

1

2

3

4 Investigating temporal and spatial variation of eDNA in a nearshore rocky reef environment

5

6

7 Taylor Ely ^{1, #a}, Paul H. Barber ¹, and Zachary Gold ¹

8

9

10 ¹ Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los
11 Angeles, California, USA

12

13 ^{#a} Current Address: School of Life Sciences, University of Hawaii Manoa, Honolulu, Hawaii,
14 USA

15

16

17

18 * Corresponding author

19 E-mail: tely@hawaii.edu (TE)

20

21

22

23

24

25 **Abstract**

26 Environmental DNA (eDNA) is increasingly used to measure biodiversity of marine
27 ecosystems. However, key aspects of spatial and temporal dynamics of eDNA remain unknown.
28 Particularly, it is unclear how long eDNA signals persist locally in dynamic marine
29 environments, since degradation rates have predominantly been quantified through mesocosm
30 studies. To determine *in situ* eDNA residence times, we introduced an eDNA signal from a non-
31 native fish into a Southern California rocky reef ecosystem, and then measured changes in both
32 introduced and background eDNA signals over 96 hours. Foreign eDNA signal could no longer
33 be detected 7.5 hours after introduction, far exceeding disappearance rates quantified in
34 laboratory studies. In addition, native vertebrate eDNA signals varied greatly over the 96 hours
35 of observation, but time of day and tidal direction did not drive this variation in community
36 structure. Species accumulation curves showed that standard sampling protocols using 3
37 replicate 1 L sea water samples were insufficient to capture full diversity of local marine
38 vertebrates, capturing only 76% of all taxa. Despite this limitation, a single eDNA sample
39 captured greater vertebrate diversity than 18 SCUBA based underwater visual transect surveys
40 conducted at a nearby site. There was no significant difference in species richness between
41 temporal replicates and spatial replicates, suggesting a space for time substitution may be
42 effective for fully capturing the diversity of local marine vertebrate communities in nearshore
43 rocky reef environments. This result is particularly important in designing eDNA
44 metabarcoding sampling protocols to capture local marine species diversity.

45 **Introduction**

46 Environmental DNA (eDNA) is increasingly used to investigate biodiversity of marine
47 ecosystems [1]. eDNA is produced when organisms shed genetic material into the environment
48 [2]; by isolating, extracting, and sequencing this eDNA, resident marine species can be identified
49 through metabarcoding [1]. Recent studies demonstrate that eDNA techniques can outperform
50 traditional visual census surveys in species detection [3,4], particularly for cryptic and rare
51 species [5], while at the same time being noninvasive and cost effective [2]. As such, eDNA
52 represents a promising alternative to traditional biodiversity surveys, which are time and labor
53 intensive, require substantial taxonomic expertise, and can pose significant safety hazards to
54 researchers [2,6].

55 Despite the promise of eDNA, much remains unknown about the dynamics of eDNA in the
56 environment. eDNA degrades in the environment due to a combination of abiotic (e.g.
57 temperature, UV, and pH) and biotic (e.g. microbial activity) processes [7]. Previous studies
58 report that eDNA of marine fishes degrades in a laboratory setting on a scale of 0.5 to 7 days, but
59 usually around 3-4 days [3,8]. In nature, however, water transport and water mixing affect the
60 persistence and detection of eDNA in the water column, processes that are fundamentally altered
61 in laboratory settings [8].

62 To date, most eDNA studies examining eDNA transport have focused on single species in
63 freshwater systems characterized by relatively simple flow dynamics such as spawning salmon in
64 streams [e.g. 9,10] . However, recent work investigating the spatial and temporal variation of
65 *Pseudocaranx dentex* (white trevally) in Maizuru Bay, Japan found that eDNA signatures fell
66 below detection thresholds under just 2 hours after the removal of a foreign eDNA source [11].
67 This result indicates that eDNA signatures in marine systems can fall below detection limits
68 much faster than reported in laboratory experiments, suggesting that a combination of

69 degradation, advection, generation, dispersion, and/or diffusion in marine systems dramatically
70 differs from laboratory experiments. However, it is unclear whether this result is generalizable to
71 all marine ecosystems, including temperate or polar ecosystems where colder water temperatures
72 could slow degradation processes.

73 In dynamic aquatic ecosystems, the combination of eDNA degradation and transport can
74 result in temporal variation in eDNA signatures [12]. As such, it is essential to understand
75 temporal variation of eDNA in marine environments as well as the spatial scale of eDNA
76 variation so that proper eDNA sampling strategies can be developed and results can be properly
77 interpreted. Our present understanding of short-term temporal variation in eDNA signatures of
78 entire marine vertebrate communities is limited to a single study on an intertidal ecosystem.
79 Kelly et al. [13] found that tides did not have a strong or consistent effect on community
80 composition, but that temperature and salinity did have a significant effect, suggesting that the
81 movement of water masses—rather than tides alone—has the strongest effect on eDNA
82 signatures.

83 Transport of eDNA in marine environments may not strongly impact local eDNA signatures
84 if the eDNA only persists for a few hours, producing a highly localized signal. Such highly
85 localized signals are reported in multiple studies. For example, Port et al. [14] found that marine
86 vertebrate communities differed on a 60-100 m scale. This small spatial scale of community
87 differences could be the result of either limited transport of eDNA due to the unique geographic
88 and benthic topography of Lovers Cove, Pacific Grove, CA or due to the rapid degradation rates
89 of marine eDNA. Recent work building off this study in more dynamic marine environments
90 found that eDNA signatures of marine communities displayed spatial variation on the scale of
91 hundreds of meters to a few kilometers [15]. Similarly, Yamamoto et al. [16] found significant

92 spatial differences occurred around 800 m. Together these results suggest that eDNA has strong
93 spatial variation in marine ecosystems.

94 Understanding the temporal and spatial variation of eDNA in marine ecosystems is
95 becoming increasingly important, as eDNA is being viewed as a potential alternative to
96 traditional visual survey methods used in the monitoring of coastal marine ecosystems [2,5]. A
97 key potential advantage of eDNA is the ability to efficiently detect a larger number of taxa
98 compared to visual surveys [3,4,14] as visual surveys frequently focus on a small subset of
99 indicator taxa due to logistical difficulties [17]. For example, out of at least 178 fish species that
100 inhabit Southern California kelp forest [18], Reef Check California only monitors 33 of these
101 species in their visual surveys [19]. However, for eDNA to be maximally useful, it is essential to
102 understand the temporal and spatial variation of eDNA to ensure proper sampling protocols to
103 reliably detect these indicator species and the rest of the marine vertebrate community.

104 To better understand temporal and spatial variation in eDNA signatures, this study
105 investigates the *in situ* persistence of eDNA in a nearshore rocky reef habitat using a Eulerian
106 sampling regime. First, we examine the persistence of a foreign eDNA signature after
107 introduction in a given location. Second, we investigate how natural eDNA signatures at this
108 location fluctuated over the duration of the study, and compare these results to visual survey
109 protocols employed in Southern California waters by local kelp forest monitoring programs.
110 Combined, this approach will provide critical insights into the dissipation of eDNA signatures
111 over time and space, and how sampling can be optimized to account for this variation, providing
112 the most robust eDNA data for monitoring marine vertebrate communities.

113 **Methods**

114 **Sample collection and filtering**

115 To create a foreign eDNA signature, we homogenized one raw filet (414 grams) of
116 *Ctenopharyngodon idella* (grass carp) muscle tissue in 1L of MilliQ water (EMD Millipore,
117 Burlington, MA) in a blender at high speed for 60 seconds. Tissue was used instead of PCR
118 product because of recent evidence that eDNA derives from whole cells rather than freely
119 associated DNA [8,20]. Due to the potential for seafood mislabeling [21], we DNA barcoded the
120 sample to verify the species by including a tissue sample as a positive control.

121 We conducted fieldwork at the USC Wrigley Marine Science Center on Catalina Island,
122 California, located in Big Fisherman's Cove (33°26'42.43"N, 118°29'4.05"W). This field station
123 sits within a protected bay and has a long dock to facilitate sampling along a fixed transect
124 without disturbance from SCUBA divers. We established fixed sampling points along a 38 m
125 transect. Location A was closest to shore, Location B was 19 m seaward, and Location C was 19
126 m further seaward. The depths of location A, B, and C were 7.3 m, 8.2 m, and 11.2 m
127 respectively.

128 Prior to introducing the foreign eDNA signal, we established baseline eDNA signatures by
129 collecting one-liter water samples at each site on SCUBA. SCUBA divers then released the total
130 volume of homogenized *C. idella* tissue one meter above the sea floor at Location B on
131 September 6th, 2017. We then collected one-liter water samples for eDNA analysis at each of the
132 three sampling locations for a period of 96 hours. For the first 12 hours, we collected samples
133 every 1.5 hours. After this initial period, we sampled only at 24, 48, and 96 hours after the
134 release of the foreign eDNA. Sterile protocols were followed throughout following the
135 guidelines of Goldberg et al. [22].

136 To eliminate diver related introduction of *C. idella* during sample collections, all samples
137 following the introduction of the foreign eDNA signature were taken from the dock using a 4-
138 liter Niskin bottle hand-lowered to 1 m above the sea floor. At the surface, we transferred 1 liter
139 of seawater from the Niskin bottle into a sterile 1000 mL kangaroo gravity feeding bag
140 (Covidien, Dublin, Ireland, Product Number 8884702500). This bag was immediately placed in a
141 cooler on ice packs (-20°C) and transported to the lab, less than 300 m away, for filtration.

142 To filter eDNA from the water samples, we fitted sterile 0.635 cm diameter Nalgene tubing
143 with a luer-lock adapter to the pouches and connected the sample to a 0.22 μ m diameter PVDF
144 Sterivex filter unit (EMD Millipore, SVGPL10RC) [23]. We then hung the bags and attached
145 filters in the lab, allowing samples to gravity filter for a maximum of 40 minutes (S1Table).
146 Following eDNA filtration, we stored filters at -20°C and transported the filters to UCLA for
147 molecular laboratory work.

148 To ensure that no DNA carried over between sampling events, we cleaned the Niskin bottle
149 between sample collections by rinsing the bottle with surface water above each location for 30
150 seconds [24]. To test for contamination, we ran a field blank which consisted of 1 L of nuclease-
151 free water placed inside the Niskin bottle previously rinsed with locally sourced tap water for 30
152 seconds. This water was then transferred to the gravity feeding bag for filtration and processed
153 identically to field samples.

154 **DNA extraction**

155 We extracted DNA from the Sterivex filters using a modified Qiagen DNeasy Blood and
156 Tissue Kit (Qiagen Inc., Germantown, MD) following protocols from Spens et al. [25]. The
157 modifications include the following steps. We added 80 μ L of proteinase K and 720 μ L ATL
158 buffer from the kit directly into the Sterivex filter before sealing both ends of the filter. We then

159 placed the filters in a rotating incubator overnight at 56°C. Following incubation, we removed
160 the liquid from each Sterivex filter using a sterile 3 mL syringe and transferred the solution into
161 1.5 mL tubes. We then added equal parts AL buffer and 0°C ethanol to an equal volume of
162 extracted liquid. The eDNA sample was then extracted with the Qiagen DNeasy Blood and
163 Tissue Kit without any further modifications to the manufacturer's protocol.

164 **PCR amplification and DNA sequencing**

165 We amplified the *12S* region of mitochondrial DNA using MiFish Universal Teleost specific
166 primers modified with Illumina Nextera adapter sequences (MiFish-U, S2 Table) [23,26]. This
167 primer set primarily targets teleost fish but also can detect a wide variety of other vertebrates,
168 including marine mammals and birds [26]. PCR reaction volume was 25 µL and included 12.5
169 µL Qiagen 2x Multiplex Master Mix, 2.5 µL MiFish-U-F (2 mM), 2.5 µL MiFish-U-R (2 mM),
170 6.5 µL nuclease-free water, and 1 µL DNA extraction. PCR thermocycling employed a
171 touchdown profile with an initial denaturation at 95°C for 15 min to activate the DNA
172 polymerase followed by 13 cycles with a denaturation step at 94°C for 30 sec, an annealing step
173 with temperature starting at 69.5°C for 30 sec (temperature was decreased by 1.5°C every cycle
174 until 50°C was reached), and an extension step at 72°C for 1 min (S3 Table). Thirty-five
175 additional cycles were then carried out at an annealing temperature of 50°C using the same
176 denaturation and extension steps above, followed by a final extension at 72°C for 10 min (S3
177 Table). All PCR experiments included negative controls. We then confirmed successful PCR
178 amplification through gel electrophoresis on 2% agarose gels.

179 To prepare the sequencing library, we first pooled 5 µL from each of the 3 PCR technical
180 replicates. We then purified these PCR products, removing strands less than 100 bp long, using
181 Sera-Mag (Sigma-Aldrich) bead protocol and eluted the purified product in 40 µL nuclease-free

182 water [27]. We attached Illumina Nextera indexing primers to purified products through an
183 indexing PCR [28]. The PCR reaction volume per sample was 25 μ L and comprised of 12.5 μ L
184 Kapa HiFi Hot Start Ready Mix, 0.625 μ L Primer i7, 0.625 μ L Primer i5, 6.25 μ L nuclease-free
185 water, and 5 μ L template (~5 ng). The thermal cycle profile started with 95°C for 5 minutes
186 followed by 5 cycles of denaturing at 98°C for 20 seconds, annealing at 56°C for 30 seconds, and
187 extension at 72°C for 3 minutes. Thermal cycling concluded with a final extension of 72°C for 5
188 minutes. These indexed samples were again purified to remove strands less than 100 bp long
189 using Sera-Mag beads as described above. DNA concentrations were quantified using the BR
190 Assay Kit (Thermofisher Scientific, Waltham, MA, USA) on a Victor3 plate reader (Perkin
191 Elmer, Waltham, MA, USA). We then generated the final library by pooling equal
192 concentrations of DNA from all indexed samples. The library was then sequenced at UC
193 Berkeley's QB3 Genomics in a single Illumina MiSeq Paired end 300x2 sequencing run.

194 **Bioinformatics**

195 We analyzed the resulting sequences using the *Anacapa Toolkit* (version: 1) [23] identifying
196 the number of reads of *C. idella* and amplicon sequence variants (ASVs) from the native
197 vertebrate communities. We used the standard *Anacapa Toolkit* parameters with the *CRUX*-
198 generated *12S* reference library as described in Curd et al. [23] with the addition of 757 barcodes
199 of California fish species [29]. Taxonomic assignment was determined with a Bayesian
200 confidence cutoff score of 60 [30].

201 We employed an established decontamination package, *Gruinard Decon* (version 0.0), using
202 *microDecon* (version 1.0.2) [31,32], in R (version 3.6.1) [33] and followed index hopping
203 removal using the methods Kelly et al. [13]. We then normalized our data using the eDNA index
204 metric following the methods Kelly et al. [34]. This metric assumes that PCR biases originate

205 from template-primer interactions which remain constant across eDNA samples and thus allow
206 us to infer relative abundance changes of a single taxa between samples [34].

207 **Statistical analysis**

208 To examine degradation of the introduced eDNA, we plotted the index of *C. idella* reads at
209 each time point across the first 24 hours of sampling using R (version 3.6.1) [33]. Unlike
210 laboratory studies, we chose not to fit an exponential model to the data as the *C. idella* reads did
211 not decrease in a consistent pattern [3,8]. For comparisons of native vertebrate communities over
212 time, we first visualized which taxa were present in each location (A/B/C, N=3) and time point
213 (0-96 hr, N=12) by generating a heat map using the R package *phyloseq* (version 1.28.0) [35].
214 We generated two separate heat maps, one using all taxa detected and a second using only a
215 subset of species monitored by one or more of local kelp forest monitoring programs (National
216 Park Service Kelp Forest Monitoring Program (KFM), Partnership for Interdisciplinary Studies
217 of Coastal Oceans (PISCO), and Reef Check) (S4 Table).

218 To test the underlying factors shaping temporal variation in native eDNA community
219 signatures, we investigated how species communities changed in response to three variables:
220 direction of tide (incoming/outgoing/peak, N=3), location (A/B/C, N=3), and time point (0-96 hr,
221 N=12). We conducted a PERMANOVA test on the Bray-Curtis dissimilarities calculated
222 between each sample to determine the effect of each variable on community composition using
223 the R package *vegan* (version 2.5-6) [36]. We chose Bray-Curtis dissimilarities over Jaccard
224 dissimilarities following the methods of Kelly et al. [34] given that eDNA index enables us to
225 infer changes in relative abundance between taxa.

226 To compare species richness recovered with spatial versus temporal replicates, we
227 calculated the means and 95% confidence intervals (CI's) using the R package *iNext* (version

228 2.0.20) [37] for sets of three random samples. *iNext* determines sets of spatial replicates from
229 mean taxa recovered at a given time point across all three sampled locations and sets of temporal
230 replicates from mean taxa recovered at any given location across 3 randomly selected time
231 points. Mean and 95% CI calculations were repeated for the subset of monitored species
232 detected.

233 Lastly, to determine the number of eDNA samples needed to capture subsets of species
234 diversity, we calculated species accumulation curves using R package *iNext* (version 2.0.20)
235 [37]. We did this to determine how many samples are required to recover 1) all species detected
236 by eDNA, 2) a subset of species monitored by local kelp forest monitoring agencies (KFM,
237 PISCO, and Reef Check), and 3) a subset of species only monitored by Reef Check (S4 Table).
238 We focus specifically on Reef Check because they monitor a site ~100 m away from our site at
239 the Wrigley Marine Science Center, providing a comparison between eDNA results and
240 traditional visual survey results (S4 Table). We created all graphs and performed all calculations
241 using R (version 3.6.1) [33] with *phyloseq* (version 1.28.0) [35], *Ranacapa* (version 0.1.0) [38],
242 *treemapify* (version 2.5.3) [39], *iNext* (version 2.0.20) [37] and *vegan* (version 2.5-6) [36]
243 packages.

244 **Results**

245 **Sequencing**

246 We generated 6,613,832 reads across 36 samples and 5 controls. The number of reads per
247 sample ranged from 54,988-558,298 reads (average = 179,719 reads/sample), excluding controls.
248 After decontamination steps, 754 ASVs were recovered.

249 **Temporal and spatial variation in foreign eDNA signatures**

250 Results showed no *C. idella* eDNA in any samples prior to introduction of the tissue
251 homogenate, but it was detected at all three sites at similarly low detection levels (eDNA index
252 scores = 0.025-0.130) 1.5 hr after release. The strongest eDNA signature was detected 3 hr after
253 release, but only at site C (eDNA index score = 1). eDNA index scores decreased over time in an
254 inconsistent fashion. No foreign eDNA was detected at site A and C at 4.5 hrs, but it was
255 detected at all sites at 6 hrs, with site C at 6 hrs having the second highest eDNA index score
256 over the entire experiment (eDNA index score = 0.715). By 7.5 hrs, foreign eDNA was no longer
257 detected (Fig 1).

258 **Fig 1. Detection of Foreign eDNA over Time.** Plot of eDNA index for *C. idella*
259 detected at locations A (squares), B (circles), and C (triangles) over time per location
260 for the first 24 hours

261 **Temporal and spatial variation in native eDNA signatures**

262 A total of 99 taxa were present in at least one sample across the 3 sample locations and 12
263 sampling times, spanning 4 classes, 29 orders, 57 families, 84 genera, and 85 species (S4 Table);
264 however, only one species, *Chromis punctipinnis*, was detected in every sample (S1 Fig). The
265 remaining taxa detected exhibited heterogeneous patterns and were absent from one or more
266 sampling points and times; this pattern was also observed for the subset of species monitored by
267 the KFM, PISCO, and Reef Check (Figs 2 and S2). We note that the presence of a spike in
268 foreign eDNA did not reduce the detection of native taxa. The mean number of taxa detected
269 when the foreign eDNA signature was present was 21 species ($\sigma=6$) and the mean number of
270 taxa detected when the foreign eDNA signature was absent was 20 species ($\sigma=5$).

271 **Fig 2. Heat Map of Species Monitored by KFM, PISCO, and Reef Check Detected**

272 **Over Time.** Heat map showing strength of the eDNA index for species monitored by
273 KFM, PISCO, and Reef Check observed. Darker blue indicates higher index values.
274 White indicates the species was not detected. Time point sampled is ordered by time
275 and faceted by location (in order of location A, B, then C). Species are ordered by
276 decreasing total detections.

277 Results from PERMANOVA found that time point accounted for the largest portion of
278 variation in vertebrate assemblages (PERMANOVA; $R^2=32\%$) (Fig 3). The next most important
279 sources of variation were direction of tide (PERMANOVA; $R^2=8\%$) and location
280 (PERMANOVA; $R^2=7\%$) (Fig 3). The remaining 54% of variation was unaccounted for (Fig 3).
281 Time point, direction of tide, and location of samples were all significantly correlated with Bray-
282 Curtis community structure (PERMANOVA; $F_9=1.4634$, $F_2=1.6107$, and $F_2= 1.4482$
283 respectively; $p = 0.001$, 0.002 , and 0.005 respectively) (Fig 3). However, an NMDS ordination
284 plot shows very weak clustering with no discernible effect of tides or time point (Stress > 0.25 ;
285 S3A and S3B Figs respectively).

286 **Fig 3. Apportioned variance plot from a PERMANOVA with Bray-Curtis**

287 **dissimilarities.** P-values are stated for each factor. The three processes examined are
288 direction of tide (incoming/outgoing/peak), location (A/B/C), and time point (0-96 hrs).

289 The mean number of total taxa detected with 3 spatial replicates was 34 taxa [95% CI: 29-39
290 taxa] and the mean for temporal replicates was 36 taxa [95% CI: 33-38 taxa]. There were no
291 significant differences in total taxa richness captured by spatial and temporal replicates. The
292 mean number of monitored species detected with only 3 spatial replicates was 22 species [95%

293 CI: 19-26 species] and the mean using 3 temporal replicates was 23 species [95% CI: 21-25
294 species]. As with total species richness, monitored species richness had no significant differences
295 between spatial and temporal replicates.

296 Species accumulation curves showed that species richness approached saturation, with a
297 species capture estimate of 94.6%, across all 36 samples (Fig 4). Species capture increased to
298 98.7% when focusing only on species monitored by KFM, Reef Check, and PISCO, and to
299 99.6% when considering only Reef Check monitored species. Using only 3 random replicate
300 samples, the typical eDNA sampling protocol, species capture estimates were 75.9%, 84.2%, and
301 92.4%, respectively.

302 **Fig 4. eDNA Metabarcoding Species accumulation curves.** Species accumulation
303 curves which indicate how many species on average are detected with increasing
304 number of samples taken. The left graph is a species accumulation curve for total
305 marine vertebrate diversity. This middle graph is a species accumulation curve for fish
306 species that are managed by Reef Check, PISCO, and KFM. The right graph is a species
307 accumulation curve for fish species that are managed by Reef Check.

308 **Discussion**

309 **Temporal and spatial variation in foreign eDNA signatures**

310 In contrast to studies showing eDNA persisting for multiple days in aquaria and mesocosms
311 [3,8], this study demonstrates that, *in situ*, eDNA signals can be short lived, falling below
312 detection thresholds in only 7.5 hrs. These results are highly similar to results from another
313 temperate region in Japan [11], suggesting that eDNA signals can dissipate rapidly in temperate
314 marine environments through degradation and/or advection. The ephemeral nature of eDNA is

315 further supported by the high variation in the detection of local fish communities sampled
316 repeatedly at the exact same locations over a period of 4 days. Combined, these results suggest
317 that persistence times of eDNA in dynamic marine environments is likely much shorter than
318 currently believed.

319 While degradation certainly contributed to the dissipation of the introduced eDNA signal
320 over time, advection was also likely a contributing factor. The detection of our introduced eDNA
321 at both sites 19 meters away, only 1.5 hours after release, indicates that the eDNA was moving in
322 both directions at a rate of at least 12 m/hr. While not particularly fast, this rate was fast enough
323 to impact eDNA detection. Previous studies in highly dynamic marine environments show that
324 eDNA can be transported tens of kilometers [40]. However, our study occurred in a protected
325 bay with relatively limited water movement, so advection was not expected to play a major role
326 in eDNA signal detection. This surprising result indicates that eDNA transport may play a
327 significant role in the ability to detect eDNA signals, even in relatively protected marine
328 ecosystems, and may explain the high variability in species detection across time at our fixed
329 sampling locations. Thus, accounting for fine-scale physical oceanography and transport
330 processes will be critical when designing eDNA sampling regimes.

331 **Temporal and spatial variation in native eDNA signatures**

332 As with the introduced eDNA signature, the detection of the native vertebrate communities
333 was transient and highly variable. eDNA recovered 99 total vertebrate taxa, and the majority of
334 these taxa would be classified as “resident” taxa, such as kelp bass (*P. clathratus*) and garibaldi
335 (*Hypsypops rubicundus*). However, only one species (*C. punctipinnis*) was observed in all
336 samples. A small number of common kelp forest fishes were seen in the majority (>90%) of
337 samples (e.g. *Engraulis mordax*, *Semicossyphus pulcher*, *Halichoeres semicinctus*), but the vast

338 majority of taxa were only detected intermittently in eDNA samples (S1 and S2 Figs).
339 Intermittent detection is expected for highly mobile/migratory species observed in our samples
340 such as ocean sunfish (*Mola mola*), California bat rays (*Myliobatis californica*) or Risso's
341 dolphins (*Grampus griseus*). However, it is surprising that species with demonstrated high site
342 fidelity (e.g. *Oxyjulis californica*) [41] have intermittent eDNA signatures at fixed sampling
343 locations.

344 Interestingly, time of sampling explained the largest amount of variation in communities
345 recovered by eDNA. The most likely reason for this result is the autocorrelation between time of
346 day and tides over the 4 days of this experiment. However, only 8% of the variation in eDNA
347 signatures was explained by the direction of the tide, indicating that tidal advection was not a
348 major driver of temporal variation in eDNA signatures at this site. Other processes related to
349 time could include fish behavior and activity patterns. For example, more fish movement could
350 lead to more sloughing of eDNA, or predation on fish like anchovy, sardines, or silversides could
351 result in spikes of eDNA as injured fish release blood or other tissues into the water.
352 Alternatively, given that DNA is broken down by UV light, eDNA degradation could be faster
353 during times of high solar irradiance, however there was no obvious temporal pattern observed in
354 the presence/absence of species in this study.

355 Although the majority of the detected species were resident demersal fish species, there was
356 substantial variation in the community composition recovered across temporal eDNA sampling.
357 The highly localized nature of this eDNA signal suggests that eDNA applications that require
358 robust, reliable, and repeatable data on community composition (e.g. MPA monitoring) will
359 require multiple temporal and/or spatial replicates to detect all species within a given marine

360 environment. These findings are unsurprising given the nature of species distributions in
361 ecosystems and imperfect sampling methods [42].

362 **Utility of eDNA in detecting monitored taxa**

363 In total, eDNA recovered broader species diversity than visual survey protocols. Across all
364 samples, eDNA detected 85 species, 41 of which are monitored by KFM [43], Reef Check [19],
365 or PISCO [44]. Interestingly, many of these monitored species observed were only found in a
366 single sample (S1 and S2 Figs), indicating stochasticity in eDNA surveys, akin to that of visual
367 surveys. Although we recovered 99 species, this total required 36 samples over 96 hours.
368 Typically, eDNA studies use only 3 biological replicates at a single time point [3,45,46]. When
369 only 3 random samples were used, eDNA captured an average of 36 taxa (Fig 4A) of which an
370 average of 23 were monitored species (Fig 4B). When only using a single, random 1 L sample,
371 eDNA captured an average of 20 taxa of which 15 were monitored species.

372 Our study design precluded paired visual surveys as diver movement could affect eDNA
373 transport. However, our study site is ~100 m from a site monitored annually by Reef Check
374 through 18 replicate visual surveys on SCUBA along a 30 m long transect [19,47]. Reef Check
375 data from the same year and season as our study reported seeing only 8 of 33 fish species that
376 Reef Check monitors (S4 Table) [19,47] compared to 99 taxa recovered by eDNA. Not only did
377 eDNA recover all eight species reported by Reef Check, but eDNA also detected five more
378 species monitored by Reef Check (*Embletoca jacksoni*, *Anisotremus davidsonii*, *Sphyraena*
379 *argentea*, *Paralabrax nebulifer*, and *Labrisomus xanti*) but were all absent in their visual
380 surveys. Importantly, eDNA outperformed visual surveys regardless of number of samples used,
381 averaging 10 Reef Check monitored species in 3 random samples and 7 from a single random
382 eDNA sample (Fig 4C). These results indicate that eDNA consistently recovers more species

383 than visual surveys. However, given the stochasticity of eDNA signals, in limited cases visual
384 surveys may be better, for example detection of specific, less abundant conspicuous indicator
385 taxa that surveyors are trained to look for (e.g. *garibaldi*).

386 **Other considerations**

387 Perhaps one of the more perplexing results of this study was the high variation in
388 community diversity observed across space and time in our eDNA samples, and the inability to
389 link these patterns to any physical processes that could explain this variation. Groups overlapped
390 on the Bray-Curtis dissimilarities NMDS ordination plots (S3A and S3B Figs), and there was no
391 clear pattern of prevalence on the heatmaps (Figs 2 and S1). Furthermore, most variation could
392 not be accounted for by any of the three physical oceanographic processes analyzed. Kelly et al.
393 [13] reports that PCR replicates and amplification bias accounted for 12-38% of the variance in
394 intertidal communities, suggesting that PCR variation could be a potential significant driver of
395 our observed variation. Similar results were found by Doi et al. [42] and from simulation results
396 by Kelly et al. [34]. Although we performed PCR in triplicate to limit the impacts of PCR bias,
397 those technical replicates were pooled, rather than being sequenced individually. While we
398 cannot directly assess variation among our PCR amplifications, there is no reason to believe that
399 pooling before indexing (our protocol), versus indexing before pooling (Kelly et al. protocol)
400 should make a difference in terms of variation among sequencing, as ultimately the same amount
401 of product from PCR reactions is loaded onto the sequencer. However, a few studies have shown
402 that three PCR replicates fail to eliminate variation due to PCR bias, with PCR bias still resulting
403 in $\geq 50\%$ variation [48,49]. Thus although our study design precludes direct observation of
404 variation across PCR replicates and takes measures to reduce PCR bias, PCR bias may still
405 explain a large proportion of the 54% of variation that remains unaccounted for in this study.

406 Another possibility is that physical movement of fish in this environment could drive the
407 movement of eDNA signatures. Katija and Dabiri [50] showed how diel migration of plankton
408 resulted in biogenic mixing of ocean surface waters, and fish can likely do the same [51].
409 Providing vertical structure and occurring in a marine protected area, the dock at Wrigley Marine
410 Science Center attracts large numbers of schooling fish (*pers. obs.*). Given how protected from
411 currents, such biogenic mixing could account for the transport of eDNA in multiple directions,
412 and perhaps explain some of the stochasticity in recovered eDNA signals.

413 An important unintended result of our study is the impact of sampling design on eDNA
414 studies. There is significant variation in eDNA field sampling protocols, with strategies
415 employing different volumes (ranging 1-4 liters; [3,12,14,46]), biological replicates at a single
416 sampling point (ranging 1-4 replicates;[12,46,52]), spatial replicate within an ecosystem (ranging
417 1-30 replicates; [3,12,14,15]), and combinations of these approaches, all designed to capture a
418 greater proportion of total species diversity. For our study, we collected a single liter of sea water
419 at three points along a transect at 19 m intervals. Community analysis recovered a surprisingly
420 limited number of taxa in any given sample, ranging from 19 to 21 taxa (mean = 20). There was
421 also high variability with the foreign eDNA signature. Despite this variation, subsequent
422 analyses showed that total species richness recovered did not depend on whether replicates were
423 taken over space or time. The lack of a trade-off between the two is important for eDNA
424 sampling designs, indicating that multiple spatial samples can recover the same degree of species
425 richness as sampling over multiple days. Compared to temporal replicates, spatial replicates are
426 often easier to collect and cheaper as expenses such as ship time are only needed for a few hours.
427 Thus our findings suggest that a space for time sampling design can help ensure eDNA remains
428 an easy to deploy and affordable monitoring tool.

429 Surprisingly, even when we combined all 36 spatial and temporal samples, species
430 accumulation curves suggest that additional sampling is needed to detect all vertebrate
431 biodiversity present. Most eDNA studies sample 1-4 biological replicates taken simultaneously
432 and at most 2 separate time points [3,15,16,52,53]. Based on the results of this study, such sparse
433 sampling efforts may not yield the most complete picture of local diversity. Further tests are
434 required to determine whether species detection could be maximized while maintaining
435 efficiency by pooling multiple water samples or multiple eDNA extractions, allowing broader
436 spatial or temporal sampling without increasing the number of PCR and library preparations that
437 would result in significantly greater lab costs.

438 Although eDNA was able to capture a broad array of local fish diversity, we note that many
439 taxonomic assignments were made to taxa that are not native to California, but which have
440 closely related taxa in California coastal waters. This result highlights a key limitation of eDNA
441 metabarcoding approaches, namely the need for complete and accurate reference databases for
442 taxonomic assignment [23]. Future voucher barcoding efforts are needed to establish more
443 complete and accurate marine vertebrate reference databases to improve the accuracy and
444 effectiveness of eDNA approaches. Similarly, it is important to archive metabarcoding datasets
445 because bioinformatic pipelines like *Anacapa Toolkit* [23] make it straightforward to rerun
446 legacy datasets, as reference databases become more complete.

447 Conclusion

448 While eDNA holds promise to improve the way that we monitor marine biodiversity, there
449 is much to be learned about the dynamics of eDNA in the natural environment. Diffusion and
450 transport of eDNA, not just degradation, impact our ability to detect taxa within the marine

451 environment, resulting in heterogeneity that may not faithfully reconstruct local communities.

452 However, the impacts of these processes can be minimized by increasing the sampling effort

453 across space or time, allowing diversity estimates to converge on the most complete

454 reconstruction of local communities. Likewise, sampling efforts can be scaled down if

455 monitoring focuses on a smaller subset of common taxa. As marine environments worldwide

456 continue to be impacted by anthropogenic stressors and climate change [54], it will be essential

457 to continue to develop and refine eDNA sampling strategies, allowing this method to achieve its

458 promise as a rapid, reliable, repeatable, and affordable tool for marine ecosystem monitoring [55]

459 in support of marine ecosystem management.

460 **Acknowledgments**

461 We thank Erick Zerecero and Onny Marwayana for assistance in the field and laboratory,

462 Selena McMillan for providing Reef Check California data, and the University of Southern

463 California Wrigley Marine Science Center for supporting our field studies.

464 **References**

- 465 1. Deiner K, Renshaw MA, Li Y, Olds BP, Lodge DM, Pfrender ME. Long-range PCR allows
466 sequencing of mitochondrial genomes from environmental DNA. *Methods Ecol Evol.*
467 2017;8(12):1888–98.
- 468 2. Kelly RP, Port JA, Yamahara KM, Martone RG, Lowell N, Thomsen PF, et al. Harnessing
469 DNA to improve environmental management. *Science* (80-). 2014;344(6191):1455–6.
- 470 3. Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E. Detection of
471 a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. *PLoS*
472 One. 2012;7(8):1–9.
- 473 4. Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, et al. Next-generation
474 monitoring of aquatic biodiversity using environmental DNA metabarcoding. *Mol Ecol.*
475 2016;25(4):929–42.
- 476 5. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, et al. Environmental

477 DNA for wildlife biology and biodiversity monitoring. *Trends Ecol Evol.* 2014;29(6):358–
478 67.

479 6. Usseglio P. Quantifying reef fishes: Bias in observational approaches. *Ecology of Fishes on*
480 *Coral Reefs.* 2015. 270–273 p.

481 7. Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM.
482 Environmental conditions influence eDNA persistence in aquatic systems. *Environ Sci*
483 *Technol.* 2014;48(3):1819–27.

484 8. Sassoubre LM, Yamahara KM, Gardner LD, Block BA, Boehm AB. Quantification of
485 Environmental DNA (eDNA) Shedding and Decay Rates for Three Marine Fish. *Environ*
486 *Sci Technol.* 2016;50(19):10456–64.

487 9. Shogren AJ, Tank JL, Andruszkiewicz E, Olds B, Mahon AR, Jerde CL, et al. Controls on
488 eDNA movement in streams: Transport, Retention, and Resuspension /704/158/2464
489 /704/242 /45/77 article. *Sci Rep.* 2017;7(1):1–11.

490 10. Tillotson MD, Kelly RP, Duda JJ, Hoy M, Kralj J, Quinn TP. Concentrations of
491 environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and
492 temporal scales. *Biol Conserv.* 2018;220(January):1–11.

493 11. Murakami H, Yoon S, Kasai A, Minamoto T, Yamamoto S, Sakata MK, et al. Dispersion
494 and degradation of environmental DNA from caged fish in a marine environment. *Fish Sci*
495 [Internet]. 2019;85(2):327–37. Available from: <https://doi.org/10.1007/s12562-018-1282-6>

496 12. Kelly RP, O'Donnell JL, Lowell NC, Shelton AO, Samhouri JF, Hennessey SM, et al.
497 Genetic signatures of ecological diversity along an urbanization gradient. *PeerJ.*
498 2016;2016(9).

499 13. Kelly RP, Gallego R, Jacobs-Palme E. The effect of tides on nearshore environmental DNA.
500 *PeerJ.* 2018;2018(3).

501 14. Port JA, O'Donnell JL, Romero-Maraccini OC, Leary PR, Litvin SY, Nickols KJ, et al.
502 Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. *Mol*
503 *Ecol.* 2016;25(2):527–41.

504 15. O'Donnell JL, Kelly RP, Shelton AO, Samhouri JF, Lowell NC, Williams GD. Spatial
505 distribution of environmental DNA in a nearshore marine habitat. *PeerJ.* 2017;2017(2):1–
506 24.

507 16. Yamamoto S, Masuda R, Sato Y, Sado T, Araki H, Kondoh M, et al. Environmental DNA
508 metabarcoding reveals local fish communities in a species-rich coastal sea. *Sci Rep.*
509 2017;7:1–12.

510 17. Gold Z, Sprague J, Kushner DJ, Zerecero E, Barber PH. eDNA metabarcoding as a
511 biomonitoring tool for marine protected areas. *bioRxiv Prepr* [Internet]. 2020;258889:1–34.
512 Available from: <https://doi.org/10.1101/2020.08.20.258889>

513 18. Kushner D, Rassweiler A, MacLaughlin J, Lafferty K. A multi-decade time series of kelp
514 forest community structure at the California Channel Islands. *Ecology*. 2013;94(2655).

515 19. Freiwald J, Wisniewski C, Wehrenberg M, Shuman C, Dawson C. *Reef Check California*
516 *Instruction Manual: A Guide to Rocky Reef Monitoring*, 8th Edition. Reef Check Found.
517 2015;

518 20. Turner CR, Barnes MA, Xu CCY, Jones SE, Jerde CL, Lodge DM. Particle size distribution
519 and optimal capture of aqueous microbial eDNA. *Methods Ecol Evol*. 2014;5(7):676–84.

520 21. Willette DA, Simmonds SE, Cheng SH, Esteves S, Kane TL, Nuetzel H, et al. Using DNA
521 barcoding to track seafood mislabeling in Los Angeles restaurants. *Conserv Biol*.
522 2017;31(5):1076–85.

523 22. Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, et al. Critical
524 considerations for the application of environmental DNA methods to detect aquatic species.
525 *Methods Ecol Evol*. 2016;7(11):1299–307.

526 23. Curd EE, Gold Z, Kandlikar GS, Gomer J, Ogden M, O’Connell T, et al. *Anacapa Toolkit*:
527 An environmental DNA toolkit for processing multilocus metabarcode datasets. *Methods*
528 *Ecol Evol*. 2019;10(9):1469–75.

529 24. Thomsen P, Bach S, Sigsgaard E, Moeller P. Monitoring Aquatic Biodiversity in the Gulf
530 using Environmental DNA. *Qatar Found Annu Res Conf Proc*. 2016;

531 25. Spens J, Evans AR, Halfmaerten D, Knudsen SW, Sengupta ME, Mak SST, et al. Comparison of capture and storage methods for aqueous microbial eDNA using an
532 optimized extraction protocol: advantage of enclosed filter. *Methods Ecol Evol*.
533 2017;8(5):635–45.

535 26. Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, et al. MiFish, a set of universal
536 PCR primers for metabarcoding environmental DNA from fishes: Detection of more than
537 230 subtropical marine species. *R Soc Open Sci*. 2015;2(7).

538 27. Faircloth B, Glenn T. Protocol: preparation of an AMPure XP substitute (AKA Serapure).
539 *Web Doc doi*. 2014;10:J9MW2F26.

540 28. Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for
541 multiplexed target capture. *Genome Res*. 2012;22(5):939–46.

542 29. Gold Z, Choi E, Kacev D, Frable B, Burton R, Thompson A, et al. *FishCARD : Fish 12S*
543 *California Current Specific Reference Database for Enhanced Metabarcoding Efforts*.
544 2020;1–14.

545 30. Gao X, Lin H, Revanna K, Dong Q. A Bayesian taxonomic classification method for 16S
546 rRNA gene sequences with improved species-level accuracy. *BMC Bioinformatics*.
547 2017;18(1):1–10.

548 31. McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR.
549 microDecon: A highly accurate read-subtraction tool for the post-sequencing removal of
550 contamination in metabarcoding studies. *Environ DNA*. 2019;1(1):14–25.

551 32. Gold Z. Gruinard Decon Version 0.0 [Internet]. Zenodo. 2020. Available from:
552 <http://doi.org/10.5281/zenodo.4291158>

553 33. Team RC. R: A language and environment for statistical computing. 2019.

554 34. Kelly RP, Shelton AO, Gallego R. Understanding PCR Processes to Draw Meaningful
555 Conclusions from Environmental DNA Studies. *Sci Rep*. 2019;9(1):1–14.

556 35. McMurdie PJ, Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis
557 and Graphics of Microbiome Census Data. *PLoS One*. 2013;8(4).

558 36. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan:
559 Community Ecology Package [Internet]. 2019. Available from: <https://cran.r-project.org/web/packages/vegan/index.html>

560

561 37. Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of
562 species diversity (Hill numbers). *Methods Ecol Evol*. 2016;7(12):1451–6.

563 38. Kandlikar GS, Gold ZJ, Cowen MC, Meyer RS, Freise AC, Kraft NJB, et al. Ranacapa: An
564 R package and shiny web app to explore environmental DNA data with exploratory statistics
565 and interactive visualizations [version 1; referees: 1 approved, 2 approved with
566 reservations]. *F1000Research*. 2018;7(0):1–18.

567 39. Wilkins D. Treemapify [Internet]. Available from: <https://github.com/wilcox/treemapify>

568 40. Thomas LN, Tandon A, Mahadevan A. Submesoscale processes and dynamics. *Ocean
569 Model an Eddying Regime Geophys Monogr Ser*. 2008;17–38.

570 41. Hartney KB. Site fidelity and homing behaviour of some kelp-bed fishes. *J Fish Biol*.
571 1996;49(6):1062–9.

572 42. Doi H, Fukaya K, Oka S ichiro, Sato K, Kondoh M, Miya M. Evaluation of detection
573 probabilities at the water-filtering and initial PCR steps in environmental DNA
574 metabarcoding using a multispecies site occupancy model. *Sci Rep* [Internet]. 2019;9(1):1–
575 8. Available from: <http://dx.doi.org/10.1038/s41598-019-40233-1>

576 43. Davis GE, Kushner DJ, Mondragon JM, Mondragon JE, Lerma D, Richards D V. Kelp
577 Forest Monitoring Handbook. C HANNEL I SLANDS N ATIONAL P ARK Channel
578 Islands National Park. 1997;54.

579 44. Lubchenco J, Gaines S, Warner R, Airamé S, Simler B. Partnership for Interdisciplinary
580 Studies of Coastal Oceans. The science of marine reserves. PISCO. 2002;

581 45. Andruszkiewicz EA, Starks HA, Chavez FP, Sassoubre LM, Block BA, Boehm AB.

582 Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS
583 One. 2017;12(4):1–20.

584 46. Nichols PK, Marko PB. Rapid assessment of coral cover from environmental DNA in
585 Hawai'i. Environ DNA. 2019;1(1):40–53.

586 47. Check R. Observation Data Spreadsheet for Southern California [Internet]. 2017. Available
587 from: <http://data.reefcheck.us/>

588 48. Manter DK, Weir TL, Vivanco JM. Negative effects of sample pooling on PCR-Based
589 estimates of soil microbial richness and community structure. Appl Environ Microbiol.
590 2010;76(7):2086–90.

591 49. Marotz C. sequencing are unnecessary. 2019;29–32.

592 50. Katija K, Dabiri JO. A viscosity-enhanced mechanism for biogenic ocean mixing. Nature
593 [Internet]. 2009;460(7255):624–6. Available from: <http://dx.doi.org/10.1038/nature08207>

594 51. Katija K. Biogenic inputs to ocean mixing. J Exp Biol. 2012;215(6):1040–9.

595 52. Andruszkiewicz EA, Sassoubre LM, Boehm AB. Persistence of marine fish environmental
596 DNA and the influence of sunlight. PLoS One. 2017;12(9):1–18.

597 53. Stoeckle MY, Soboleva L, Charlop-Powers Z. Aquatic environmental DNA detects
598 seasonal fish abundance and habitat preference in an urban estuary. PLoS One.
599 2017;12(4):1–15.

600 54. Stock A, Crowder LB, Halpern BS, Micheli F. Uncertainty analysis and robust areas of high
601 and low modeled human impact on the global oceans. Conserv Biol. 2018;32(6):1368–79.

602 55. Evans NT, Olds BP, Renshaw MA, Turner CR, Li Y, Jerde CL, et al. Quantification of
603 mesocosm fish and amphibian species diversity via environmental DNA metabarcoding.
604 Mol Ecol Resour. 2016;16(1):29–41.

605

606 **Supplementary information**

607 **S1 Fig. Heat map of all taxa detected.** The heat map is ordered by time point and faceted by
608 location (in order of location A, B, then C). Darker blue indicates higher eDNA index scores,
609 interpreted as higher relative prevalence. White indicates the taxa was not detected.

610 **S2 Fig. Detection Rates of Monitored Species.** Histogram of the percentage of samples (N=36)

611 each species was detected in for all species monitored by Reef Check, Partnership for

612 Interdisciplinary Studies of Coastal Oceans (PISCO), or National Park Service (KFM) observed.

613 **S3 Fig. NMDS ordination of community assemblages. (A)** NMDS ordination plot of

614 community assemblages using all taxa observed with Bray-Curtis dissimilarities. The plot is

615 colored and filled by direction of tide (incoming/outgoing/peak). Shapes also correlate with

616 direction of tide (incoming/outgoing/peak). **(B)** NMDS ordination plot of community

617 assemblages using all taxa observed with Bray-Curtis dissimilarities. The plot is colored and

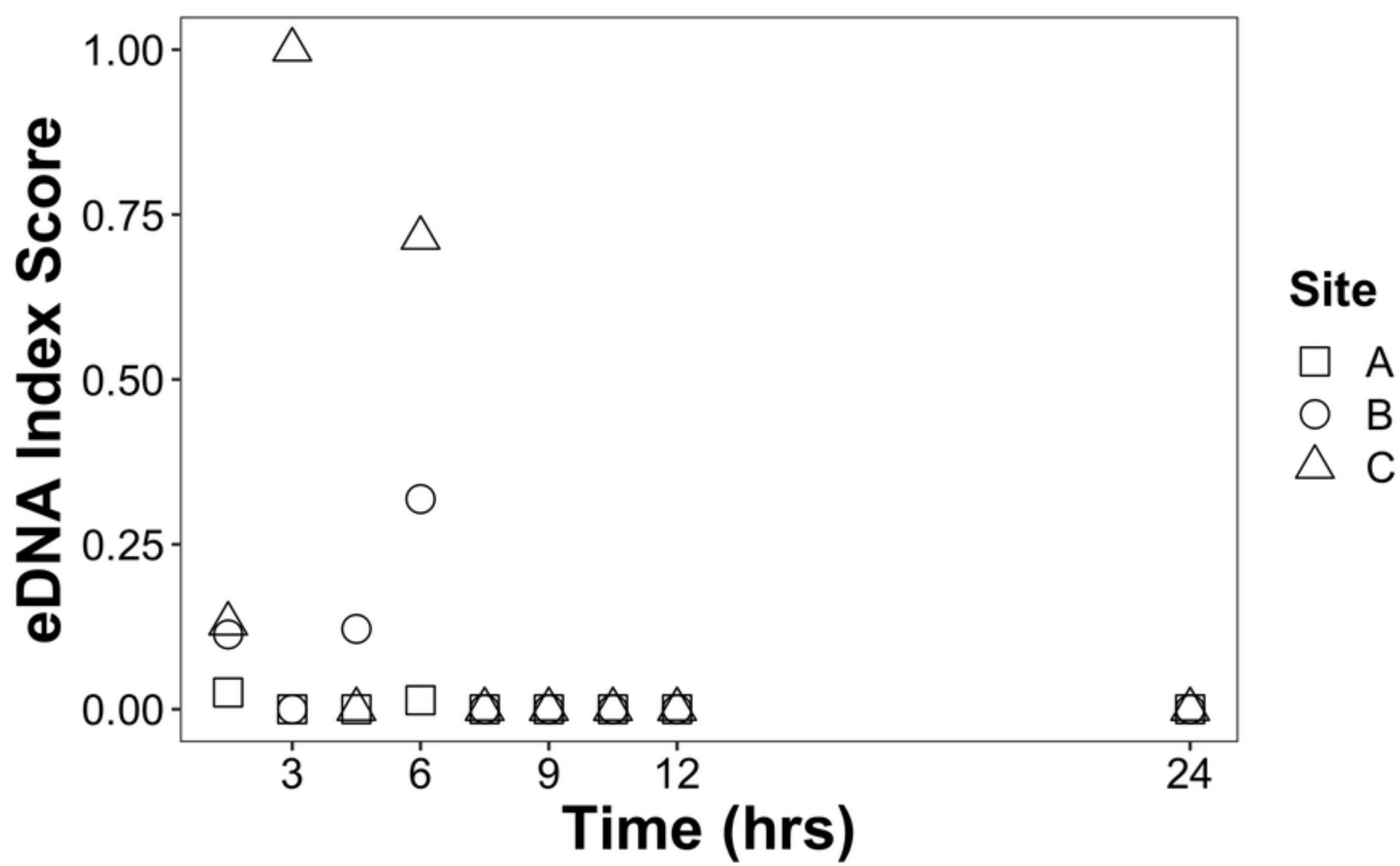
618 filled by time point (0-96hrs).

619 **S1 Table. Sample volumes filtered.** (N=36)

620 **S2 Table. Primers Sequences.** Includes the primer name, target species, primer sequence (5' to

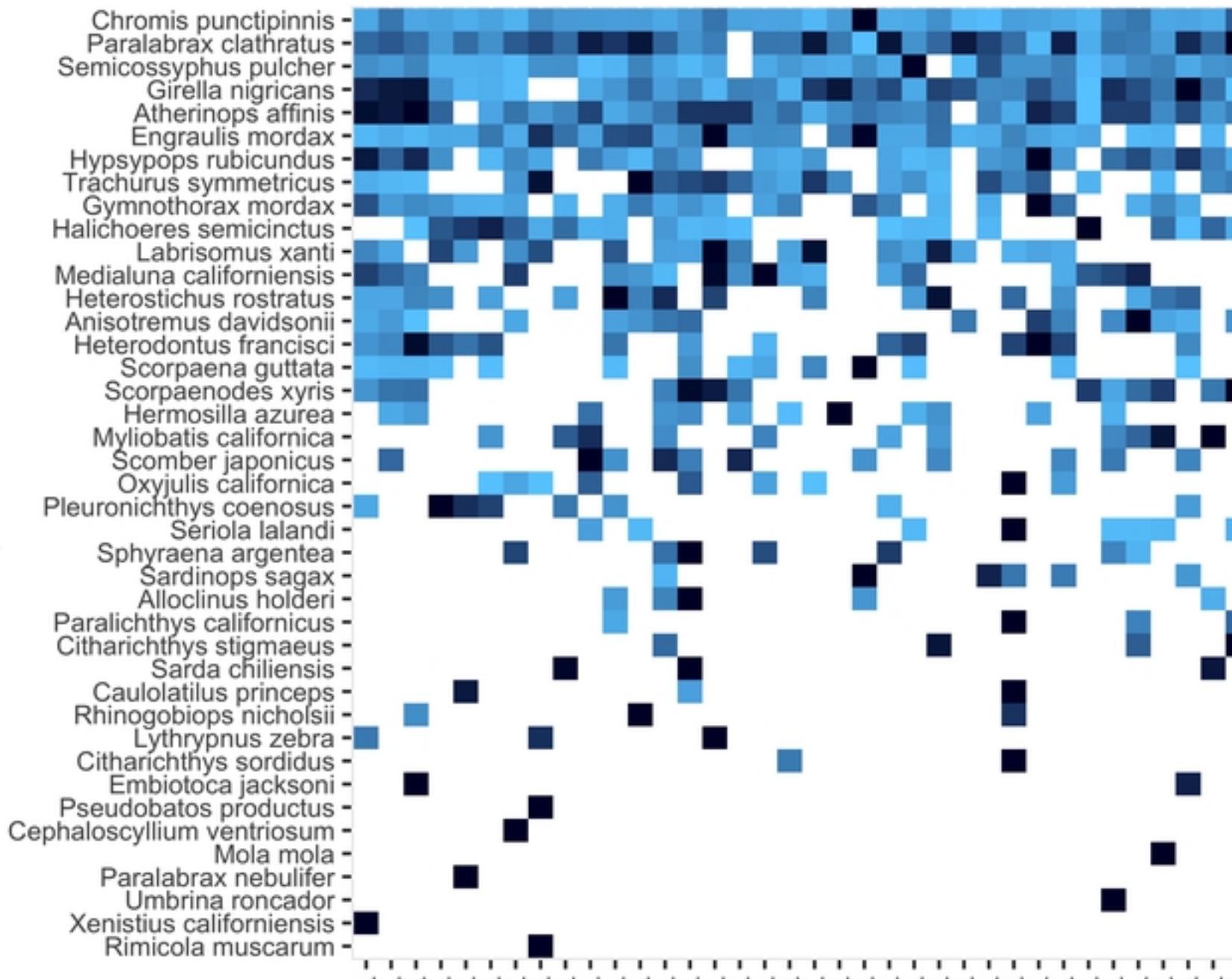
621 3'), Illumina Nextera index adapter, and target fragment length. Underlined and bolded

622 sequences represent the original MiFish-U primer set.

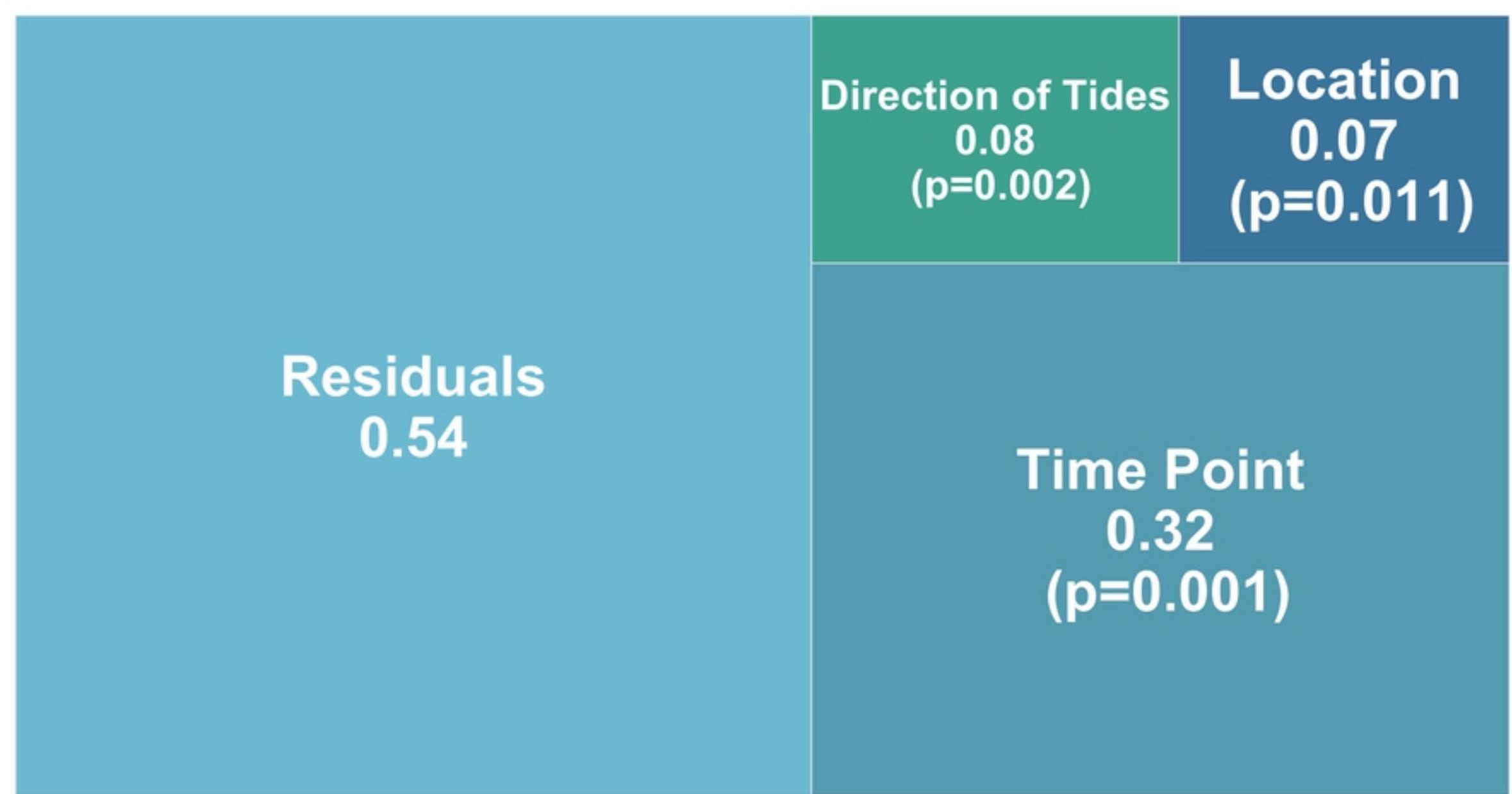

623 **S3 Table. Touchdown PCR thermal profile.**

624 **S4 Table. Decontaminated Data Table.** Each taxa states if it is a known native, if it is

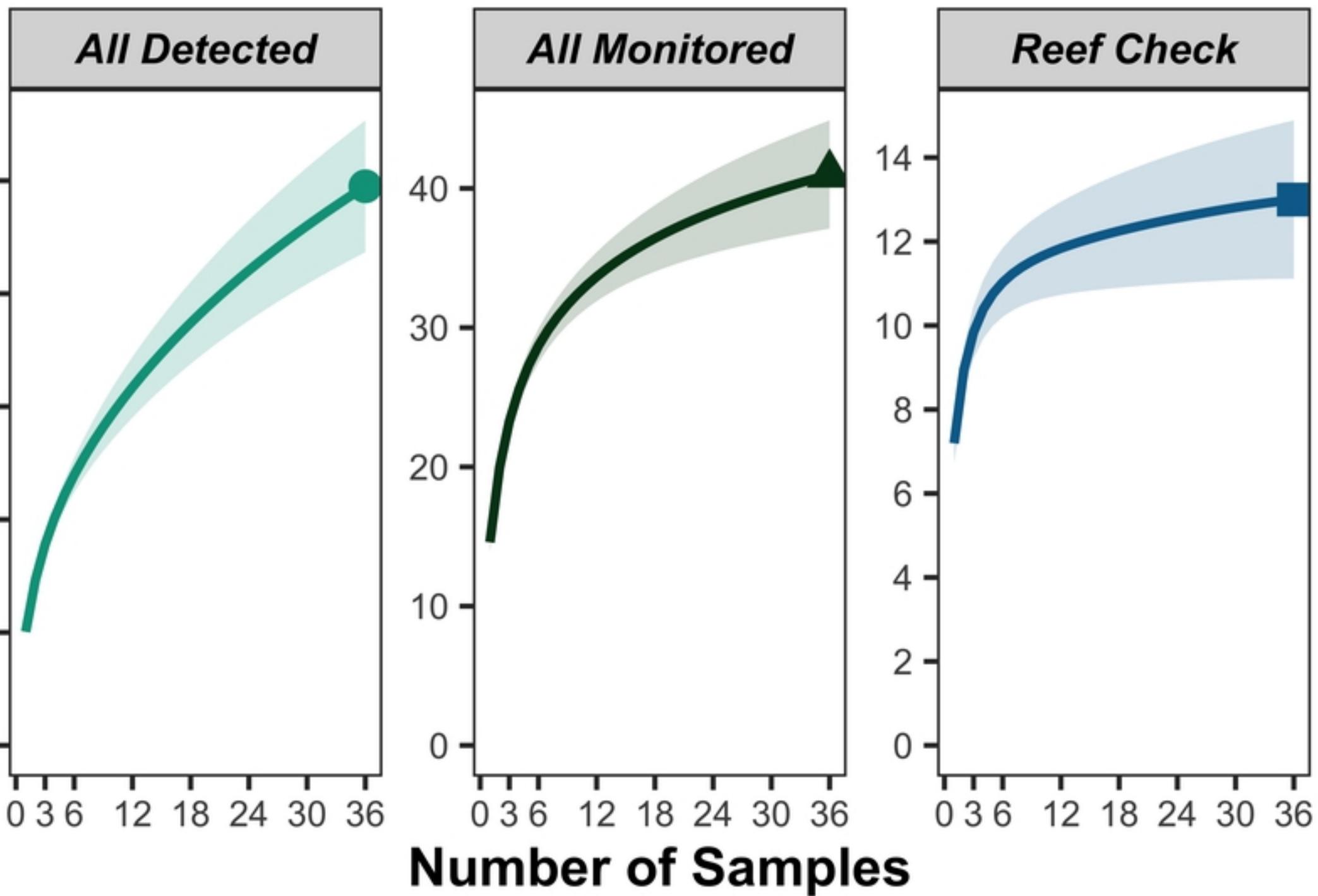
625 monitored by Reef Check, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO),



626 or National Park Service (KFM), and if it was found in the recent survey by Reef Check at a site

627 nearby the study site. Blank cells indicate “No”.


Figure

Species


Time Point Sampled

Figure

Figure

Number of Species

Figure