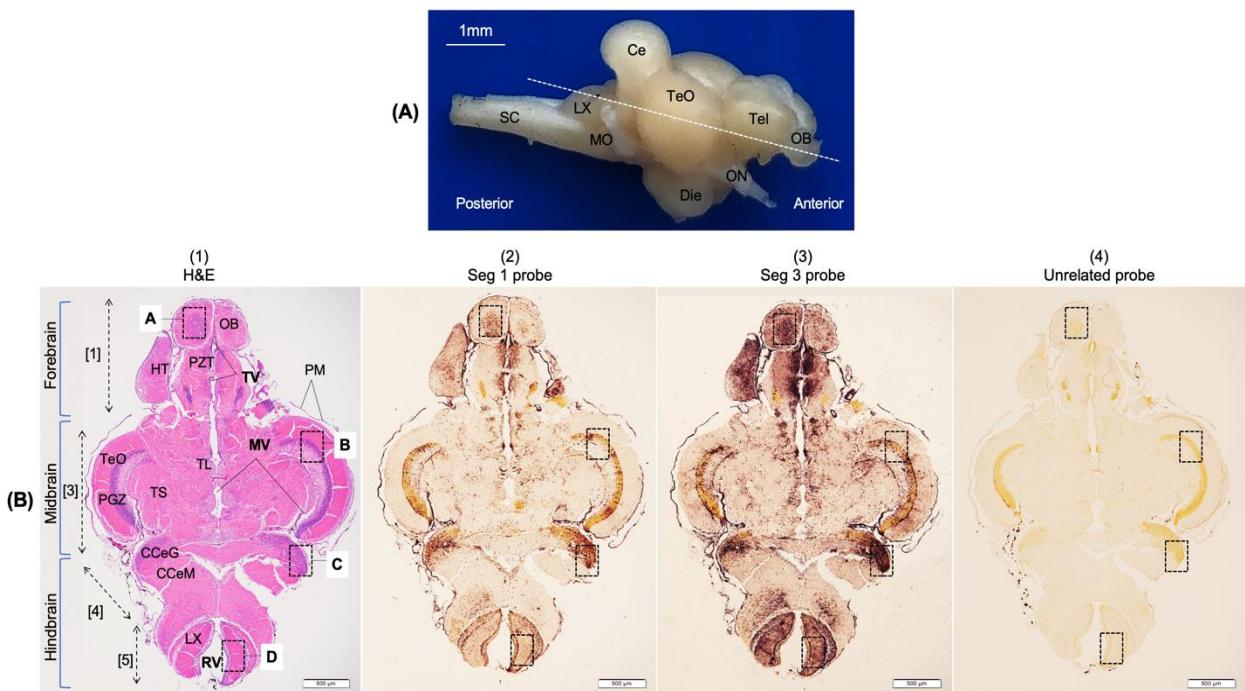
- 405 Eyngor, M., Zamostiano, R., Tsofack, J. E. K., Berkowitz, A., Bercovier, H., Tinman, S., . . . Eldar,
406 A. (2014). Identification of a Novel RNA Virus Lethal to Tilapia. *Journal of Clinical*
407 *Microbiology*, 52(12), 4137-4146. doi:10.1128/jcm.00827-14
- 408 FAO. (2018). Tilapia Lake Virus: Expert knowledge elicitation risk assessment. Retrieved from
409 <http://www.fao.org/3/CA2864EN/ca2864en.pdf>
- 410 Fathi, M., Dickson, C., Dickson, M., Leschen, W., Baily, J., Muir, F., . . . Weidmann, M. (2017).
411 Identification of Tilapia Lake Virus in Egypt in Nile tilapia affected by 'summer mortality'
412 syndrome. *Aquaculture*, 473, 430-432. doi:10.1016/j.aquaculture.2017.03.014
- 413 Ferguson, H. W. (2006). *Systemic pathology of fish : a text and atlas of normal tissues in teleosts*
414 *and their responses in disease*. London: Scotian.
- 415 Ferguson, H. W., Kabuusu, R., Beltran, S., Reyes, E., Lince, J. A., & del Pozo, J. (2014). Syncytial
416 hepatitis of farmed tilapia, *Oreochromis niloticus* (L.): a case report. *J Fish Dis*, 37(6), 583-
417 589. doi:10.1111/jfd.12142
- 418 ICTV. (2019). Virus Taxonomy: 2018b Release. International Committee on Taxonomy of
419 Viruses (ICTV). Retrieved from <https://talk.ictvonline.org/taxonomy/>
- 420 Jansen, M. D., Dong, H. T., & Mohan, C. V. (2019). Tilapia lake virus: a threat to the global tilapia
421 industry? *Reviews in Aquaculture*, 11(3), 725-739. doi:10.1111/raq.12254
- 422 Keller, T. T., Mairuhu, A. T., de Kruif, M. D., Klein, S. K., Gerdes, V. E., ten Cate, H., . . . van
423 Gorp, E. C. (2003). Infections and endothelial cells. *Cardiovasc Res*, 60(1), 40-48.
424 doi:10.1016/s0008-6363(03)00354-7
- 425 Muñoz-Cueto, J. A., & College, M. S. G. (2001). *An atlas of the brain of the gilthead seabream*
426 (*Sparus aurata*): Sea Grant.
- 427 Northcutt, R. G. (1981). Evolution of the Telencephalon in Nonmammals. *Annual Review of*
428 *Neuroscience*, 4(1), 301-350. doi:10.1146/annurev.ne.04.030181.001505
- 429 Northcutt, R. G. (1995). The Forebrain of Gnathostomes: In Search of a Morphotype; pp. 275–
430 288. *Brain, Behavior and Evolution*, 46(4-5), 275-288. doi:10.1159/000113279
- 431 Ogawa, S., Sivalingam, M., Biran, J., Golan, M., Anthony, R. S., Levavi-Sivan, B., & Parhar,
432 I. S. (2016). Distribution of LPXRFa, a gonadotropin-inhibitory hormone ortholog peptide,
433 and LPXRFa receptor in the brain and pituitary of the tilapia. *J Comp Neurol*, 524(14),
434 2753-2775. doi:10.1002/cne.23990
- 435 OIE. (2017). Tilapia Lake Virus (TiLV) – A novel Orthomyxo-like virus. Retrieved from
436 https://www.oie.int/fileadmin/Home/eng/International_Standard_Setting/docs/pdf/A_TiL
437 *V_disease_card.pdf*

- 438 Palang, I., Withyachumnarkul, B., Senapin, S., Sirimanapong, W., & Vanichviriyakit, R. (2020).
439 Brain histopathology in red tilapia *Oreochromis* sp. experimentally infected with
440 *Streptococcus agalactiae* serotype III. *Microscopy Research and Technique*.
441 doi:10.1002/jemt.23481
- 442 Roberts, R. J. (2012). The Anatomy and Physiology of Teleosts. In *Fish Pathology* (pp. 17-61).
443 Senapin, S., Phewsaiya, K., Briggs, M., & Flegel, T. W. (2007). Outbreaks of infectious
444 myonecrosis virus (IMNV) in Indonesia confirmed by genome sequencing and use of an
445 alternative RT-PCR detection method. *Aquaculture*, 266(1-4), 32-38.
- 446 Simoes, J. M., Teles, M. C., Oliveira, R. F., Van der Linden, A., & Verhoye, M. (2012). A Three-
447 Dimensional Stereotaxic MRI Brain Atlas of the Cichlid Fish *Oreochromis mossambicus*.
448 *Plos One*, 7(9). doi:ARTN e44086
449 10.1371/journal.pone.0044086
- 450 Surachetpong, W., Janetanakit, T., Nonthabenjawan, N., Tattiayapong, P., Sirikanchana, K., &
451 Amonsin, A. (2017). Outbreaks of Tilapia Lake Virus Infection, Thailand, 2015-2016.
452 *Emerging Infectious Diseases*, 23(6), 1031-1033. doi:10.3201/eid2306.161278
- 453 Taengphu, S., Sangsuriya, P., Phiwsaiya, K., Delamare-Debouteville, J., Mohan, C., Dong, H., &
454 Senapin, S. (2020). *Genetic diversity of tilapia lake virus genome segment 1 from 2011 to*
455 *2019 and a newly validated semi-nested RT-PCR method*.
- 456 Tattiayapong, P., Dachavichitlead, W., & Surachetpong, W. (2017). Experimental infection of
457 Tilapia Lake Virus (TiLV) in Nile tilapia (*Oreochromis niloticus*) and red tilapia
458 (*Oreochromis* spp.). *Veterinary Microbiology*, 207, 170-177.
459 doi:10.1016/j.vetmic.2017.06.014
- 460 Tsofack, J. E. K., Zamostiano, R., Watted, S., Berkowitz, A., Rosenbluth, E., Mishra, N., . . .
461 Bacharach, E. (2017). Detection of Tilapia Lake Virus in Clinical Samples by Culturing
462 and Nested Reverse Transcription-PCR. *Journal of Clinical Microbiology*, 55(3), 759-767.
463 doi:10.1128/jcm.01808-16
- 464 Wullimann, M. F., Rupp, B., & Reichert, H. (1996). *Neuroanatomy of the zebrafish brain : a*
465 *topological atlas*. Basel; Boston: Birkhäuser Verlag.
- 466 Yamada, M., Bingham, J., Payne, J., Rookes, J., Lowther, S., Haining, J., . . . Middleton, D. (2012).
467 Multiple routes of invasion of wild-type Clade 1 highly pathogenic avian influenza H5N1
468 virus into the central nervous system (CNS) after intranasal exposure in ferrets. *Acta*
469 *Neuropathologica*, 124(4), 505-516. doi:10.1007/s00401-012-1010-8

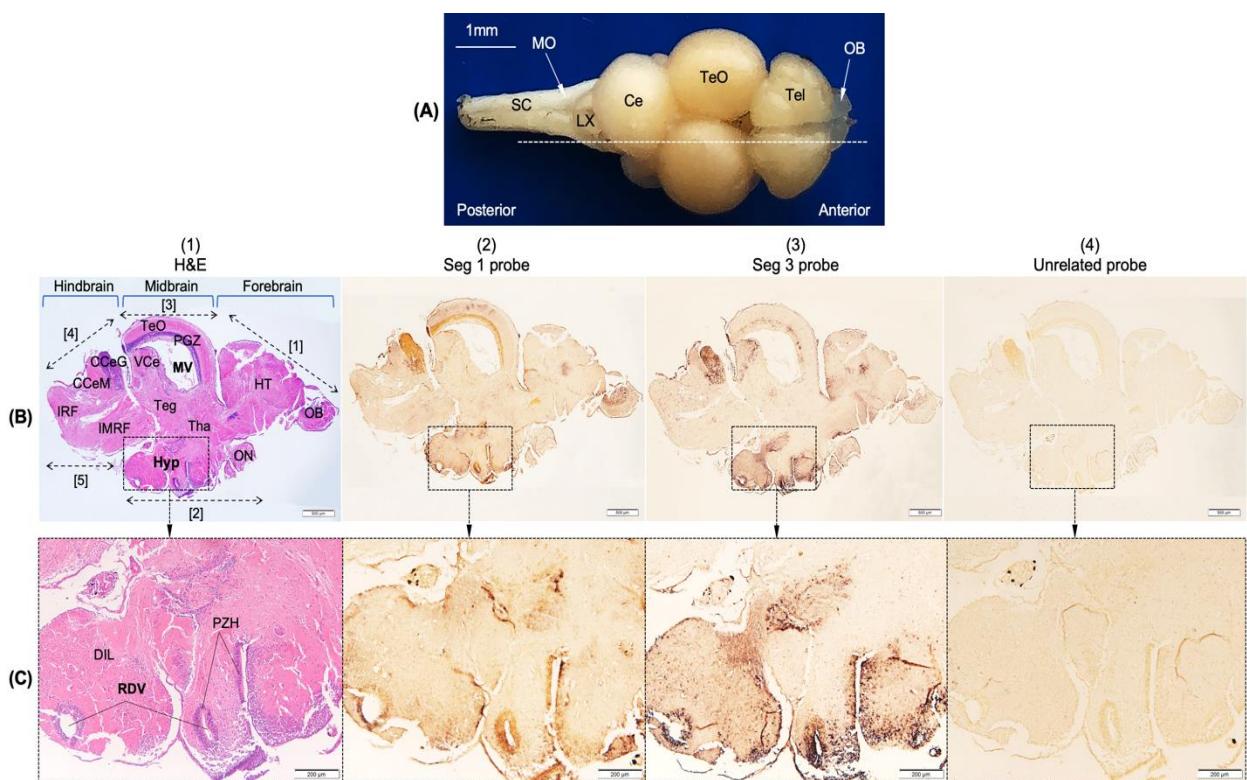

470 **Tables and Figures**

471 **TABLE 1** Distribution of TiLV signals in the brain of infected fish and possible link to abnormal
472 behaviors

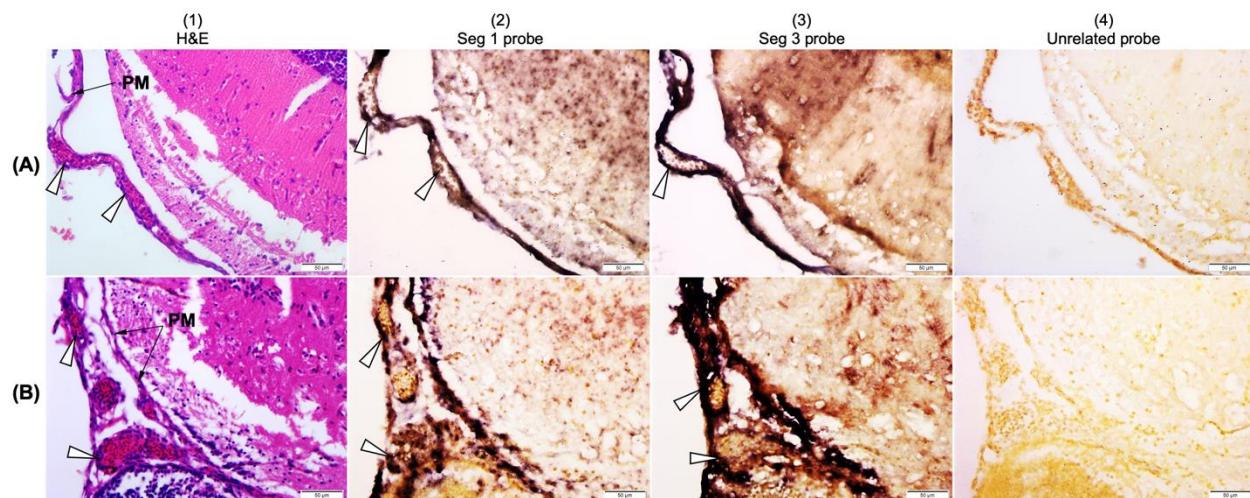
Brain region		Abbreviation	Densities of signal	Brain Function*	Possible link to behavioral abnormalities	
Telencephalon		Forebrain	OB	Learning, appetitive behavior and attention	Loss of appetite, lethargy and stoppage of schooling	
Olfactory bulb	OB					
Hemisphere of telencephalon	HT					
Periventricular zone of telencephalon	PZT					
Diencephalon			Thalamus Optic nerve Hypothalamus Diffuse nucleus of inferior lobe Periventricular zone of hypothalamus	Homeostatic and appetitive coordination	Losing appetite and stopping eating	
Thalamus	Tha					
Optic nerve	ON					
Hypothalamus	Hyp					
Diffuse nucleus of inferior lobe	DIL					
Periventricular zone of hypothalamus	PZH					
Mesencephalon		Midbrain	Optic tectum Periventricular gray zone of optic tectum Tegmentum Torus longitudinalis Torus semicircularis	Reception and coordination of optic nerve inputs	Disorders of navigating, food and prey seeking	
Optic tectum	TeO					
Periventricular gray zone of optic tectum	PGZ					
Tegmentum	Teg					
Torus longitudinalis	TL					
Torus semicircularis	TS					
Metencephalon		Hindbrain	Corpus division of cerebellum Granular zone of corpus cerebellum Molecular zone of corpus cerebellum Valvula division of cerebellum	Regulation of locomotion and balance stimuli	Erratic swimming or loss of balance	
Corpus division of cerebellum	CCe					
Granular zone of corpus cerebellum	CCeG					
Molecular zone of corpus cerebellum	CCeM					
Valvula division of cerebellum	VCe					
Medulla oblongata		Hindbrain	Intermediate reticular formation Inferior reticular formation Vagal lobe (lobe of nerve X)	Basal physiology (regulation of the respiratory and cardiovascular systems)	Result in high mortality	
Intermediate reticular formation	IMRF					
Inferior reticular formation	IRF					
Vagal lobe (lobe of nerve X)	LX					


473 (ISH signals: + + +, *high*; + +, *moderate*; +, *low*; -, *absent*)

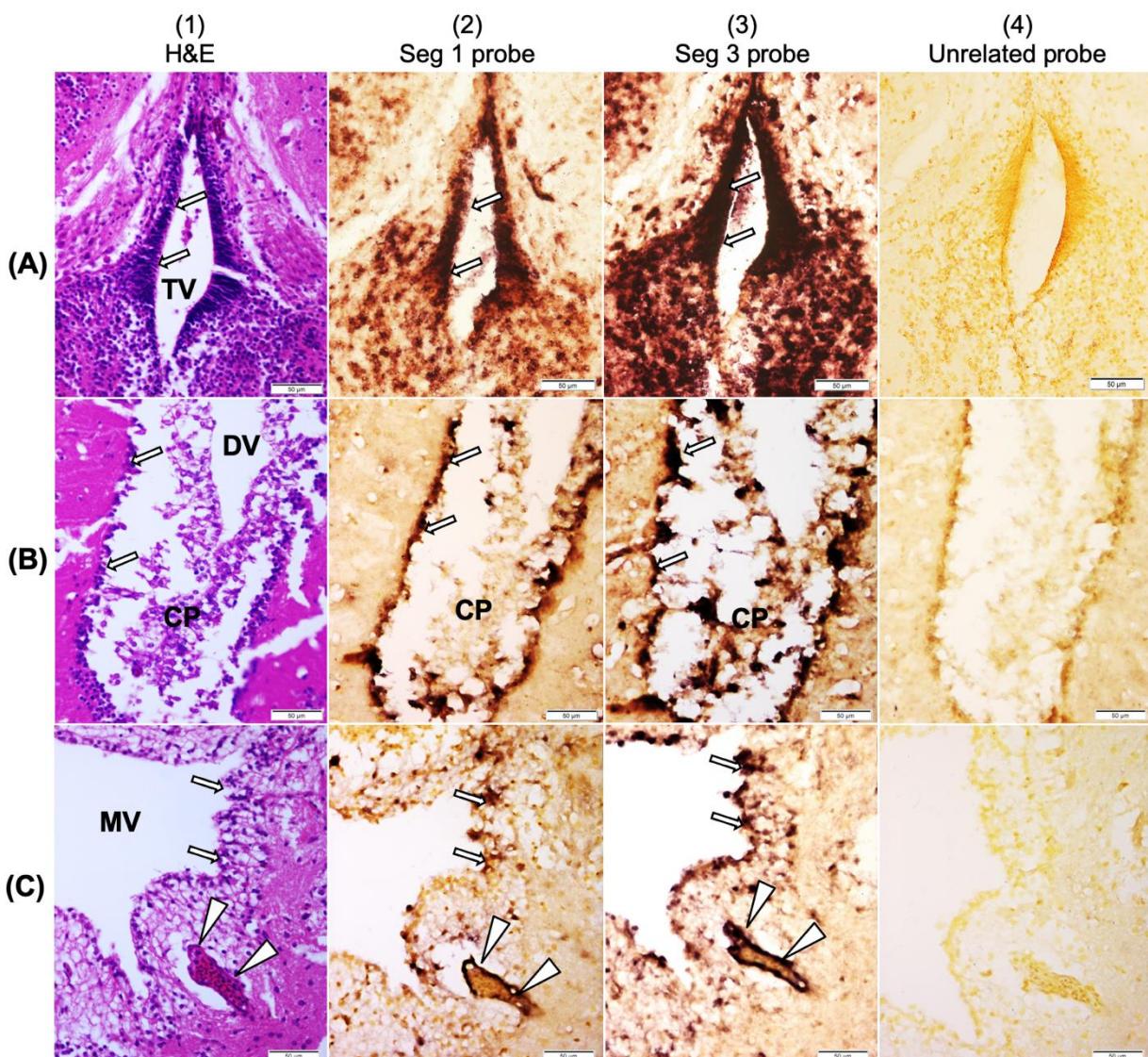
474 *according to Roberts, 2012; Baldisserotto et al., 2019

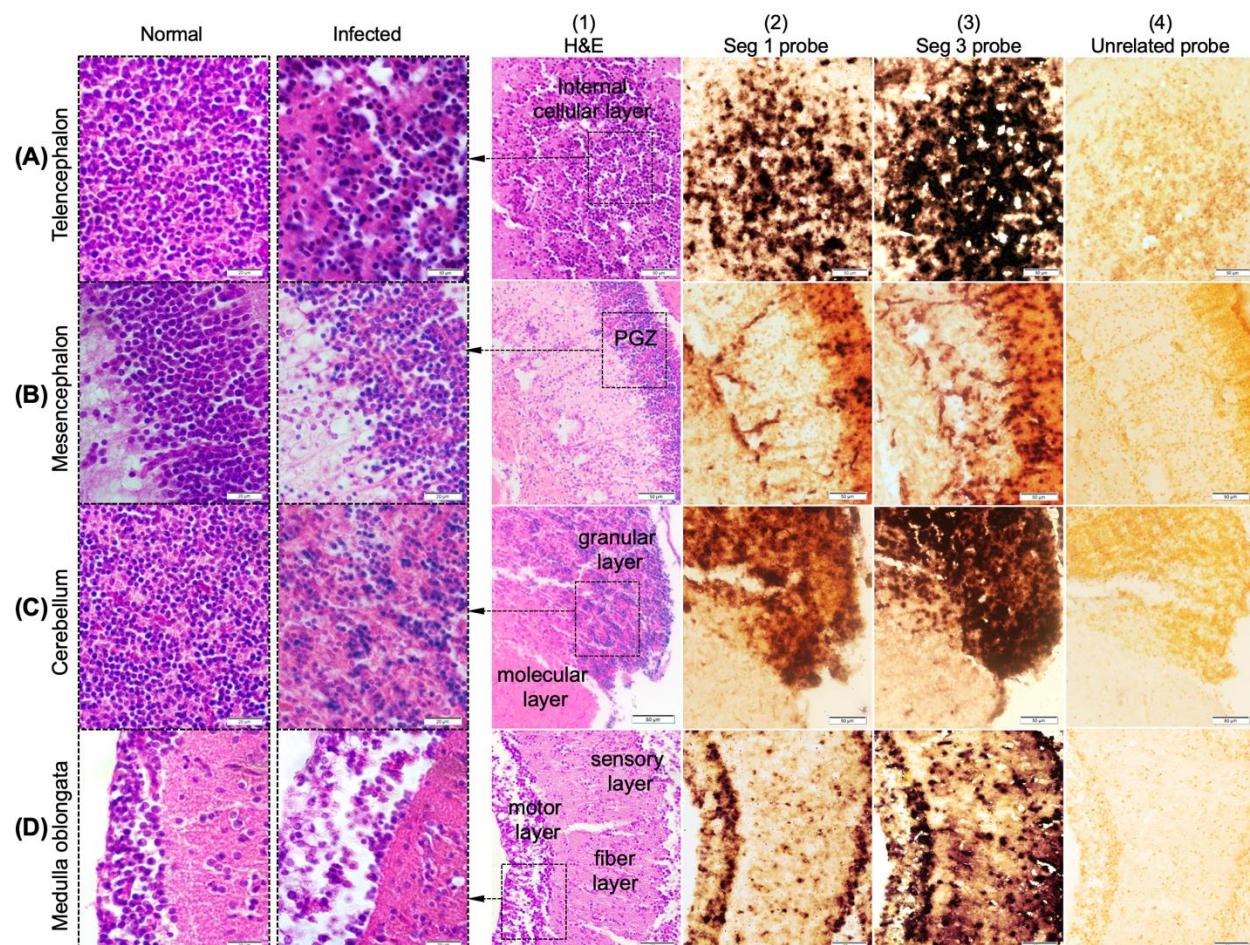

475

476 **FIGURE 1** Experimental challenge of Nile tilapia with TiLV. (A) Clinical signs and cumulative
477 mortality of Nile tilapia following injection (i.p.) with TiLV at $10^{5.5}$ TCID₅₀/fish and the control
478 were injected (i.p.) with 0.1 mL of 0.9% saline solution. (B) Diseased fish showed clinical signs
479 of exophthalmia and abdominal swelling. (C) Necrotic and pale liver diffused with green bile
480 (white arrows), enlarged spleen (white arrowhead) as well as ascitic fluid (black arrowhead).

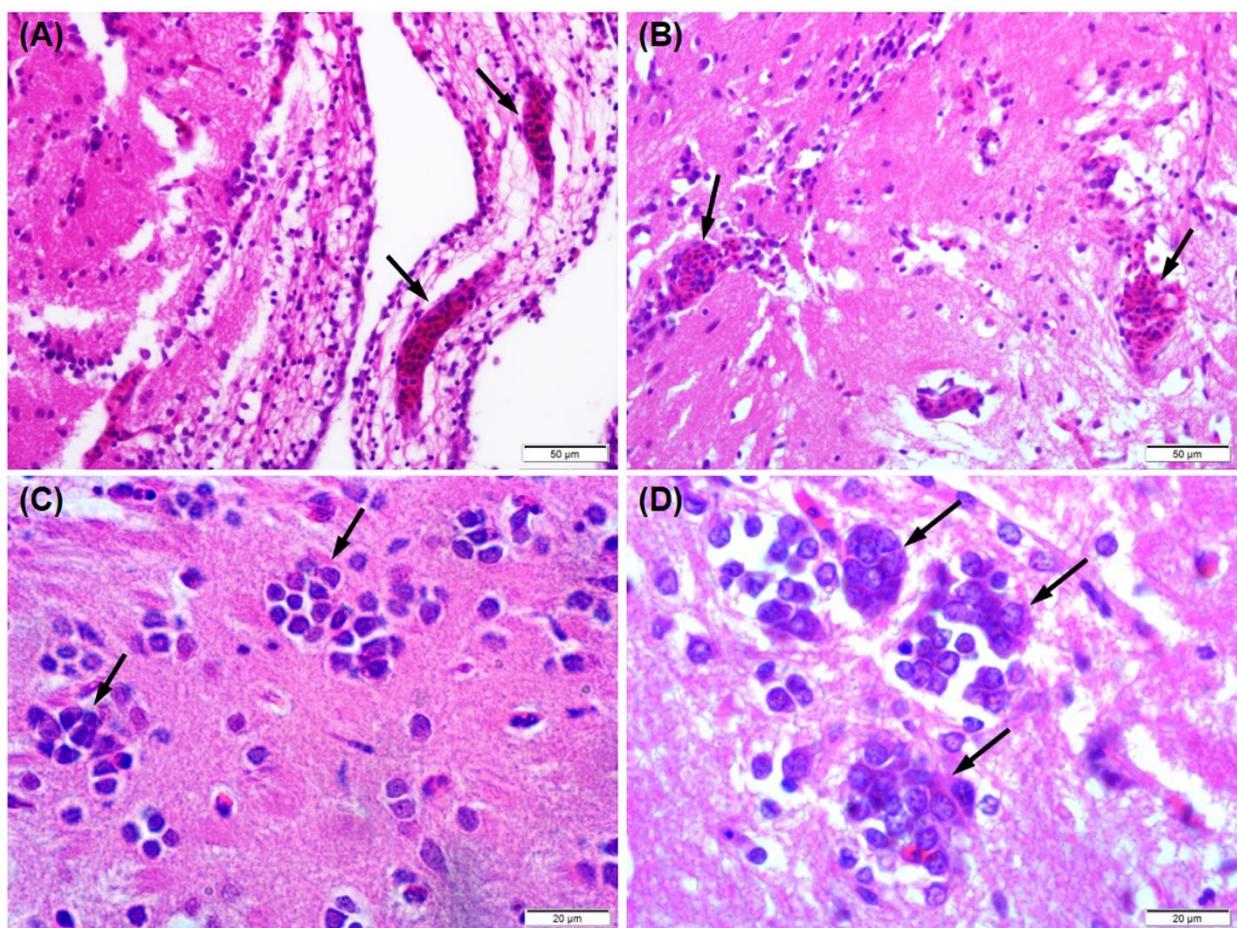

481

482 **FIGURE 2** The spatial localization of TiLV in the brain of infected fish (horizontal sections). (A)
483 Lateral view of tilapia brain with approximate slice position (white dashed line). (B) Comparison
484 of horizontal consecutive sections from infected fish stained with H&E (B.1), ISH with TiLV
485 probe prepared from genomic segment 1 (B.2), genomic segment 3 (B.3) and ISH with unrelated
486 probe (B.4) as the control. Positive reactivity is shown by dark brown signals. The horizontal
487 section was divided four major areas: telencephalon [1], mesencephalon [3], metencephalon [4],
488 medulla oblongata [5]. Dotted boxes (A, B, C, D) are exhibited at the high magnification images
489 in Figure 6. Ce: Cerebellum, Die: Diencephalon, MO: Medulla oblongata, MV: Mesencephalic
490 ventricle, Tel: Telencephalon, TV: Telencephalic ventricle, RV: Rhombencephalic ventricle, SC:
491 Spinal cord. Other abbreviations are listed in Table 1. Specimen was collected on 8 dpi. The scale
492 bars are shown in the pictures.


493


494 **FIGURE 3** The spatial localization of TiLV in the brain of infected fish (parasagittal sections).
495 (A) Dorsal view of tilapia brain with approximate slice position (white dashed line). (B)
496 Comparison of parasagittal consecutive sections from infected fish stained with H&E (B1), ISH
497 with TiLV probe based on genome segment 1(B2), genome segment 3 (B3), and ISH with
498 unrelated probe (B4) as the control. (C) Higher magnification of dotted boxes in (B). The
499 parasagittal section allows visualization of five major areas: telencephalon [1], diencephalon [2],
500 mesencephalon [3], mesencephalon [4], medulla oblongata [5]. Ce: Cerebellum, MO: Medulla
501 oblongata, MV: Mesencephalic ventricle, Tel: Telencephalon, RDV: Recess of diencephalic
502 ventricle, SC: Spinal cord. Other abbreviations are listed in Table 1. Specimen was collected on 9
503 dpi. The scale bars are shown in the pictures.

504

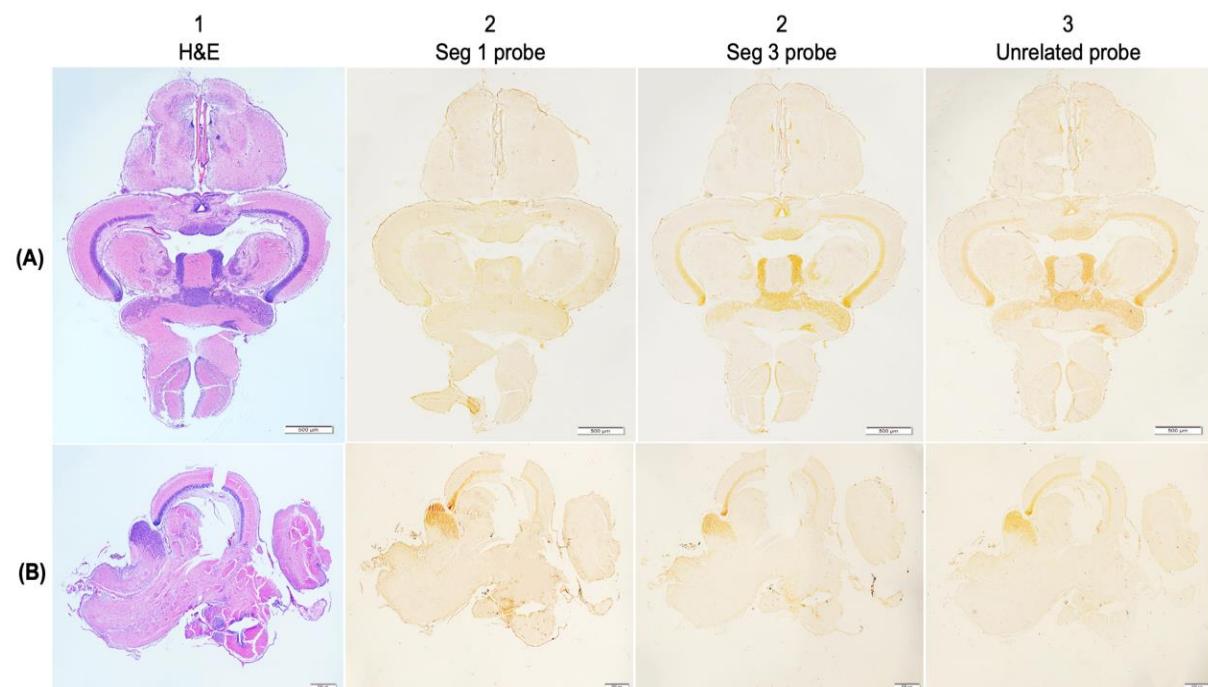

505 **FIGURE 4** Microphotographs revealed localizations of TiLV in the brain blood vessels and
506 primitive meninges (PM). H&E staining sections, ISH with TiLV-specific probe, and ISH sections
507 with unrelated probe of two representative TiLV infected fish brains are shown in (A) and (B).
508 Viral RNA (dark staining) was strongly detected in the primitive meninges (PM) and the
509 endothelial cells of the congested blood vessels (arrowhead). Specimen was collected on 8–9 dpi.
510 The scale bars are shown in the pictures.

519

520 **FIGURE 6** Representative higher magnification photomicrographs from Figure 2 showing TiLV
521 distribution in different parts of the brain of infected tilapia. Strong TiLV positive signals were
522 detected in the internal cellular layer (ICL) of the olfactory bulb in the telencephalon (A);
523 periventricular grey zone (PGZ) of optic tectum in the mesencephalon (B); granular zone of the
524 corpus cerebellum (CCeG) (C); motor layer, sensory layer and fiber layer of the medulla oblongata
525 (D). Cells dissociation and degeneration were visible within the location that showed the TiLV
526 positive signals in H&E stained sections (third column panel and higher magnification in second
527 column panel). H&E stained respective brain locations of normal fish (first column panel) were
528 also included for comparison. The scale bars are shown in the pictures.

529

530 **FIGURE 7** Photomicrographs of histopathological alterations in the TiLV infected brain.
531 Congestion of blood vessels (arrow in A and B) and cell aggregation (arrows in C and D) was
532 found in various areas. The scale bars are shown in the pictures.


533 **Supplementary data**

534

535

536 **FIGURE S1** Neurological manifestations were observed in infected fish. The diseased fish
537 displayed erratic swimming, swirling, or loss of balance during 6-9 dpi.

