

1 The termite fungal cultivar *Termitomyces* combines diverse enzymes and
2 oxidative reactions for plant biomass conversion
3

4 Felix Schalk,¹ Cene Gostinčar,^{2,3} Nina B. Kreuzenbeck,¹ Benjamin H. Conlon,⁴ Elisabeth Sommerwerk,¹
5 Patrick Rabe,⁵ Immo Burkhardt,⁵ Thomas Krüger,⁶ Olaf Kniemeyer,⁶ Axel A. Brakhage,⁶ Nina Gunde-
6 Cimerman,² Z. Wilhelm de Beer,⁷ Jeroen S. Dickschat,⁵ Michael Poulsen,⁴ Christine Beemelmanns^{1*}

7
8 1. Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product
9 Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena,
10 Germany, E-mail: Christine.Beemelmanns@hki-jena.de

11 2. Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia

12 3. Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China

13 4. Section for Ecology and Evolution, Department of Biology, University of Copenhagen,
14 Universitetsparken 15, 2100 Copenhagen, Denmark

15 5. Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-
16 Straße 1, 53121 Bonn, Germany

17 6. Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research
18 and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena

19 7. Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology
20 Institute (FABI), University of Pretoria, Hatfield, 0002, Pretoria, South Africa

21
22 Corresponding author:

23 Christine Beemelmanns, E-mail: Christine.Beemelmanns@hki-jena.de

24

25 Key words: symbiosis, lignin degradation, *Termitomyces*, metabolites, redox chemistry

26 **Abstract**

27 Macrotermitine termites have domesticated fungi in the genus *Termitomyces* as their primary food
28 source using pre-digested plant biomass. To access the full nutritional value of lignin-enriched plant
29 biomass, the termite-fungus symbiosis requires the depolymerization of this complex phenolic
30 polymer. While most previous work suggests that lignocellulose degradation is accomplished
31 predominantly by the fungal cultivar, our current understanding of the underlying biomolecular
32 mechanisms remains rudimentary. Here, we provide conclusive OMICs and activity-based evidence
33 that *Termitomyces* partially depolymerizes lignocellulose through the combined actions of high-redox
34 potential oxidizing enzymes (laccases, aryl-alcohol oxidases and a manganese peroxidase), the
35 production of extracellular H₂O₂ and Fenton-based oxidative degradation, which is catalyzed by a
36 newly described 2-methoxybenzoquinone/hydroquinone redox shuttle system and mediated by
37 secreted chelating dicarboxylic acids. In combination, our approaches reveal a comprehensive
38 depiction of how the efficient biomass degradation mechanism in this ancient insect agricultural
39 symbiosis is accomplished through a combination of white- and brown-rot mechanisms.

40

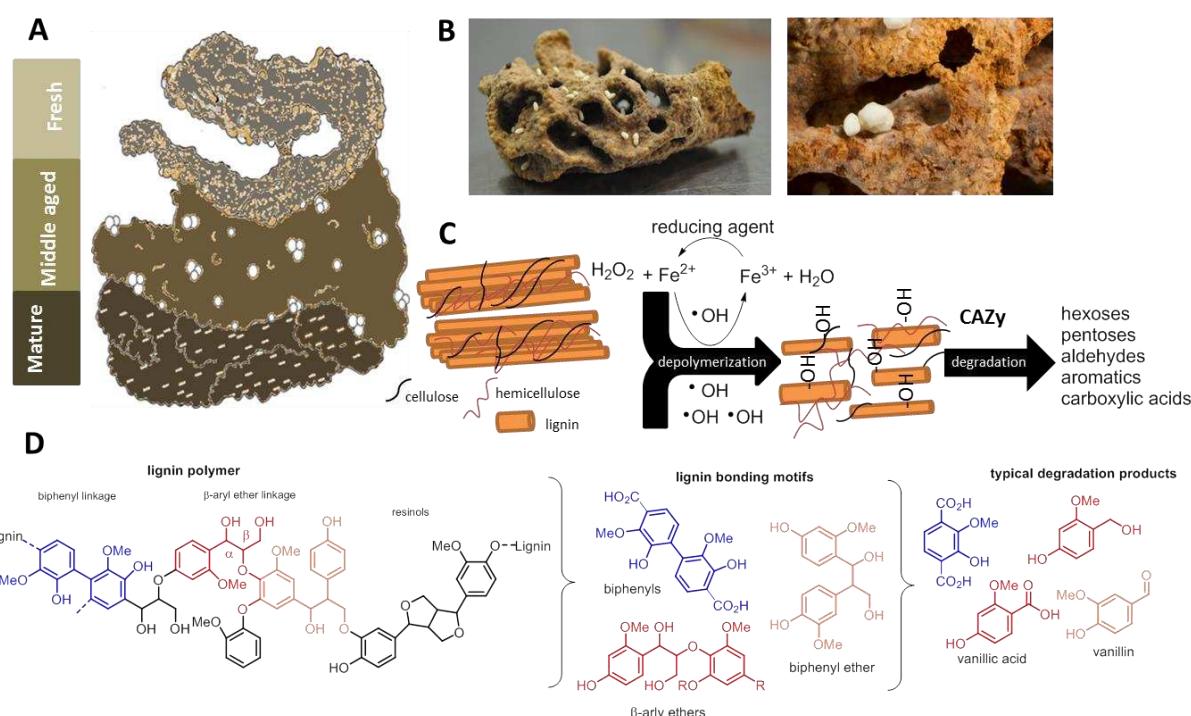
41

42 **Importance**

43 Fungus-growing termites have perfected the decomposition of recalcitrant plant biomass to access
44 valuable nutrients by engaging in a tripartite symbiosis with complementary contributions from a
45 fungal mutualist and a co-diversified gut microbiome. This complex symbiotic interplay makes them
46 one of the most successful and important decomposers for carbon cycling in Old World ecosystems.
47 To date, most research has focused on the enzymatic contributions of microbial partners to
48 carbohydrate decomposition. Here we provide genomic, transcriptomic and enzymatic evidence that
49 *Termitomyces* also employs redox mechanisms, including diverse ligninolytic enzymes and a Fenton-
50 based hydroquinone-catalyzed lignin-degradation mechanism, to break down lignin-rich plant
51 material. Insights into these efficient decomposition mechanisms open new sources of efficient
52 ligninolytic agents applicable for energy generation from renewable sources.

53

54 **Introduction**


55 Among the different types of nutritional symbiosis, crop agriculture represents one of the most
56 sophisticated systems. Beyond examples from humans, only a few insect lineages maintain and
57 manure external symbiotic partners.¹ Fungus-growing termites (*Macrotermitinae*) underwent a
58 major transition ca. 30 Mya when they started to domesticate the mutualistic fungus *Termitomyces*
59 (Agaricales, Lyophyllaceae) as their main food source.^{2,3} Since then, fungus-growing termites have
60 become major biomass decomposers of dead plant material resulting in a substantial ecological
61 footprint in the Old World (sub)tropics.^{4,5}

62 *Termitomyces* is manured by termite workers in a cork-like structure termed the “fungus comb”,
63 which is found within in the underground chambers of the termite mound and is comprised of
64 predigested plant material (Figure 1A, B).⁶ Old termite workers collect and transport the necessary
65 plant material while younger workers macerate and ingest the plant material along with asexual
66 *Termitomyces* spores and enzymes, which are produced in fungal nodules on the mature parts of the
67 fungal comb.^{1,2,7} The resulting lignocellulose and spore-enriched feces are then used to craft fresh
68 fungus comb. After spore germination, the fungus matures within 15-20 days and energy-rich fungal
69 nodules are formed to serve as the major food source for younger workers.⁸ After an average turn-
70 over time of 45-50 days the remains of the comb material serve as the major nutrition of older
71 workers resulting overall in the nearly waste-less decomposition and recycling of plant material.⁹

72 Although the feeding behavior of termites has been studied in detail for decades,¹⁰ the biochemical
73 mechanisms for degrading the foraged plant biomass has remained largely unresolved and a topic of
74 intensive discussion.^{1,11} Plant biomass consists mostly of lignocellulose, a complex matrix consisting
75 of cell wall polysaccharides: cellulose (40-50%), hemicellulose (25-30%), and the structurally complex
76 and inhomogeneous phenolic polymer lignin (15-20%).¹² The depolymerization and degradation of
77 lignin provides an enormous energetic burden to any microorganism due to its inhomogeneous
78 nature, and the strong covalent carbon-carbon and carbon-oxygen linkages between
79 hydroxycinnamoyl alcohol derived monomers that are covalently cross-linked to plant
80 polysaccharides (Figure 1C, D).^{13,14} However, once oxidative mechanisms have broken up the dense
81 lignin structure, degrading enzymes are able to diffuse into the material and access valuable
82 embedded biphenylic, phenolic and carbohydrate reservoirs.^{15,16,17} Although the degradation process
83 appears to be a necessary endeavor to manure the complex fungus-termite-bacteria symbiosis, the
84 fate of lignin within termite fungus combs still remains unclear.

85 A recent study on fungus comb pretreatment in *Odontotermes formosanus* by Li *et al.* indicated that
86 lignin is partly cleaved during the first gut passage.¹⁸ Additionally, it was hypothesized that
87 *Termitomyces* might have lost key delignification potential throughout its evolutionary history with
88 the termites. However, previous and more recent transcriptomic and analytically-guided studies in

89 other Macrotermitinae species by Poulsen and coworkers showed that fresh comb from
90 *Odontotermes* spp. and *Macrotermes natalensis* is lignin rich,⁷ suggesting that the role of gut passage
91 in lignin cleavage may differ between termite species.⁹ Based on fungal RNAseq analysis and
92 enzymatic assays, the study reasoned that maturation of the fungus comb causes the decomposition
93 of the lignocellulose-rich biomass through the actions of fungal and/or bacterial enzymes.

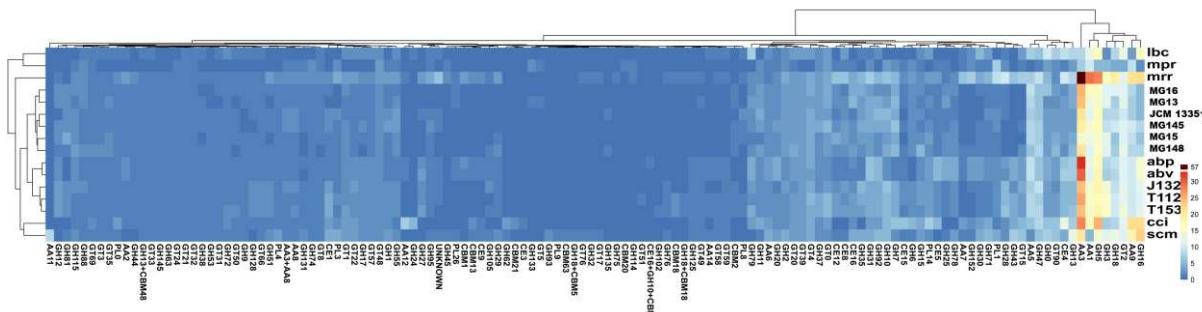
94
95

96 **Figure 1.** A) Schematic representation of fungus comb at different maturation stages. B) Freshly
97 collected mature fungus comb carrying fungal nodules. C) Schematic representation of lignin
98 depolymerization via hydroxylation and oxidative cleavage with subsequent degradation by CAZy
99 enzymes to smaller metabolites. D) Schematic structure of lignin biopolymer, lignin motifs and lignin-
100 derived degradation products.

101

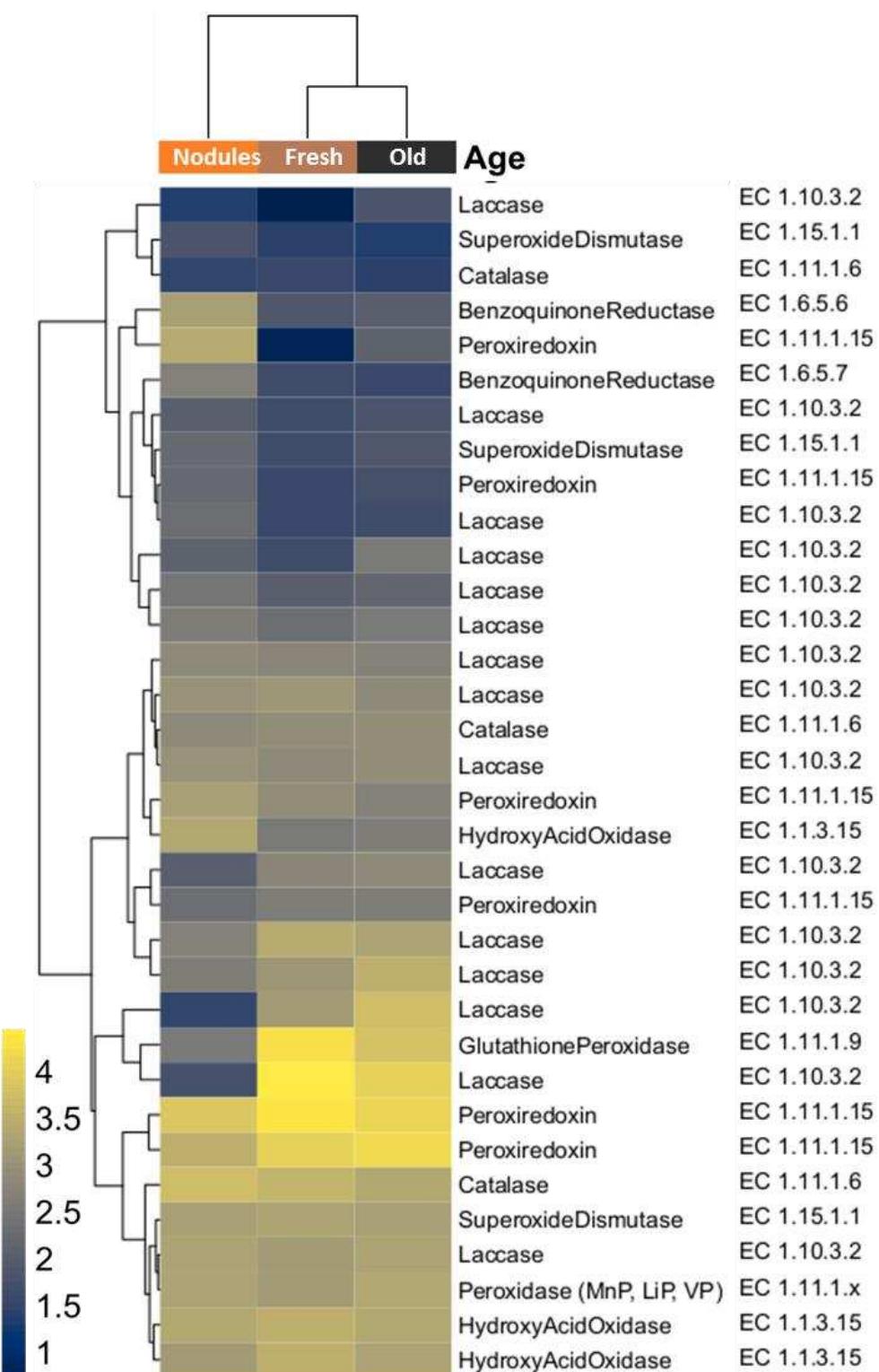
102 These partially contradictory results led us to investigate whether *Termitomyces* has the capacity to
103 depolymerize or even degrade lignin-rich biomass. Hence, we commenced our analysis by
104 comparative genome analysis of nine *Termitomyces* species and assessment of their capacity to
105 produce ligninolytic enzymes (e.g., laccase (Lac), lignin peroxidase (LP), manganese peroxidase
106 (MnP), and/or versatile peroxidase (VP)) and enzymes supporting degradative pathways (e.g., aryl-
107 alcohol oxidase and quinone reductases).^{19,20} Here, we show that *Termitomyces* has the capacity to
108 produce a broad diversity of laccases and a MnP similar to other basidiomycetes, but lacks other
109 necessary class II peroxidases (e.g., LPs and VPs) required for the complete degradation of non-
110 phenolic lignin as is known from other basidiomycete white-rot fungi.^{13,14,16} These findings were
111 supported by analysis of gene expression levels in RNAseq datasets of fungus combs at different
112 maturation stages. Additional *in silico* and biochemical studies led us to the conjecture that

113 *Termitomyces* might employ hydroquinone-mediated Fenton chemistry ($\text{Fe}^{2+} + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{Fe}^{3+} +$
114 $\cdot\text{OH} + \text{H}_2\text{O}$) using a herein newly described 2-methoxy-1,4-dihydroxybenzene (2-MH₂Q, **19**) based
115 electron shuttle system to complement enzymatic lignin degradation pathways. We further deduced
116 that the presence of small dicarboxylic acids produced by *Termitomyces* not only allows the fungus to
117 solubilize necessary metal ions, but also mediates Fenton-based redox chemistry, making the system
118 one of the most successful farming insect symbioses.


119

120 **Results**

121 **Genomic and transcriptomic analysis of lignocellulolytic capacity**


122 First, we subjected two *Termitomyces* species, excavated in South Africa in 2011 and 2015, to whole
123 genome sequencing using Illumina sequencing technology (LGC Genomics (Berlin, Germany)) and
124 RNA sequencing using the BGISEq-500 platform (BGI, Hong Kong). Annotated genomes of both
125 species were obtained using Augustus 3.3.3 after RNAseq data was mapped to the genomes and
126 used for algorithm training. The resulting draft genome of *Termitomyces* sp. T153 (*Macrotermes*
127 *natalensis*) had an estimated size of 84.1 Mb (scaffold N50 = 23.88 kb) with more than 13,000 genes
128 (Accs. Nr. JACKQL0000000000). Similarly, the draft genome of *Termitomyces* sp. T112 (*Macrotermes*
129 *natalensis*) had an estimated size of 79.8 Mb (scaffold N50 = 33.34 kb) and also >13,000 genes (Accs.
130 Nr. JACKQM0000000000). For further analysis, we also re-annotated seven *Termitomyces* genomes
131 deposited at GenBank, including our previously reported *Termitomyces* sp. J123 (alias P5) from
132 *Macrotermes natalensis*,³ using the same settings in Augustus 3.3.3 (for details, see
133 doi:10.5281/zenodo.4431413: Table S2 and S3). To gain insights into the functional capacity for
134 biomass degradation, we first identified CAZyme families within each genome using a local
135 installation of the dbCAN2 server.^{21,22,23} As depicted in Figure 2, comparison of all nine *Termitomyces*
136 genomes revealed comparable numbers of polysaccharide-degrading enzymes, such as exo-
137 cellobiohydrolases, endoglucanases assigned to different glycoside hydrolase families (GH) and lytic
138 polysaccharide monooxygenase (LPMOs), with no particular enrichment or reduction of CAZy families
139 compared to basidiomycete reference genomes (for details, see doi:10.5281/zenodo.4431413: Figure
140 S1-S3).²⁴ We also searched *Termitomyces* genomes for the presence/absence of gene sequences
141 encoding for highly oxidizing proteins that could contribute to the depolymerization and catabolic
142 degradation of lignin,¹⁸ and contained on average 16 gene sequences encoding for laccases (AA1, EC
143 1.10.3.2),^{25,26,27,28} oxidases that use diphenols and related substances as electron donors and oxygen
144 as the acceptor, thereby creating reactive C- and O-based radical species in the process. In addition,
145 we identified a putative manganese peroxidase (MnP, AA2, EC 1.11.1.13), which generates redox-
146 active Mn³⁺ species, and a subset of alcohol oxidases and dehydrogenases (AA3 and AA5) that
147 catalyze the oxidation of (aryl) alcohols or carbohydrates with the concomitant formation of

hydroquinones and/or H₂O₂ that could be used by other peroxidases.^{29,30} We also identified iron reductase domains (AA8) and putative benzoquinone reductases (AA6) that are key to maintain efficient Fenton-chemistry-based redox cycles by reductive Fe²⁺ sequestration and regeneration of organic benzoquinone-based redox shuttles. However, all investigated *Termitomyces* genomes lacked signs of the class II peroxidases (e.g., LPs and VPs) that are normally found in white-rot fungi and necessary for the enzymatic mineralization of lignin (for details, see doi:10.5281/zenodo.4431413; Table S4-S12).³¹

155
156 **Figure 2.** A) Heatmap of the numbers of hits for representatives of different CAZy families in the
157 predicted proteomes of *Termitomyces* spp. (T112, T153, J132, JCM 13351, MG145, MG16, MG15,
158 MG148, MG13) and other selected basidiomycete fungi (*Laccaria bicolor* (lbc), *Moniliophthora*
159 *perniciosa* (mpr), *Moniliophthora roreri* (mrr), *Agaricus bisporus* var. *Burnettii* (abp), *Agaricus*
160 *bisporus* var. *Bisporus* (abv), *Coprinopsis cinerea* (cci), *Schizophyllum commune* (scm)). Vertical axis
161 shows clustering of enzymes based on expression levels.

163 We subsequently analyzed the expression levels of candidate genes related to lignin
164 depolymerization in RNAseq data obtained from three regions in the fungus comb (Figure 3):⁷ fresh
165 comb, within which most plant-biomass decomposition is likely to occur; old comb where
166 decomposition might still occur but to a lesser extent; and nodules, which feed young workers and
167 serve as fungal spore and enzyme reservoirs (for details, see doi:10.5281/zenodo.4431413: Table
168 S25). As depicted in Figure 3, we found transcription levels of genes encoding oxidative enzymes
169 (e.g., Lac, MnP, AA3 and AA5) and enzymes that protect against reactive intermediates (e.g.,
170 benzoquinone reductase, super oxide dismutase, glutathione peroxidase, and peroxiredoxin) across
171 all three datasets.

172

173 **Figure 3.** Heatmap of redox enzyme transcription levels based on RNAseq data of fresh comb, old
174 comb and fungal nodules from *Macrotermes* colony Mn156.⁷ Transcript abundances are depicted as
175 *log₁₀ gene expression values* and color schemes were generated by “viridis” (Version 0.5.1).^{32,33}

176

177 This genetic and transcriptomic survey revealed that *Termitomyces* has the genomic capacity to
178 produce lignocellulolytic enzymes similar to other basidiomycetous fungi and may even be able to

179 induce and catalyze Fenton chemistry,³⁴ but lacks LiP, VP and other generic peroxidases that are
180 needed to degrade the more recalcitrant non-phenolic components of lignin.⁷

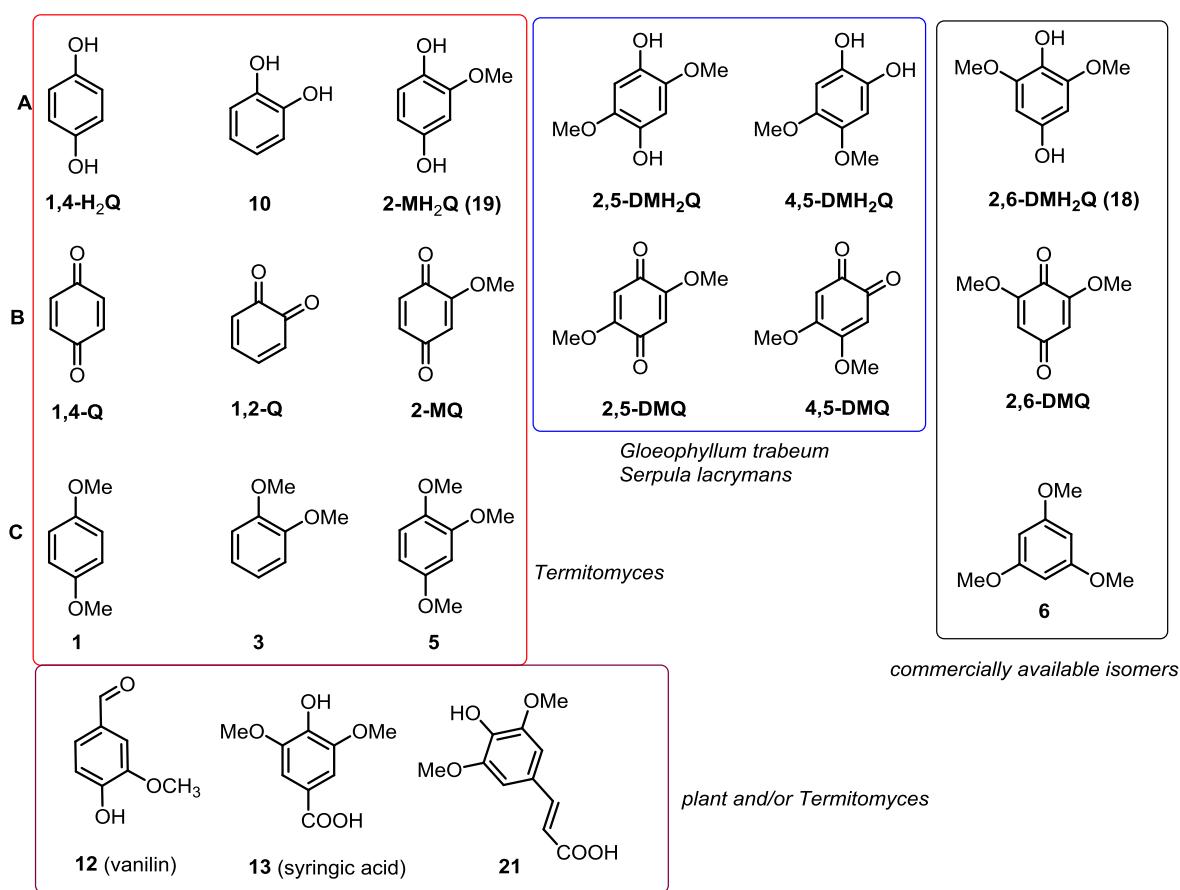
181

182 **Fenton Chemistry of *Termitomyces***

183 Fenton chemistry involves the reaction between Fe^{2+} and H_2O_2 yielding Fe^{3+} and highly reactive
184 hydroxyl radical ($\cdot\text{OH}$), a powerful oxidant ($E^\circ = 2.8$ versus normal hydrogen electrode) that is able to
185 unselectively oxidize hydrocarbons and non-phenolic aromatic units within lignocellulose-rich
186 material. Brown-rot fungi are known to make use of Fenton chemistry to depolymerize lignocellulose
187 biomass³⁵ and modulate the redox potential of $\text{Fe}^{2+/3+}$ species by secretion of dicarboxylic acids that
188 act as chelators to form diffusible Fe-complexes and as proton donors for catalytic degradation
189 processes.³⁶ Additionally, redox-active fungal quinones (Q) and hydroxyquinones (H_2Q), such as 2,5-
190 dimethoxy-1,4-benzoquinone (2,5-DMQ), 2,5-dimethoxy-1,4-hydroquinone (2,5-DMH₂Q), and its
191 regioisomer 4,5-dimethoxy-1,2-benzendiol (4,5-DMH₂Q), have been discussed to serve as redox
192 shuttles ($3\text{H}_2\text{Q} + 2\text{O}_2 \rightarrow 3\text{Q} + 2\text{H}_2\text{O} + 2\text{HO}^\bullet$) in Fenton-chemistry of rotting fungi (e.g. *S. lacrymans*, the
193 *Gloeophyllales* and the *Polyporales*)^{37,38,39} as they have the ability to switch between oxidation states
194 via one-electron transfer reactions that allows for the concomitant formation of Fe^{2+} from Fe^{3+} and
195 hydroxyl radicals (HO^\bullet) from O_2 (Figure 5, 6).

196 Thus, we evaluated if *Termitomyces* employs any of those measures to enable lignin
197 depolymerization by using *Termitomyces* sp. T153 and P5 as model strains. First, we employed a
198 standardized colourimetric ferrozine assay to determine if extracellular Fe^{3+} is reduced to Fe^{+2} within
199 the surrounding mycelium; a prerequisite to initiate Fenton chemistry.^{40,41} As depicted in Figure 4A,
200 topical application of a ferrozine solution caused a clear color change within minutes, which was
201 indicative for the immediate reduction of Fe^{3+} to Fe^{+2} . Next, we determined the pH value within the
202 fungal mycelium as enzyme activities, redox potential of H_2O_2 and metal complexes are strongly pH-
203 dependent.³⁴ Here, we found that *Termitomyces* acidifies the surrounding medium to as low as pH 5
204 (Figure 4D), which lies within the range of optimal enzyme activities of many lignin-degrading
205 enzymes (pH 4.5-5.0).^{14,20} As the Fenton reaction also requires H_2O_2 , we tested if *Termitomyces*
206 generates sufficient extracellular H_2O_2 to initiate the reaction. Based on a H_2O_2 -dependent
207 colorimetric assay we found that *Termitomyces* generates approximately 4-6 μg extracellular H_2O_2
208 per gram fungal mycelium during growth on solid support (mycelium age: 7-21 days, for details, see
209 doi:10.5281/zenodo.4431413: Table S17, S18).

210

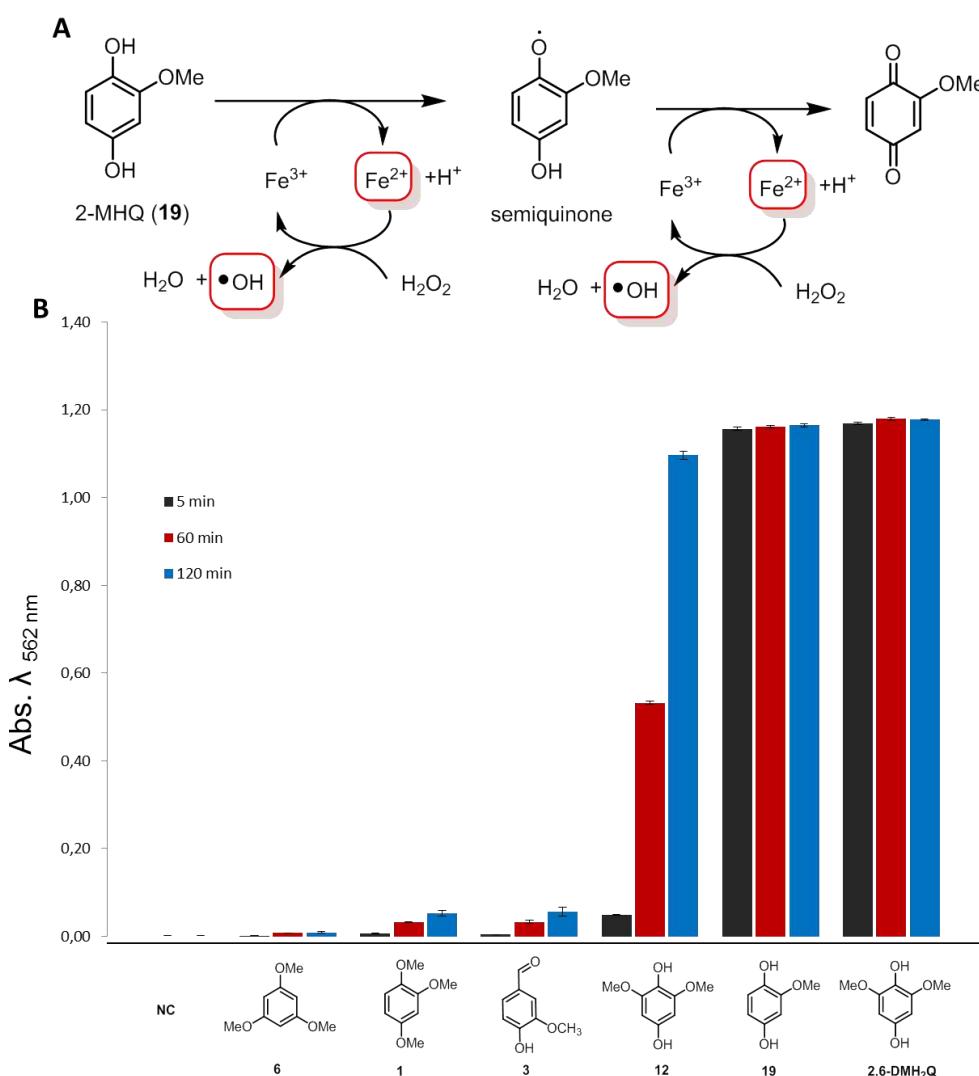

211

212 **Figure 4.** A) Ferrozine solution added to a *Termitomyces* sp. T153 culture grown on PDA (18 d) and
213 incubated for 5 min and B) 30 min; C) ferrozine solution on PDA plate (negative control); D)
214 *Termitomyces* sp. T153 grown on PDA containing D) bromocresol green as pH indicator (day 28) and
215 E) without indicator; F) PDA plate containing bromocresol green.

216

217 In a next step, we evaluated if *Termitomyces* produces redox-active redox-active H₂Q/Q using gas
218 chromatography coupled with mass spectrometry (GC-MS). Although the formation of previously
219 reported 2,5-DM(H₂)Q was not observed, we were intrigued to detect 2-methoxy-1,4-benzoquinone
220 (2-MQ), its reduced H₂Q named 2-methoxy-1,4-dihydroxybenzene (2-MH₂Q) and the fully methylated
221 derivative 1,2,4-trimethoxybenzene (**5**), as well as other structurally related (di)methoxylated
222 hydroxybenzenes (e.g. **1**, **3**, **12**) (Figure 5). We also verified the identity of the newly detected
223 quinone derivatives 2-MQ and 2-MH₂Q by synthesis and comparison of GC-MS retention times (for
224 experimental details, see doi:10.5281/zenodo.4431413: Figure S21, S22, Table S14, S15, S22).

225



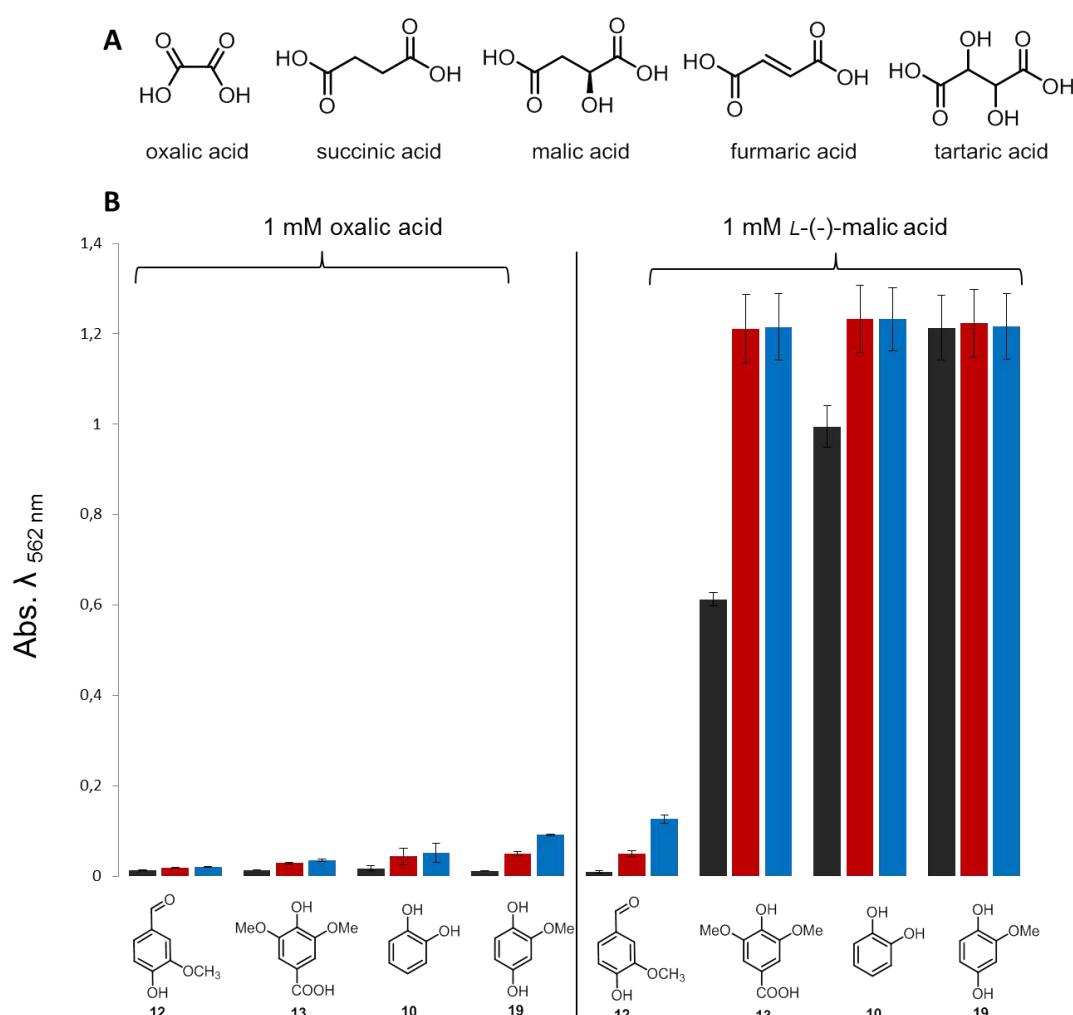
226

227 **Figure 5.** Structures of redox active compounds discussed in this work. A) Hydroxyquinones (H₂Q), B) 228 corresponding quinones (Q) and C) methoxylated derivatives of H₂Q. Compounds identified from 229 *Termitomyces* are highlighted in a redox box, compounds identified from other rotting fungi are 230 marked with a blue box, derivatives isolated from *Termitomyces* and of plant origin are highlighted in 231 a purple box and commercial derivatives for comparison are highlighted in a black box.

232

233 We then evaluated the ability of H₂Qs to reduce Fe³⁺ to Fe²⁺ using the established Ferrozine-based 234 Fe³⁺-reduction assay.⁴² Overall, 2,6-DMH₂Q (**18**), a regioisomer of 2,5-DMH₂Q was the most reactive 235 derivative that was able to reduce Fe³⁺ to Fe²⁺ within seconds, and was therefore used as a positive 236 control in further experiments (Figure 6). In comparison, 2-MH₂Q (**19**) showed a slightly reduced 237 activity, which is likely a reflection of the electronic effect caused by the lack of one additional 238 electron-donating -OCH₃ group. We also tested the reducing ability of other (methoxylated) 239 hydroxybenzenes, all of which showed a reduced reactivity compared **18** and **19**. Subsequently, we 240 expanded our studies to combinations of redox active derivatives and were able to observe in most 241 cases the superposition of redox activities (for experimental details, see 242 doi:10.5281/zenodo.4431413: Figure S9, Table S19)

243


244 **Figure 6.** A) Mechanistic depiction of the 2-MH₂Q initiated Fenton-reaction via the formation of a
 245 radical semiquinone species and oxidation to 2-MQ; B) quantification of Fe³⁺ reduction by H₂Q using
 246 a colorimetric Ferrozine-based assay (NH₄OAc buffer, pH = 4).

247

248 As Fenton chemistry produces highly reactive hydroxyl radical (•OH) we then confirmed the presence
 249 of these short-lived radicals in our H₂Q-mediated Fenton reactions using a fluorometric assay based
 250 on the reaction with terephthalic acid (TPA). Similar to literature reports for 2,6-DMH₂Q (18),^{36,39} the
 251 newly identified and structurally related H₂Q **19** catalyzed the formation of •OH in the presence of
 252 H₂O₂ and Fe³⁺ within seconds. In contrast, derivatives such as 1,2-dihydroxybenzene (**10**) and syringic
 253 acid (**13**) caused formation of hydroxyl radicals with lower initial reactivity but over a period of more
 254 than 90 min (for details, see doi:10.5281/zenodo.4431413: Figure S6). Having verified that
 255 *Termitomyces* produces reactive H₂Qs that are able to induce the formation of Fenton reagents (Fe²⁺,
 256 H₂O₂ and •OH), we then elaborated on the influence of fungal-derived dicarboxylic acids (oxalic acid,
 257 tartaric acid, malic acid, fumaric acid and succinic acid)^{43,44} on the Fenton reaction (Figure 7). While
 258 low concentrations of oxalic acid (0.1 mM) influenced the reducing ability of H₂Qs only mildly,
 259 increasing concentrations started to abolish their reducing capability in a concentration dependent

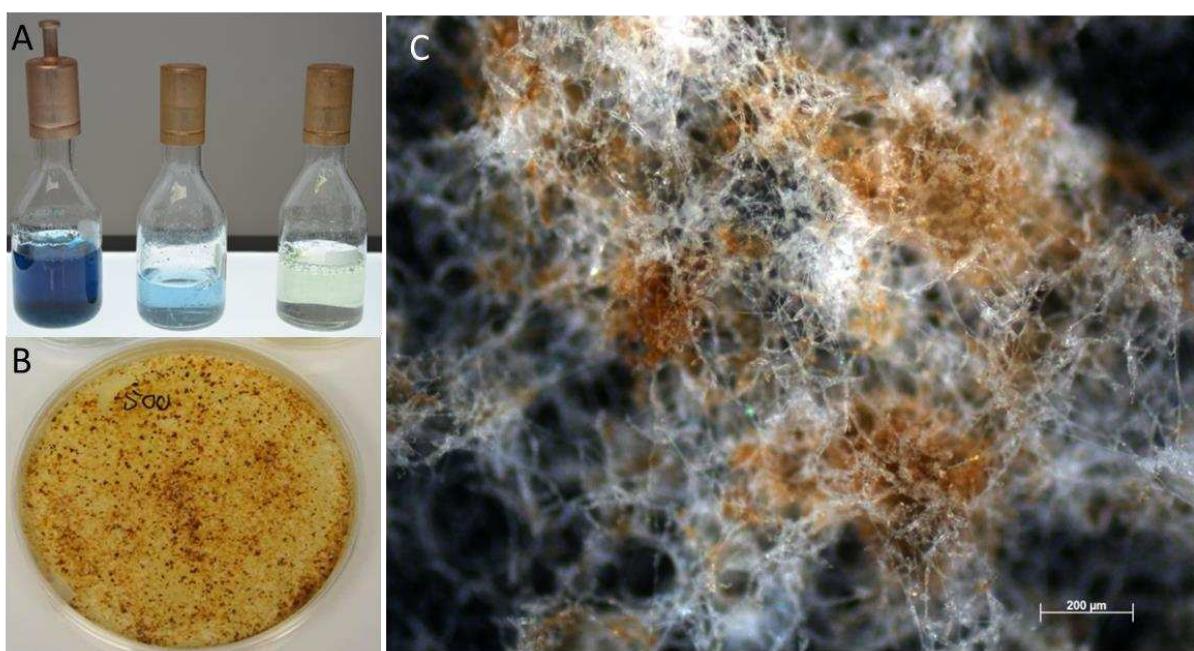
260 manner with only the most reactive 2,6-DMH₂Q (**18**) able to reduce Fe-oxalate complexes in the
261 presence of less than 5.0 mM oxalic acid (for details, see doi:10.5281/zenodo.4431413: Figure S11-
262 S13).⁴⁵ At 10 mM oxalic acid a significant amount of autoxidation-related Fe³⁺-reduction was
263 observed. A similar trend was observed for tartaric acid as a chelating agent, albeit with a stronger
264 autoxidation effect.⁴⁶ In contrast, malic, fumaric and succinic acid only moderately altered the redox
265 potential and showed minor tendencies towards autoxidation. The overall ability of H₂Q to reduce
266 dicarboxylic acid complexes of Fe³⁺ decreased in the following order: oxalic acid > tartaric acid > malic
267 acid >> fumaric acid ≥ succinic acid (for details, see doi:10.5281/zenodo.4431413: Figure S14-S16).

268

269 **Figure 7.** A) Structures of metal-chelating dicarboxylic acids; B) quantification of Fe³⁺ reduction by
270 H₂Q using a colorimetric Ferrozine-based assay in the presence of 1 mM oxalic acid and 1 mM
271 malic acid.

272

273 While laboratory culture conditions generally supply sufficient Fe-concentrations for growth, we
274 questioned whether or not the natural fungal comb environment provides the necessary metal ions
275 for Fenton chemistry.⁴⁷ To answer this question, we analyzed the element composition of fungus
276 comb, gut fluids of termite workers and soil samples derived from within and outside termite


278 colonies from different locations using atomic emission spectrometry (ICPAES).⁴⁸ All tested samples
279 contained Al, Fe, and Ti as some of the most abundant main elements, in addition to significant
280 amounts of Mn. However, elements important for growth (C, H, P, K, Ca, Mg) were low in all soil
281 samples, with a particularly strong depletion of phosphorus, but potassium was enriched compared
282 to comb and gut samples (for details, see doi:10.5281/zenodo.4431413: Table S13, Figure S23-30,
283 Table S23, S24). Sequential ion extraction of soil samples was performed to analyze the soluble metal
284 ion content, and only low concentrations of most metal ions were detectable.^{49,50} Although these
285 findings indicate that fungus comb and gut environment accommodate larger amounts of insoluble
286 Fe/Al-oxide-containing clay minerals, the nano- and microscopic surface areas could provide the
287 necessary catalytic centers for Fenton-like redox chemistry.⁵¹

288

289 **Enzyme activity tests catalyzing degradation of lignin model compounds**

290 We then questioned if enzymatic degradation of lignin or lignin-type model substances by
291 *Termitomyces* is measurable using colorimetric assays or MS-based analytical tools.⁵² For a first test,
292 we supplemented culture medium of *Termitomyces* sp. T153 with the pigment-based model
293 substance Azure B, previously used to measure redox-activity of LPs due to its stability towards
294 oxidative activity of MnPs. Monitoring the decolourization of Azure B over time revealed that
295 *Termitomyces* started to degrade Azure B seven days after inoculation; an effect which became more
296 pronounced with increasing biomass and age of the fungus culture. To evaluate if the degrading
297 activity of secreted enzymes and/or H₂Q-mediated Fenton-based chemistry was responsible for the
298 degradation of Azure B, we tested both effectors separately and in combination. While quantifying
299 the enzymatic effects caused technical challenges due to intrinsic light absorption of enzyme
300 concentrates, H₂Q-mediated Fenton chemistry clearly induced the degradation of Azure B within five
301 to ten minutes compared to the control (Fenton reagents without H₂Qs) (for details, see
302 doi:10.5281/zenodo.4431413: Figure S19,S20).⁵³ We then evaluated whether or not laccase activity
303 was detectable within the secretome using a syringaldazine-based assay and compared the activity to
304 the reactivity of a commercial laccase from *Trametes versicolor*,⁵⁴ but only residual laccase activity
305 was detectable in enriched enzyme extracts derived from different *Termitomyces* culture compared
306 to the positive control and thus was unlikely accountable for the degradation of Azure B. Lastly, we
307 evaluated if *Termitomyces* exhibits MnP enzymatic activity, which is marked by the oxidation of Mn²⁺
308 to Mn³⁺ and the release of the highly reactive oxidant as a carboxylic acid chelate using a previously
309 reported leukoberberlin blue test.⁵⁵ As shown in Figure 8, leukoberberlin-containing *Termitomyces*
310 cultures and cell-free culture supernatant resulted in the formation of the blue leukoberberlin
311 complex within minutes, which indicated the formation of Mn^{+3/+4} species. When *Termitomyces* was
312 grown on PDA plates containing both, elevated Mn²⁺ concentrations (200 - 500 μM) and indicator

313 dye, the formation of blue-colored leukoberbelin- $Mn^{3+/4+}$ complexes was detectable within a few
314 days and longer incubation times resulted in macroscopic-sized MnO_x precipitates forming around
315 fungal hyphae within 10-17 days (Figure 4C). We further confirmed the gene expression encoding for
316 the putative MnP by reverse transcription polymerase chain reaction (RT-PCR) (for details, see
317 doi:10.5281/zenodo.4431413: Figure S17,S18).

318
319 **Figure 8.** A) PDB containing Leukoberbelin blue (left to right: culture of *Termitomyces* sp. 153, cell-
320 free supernatant, and PDB broth); B) *Termitomyces* sp. T153 cultivated on PDA containing 500 μ M
321 $MnCl_2$ after 28 days and C) microscopic image of fungal mycelium after 24 d showing brown MnO_2
322 deposits.

323

324 **Proteomic analysis**

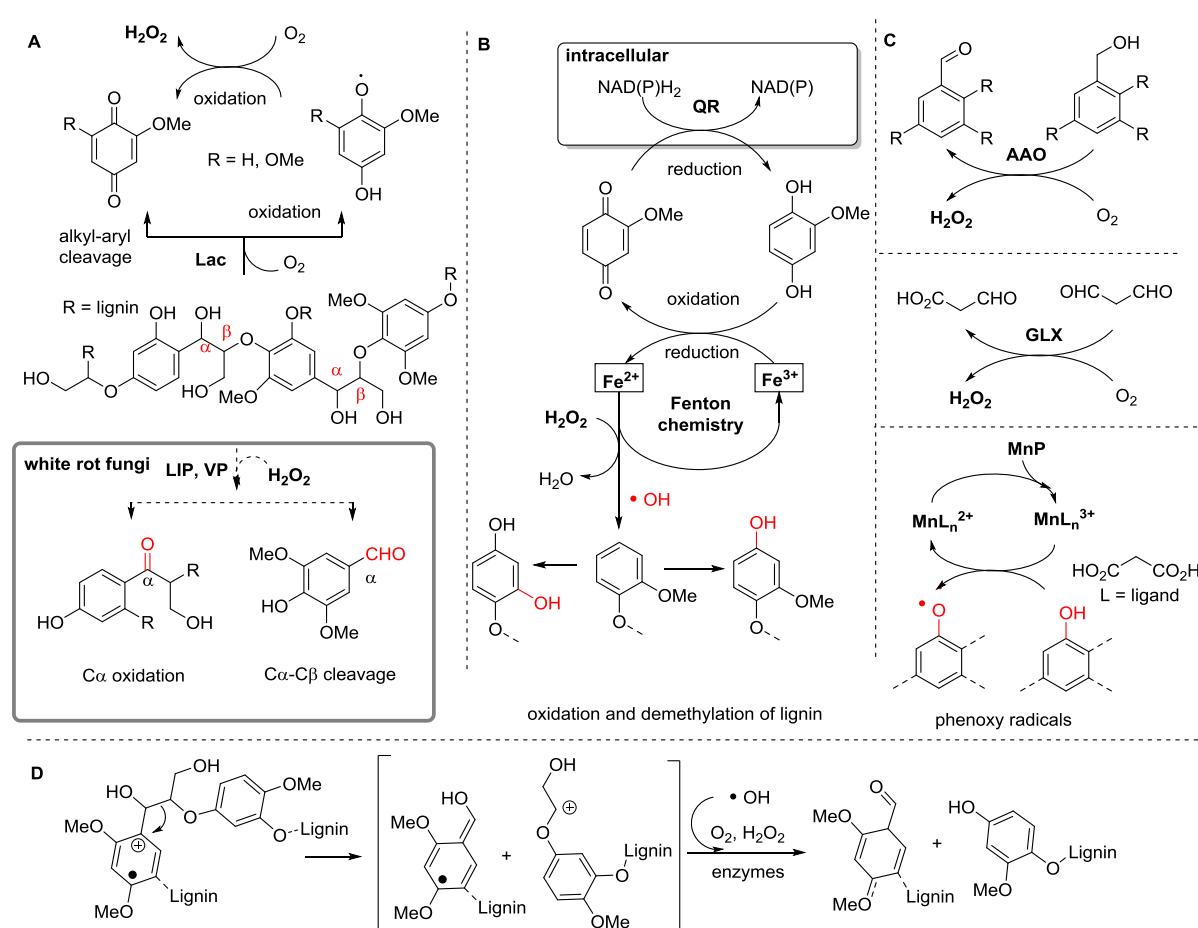
325 Building on our enzymatic studies and to link the observed activities with their putative enzymatic
326 origin, we conducted a liquid-chromatography (LC)-MS/MS based proteomic analysis of secreted
327 enzymes of *Termitomyces* culture supernatants, which were prepared in two different buffer systems
328 (NaOAc, pH 4.5/KH₂PO₄, pH 6.5). Overall, a total of (255/303) secreted proteins were detectable,
329 which were mostly assigned to fungal carbohydrate metabolism such as glucosidases, glucanases or
330 chitinases (for details, see doi:10.5281/zenodo.4431413: Table S27-30). Interestingly, a potential
331 lignin degrading aromatic peroxygenase (8th/13th) and one MnP (13th/11th) ranked amongst the top
332 15th most abundant protein sequences, while two other yet unassigned peroxidases were also
333 detectable (31st, 141th/17th, 142nd) albeit with lower abundance. In total five laccases were also
334 detectable in minor abundances (starting from 76th/99th).

335 **Discussion**

336 In the two major fungus-growing termite genera *Macrotermes* and *Odontotermes*, the
337 decomposition of plant biomass by the fungal cultivar *Termitomyces* is based on the intricate
338 interactions between the pre-digestive gut passage and the external fungus comb bioreactor.
339 Although a series of studies have elaborated on the functional roles of *Termitomyces* in plant
340 biomass degradation,^{1,2,3} experimental insights into the biochemical mechanisms necessary for plant
341 biomass degradation have remained sparse.

342

343 **Which ligninolytic enzymes are produced by *Termitomyces*?**


344 Our OMICs-based analysis clearly shows that *Termitomyces* has the capacity to produce a specific set
345 of extracellular lignocellulose-degrading enzymes, such as laccases (Lac), (aryl)-alcohol oxidases
346 (AA3), and a manganese peroxidase (MnP, AA),⁵⁶ all of which generate diffusible extracellular
347 oxidants (superoxide O_2^- , hydroxyl radicals $OH\cdot$, H_2O_2 , redox-active $Mn^{3+/4+}$ species or phenoxy-
348 radicals) that oxidize the aromatic polymeric 3D structure of lignin (Figure 1D and 9). It is particularly
349 intriguing that *Termitomyces* encodes on average for 16 different laccases that are differentially
350 transcribed and might differ in their reactivity and substrate spectrum. And although laccases are
351 considered not to be essential for lignin degradation, their presence likely assists in partial oxidation
352 of phenolic and non-phenolic aromatic moieties that facilitate further fragmentation and
353 depolymerization (Figure 9). Here, it is also worth highlighting that encoded and in culture secreted
354 (aryl)-alcohol oxidases (AA3) are able to efficiently oxidize and cleave β -ether units present within
355 lignin substructures via single electron transfer reactions. Our study also provides conclusive genomic
356 and biochemical evidence that *Termitomyces* secretes a highly active manganese peroxidase MnP, an
357 enzyme that oxidizes Mn^{2+} to the more reactive $Mn^{3+/4+}$ and is known to be essential for extracellular
358 degradation mechanisms. While none of these enzymes alone are capable of degrading lignin, their
359 combined enzymatic action should allow for the partial depolymerization of lignin that is necessary
360 for other enzymes to overcome the physical barrier of this complex phenolic polymer to initiate
361 further degradation.

362 **Does Fenton-chemistry play a role?**

363 Following up on the idea that *Termitomyces* utilises Fenton-chemistry for biomass degradation, we
364 evaluated the presence and absence of metabolic and enzymatic factors necessary to drive the
365 radical process and identified collective evidence that *Termitomyces* employs Fenton-chemistry to
366 degrade lignin-rich biomass by secretion of high levels of (extracellular) H_2O_2 and the production of
367 H_2Qs that reduce Fe^{3+} to Fe^{2+} necessary for Fenton chemistry. For the first time, we also document
368 that the fungal metabolite 2-MH₂Q (**19**) acts as a redox-shuttle for Fenton chemistry and induces the
369 formation of Fe^{2+} similar to 4,5-DMH₂Q and 2,5-DMH₂Q.^{20,34} Although 2-MH₂Q (**19**) lacks one $-OCH_3$

370 compared to 2,5- or 2,6-DMH₂Q, only a moderate decrease in activity was observed that likely
 371 correlates only with a minor shift in the reduction potential. Considering that Fenton chemistry
 372 produces several strong oxidants, we evaluated the influence of different dicarboxylic acids
 373 commonly secreted by fungal species, and monitored their influence on the H₂Q-based reduction of
 374 Fe³⁺-complexes. Thus, it is reasonable to hypothesize that *Termitomyces* is capable of actively
 375 altering the redox properties of metal complexes within the surrounding fungal hyphae to protect
 376 itself against high oxidative stress. Genomic and transcriptomic evidence further suggests that
 377 *Termitomyces* produces two benzoquinone reductases that may reduce MQ to MH₂Q and thereby
 378 close the H₂Q/Q-based redox shuttle cycle.

379

380
 381 **Figure 9. Lignin modifications and oxidation pathways by *Termitomyces*.** A) Schematic depiction of
 382 lignin oxidation via Lac activity in *Termitomyces* and degradation by LIP and VP typically found in
 383 white-rot fungi (not found in *Termitomyces*, bold box). B) Oxidation and oxidative demethylation of
 384 lignin substructures by 2-MH₂Q-catalyzed Fenton chemistry via the formation of short-lived hydroxyl
 385 radicals and regeneration of H₂Q by (intracellular) benzoquinone reductases. C) Formation of H₂O₂ by
 386 (aryl)-alcohol oxidases (AAO) and glyoxal oxidases (GLX). D) Phenoxy radical formation catalyzed by
 387 the action of MnP ad oxidative C-C cleavage of lignin substructures by radicals and/or enzymatic
 388 processes.

389

390 Finally, our studies provide evidence that the natural environment contains sufficient amounts of
 391 iron and manganese to pursue Fenton chemistry,⁵¹ which are comparable to previous soil

392 remediation studies.^{47,49} However, most metals are likely present as insoluble Fe/Al/Ti/Mn-oxides
393 which let us to hypothesize that either microscopic Fe-rich minerals might serve as catalytic surface
394 for the degradation of organic material,⁵¹ and/or the presence of chelating agents and reducing
395 conditions might allow for the local formation Fe^{2+/3+}.

396

397 **Conclusions**

398 Collectively, our genomic, transcriptomic and proteomic studies document that *Termitomyces*
399 harbours an enormous enzymatic repertoire to cope with the challenging task of depolymerizing the
400 lignocellulose polymer to access cellulolytic components of the provided plant biomass, but lacks the
401 genetic basis for the production of highly oxidizing versatile peroxidases that are known to be
402 capable of oxidizing recalcitrant lignin parts. Furthermore, our chemical studies support the notion
403 that the combined action of enzymatic degradation and Fenton chemistry are the key fungal
404 contributions to the process of plant biomass decomposition, and Fenton reactions may, in part,
405 complement the missing enzymatic capabilities. Whether or not symbiotic and lignocellulolytic
406 bacteria⁵⁷ present within the comb might also contribute and complement the fungal lignin-
407 degradation capabilities is topic of current investigations and will further elaborate on the question
408 why the *Termitomyces*-termite symbiosis has become the most successful path for the termite
409 cultivar.

410

411 **Material and Methods**

412 **Genome sequencing and processing:** DNA was extracted from laboratory-grown heterocaryotic
413 *Termitomyces* strains T112 and T153 and Genome sequences were produced at LGC Genomics
414 (Berlin, Germany) using Illumina MiSeq V3 platform with 300bp paired-end reads and approx. 12
415 million read pairs per sequencing. All library groups were demultiplexed using the Illumina bcl2fastq
416 2.17.1.14 software (folder 'RAW', 'Group' subfolders). Up to two mismatches or Ns were allowed in
417 the barcode read when the barcode distances between all libraries on the lane allowed for it.
418 Sequencing adapters were clipped from all raw reads and reads with final length < 20 bases were
419 discarded. Afterwards reads were quality trimmed by removal of reads containing more than one N,
420 deleting reads with sequencing errors, trimming of reads at 3'-end to get a minimum average Phred
421 quality score of 10 over a window of ten bases and discarding reads with final length of less than 20
422 bp. From the final set of reads, FastQC reports were created for all FASTQ files. Prior to annotation,
423 the genomes were soft masked with RepeatMasker 4.0.9.⁵⁸ RNAseq data was mapped to the
424 genomes with STAR 2.7.3a⁵⁹ and used to train the Augustus gene predictor with Braker 2.1.5.⁶⁰
425 Finally, the genomes T112 and T153 were annotated with Augustus 3.3.3.⁶¹ Protein and mRNA hints
426 were used for the annotation (for details, see doi:10.5281/zenodo.4431413).

427 **RNA sequencing:** RNA was obtained from mycelium of *Termitomyces* strains T153 and T112
428 cultivated on different growth media for 10 days at room temperature. Mycelium was harvested by
429 scraping it from agar plates with a scalpel, freezing it in liquid nitrogen and storing it at -80 °C until
430 RNA extraction. RNA extracts underwent 100bp paired-end BGISEq-500 sequencing with BGI (Hong
431 Kong) (for details, see doi:10.5281/zenodo.4431413).

432 **RNAseq data acquisition and processing:** RNAseq data for fresh comb (SRR5944783), old comb
433 (SRR5944781) and nodules (SRR5944782) of *Termitomyces* strains from *Macrotermes* colony Mn156
434 were downloaded from the European Nucleotide Archive.⁶² The raw RNAseq data were mapped to
435 the annotated genes of T153 using HiSat2 with spliced alignments disabled (Version 4.8.2).⁶³
436 Transcript abundance was then estimated using HTSeq-count (Version 0.11.2).⁶⁴ Count data from
437 HTSeq were imported into R (R Core Team, 2018) using the “DESeq2” package (Version 1.22.2).⁶⁵
438 Genes with low transcript abundance (<10) were filtered out and the remaining genes log10
439 transformed.⁶⁶ A heatmap for the identified redox enzymes was generated using the “pheatmap”
440 package (Version 1.0.12)⁶⁷ in R (R Core Team, 2018)⁶⁸ with color schemes generated by “viridis”
441 (Version 0.5.1).⁶⁹ (for details, see doi:10.5281/zenodo.4431413).

442 **CAZY Analysis:** Identification of CAZymes in the predicted proteomes of *Termitomyces* and other
443 Basidiomycetes strains was performed using a local installation of the dbCAN2 server⁷⁰ and all three
444 included tools (HMMER, DIAMOND, and Hotpep searches against the databases included in dbCAN2.
445 For a reliable analysis, we kept only matches that were independently identified by at least two of
446 three annotation strategies and only genes and transcripts classified by their substrate target and
447 thus putative enzymatic functions. EC numbers were assigned using peptide-based functional
448 annotation (www.cazy.org) (for details, see doi:10.5281/zenodo.4431413).^{3,7}

449 **GC-MS analysis:** The fungal isolates *Termitomyces* sp. P5 and T153 were cultivated on solid media
450 containing different carbon sources. GC-MS analyses of biosamples were carried out with an Agilent
451 (Santa Clara, USA) HP 7890B gas chromatograph fitted with a HP5-MS silica capillary column (30 m,
452 0.25 mm i. d., 0.50 µm film) connected to a HP 5977A inert mass detector (for details, see (for
453 details, see doi:10.5281/zenodo.4431413).

454 **Activity studies on *Termitomyces* sp. T153:** Detection and quantification of H₂O₂ in culture medium
455 of *Termitomyces* sp. T153 was performed using a fluorimetric hydrogen peroxide assay kit (Sigma-
456 Aldrich) (for details, see doi:10.5281/zenodo.4431413).

457 **Detection of hydroxyl radicals:** Concentrations of hydroxyl radicals were measured using a
458 fluorometric assay based on the reaction with terephthalic acid (TPA) yielding the fluorescent
459 oxidation product hydroxy-terephthalic acid (hTPA) (for details, see doi:10.5281/zenodo.4431413).

460 **Ferrozin assay:** Fe²⁺-concentrations were evaluated using a standardized Ferrozin-assay (for details,
461 see doi:10.5281/zenodo.4431413).

462 **Proteomic Analysis:** *Termitomyces* sp. T153 was cultured in Potato-Dextrose broth (25 mL) for 12
463 days (20 °C, 150 rpm) and secreted enzymes collected and digested according to standardized
464 protocol (for details, see doi:10.5281/zenodo.4431413). LC-MS/MS analysis was performed on an
465 Ultimate 3000 nano RSLC system connected to a QExactive Plus mass spectrometer (both Thermo
466 Fisher Scientific, Waltham, MA, USA). Tandem mass spectra were searched against the UniProt
467 database of *Termitomyces* sp. J132 (<https://www.uniprot.org/proteomes/UP000053712>;
468 2019/11/04) using Proteome Discoverer (PD) 2.4 (Thermo) and the algorithms of Mascot 2.4 Sequest
469 HT (version of PD2.2), and MS Amanda 2.0 (for details, see doi:10.5281/zenodo.4431413).

470 **Protein analysis and activity tests:** Details regarding laccase and MnP activity tests are deposited
471 under: doi:10.5281/zenodo.4431413).

472 **ASSOCIATED CONTENT**

473 **Supporting Information**

474 Supporting Information can be accessed free of charge at Zenodo:
475 <https://doi.org/10.5281/zenodo.4431413> and contain information regarding culture conditions,
476 isolation procedures, structure elucidation, activity assays, expression level data, CAZY counts, and
477 proteomic hit list.

478 **AUTHOR INFORMATION**

479 **Corresponding Author**

480 * Dr. Christine Beemelmanns: Christine.Beemelmanns@hki-jena.de.

481 **Author Contributions**

482 The manuscript was written with contributions from all authors. All authors have approved the final
483 version of the manuscript.

484 **Notes**

485 **Conflict of Interest**

486 There are no conflicts of interest to declare.

487 **ACKNOWLEDGMENT**

488 Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID
489 239748522 – SFB 1127 (project A6) to CB and CRC/TR 124 FungiNet, project number 210879364
490 (project A1 and Z2) to AB and OK. The Danish Council for Independent Research (DFF - 7014-00178)
491 and a European Research Council Consolidator Grant (771349) to MP. Help with microscopy pictures
492 by David Zopf is greatly acknowledged (SFB 1127/2 ChemBioSys – project number 239748522
493 (project Z). CG and NGC acknowledge the financial support from the state budget of the Slovenian
494 Research Agency (Research Project J4-2549, Research Programs P1-0198 and P1-0170, Infrastructural
495 Centre Mycosmo).

496 **References**

¹ Li H, Young SE, Poulsen M, Currie CR. Symbiont-Mediated Digestion of Plant Biomass in Fungus-Farming Insects. *Annu. Rev. Entomol.*, 2020, accepted. <https://doi.org/10.1146/annurev-ento-040920-061140>

² Wisselink M, Aanen DK, van 't Padje A. The Longevity of Colonies of Fungus-Growing Termites and the Stability of the Symbiosis. *Insects*, 2020, 11, 527.
doi:10.3390/insects11080527

³ Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, Nygaard S, et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. *Proc. Natl. Acad. Sci.*, 2014, 111, 14500.
doi:10.1073/pnas.1319718111

⁴ Jones JA. Termites, soil fertility and carbon cycling in dry tropical Africa: a hypothesis. *J. Trop. Ecol.* 1990, 6, 291-305.
doi:10.1017/S0266467400004533.

⁵ Kirk PM, Cannon PF, David JC, Stalpers JA. 2001. Ainsworth and Bigby's dictionary of the fungi. CAB International, Wallingford, Oxfordshire, United Kingdom

⁶ Rohrmann GF. The origin, structure, and nutritional importance of the comb in two species of *Macrotermitinae*. *Pedobiologia*, 1978, 18, 89-98.

⁷ da Costa RR, Hu H, Pilgaard B, Vreeburg SME, Schückel J, Pedersen KSK, Kračun SK, Busk PK, Harholt J, Sapountzis P, Lange L, Aanen DK, Poulsen M. Enzyme Activities at Different Stages of Plant Biomass Decomposition in Three Species of Fungus-Growing Termites. *Appl. Environ. Microbiol.*, 2018, 84, e01815-01817. doi:10.1128/AEM.01815-17

⁸ Hu H, da Costa RR, Pilgaard B, Schiøtt M, Lange L, Poulsen M. Fungiculture in Termites Is Associated with a Mycolytic Gut Bacterial Community. *mSphere*, 2019, 4, e00165-00119.
doi:10.1128/mSphere.00165-19

⁹ Hyodo F, Tayasu I, Inoue T, Azuma JI, Kudo T, Abe T. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). *Funct. Ecol.*, 2003, 17, 186-193.
doi:10.1046/j.1365-2435.2003.00718.x

¹⁰ Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco Mdel M, Nakagawa-Izumi A, Sleighter RL, Tien M. Lignin degradation in wood-feeding insects. *Proc. Natl. Acad. Sci.*, 2008, 105, 12932-7.

¹¹ Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-García M, et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. *Nature Commun.*, 2020, 11, 5125.

doi:10.1038/s41467-020-18795-w

¹² Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin Biosynthesis and Structure. *Plant Physiol.*, 2010, 153, 895.

doi:10.1104/pp.110.155119

¹³ Dashtban M, Schraft H, Syed TA, Qin W. Fungal biodegradation and enzymatic modification of lignin. *Int. J. Biochem. Mol. Biol.* 2010, 1, 36-50.

¹⁴ Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. *Nat. Prod. Rep.*, 2011, 28, 1883-1896.

doi:10.1039/C1NP00042J

¹⁵ Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, et al. The Plant Cell Wall—Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. *Science*, 2011, 333, 762. doi:10.1126/science.1205411

¹⁶ Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. *Science*. 2012; 336:1715-9

¹⁷ Gaskell J, Blanchette RA, Stewart PE, BonDurant SS, Adams M, Sabat G, Kersten P, Cullen D. Transcriptome and Secretome Analyses of the Wood Decay Fungus *Wolfiporia cocos* Support Alternative Mechanisms of Lignocellulose Conversion. *Appl. Environ. Microbiol.* 2016, 82, 3979. doi:10.1128/AEM.00639-16

¹⁸ Li H, Yelle DJ, Li C, Yang M, Ke J, Zhang R, Liu Y, Zhu N, Liang S, Mo X, Ralph J, Currie CR, Mo J. Lignocellulose pretreatment in a fungus-cultivating termite. *Proc. Natl. Acad. Sci.*, 2017, 114, 4709. doi:10.1073/pnas.1618360114

¹⁹ Ayuso-Fernandes I, Ruiz Duenas FJ, Martinez AT, Evolutionary convergence in lignin-degrading enzymes, *Proc. Natl. Acad. Sci.*, 2018, doi: 10.1073/pnas.1802555115

²⁰ Schmidt-Dannert C. Biocatalytic portfolio of Basidiomycota. *Curr. Opin. Chem. Biol.* 2016, 31, 40-49.

doi:10.1016/j.cbpa.2016.01.002

²¹ Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res.*, 2013, 42, D490–495. doi:10.1093/nar/gkt1178.

²² Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation, *Nucleic Acids Res.*, 2018, 46, W95–W101, doi:10.1093/nar/gky418

²³ Busk PK, Lange L. Function-based classification of carbohydrateactive enzymes by recognition of short, conserved peptide motifs. *Appl. Environ. Microbiol.* 2013, 79:3380 –3391. doi:10.1128/AEM.03803-12.

²⁴ Kameshwar AKS, Qin W, Recent Developments in Using Advanced Sequencing Technologies for the Genomic Studies of Lignin and Cellulose Degrading Microorganisms *Int. J. Biol. Sci.*, 2016, 12, 156-171 doi.org/10.7150/ijbs.13537

²⁵ Taprab Y, Johjima T, Maeda Y, Moriya S, Trakulnaleamsai S, Noparatnaraporn N, Ohkuma M, Kudo T. Symbiotic Fungi Produce Laccases Potentially Involved in Phenol Degradation in Fungus Combs of Fungus-Growing Termites in Thailand. *Appl. Environ. Microbiol.*, 2005, 71, 7696.

doi:10.1128/AEM.71.12.7696-7704.2005

²⁶ Johjima T, Ohkuma M, Kudo T. Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete *Termitomyces albuminosus*. *Appl. Microbiol. Biotechnol.* 2003, 61, 220-225.

doi:10.1007/s00253-003-1236-4

²⁷ Bose S, Mazumder S, Mukherjee M. Laccase production by the white-rot fungus *Termitomyces clypeatus*. *J. Basic Microbiol.* 2007, 47, 127-131.

doi:10.1002/jobm.200610206

²⁸ Thurston CF. The structure and function of fungal laccases. *Microbiology*, 1994, 140, 19-26.

doi:10.1099/13500872-140-1-19

²⁹ Kersten P, Cullen D. Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. *Fungal Genet. Biol.*, 2014, 72, 124-130. doi:10.1016/j.fgb.2014.05.011

³⁰ Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D. Multiplicity of enzymatic functions in the CAZy AA3 family. *Appl. Microbiol. Biotechnol.*, 2018, 102, 2477-2492.

doi:10.1007/s00253-018-8784-0

³¹ Welinder KG. Superfamily of plant, fungal and bacterial peroxidases. *Curr. Opin. Struck. Biol.*, 1992, 2, 388–393.

doi:10.1016/0959-440X(92)90230-5

³² Huber W, Von Heydebreck A, Sueltmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. *Bioinformatics*, 2002, 18, 96-104.

doi:10.1093/bioinformatics/18.suppl_1.s96

³³ Simon Garnier (2018). viridis: Default color maps from 'matplotlib'. R package version 0.5.1.

<https://CRAN.R-project.org/package=viridis>

³⁴ Jensen KA, Houtman CJ, Ryan ZC, Hammel KE. Pathways for Extracellular Fenton Chemistry in the Brown Rot Basidiomycete *Gloeophyllum trabeum*. *Appl. Environ. Microbiol.*, 2001, 67, 2705. doi:10.1128/AEM.67.6.2705-2711.2001

³⁵ Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford University Press, USA, 2015.

³⁶ Arantes V, Milagres AMF. The synergistic action of ligninolytic enzymes (MnP and Laccase) and Fe³⁺-reducing activity from white-rot fungi for degradation of Azure B. *Enzyme Microb. Technol.*, 2007, 42, 17-22.

doi:10.1016/j.enzmictec.2007.07.017

³⁷ Suzuki MR, Hunt CG., Houtman CJ, Dalebroux ZD, Hammel KE. Fungal hydroquinones contribute to brown rot of wood. *Environ. Microbiol.*, 2006, 8, 2214-2223.

doi:10.1111/j.1462-2920.2006.01160.x

³⁸ Korripally P, Timokhin VI, Houtman CJ, Mozuch MD, Hammel KE. Evidence from *Serpula lacrymans* that 2,5-Dimethoxyhydroquinone Is a Lignocellulolytic Agent of Divergent Brown Rot Basidiomycetes. *Appl. Environ. Microbiol.*, 2013, 79, 2377.

doi:10.1128/AEM.03880-12

³⁹ Shah F, Schwenk D, Nicolás C, Persson P, Hoffmeister D, Tunlid A. Involutin Is an Fe³⁺-Reductant Secreted by the Ectomycorrhizal Fungus *Paxillus involutus* during Fenton-Based Decomposition of Organic Matter. *Appl. Environ. Microbiol.*, 2015, 81, 8427. doi:10.1128/AEM.02312-15.

⁴⁰ Jeitner TM. Optimized ferrozine-based assay for dissolved iron. *Anal. Biochem.*, 2014, 454, 36-37. doi:10.1016/j.ab.2014.02.026

⁴¹ Verschoor MJ, Molot LA, A comparison of three colorimetric methods of ferrous and total reactive iron measurement in freshwaters. *Limnol. Oceanogr. Methods*, 2013, 11, 113-125. doi:10.4319/lom.2013.11.113

⁴² Haddou M, Benoit-Marquié F, Maurette M-T, Oliveros E. Oxidative Degradation of 2,4-Dihydroxybenzoic Acid by the Fenton and Photo-Fenton Processes: Kinetics, Mechanisms, and Evidence for the Substitution of H₂O₂ by O₂. *Helv. Chim. Acta*, 2010, 93, 1067-1080. doi:10.1002/hlca.200900380

⁴³ Otani S, Challinor VL, Kreuzenbeck NB, Kildgaard S, Krath Christensen S, Larsen LLM, Aanen DK, Rasmussen SA, Beemelmanns C, Poulsen, M. Disease-free monoculture farming by fungus-growing termites. *Sci. Rep.*, 2019, 9, 8819.

doi:10.1038/s41598-019-45364-z

⁴⁴ Utset B, Garcia J, Casado J, Domènech X, Peral J. Replacement of H₂O₂ by O₂ in Fenton and photo-Fenton reactions. *Chemosphere*, 2000, 41, 1187-1192.

doi:10.1016/S0045-6535(00)00011-4

⁴⁵ Varela E, Tien M. Effect of pH and Oxalate on Hydroquinone-Derived Hydroxyl Radical Formation during Brown Rot Wood Degradation. *Appl. Environ. Microbiol.*, 2013, 69, 6025.

doi:10.1128/AEM.69.10.6025-6031.2003

⁴⁶ Fenton, Henry John Horstman. "LXXIII.—Oxidation of tartaric acid in presence of iron." *J. Chem. Soc., Transactions* 65, 1894, 899-910.

doi:10.1039/ct8946500899

⁴⁷ Arshad MA, Schnitzer M. The chemistry of a termite fungus comb. *Plant and Soil*, 1987, 98, 247-256.

doi:10.1007/BF02374828

⁴⁸ Deke AL, Adugna WT, Fite AT. Soil Physic-chemical Properties in Termite Mounds and Adjacent Control Soil in Miyo and Yabello Districts of Borana Zone, Southern Ethiopia, *American Journal of Agriculture and Forestry*, 2016, 4, 4, 69-74.

doi:10.11648/j.ajaf.20160404.11

⁴⁹ Jouquet P, Tessier D, Lepage M. The soil structural stability of termite nests: role of clays in *Macrotermes bellicosus* (*Isoptera, Macrotermitinae*) mound soils. *Eur. J. Soil Biol.*, 2004, 40: 23–29.

doi:10.1016/j.ejsobi.2004.01.006

⁵⁰ Lyngsie G, Krumina L, Tunlid A, Persson P. Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles. *Sci. Rep.*, 2018, 8, 10834-10834.

doi:10.1038/s41598-018-29075-5

⁵¹ Krumina L, Lyngsie G, Tunlid A, Persson, P. Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles: Iron Reduction versus Surface Catalysis. *Environ. Sci. Technol.*, 2017, 51, 9053-9061.

doi:10.1021/acs.est.7b02292

⁵² Owen BC, Haupert LJ, Jarrell TM, Marcum CL, Parsell TH, Abu-Omar MM, Bozell JJ, Black SK, Kenttämaa HI. High-Performance Liquid Chromatography/High-Resolution Multiple Stage Tandem Mass Spectrometry Using Negative-Ion-Mode Hydroxide-Doped Electrospray Ionization for the Characterization of Lignin Degradation Products. *Anal. Chem.*, 2012, 84, 6000-6007.

doi:10.1021/ac300762y

⁵³ Peng S, Zhang W, He J, Yang X, Wang D, Zeng G. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone. *J. Environ. Sci. (China)*, 2016, 41, 16-23.

doi:10.1016/j.jes.2015.05.006

⁵⁴ Krumbein WE, Altmann HJ. A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. *Helgoländer wissenschaftliche Meeresuntersuchungen*, 1973, 25, 347-356.

doi:10.1007/BF01611203

⁵⁵ Rashid GMM, Zhang X, Wilkinson RC, Fülöp V, Cottyn B, Baumberger S, Bugg TDH. *Sphingobacterium* sp. T2 manganese superoxide dismutase catalyzes the oxidative demethylation of polymeric lignin via generation of hydroxyl radical. *ACS Chem. Biol.*, 2018, 13, 2920-2929.

doi: 10.1021/acschembio.8b00557

⁵⁶ Hansel CM, Zeiner CA, Santelli CM, Webb SM. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. *Proc. Natl. Acad. Sci.*, 2012, 109, 12621.

doi:10.1073/pnas.1203885109

⁵⁷ Brown ME, Chang MCY. Exploring bacterial lignin degradation. *Curr. Opin. Chem. Biol.*, 2014, 19, 1-7.

doi:10.1016/j.cbpa.2013.11.015

⁵⁸ Smit, A.; Hubley, R.; Gruen, P. RepeatMasker Open-4.0 Available online:

<http://www.repeatmasker.org>.

⁵⁹ Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.;

Gingeras, T.R. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 2013, 29, 15–21.

doi:10.1093/bioinformatics/bts635.

⁶⁰ Hoff, K.J.; Lomsadze, A.; Borodovsky, M.; Stanke, M. Whole-genome annotation with BRAKER. In *Methods in Molecular Biology*; 2019; pp. 65–95. doi:10.1007/978-1-4939-9173-0_5

⁶¹ Stanke, M.; Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. *Nucleic Acids Res.* 2005, 33, 465–467. doi:10.1093/nar/gki458.

⁶² da Costa, R.R.; Hu, H.; Pilgaard, B.; Vreeburg, S.M.; Schückel, J.; Pedersen, K.S.; Kračun, S.K.; Busk, P.K.; Harholt, J.; Sapountzis, P.; Lange, L.; Aanen, D.K.; Poulsen, M. Enzyme activities at different stages of plant biomass decomposition in three species of fungus-growing termites. *Appl. Environ. Microbiol.*, 2018, 84:e01815-17.

doi:10.1128/AEM.01815-17.

⁶³ Kim, D.; Langmead, B; Salzberg, S.L.. HISAT: a fast spliced aligner with low memory requirements. *Nature Methods*, 2015, 12, 357.

doi:10.1038/nmeth.3317

⁶⁴ Anders, S.; Pyl, P.T; Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. *Bioinformatics*, 2015, 31, 166-169. doi:10.1093/bioinformatics/btu638

⁶⁵ Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.*, 2014, 15, 550. doi:10.1186/s13059-014-0550-8

⁶⁶ Huber, W.; Von Heydebreck, A.; Sueltmann, H.; Poustka, A.; Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. *Bioinformatics*, 2002, *18*, 96-104.

doi:10.1093/bioinformatics/18.suppl_1.s96

⁶⁷ Raivo Kolde, 2019. pheatmap: Pretty Heatmaps. R package version 1.0.12. <https://CRAN.R-project.org/package=pheatmap>

⁶⁸ R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

⁶⁹ Simon Garnier, 2018. viridis: Default color maps from 'matplotlib'. R package version 0.5.1. <https://CRAN.R-project.org/package=viridis>

⁷⁰ Zhang, H.; Yohe, T.; Huang, L.; Entwistle, S.; Wu, P.; Yang, Z.; Busk, P.L.; Xu, Y.; Yin, Y. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation, *Nucleic Acids Res.*, **2018**, *46*, 95-101.

doi:10.1093/nar/gky418