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Oxford Nanopore sequencers provide results in real time as DNA passes through
a nanopore and can eject a molecule after it has been partly sequenced. However,
the computational challenge of deciding whether to keep or reject a molecule in
real time has limited the application of this capability. We present SquiggleNet,
the first deep learning model that can classify nanopore reads directly from their
electrical signals. SquiggleNet operates faster than the DNA passes through the
pore, allowing real-time classification and read ejection. When given the amount
of sequencing data generated in one second, the classifier achieves significantly
higher accuracy than base calling followed by sequence alignment. Our approach
is also faster and requires an order of magnitude less memory than approaches
based on alignment. SquiggleNet distinguished human from bacterial DNA with
over 90% accuracy, generalized to unseen species, identified bacterial species in a
human respiratory meta genome sample, and accurately classified sequences
containing human long interspersed repeat elements.
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Introduction
Oxford Nanopore sequencers, such as MinlION or PromethION, determine the nu-
cleotide sequence of a DNA or RNA molecule by measuring changes in electrical cur-
rent (called “squiggles”) as the molecule translocates through a protein nanopore.
This approach is fundamentally different from the widely-used Illumina platform
and provides several benefits: the MinION is small, fast, and portable, making it
ideal for rapid diagnostics and field work. Because it does not rely upon synchronized
nucleotide addition (the heart of the Illumina sequencing-by-synthesis technology),
MinION also produces much longer reads. To our knowledge, the longest published
MinION read is around 2Mbp [1], though even longer reads have been reported
anecdotally. The changes in electrical current induced by a DNA or RNA molecule
depend on the specific chemical properties of the nucleotides, including secondary
structure interactions and epigenomic modifications such as methylation. Addition-
ally, the nanopore sequencer can stream the squiggle data to a computer in real
time.

The nanopore sequencer can also eject a partially sequenced molecule, a capa-
bility referred to as “Read-Until”. In principle, this enables targeted sequencing
without the need for biochemical enrichment. The Read-Until capability allows se-

lective sequencing of molecules by reversing the voltage across individually selected
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nanopores, ejecting the unwanted molecules. The unoccupied nanopores can then
sequence different molecules of interest.

Such computational enrichment of target sequences holds great promise for clinical
diagnostics and field research, but realizing this potential requires fast and accurate
approaches for identifying molecules of interest. For example, identifying pathogenic
DNA in a patient lung fluid sample requires bypassing human DNA — which often
represents > 99% of the sequences — to find the pathogen sequences. Biochemical
methods for target sequence enrichment, such as PCR [2-5], hybrid capture [6], or
CRISPR/Cas9 enrichment [7, 8] require much more time, expertise, and equipment.
In contrast, a computational approach to enriching target sequences provides clear
savings of time, labor, and cost.

Previous computational approaches for this problem include: a) perform standard
base calling followed by sequence alignment as in [9], and b) perform rough base
calling to identify and align k-mers [10]. The first approach requires significant
computing resources — such as a graphics processing unit (GPU) and a large genome
index database for the sequence aligner. The second approach also requires a large
genome index and multiple CPU cores and can map only non-repetitive references
smaller than ~100Mbp. Both approaches are based on sequence alignment and
thus are limited by sequencing errors, their reliance on genome indexes, and their
inability to capture non-sequence information such as DNA methylation.

To address these limitations, we developed SquiggleNet, the first deep-learning
based approach for classifying DNA sequences directly from electrical signals. Squig-
gleNet is fast, accurate, memory-efficient, and robust to unknown species. It requires
only 3000 signals — less than the amount of data generated in one second of sequenc-
ing — to classify the species of a DNA molecule with over 90% accuracy, significantly
higher than the best alignment-based methods. The model requires only 304 KB
of RAM and no external reference database. SquiggleNet is faster than or on par
with the competitors and can run in real time on a single core of a standard laptop.
When tested on a human respiratory metagenome sample with a majority of unseen
species, our approach achieves > 90% overall accuracy.

Results
SquiggleNet: A Convolutional Neural Network for Classifying Nanopore Signals

SquiggleNet is a deep neural network that classifies molecules of interest based on
statistical patterns in nanopore conductivity, which are often hard for humans to
identify by eye, automatically extracted from the input data. The overall workflow
for using SquiggleNet to enrich sequences of interest is shown in Figure la. The
network is first trained to recognize certain classes of sequences, such as human vs.
bacterial DNA, using labeled examples. Then, as the nanopore sequencer generates
raw electrical signals from a new and unseen sample, SquiggleNet rapidly classifies
each molecule to determine whether it is a sequence of interest. Molecules not of
interest are ejected from the nanopore, freeing the pore to sequence a different
molecule. In contrast, targeted molecules are sequenced to full length and used for
downstream analysis.

SquiggleNet (Figure 1b) employs a convolutional architecture, using residual
blocks modified from ResNet [11] to perform one-dimensional (time-domain) con-
volution over squiggles. The architecture consists of four blocks with increasing
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Figure 1: Read-Until Pipeline Overview: (a) A DNA molecule translo-
cates through a nanopore, generating electric signals (squiggles). Squig-
gleNet rapidly classifies the molecule to determine whether it is a sequence
of interest. If the molecule is accepted by the classifier, it is sequenced to
full length. Otherwise, the molecule is ejected from the pore, freeing the
pore to sequence another molecule. (b) SquiggleNet employs 1D ResNet
bottleneck blocks with increasing numbers of filters. We perform average
pooling after the last convolutional block and use a final fully connected
layer.

numbers of channels; each block includes two 1-D ResNet Bottleneck units. Mean
pooling followed by a fully-connected layer with softmax activation allows Squig-
gleNet to classify sequences based on the convolutional filters in the last ResNet
block. The final output is a conditional probability on the sequence labels, which is
then used to make the final class prediction. We experimented with several other ap-
proaches, including a recurrent neural network (RNN) with long short-term memory
(LSTM) blocks; gated recurrent units (GRUs); other types of convolutional blocks;
a combination of RNN and convolution; different convolutional window sizes; and
differing model hyperparameters. However, we found that approaches based on con-
volution outperformed models using LSTM blocks, suggesting that local features
are sufficient for this problem, and long-range time-dependent relationships do not
add much information. Convolutional architectures without LSTM blocks are also
faster to train. Our final architecture gave the best classification accuracy of any
approach we tried and could not be made significantly smaller without sacrificing
performance. Additional details about the model architecture and hyperparameter

choices can be found in the Method section and Supplement.

SquiggleNet Accurately Classifies Species Directly from Squiggles
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Figure 2: Overall Performance across five test Datasets: Accuracy,
True Positive Rate(TPR, RECALL), True Negative Rate(TNR), Precision,
and the AUROC score of the model trained on the HeLa&Zymo training
set, and tested on five test sets with bacterial sequences as the target.

To test the performance of SquiggleNet, we generated four experimental datasets
containing a mixture of human and bacterial DNA. The first dataset, HeLa&Zymo,
contains 8 bacterial species from the Zymo mixture [12] and HeLa cells. The species
labels were obtained through Minimap2 [13] alignment. The other three datasets
(Human&Zymo_b12, Human&Zymo_b34, and Human&Zymo_b56) contain a mix-
ture of human GM12878 DNA and DNA from Zymo High Molecular Weight mixture
with 7 bacterial species [14]. To avoid systematic error from the alignment algo-
rithms, we obtained reliable ground-truth species labels for these three datasets by
attaching a nucleotide sequence barcode to each DNA molecule indicating whether
the molecule is from human or bacteria. Note that our direct biochemical labeling
strategy allows us to independently assess the accuracy of species determination
from base calling followed by read alignment; this is important for our applica-
tion, since we expect that SquiggleNet may be able to outperform purely sequence-
based approaches by leveraging other information from the electrical signals. Further
dataset details can be found in the Method section and Supplement.

We trained SquiggleNet using more than two million reads from the first dataset
(HeLa&Zymo), which contains equal proportions of HeLa and bacterial sequences.
We used 3000 signals from each read, the equivalent of about 300 nucleotides. We
discarded the first 1500 signals of each read (an overestimation of the adapter
length), to remove potential pore noise and adapter sequences, which could confound
training. Thus SquiggleNet requires a total of 4500 signals, which is equivalent to
about 1 second of sequencing time. (The exact time and number of nucleotides de-
pends on the translocation speed, which varies per pore and molecule over the course
of the sequencing experiment.) However, using this exact amount of signal is not cru-
cial; we verified that using fewer signals did not significantly change the results (see
below). Our best-performing model was trained on the HeLa&Zymo dataset, which
contains the largest number of sequenced reads. This dataset also lacks species-
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specific barcodes, and we were careful to remove the sequencing adapters and species
barcodes before extracting the 3000 signals used for classification (Methods). Thus,
there is no way that the classifier could “cheat” by using the barcodes to classify
the species. When we instead trained the model on the Human&Zymo datasets and
tested on HeLa&Zymo, the model accuracy was nearly identical but slightly lower,
possibly due to the smaller number of training samples (see Supplement and Fig.
9).

Overall, the model classifies each molecule as bacterial or human with over 90%
accuracy across different test datasets using only 3000 signals per read (see Figure
2). The classifier generalizes well to different lab preparations, flow cells and pro-
portions of species. For the first three datasets (HeLa&Zymo, Human&Zymo_b12,
Human&Zymo_b34), the true positive rates (TPR, also Recall) and the true nega-
tive rates (TNR) are all above or around 90%. The precision and AUROC scores
are all about 90% as well. Even for samples with significantly more human than
bacterial DNA (Human&Zymo_b56 and Respiratory Metagenome), the accuracy
and recall both remain high.

We used the method of integrated gradients (IG) [15] to investigate the fea-
tures influencing SquiggleNet’s classification decisions. The IG method computes
the amount of gradient change for each corresponding input, and by doing so, offers
interpretation on which part of the input contributes the most to the model’s de-
cision. Inspecting these IG results (Fig. 10) shows that SquiggleNet predictions are
most strongly influenced by positions where the signal changes direction, changes by
a large amount, and/or changes from one nucleotide to another. This suggests that
SquiggleNet has learned filters related to the nucleotide composition of the signal
and uses the results to make classification decisions. Further details are contained
in the Supplement.

To demonstrate that the results are robust to the amount of signal removed from
the beginning of the read at test time, we also tested our pre-trained model on the
Human&Zymo_b34 dataset with only the first 1000 signals per read removed. We
chose the number 1000 because this is a closer estimation of the adapter length
[16], and at test time, we would like to make the decision as soon as possible to
enable real-time read selection. When testing the model on sequences with the
first 1000 signals removed, the results were nearly identical to those obtained from
conservatively removing 1500 signals: 89.35% accuracy, 90% true positive rate, and
86.9% true negative rate. Thus it appears that, as long as the initial pore noise,
adaptors, and barcodes are removed from the training sequences, the model is able
to make an accurate and fast decision at test time. This robustness also allows
flexibility if, for example, different sequencing datasets use sequencing adapters of
different lengths.

Remarkably, we find that SquiggleNet achieves significantly higher accuracy from
3000 signals than base calling followed by sequence alignment using the same
amount of signal. This result gives crucial context for interpreting the accuracy of
our model and suggests that the convolutional filters may detect some non-sequence
features that help with species classification, such as chemical modification of nu-
cleotides by methylation. Indeed, we found that the bacterial and human DNA
sequences in our dataset show significant methylation differences, with significantly
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Figure 3: Taxonomy Tree and Accuracy Per Species: Taxonomy tree
for the eight species in our dataset grouped in color and their corresponding
accuracy breakdown per species. The accuracy for distinguishing bacterial
sequences from human was highest for the red branch, intermediate for the
blue group, and lowest for the green group.

more methylated cytosines in human sequences and significantly more methylated
adenines in bacterial sequences (see Supplement and Table 4 for details).

For the Human&Zymob_56 dataset, the target to non-target sequence ratio is 1
to 99. The overall accuracy, TNR, and AUROC score are around 90%. The TPR
(Recall) is closely following, above 87%. The precision, however, is about 1/10 of
the other cases. This is due to the extremely low concentration of the target se-
quences (Zymo bacterial species), and the precision calculation is diluted by the
overwhelming number of false positive reads. Nevertheless, this is acceptable, since
we want to preserve as many targeted reads as possible (high recall) due to the low
target read concentration. All true positives and false positives will be sequenced to
full length, and thus can be further processed in the downstream analysis. Consid-
ering that the Human&Zymo_b56 dataset has 99x more non-targeted reads than
targeted, whereas only ~10x more reads were falsely identified as positive com-
pared to the HeLa&Zymo dataset, this model demonstrated strong ability to filter
out non-targeted reads, and has high potential to improve throughput (see below).
Overall, the model that was trained on only the HeLa&Zymo dataset yields high
performance across different testing datasets, highlighting the robustness of the
model.

Interestingly, SquiggleNet performance varies systematically across bacterial taxa.
The network classifies human vs. bacterial DNA with 90% accuracy, but some bac-
terial species are easier to distinguish from human sequences than others. The
eight bacterial species in the Zymo mixture are related according to the taxon-
omy tree shown in Figure 3. The top three species—Pseudomonas aeruginosa (Pse),
Salmonella enterica (Sal), and FEscherichia coli (Esc)—are gram-negative bacteria
and are most easy to identify, while the bottom five species are gram-positive bac-
teria and are harder to distinguish from human DNA. It is not clear what specific
features of the gram-negative bacteria make them easier to identify, but this behav-
ior may be related to species differences in GC-content or the amount of methyla-
tion.
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SquiggleNet Identifies Species Not Seen During Training

In real-world applications, samples may contain species whose genomes are not in
the training samples. We thus investigated whether the model can identify unseen
species. To do this, we performed a leave-one-out analysis, removing each of the
bacterial species separately during training, then putting it back during testing to
challenge SquiggleNet’s generalization ability. For the held-out species comparisons,
we used 400k and 20k reads from the HeLa&Zymo dataset for training and testing,

respectively.

During each training run, we removed one of the eight Zymo bacterial species from
the training dataset. We then compared the test accuracy from the classifier trained
on seven bacterial species plus human with the performance of the same model on
two different testing sets containing the eighth held-out species. The dataset we call
Test-Uniform/HeLa includes all eight species (including the one held out during
training), evenly distributed, and balanced to contain equal numbers of HeLa and
bacterial molecules. The dataset we refer to as Test-One/HeLa includes only the

single held-out species and HeLa, in equal proportions.
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Figure 4: Performance of SquiggleNet on Unseen Species: Each col-
umn (except ”All“) is a model trained on a Zymo/HeLa 1:1 mix without
the held-out species. For each species, the red bar shows the test accuracy
on all species minus the held-out species; this number provides a baseline
against which to compare performance on the held-out species. Blue bars
show the accuracy of each trained model on Test-Uniform/HeLa, a test
set with all eight Zymo bacterial species included and HeLa in a 1:1 ratio.
Green bars show the accuracy of each model on Test-One/HeLa, a test set

with only the single unseen species and HeLa in a 1:1 ratio.
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The unknown species identification results can be found in Figure 4. The red
bars are the test accuracy results without held-out species. The left-most column
is the performance of a training run with all 8 bacterial species as a reference for
cross-testing run performance comparison.

Across different runs, the test accuracies, not including held-out species, are
around 84%-86%. For each Test-Uniform/HeLa experiment, accuracy of classify-
ing the held-out species was ~83%-85%, only about 1% lower compared to when
the species was seen during training. This shows that the model was able to accu-
rately identify sequences from bacterial species that were not seen during training.
For the Test-One/HeLa experiment, the test performance is more influenced by the
taxonomic position of the held-out species. Since the testing datasets only include
human DNA and the one species that was held out, we expected performance to drop
even more than the previous Test-Uniform/HeLa experiment. However, the test ac-
curacies of the first three gram-negative bacterial species, Pseudomonas aeruginosa
(Pse), Salmonella enterica (Sal), and Escherichia coli (Esc) actually increased by
~1%-4% compared to their validation accuracies. The remaining four gram-positive
species had a minor performance increase or drop within 4%. Staphylococcus aureus
had the largest performance drop among all, but the accuracy was still above 75%.

In summary, these two sets of experiments show that even when one species was
not seen during training time, SquiggleNet was still able to identify it with high
confidence.

SquiggleNet Identifies Bacterial DNA in a Human Respiratory Metagenome Sample
To further test the generalizability and practicality of SquiggleNet, we tested the
best performing model (trained on the Hela&Zymo dataset) on a dataset collected
from several clinical human samples. We collected the data following the procedures
in [17]. The ground truth labels were obtained using our previously published read
alignment pipeline[18]. The dataset includes 324526 human reads and 341 bacteria
and other (less than 0.6%), a human:bacterial ratio of 951:1. Some of the domi-
nant bacteria groups include Prevotella (29%), Neisseria (20%), and Rothia (11%).
However, less than 3% of the bacterial species overlap with the training dataset.
The full taxonomic composition can be found in Figure 5 and [17].

Even though the model was trained on dataset Hela&Zymo, it achieved 90.8%
overall accuracy in the Respiratory Metagenome dataset, 72.5% true positive rate,
and 90.9% true negative rate (Figure 2). The AUROC score is 0.817. The precision
is about 1/5 of that in dataset Human&Zymo_b56. As with the unbalanced Hu-
man&Zymo dataset, the precision is diluted by the extremely low concentration of
bacteria, but the model still achieves high recall-which is critical to retrieve all the
bacterial reads for downstream analysis.

The Zymo community of the dataset on which the model was trained has very little
overlap (< 3%) with the bacterial species found in the Respiratory Metagenome
dataset. The genome information in this testing dataset was mostly unseen and
unknown for the trained model. However, it still achieved a True Positive Rate of
72.5%. This shows that SquiggleNet is able to extract common bacterial genome
features and distinguish them from the human genome sequencing raw signals. The
generalizability of SquiggleNet significantly increases the potential applications of
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Figure 5: SquiggleNet Accuracy by Species in Human Respiratory
Metagenome Sample[19]: Some of the dominant bacterial groups include
Neisseria (23%), Bacteriodales (21%), and Firmicutes (20%). Less than 3%
of the bacterial species overlap with the training dataset.

our method. As shown in Figure 5, different species were classified with different
accuracy. The model is therefore, expected to be even more accurate if it can be
fine-tuned in a dataset with closer range of species.

SquiggleNet Is More Accurate and Efficient than Previous Approaches

We next compared the performance and efficiency of SquiggleNet against the
current state-of-the-art methods: Guppy+Minimap2 and UNCALLED. This exper-
iment was conducted on dataset Human&Zymo_b34 with 1:4 Human and Zymo
mix. All the analysis was done on a single-usage Intel(R) Xeon(R) CPU E5-2697
v3 @ 2.60GHz machine with a single TITAN Xp GPU.

We benchmarked the running time required to classify 712,000 reads (178 fastb
files with 4000 sequences each and 3000 signals per read, adapters and barcodes
removed). SquiggleNet took 806.74 seconds (13 minutes 27 seconds) to finish pro-
cessing all on GPU (Figure 6). When tested on a 3.5 GHz Dual-Core Intel Core
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Figure 6: Processing Time and Accuracy Comparison: The process-
ing time of SquiggleNet with 300 bp of input is among the lowest, and yet
the accuracy is the highest among the three methods. For the other two
alignment-based methods, with longer input length, the processing time
grows drastically, whereas the accuracy gain is limited.

i7 Macbook Pro, SquiggleNet finished processing all the files in 2630.58 seconds
(43 mins 51 seconds). With the Guppy+Minimap2 method [9], sequences were base
called using Guppy [20] with 4 callers and 4 runners/GPU, and we used 32 threads
for sequence alignment with Minimap?2 [13]. It took 742.602 seconds (12min 23s)
for Guppy to finish basecalling 3000 signals and another 25.673 seconds for Min-
imap2 to finish the alignment, about the same amount of time as SquiggleNet.
The accuracy of Guppy+Minimap2, however, was 79%, more than 10% lower than
SquiggleNet. Using the full length of the input sequence increased the accuracy of
Guppy+Minimap2 to 91%, but the processing time increased dramatically. With
UNCALLED, 32 threads were used to process 3000 signals, 6000 signals, and full-
length reads respectively. It took at least 1277.28 seconds (21 min 17s) to finish the
3000 signals, but the accuracy was below 50%. With longer input length, the accu-
racy increased to 60% (82% for full-length), but the full length accuracy was still
lower than SquiggleNet with 3000 signals. Meanwhile, the processing time grows
drastically as well. SquiggleNet is, therefore, faster and more accurate than either
Guppy+Minimap2 or UNCALLED.

Note that the accuracy values that we report take into account all reads, including
those that Minimap2 could not align. In contrast, the UNCALLED paper reported
that the method was able to recover 94% of the alignments identified by Minimap2,
but this number does not take into account the reads that Minimap?2 failed to align.
Crucially, our datasets have molecular barcodes, allowing us to determine the true
species even for reads that Minimap2 failed to align. Furthermore, the 94% accuracy
reported by the UNCALLED paper is based on using the entire sequence, whereas
we only used significantly less information (3000 signals) to classify the reads.

Table 1: Method Requirement Comparison
SquiggleNet SquiggleNet Guppy+Minimap2 UNCALLED
Equipment(t=thread) GPU CPU(t=1) GPU+CPU(t=32) CPU(t=32)
Space Requirement] < GPU Max < Mem Max < GPU Max 4+ 3.2GB < Mem Max + 3.2GB
Model Size| 304 KB 304 KB 5.5/40/116 MB
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We also observed that over 90% of the SquiggleNet processing time on GPU and
over 40% of the processing time on CPU is spent on loading data from the disk.
The actual classification time for a batch of 500 reads is about 0.06 seconds on
GPU and about 0.8 seconds on CPU (one thread). When streaming directly from
the nanopore sequencer in real time, this loading time can be significantly reduced.

SquiggleNet also offers significant advantages in terms of space requirements, re-
quiring only 304KB to store the model parameters. The run-time space usage is
dominated by the storage required for each mini-batch of sequences, rather than
the model parameters. Guppy, however, is a much larger deep-learning model, and
the smallest pre-trained option available through Oxford Nanopore Community [20]
is 5.5MB. On top of that, however, the Guppy+Minimap2 method also requires a
customized database for Minimap2 reference. In this experiment, the human and
Zymo reference database takes 3.2GB. UNCALLED is currently operational only
on CPU. Similarly, it also takes a reference database to build a Burrows-Wheeler
index, which is an extra 3.2GB in this experiment. Therefore, SquiggleNet requires
much less space than the other two methods.

SquiggleNet Identifies Reads Containing Human Long Interspersed Repeat Elements
Classifying species is useful for many applications, but distinguishing among dif-
ferent loci from the same species would significantly expand the settings in which
SquiggleNet can be applied. To investigate whether SquiggleNet can be used to
enrich loci of interest within a single species, we analyzed data from a recently pub-
lished protocol [21] that enriches specific families of interspersed repeat elements
using Cas9-directed adapter ligation (Fig. 7a). This experimental enrichment is ef-
fective, but still fewer than 50% of reads contain the repeats of interest [21]. As
previously described [22], we used BLASTn [23] on the base-called sequence of each
read to label the reads as target (repeat-containing) or non-target (no repeat). We
focused specifically on a single class of interspersed repeats, human-specific long
interspersed elements (L1Hs), which was the family most effectively enriched by
the Cas9-directed ligation protocol. Using these labels, we trained SquiggleNet on
a balanced dataset containing approximately 170,000 reads from each class. Note
that this is about tenfold less training data than we used in the human vs. bacterial
classification experiments above. As with the species classification experiments, we
discarded the first 1500 signals from each read, then used the next 3000 for train-
ing or testing. Despite the smaller training dataset, we found that SquiggleNet was
extremely effective at identifying reads containing L1Hs elements (Fig. 7b-c). Our
model achieved more than 92% accuracy with a true positive rate above 93%. These
results indicate that using SquiggleNet in a read-until setting to enrich long inter-
spersed repeats would provide a significant benefit compared to Cas9 enrichment
only.

SquiggleNet Improves Throughput by Enabling Computationally Targeted Sequencing
To assess the potential improvement in sequencing throughput that SquiggleNet
could provide, we developed a mathematical model to compare the total number of
base pairs and total sequencing time needed to obtain a certain number of targeted
sequences with and without SquiggleNet.
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Figure 7: Identifying Reads Containing Human Long Interspersed
Repeat Elements: (a) Diagram of experimental strategy for enriching hu-
man mobile elements, including interspersed repeats. A guide RNA specific
to each repeat class directs Cas9 to cut the DNA and ligate a sequencing
adapter. However, adapters are also ligated to some sequences without re-
peat elements. Subsequent nanopore sequencing produces both target and
non-target reads. (b) Pie charts of the proportion of L1Hs repeat elements
from Cas9 enrichment only vs. SquiggleNet classification. (c) Classification
metrics demonstrating SquiggleNet’s ability to distinguish reads with or
without L1Hs repeats.

The detailed derivation of the model can be found in the Supplement. The most
influential hyper-parameters include average target sequence length z, average non-
target sequence length h, and target sequence concentration c. Several other tunable
hyper-parameters, including the waiting time to eject one molecule and begin se-
quencing another; the total number of active pores in a flow cell; the sequencing
speed; and the total number of targeted sequences, did not significantly influence the
predicted increase in throughput (see Supplement). We chose the values for these
less influential parameters based on the empirical time requirements and accuracy
of SquiggleNet and the sample means from the real sequencing data.

In Figure 8, we picked the average non-target/target sequence length ratio as one
axis, and the target sequence concentration as the other axis to demonstrate the
total number of base pairs (left) and total sequencing time (right) that a regular
nanopore sequencing pipeline would require, compared to those of a pipeline with
SquiggleNet, in order to obtain a fixed number of targeted reads. Based on the
properties of our sequencing datasets, we set average sequencing speed to be 450
base pairs per second and the total number of active pores in a flow cell to be 500. We
also used the following parameters based on SquiggleNet’s empirical performance:
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Figure 8: Throughput and Sequencing Time Comparison With-
out/With Read-Until: When the average non-target read length is about
20 times longer than the target read length, and sample contains over 90%
non-target reads, a normal sequencing pipeline would have to sequence ~10
times more base pairs (left) than Read-Until pipeline with SquiggleNet to
achieve a fixed number of targeted reads. The ratio is about 10 for the

required sequencing time as well (right).

TPR = 0.9, TNR = 0.9, sequencing time = 1s, and classification decision time =
0.8s (time required for SquiggleNet on CPU).

We show the predicted gains in throughput and sequencing time for a range of
the most important hyperparameters (Figure 8). When the average non-target read
length is about 20 times longer than the target read length, and the sample contains
over 90% non-target sequences, it would take a nanopore sequencing pipeline ~10
times longer than Read-Until pipeline with SquiggleNet to achieve a fixed number
of targeted reads. The regular nanopore sequencing pipeline would also have to
sequence ~10 times more base pairs than the Read-Until pipeline. Even if we set
these parameters much more pessimistically, the model still predicts about a 5-
fold gain in throughput and time. These numbers are also in the same ballpark
as the 4.5x enrichment reported in the UNCALLED paper [10], supporting the
plausibility of our mathematical model. We therefore conclude that Read-Until
with SquiggleNet holds great promise to improve target read throughput, saving

sequencing time and resources.

Discussion
The success of our approach suggests that the raw sequencing signals generated
by nanopore sequencing contain rich information for identifying target sequences
from background sequences. Such features could include different DNA modification
patterns, codon frequencies, GC content, or even DNA shape or RNA secondary
structure. Furthermore, because these features are primarily local in nature, only a
small amount of sequencing signal is required. In contrast, approaches that rely on
sequence information alone require much more signal (more sequencing time), are
susceptible to base-calling errors, and do not leverage non-sequence information.
We also note that different reads go through the pores at different speeds. Future

work could also include an event detector and a scaler into the classifier, which
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may further improve performance. Additionally, the squiggles from different Min-
ION flow cells show systematic run-to-run differences. Thus, the data preprocessing
and normalization procedures that we employed are crucial for generalizing across
datasets.

We tested the capability of our model to enrich bacterial DNA in the presence of
more abundant human DNA. Human and bacterial DNA are significantly different,
which makes this classification task feasible. We also demonstrated that Squig-
gleNet can identify target sequences in other contexts, such as interspersed repeat
elements within the human genome. This suggests that SquiggleNet could be used
for targeted enrichment of other genomic loci, such as commonly mutated cancer
genes or regions that are highly polymorphic across the human population.We also
anticipate that SquiggleNet will be useful for distinguishing viral DNA or RNA
sequences from host molecules within infected cells. Rapidly identifying targeted
sequences could be helpful in numerous clinical settings, including cancer diagnosis,
respiratory pathogen identification, and Coronavirus testing.

Methods
Table 2: Datasets Description
Name Ratio  Train  Validation Test Note
HelLa&Zymo 1:1 2.4M 40k 54k
Human&Zymo_b12 1:1 1.72M 40k 44k Barcode 1 & 2
Human&Zymo_b34 1:4 224k Barcode 3 & 4
Human&Zymo_b56 99:1 100k Barcode 5 & 6
Respiratory Metagenome  951:1 324867 Real Patient Samples

Data Collection

We generated five datasets using a MinION sequencer (Table 2) for this paper.
The first four datasets used the standard Rapid Sequencing Kit (SQK-RADO004)
protocol on a FLO-106D MinlON Flow Cell. The HeLa&Zymo dataset used the
ZymoBIOMICS Microbial Community DNA Standard, and Datasets 2—4 used the
ZymoBIOMICS HMW DNA Standard with different barcodes specified in Table
2. Details about the dataset composition can be found in the Supplement. The
Respiratory Metagenome data collection method can be found in [17].

Because base calling and sequence alignment of noisy nanopore reads can result
in systematic errors and is not a completely reliable source of ground truth, we
used barcodes to label the sequences in the three Human&Zymo datasets as either
bacteria or human before mixing them together. The labels obtained in this way
thus represent reliable ground truth.

Each extracted signal read was normalized with fast5 scaling and offset. All reads
were also normalized using Z-scored median absolute deviation. The extreme signal
values with a modified z-score larger than 3.5 were replaced by the average of closest
neighbors.

Model Architecture
SquiggleNet is a 1D-ResNet-based binary classifier (Figure 1). The first layer of
1D-CNN is comparable to the first layer of Guppy[20], but with significantly fewer
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channels (20 instead of 512). After that, there are four layers of 1D-ResNet, and
each layer includes two BottleNeck blocks. The number of channels for each layer
increases by a factor of 1.5, and each BottleNeck block decreases the string size
with a stride of 2. We perform average pooling after the final convolutional layer,
followed by a fully connected layer. We also experimented with other architectures
(see Supplement).

Training and Evaluation

Our best-performing model was trained on the HeLa&Zymo dataset with binary
cross-entropy loss. The dataset was split into training, validation, and testing sets.
The Human&Zymo_b12, Human&Zymo_b34, Human&Zymo_b56, and Respiratory
Metagenome datasets were used to assemble testing sets for the best-performing
model.

As a separate analysis, we also trained on the Human&Zymo datasets and tested
on the HeLa&Zymo datasets. The performance of this model was nearly identical
but slightly worse than the model trained on HeLa&Zymo (see Supplement for
details).

The Adam optimizer was used for over 6 epochs on each dataset, with a learning
rate of le-3 and batch size of 1000. The model was initialized using Kaiming initial-
ization in fan-out mode. Batch normalization was conducted within each Bottleneck
block.

For the human interspersed repeat analysis, we used a balanced training dataset
with equal numbers of reads that contained and did not contain an L1Hs element
(about 170,000 reads each). We identified L1Hs elements using BLAST on the base-
called reads with an e-value cutoff of 1 x 1075, as previously described [21]. We
trained for 3 epochs using the Adam optimizer. Evaluation metrics include overall
accuracy, true positive rate (TPR, Recall), true negative rate (TNR), Precision,
and area under receiver operating characteristic curve (AUROC) when running the
model on different test datasets. Speed and memory comparisons were performed
on the same Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz machine with a single
TITAN Xp GPU.
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Supplement

Data Collection

We generated five datasets using a MinlON sequencer (Table 2) for this paper.
The first four datasets used the standard Rapid Sequencing Kit (SQK-RADO004)
protocol on FLO-106D MinION Flow Cell. The HeLa&Zymo dataset used the Zy-
moBIOMICS Microbial Community DNA Standard, and Datasets 2—4 used the
ZymoBIOMICS HMW DNA Standard with different barcodes specified in Table 2.
The Respiratory Metagenome data collection method is described in [17].

The theoretical composition of the ZymoBIOMICS Microbial Community DNA
Standard [12] includes 8 types of bacteria with 12% each of: Listeria monocyto-
genes (Lis), Pseudomonas aeruginosa (Pse), Bacillus subtilis (Bac), Escherichia
coli (Esc), Salmonella enterica (Sal), Lactobacillus fermentum (Lac), Enterococcus
faecalis (Ent), Staphylococcus aureus (Sta); and 2 types of fungi (2% each of Sac-
charomyces cerevisiae and Cryptococcus neoformans). The theoretical composition
of the ZymoBIOMICS HMW DNA Standard [14] includes 7 types of bacteria with
14% each of Listeria monocytogenes, Pseudomonas aeruginosa, Bacillus subtilis,
Escherichia coli, Salmonella enterica, Enterococcus faecalis, Staphylococcus aureus;
and 1 type of fungus (Saccharomyces cerevisiae, 2%).

The HeLa&Zymo dataset contains 200ng of HeLa DNA and 200ng of Zymo-
BIOMICS Microbial Community DNA Standard computed by volume and listed
concentrations. The sequenced samples were basecalled using Guppy v3.6.1 and
aligned with reference downloaded from NCBI using Minimap2. We assigned the
species of these sequences using the Minimap2 alignment because no species bar-
codes were used in this dataset. Due to the limited fungus sequences, only the
bacterial sequences were kept for training, validation, and testing. The first 1500
signals for each read (about 150bp of sequence on average) were removed to avoid
adapter sequences and signal instability.

The assembly of the Human&Zymo datasets each started with 400ng of Human
GM12878 DNA and 400ng of ZymoBIOMICS HMW DNA Standard. They were
barcoded using the SQK-RBK004 barcodes 1 and 2, 3 and 4, 5 and 6 respectively
as indicated in the table. Then each dataset was generated using 200 ng of bar-
coded GM12878 (by volume) and 200ng of HMW Zymo (by volume) with a total of
400ng pooled in 10ul. For the Human&Zymo datasets, the extracted samples were
basecalled using Guppy v3.6.1 with “~barcode_kits SQK-RBK004” specification to
separate the reads and identify the barcodes. The barcodes were then used to iden-
tify the species of each read. The first 2000 (about 200bp worth of sequences on
average) signals were removed to avoid barcode overfitting and signal instability.
Based on the adapter, barcode and barcode flanking sequence description from the
Nanopore Community [24, 25], 2000 signals should be more than enough to remove
all above.

Each extracted signal read was normalized with fast5 scaling and offset. All reads
were also normalized using Z-scored median absolute deviation. The extreme signal
values with a modified z-score larger than 3.5 were replaced by the average of closest

neighbors.
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Model Dataset Layers Channels Window Size Stride Val Acc Test Acc
VGG_1000 1M/20k/20k 2 [20] [19, 5] [6] 65.58 63.94
2 [100] [19, 5] [6] 67.06 65.85
4 [20, 50] [19, 5, 6] [3. 2] 70.93 69.33
4 [40, 60, 100, 100] [19, 5, 6] [3. 2] 71.78 70.61
6 [20, 50, 75] [19, 5, 6, 3] [3, 1, 1] 70.42 69.36
6 [40, 75, 100] [19, 5, 6, 3] [3, 1, 1] 71.61 69.99
8 [20, 20, 20, 20] [20, 6, 6, 3, 3] [2,1,1,1] 72.21 71.16
8 [30, 30, 30, 30] [20, 6, 6, 3, 3] 2,1, 1,1] 74.21 72.60
8 [50, 50, 50, 50] [20, 6, 6, 3, 3] 2,1, 1, 1] 76.63 75.99
8 [20, 50, 75, 75] [19, 5, 6, 3, 3] [3.1,1,1 72.95 70.68
10 [10, 20, 40, 80, 80] [5, 5,5, 5, 5] [1,1,1,1, 2] 77.46 76.73
Model Dataset Block Layers Val Acc Test Acc
ResNet_1000 200k/10k/10k BottleNeck [2,2,2,2] 72.99 72.04
BottleNeck [1,1,1,1] 72.73 71.67
BottleNeck [1,1,1,1,1] 72.12 70.98
BottleNeck [2,2,1,1] 72.91 71.07
BottleNeck [1,1,2,2] 72.81 71.45
1M/20k/20k Basic [2,2,2,2] 80.21 79.74
BottleNeck [2,2,2,2] 78.85 78.71
+GroupChannel [2,2,2,2] 77.95 77.56
+LSTM BottleNeck [2,2,2,2] 80.28 79.56
+AdamW BottleNeck [2,2,2,2] 79.90 79.88
Bonito_1000 1M/20k/20k 1*2 [8,8,16,16] 72.44 72.63
2%2 [8.8,8,16,16] 73.49 74.36
Model Dataset Channels Window Size Hidden size Layers Bidirectional ~ Val Acc
CNN_3000+LSTM 1M/20k/20k 50 19 50 2 Yes 64.538
75 19 75 4 Yes 64.238
CNN_3000+GRU 50 19 50 2 Yes 64.398
75 19 75 4 Yes 64.692

Table 3: Selected Model Architecture Experiment Results and Hyperparameter Tun-

ing Performance Report
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Model Architecture Experiments and Hyperparameter Tuning

In this section, we describe some of the additional models and hyperparameter
settings that we explored while developing SquiggleNet. Table 3 summarizes these
results. Most of the model architectures were trained on the HeLa&Zymo dataset
using 1000 signals per sequence, after removing the first 1500 signals. We used this
shorter input length and a subset of the training dataset to enable more rapid model
testing. We then re-trained some of the more promising models with 3000 signals
per read. Each model was trained for 2 to 5 epochs until the validation accuracy
started to plateau or show signs of overfitting.

The experiments based on the VGG_1000 architecture indicated that a model with
more layers and more channels could generally offer better performance. However,
the lack of shortcut skips in the architecture limited the possible depth of the VGG
models.

We thus next experimented with a ResNet model with different numbers of layers,
different numbers of blocks in each layer, different block types, and several other
modifications. We found that increasing the number of blocks in each layer boosted
performance somewhat, but increasing the number of layers did not necessarily
improve the performance. Increasing the size of the training dataset boosted the
model performance by ~8% according to Table 3. We introduced a layer of LSTM
in the middle of our ResNet model, and this increased performance by a small
margin, but took much longer to train.

Recurrent Neural Network (RNN) models such as LSTM and GRU gave little
advantage over CNN based models and also required significantly more resources to
train. For the last set of experiments presented in Table 3, we used 3000 signals per
read, introduced one layer of CNN with window size 19 to reduce the input size, and
followed with various RNN architectures. The performance slowly increased from
random guessing (50%), but plateaued around 65%. This could indicate that local
features extracted by convolution provide sufficient information for classification,
and long-range dependencies extracted by the recurrent network only help by a
small amount.

Other models we tried include: a down-sized Bonito [26, 27], stacks of LSTM
layers with variational window sizes, different hyperparameter settings, and different
training datasets. After full consideration of model size, speed, performance, and
training time, we settled on the best performing model architecture to perform the

main experiments in the paper.

Comparison of Models Trained on HeLa&Zymo and Human&Zymo

In addition to the best-performing model trained on the HeLa&Zymo dataset,
we conducted the same set of test experiments on a model trained on the Hu-
mand&Zymo_bl12 dataset. This dataset consists of a 1:1 mix of human DNA and
Zymo HMW DNA, as described in Supplement Section Data Collection. We tested
on all five datasets, which include different sample preparations, flow cells, sample
components, and human:bacteria ratios. The performance can be found in Figure 9.
The overall performance is almost identical with Figure 2, but slightly worse. This
may be because the Hyman&Zymo_b12 dataset contains less training data than the
HeLa&Zymo dataset. Overall, this analysis indicates that the model achieves high
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Figure 9: Overall Performance across five test Datasets with Model
trained on Hyman&Zymo _b12: Accuracy, True Positive Rate (TPR,
RECALL), True Negative Rate (TNR), Precision, and the AUROC score
of the model trained on the HeLa&Zymo training set, and tested on five

test sets with bacterial sequences as the target.

accuracy whether trained on HeLa DNA (which is a highly mutated cancer cell line)
or GM12878 DNA (which should look more like healthy human DNA), when tested
on the other type of data.

Comparison Experiment Method Details

The performance and efficiency comparison experiment was conducted on dataset
Human&Zymo_b34 with 1:4 Human and Zymo mix. For a fair read-in and write-
out time comparison across the platforms, all the reads were pre-truncated into
3000 signals, 6000 signals, and full length, after removing the first 2000 signals for
adapters and barcode. Any reads shorter than the minimum input requirements
were discarded. The ground truth labels for each read were obtained by the SQK-
RBKO004 barcode 3 and 4, basecalled by Guppy v3.6.1. Any reads that were labeled
as other barcodes or not labeled were discarded.

SquiggleNet was tested on 1) a single-usage Intel(R) Xeon(R) CPU E5-2697v3
@ 2.60GHz machine with a single TITAN Xp GPU with batch size one (fast5 file,
about 4000 sequences each), and 2) a single-usage 3.5 GHz Dual-Core Intel Core
i7 Macbook Pro with a single thread. Over 90% of the compute time on GPU was
spent on file read-in and write-out (over 40% of the time on CPU).

When testing the Guppy+Minimap2 method, we used 4 callers and 4 runners
per GPU for Guppy, and 32 threads for Minimap2 sequence alignment. Indexes for
both human and Zymo community reference genome were pre-generated. The test
datasets with 3000 signals per read, 6000 signals per read, and full length reads
were basecalled by Guppy and then aligned using Minimap2 with the pre-generated
index. The resulting read IDs were cross-referenced with the ground truth labels
for barcode 3 and 4 to calculate the overall accuracy.
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When testing the UNCALLED method, we used 32 threads to process 3000 sig-
nals, 6000 signals, and full-length reads. BWA index was pre-generated for the Zymo
community reference genome. Unfortunately, UNCALLED struggles to map repet-
itive references longer than 100Mbp, such as the human genome. Therefore, we had
to treat all the reads that weren’t classified as Zymo to be human reads as an ap-
proximation for the performance computation. The resulting read IDs were cross
referenced with the ground truth labels for barcode 3 and 4, to calculate the overall

accuracy.

DNA Methylation Differences Between Human and Bacterial DNA

Avg mAs/KB  Avg mCs/KB
Bacterial 1.72 3.53
Human 0.01 16.27

Table 4: Average number of methylated A (mA) and methylated C (mC) nucleotides
in the first 1000 nucleotides of human and bacterial DNA sequences

Since SquiggleNet achieves higher classification accuracy than base calling fol-
lowed by sequence alignment (given 3000 signals), we hypothesized that the neural
network may be using other information besides just nucleotide sequence. One pos-
sible such source of information is methylation. We therefore investigated whether
there are systematic methylation differences between the human and bacterial DNA
sequences.

To do this, we used Guppy v3.6.1 to output the methylation probability for each
sequence in Dataset Hyman&Zymo_b34. For each base pair with greater than zero
percent chance to be an A or C (the only nucleotides for which Guppy will pre-
dict methylation), we computed the most likely base call: A, methylated A, C, or
methylated C. We then calculated the total and average numbers of methylated As
and methylated Cs in the first 1000 bases of both human and bacterial sequences.

As shown in Table 4, bacterial sequences contain on average about 2 methylated
A nucleotides and 4 methylated C nucleotides per kilobase, whereas the human
sequences contain on average 0 methylated As and 16 methylated Cs per kilobase.
This suggests that methylation is indeed a possible feature that could help to classify
sequences as bacterial or human.

Model Interpretation Using Integrated Gradients
We used the method of integrated gradients (IG) [15] to investigate the relationship
between convolutional filters, sequencing signal dynamics, and classification results
from SquiggleNet. Integrated gradients computes the amount of gradient change for
each corresponding input, and by doing so, offers interpretation on which part of the
input contributes the most to the model’s decision. The IG approach gives a way
of attributing model outputs to specific input features. In our case, IG can tell us
which electrical signal values over the course of the sequencing time most strongly
influence SquiggleNet’s decision to classify the sequence as positive or negative.
To investigate this, we adapted an existing PyTorch implementation [28] of IG
so that it works for 1-D squiggles, rather than 2-D images. We used a squiggle
whose value is identically the mean pore conductance (which is identically 0 after
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Figure 10: SquiggleNet Integrated Gradients and Signal Dynamics

Four sample signal chunks, 2 positive signals (top), and 2 negative signals
(bottom). Each signal chunk was colored with corresponding predicted nu-
cleotide (from Guppy basecalling results). Methylated As were colored in
red, and methylated Cs were colored in green. Each squiggle was also col-
ored by the value of the integrated gradient. A higher integrated gradient
value (purple) indicates that the model is more excited by that part of the
signal, and thus that it contributes more to the final classification decision.

normalization) as the background signal required by IG. This is analogous to using
an all-black image (the standard background signal for performing IG on image
data). Then we simultaneously plotted the raw squiggle, base calls, and integrated
gradients . Figure 10 shows the results for two positive and two negative sequences,
with one positive and one negative containing a methylated nucleotide. The attri-
bution is clearly strongest at positions where the signal changes direction and/or
changes by a large amount. Attribution also tends to be high at the nucleotide
boundaries predicted by the base caller. This suggests that SquiggleNet has learned
filters related to the nucleotide composition of the signal and uses the results to
make classification decisions.

Throughput Estimation Model

The throughput estimation model computes the total amount of time ¢ and the
number of base pairs [ needed to achieve x targeted reads, and compares these
values with and without read-until.

The estimation model assumes the average targeted read length to be z, and the
average non-targeted read length to be h. It assumes the total number of func-
tioning pores k is constant throughout the sequencing run. It also assumes all the
functioning pores are actively sequencing or in the process of getting a new read.
All the other parameter values can be found in table 5.

Without Read-Until, the total sequencing time t,,, and the total number of base
pairs [,,, needed for = targeted sequences are:
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Table 5: Throughput Estimation Model Parameters

Description Symbol Value
Total sequencing time t

Total base pair sequenced l

Number of targeted reads x 1000
Number of total reads n==z/a

Number of pores alive k 400
Average sequencing speed v 450 bp/s
Average read length: target z 40000 bp
Average read length: non-target h 40000 bp
Concentration: target a 0.1
Concentration: non-target b=1—a 0.9
Classifier TPR p1 90%
Classifier TNR D2 90%
Time: attract a new read to 0.01s
Time: initial sequencing t1 1s
Time: decision time to 0.8s
Time: reject a read t3 0.01s

lwo = [Za + hbn

two = [(to + Z/v)a + (to + h/v)b] - n/k

With Read-Until, the total sequencing time ¢,., and the total number of base pairs
I, needed for = targeted sequences are:

lrw = [(t10 + t20) ((1 — p1)a + bpz) + Zap; + hb(1 — p2)]n

try = [(to-‘rtl -‘rtz+t3)bp2+(to+t1+t2+t3)a(1—p1)-‘r(t0+5/v)ap1+(t0+7l/’l))b(l—p2)]~7’L/k‘

Several parameters cancel out and thus do not affect the sequencing length ratio
lwo/lr O the sequencing time ratio t,,,/t,,. These parameters include: the number
of targeted reads x, the number of total reads n, and the number of active nanopores
k. Several hyperparameters were set to default values based on SquiggleNet’s statis-
tics and the sample means from multiple sequencing experiments. These include av-
erage sequencing speed (v = 450 bp/s), classification TPR (p; = 90%), classification
TNR (p2 = 90%), initial sequencing time (¢; = 1s), and decision time (t; = 0.8).
The average read length for target and non-target reads are both set to 40000 bp.
We set the target concentration to 10% and non-target read concentration to 90%.

We also investigated how tp, the time to attract a new read, or t3, affect the
throughput ratio. We varied these two parameters from 0 to 1 second and plotted the
resulting throughput ratio for both sequencing length and sequencing time (Figure
11). Neither parameter significantly affected the throughput ratio.

Model Performance on Different Test Dataset Composition Ratio

Because the trained model makes predictions independently for each individual
sequence, the true positive, false positive, false negative, and true negative rates are
independent of the distribution of the test set. In contrast, the ratio of sequences in
the training dataset is important, which is why we conducted training with equal
numbers of positive and negative sequences. To confirm this, we used the model
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Figure 11: The influence of t0 and t3 on Read-Until Throughput: As
t0 and t3 change from 0 to 1 second, the sequencing time and length ratio
(without/with read-until) are not effected significantly.

pretrained on the HeLa&Zymo dataset (same as reported in Figure 2), and tested
it on datasets with HeLa&Zymo composition ratios ranging from 100:0, 99:1, 19:1,
3:1, 1:1, to 1:3, 1:19, 1:99 to 0:100. As Figure 12 shows, the TPR/TNR/FNR/FPR
values are not significantly affected by the test composition ratio and remain around
90%. The absolute number of positive and negative predictions will of course vary
with the composition of the test dataset, but this behavior is desirable.

Test Performance on Various Composition Ratio (Zymo:Hela)

1.0

0.8

Accuracy

0.4

0.2

0.0-

100:0 99:1 19:1 3:1 1:1 1:3 1:19 1:99 0:100

Figure 12: Robustness of SquiggleNet Performance Across Varying
Test Set Composition: The TPR, FNR, TNR, and FPR are independent of
the test dataset Zymo:HeLa ratio and remain around 90%.

Model Performance on Odd and Even HelLa Chromosomes

We trained a new model on the HeLa & Zymo dataset using even chromosomes for
training, and odd for testing, each with a 1:1 ratio of HeLa and Zymo sequences.
We omitted all chromosomes with non-numeric names—including the mitochondrial
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chromosome, sex chromosomes, and other contigs—rather than arbitrarily designat-
ing them as odd or even. Otherwise we followed the training procedure exactly as
described in the Methods. The analysis indicates that SquiggleNet can correctly
classify reads from missing chromosomes (Table 6). The performance is about 6%
higher than what we obtained using all chromosomes. This is possibly due to the
chromosomes we excluded, which may be enriched for low-quality sequences. In ad-
dition, the human mitochondrial chromosome is somewhat phylogenetically similar
to prokaryotic DNA, so excluding it may have also boosted the performance.

Accuracy  Precision  TPR (Recall) TNR
96.84% 96.97% 96.65% 97.02%

Table 6: Model Performance on Odd and Even HeLa Chromosomes
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Availability of data and materials

We have uploaded our data to SRA (SRP296988). The Cas9 enrichment dataset is previously published and
available on the SRA (BioProject accession PRINA699027). The code can be found in our Github repository:
https://github.com /welch-lab/SquiggleNet.
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