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Abstract

Background

Discrete classification of SARS-CoV-2 viral genotypes can identify emerging strains and
detect geographic spread, viral diversity, and transmission events.

Methods

We developed a tool (GNUVID) that integrates whole genome multilocus sequence
typing and a supervised machine learning random forest-based classifier. We used
GNUVID to assign sequence type (ST) profiles to each of 69,686 SARS-CoV-2
complete, high-quality genomes available from GISAID as of October 20t 2020. STs
were then clustered into clonal complexes (CCs), and then used to train a machine
learning classifier. We used this tool to detect potential introduction and exportation
events, and to estimate effective viral diversity across locations and over time in 16 US
states.

Results

GNUVID is a scalable tool for viral genotype classification (available at

https://github.com/ahmedmagds/GNUVID) that can be used to quickly process tens of

thousands of genomes. Our genotyping ST/CC analysis uncovered dynamic local
changes in ST/CC prevalence and diversity with multiple replacement events in different
states. We detected an average of 20.6 putative introductions and 7.5 exportations for
each state. Effective viral diversity dropped in all states as shelter-in-place travel-
restrictions went into effect and increased as restrictions were lifted. Interestingly, our
analysis showed correlation between effective diversity and the date that state-wide
mask mandates were imposed.

Conclusions

Our classification tool uncovered multiple introduction and exportation events, as well as
waves of expansion and replacement of SARS-CoV-2 genotypes in different states.
Combined with future genomic sampling the GNUVID system could be used to track

circulating viral diversity and identify emerging clones and hotspots.
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Introduction

Rapid sequencing of the SARS-CoV-2 pandemic virus has presented an
unprecedented opportunity to track the evolution of the virus and to understand the
emergence of a new pathogen in near-real time. During its explosive radiation and
global spread, the virus has accumulated enough genomic diversity that we are now
able to identify distinct lineages and track their spread in distinct geographic locations
and over time (Bedford, et al. 2020; Chen, et al. 2020; Deng, et al. 2020; Rambaut, et
al. 2020; Shen, et al. 2020; Worobey, et al. 2020). Phylogenetic analyses in
combination with rapidly growing databases (Shu and McCauley 2017; Rambaut, et al.
2020) have been instrumental in identifying distinct clades and tracing how they have
spread across the globe, as well as estimating calendar dates for the emergence of
certain clades (Bedford, et al. 2020; Deng, et al. 2020; Rambaut, et al. 2020; Worobey,
et al. 2020). This information is extremely useful in assessing the impact of early
measures to combat spread as well as identifying missed opportunities (Korber, et al.
2020; Worobey, et al. 2020).

Although reconstructing a robust phylogeny of viral variants is an intuitive
approach for viral classification, traditional phylogenetic approaches suffer from
problems with scalability. Building comprehensive phylogenetic trees for single
nucleotide polymorphism (SNP) based analysis of SARS-CoV-2 is already extremely
computationally expensive, and will become more and more difficult as hundreds of
thousands of sequences are added. Dividing the dataset into subsets of genomes
necessarily loses information and explanatory power. Because of this roadblock, our
goal was to develop a rapid way to categorize genomes that scales readily and leads to
as little information loss as possible. We saw an opportunity to combine our allele
identifying tool, WhatsGNU (Moustafa and Planet 2020b), with the Multilocus Sequence
Typing (MLST) approach (Maiden, et al. 1998) that has been widely used in bacterial
classification, tracking the emergence of new lineages, and associating specific
Sequence Types/Clonal Complexes (STs/CCs) with certain diseases. Our whole
genome MLST (wgMLST) approach rapidly assigns an allele number to each gene

nucleotide sequence in the virus’s genome creating a sequence type (ST), which is
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84  codified as the sequence of allele numbers for each of the ten genes in the viral
85 genome.
86 Here we show that this approach allows us to link STs into clearly defined clonal
87 complexes (CC) that are consistent with phylogeny and other SARS-CoV-2 typing
88 systems (Shu and McCauley 2017; Rambaut, et al. 2020). We show that assessment of
89 STs and CCs agrees with multiple introductions of the virus in certain US states. In
90 addition, we use temporal assessment of ST/CC diversity to uncover waves of
91 expansion and decline, and the apparent replacement of certain CCs with emerging
92 lineages in specific US states.
93
94 Results and Discussion
95 We developed the GNU-based Virus IDentification (GNUVID) system as a tool
96 that automatically assigns a number to each unique allele of the ten open reading
97 frames (ORFs) of SARS-CoV-2 (Wu, et al. 2020) (Figure 1A). GNUVID compressed the
98 696,860 ORFs in 69,686 high quality GISAID genomes (Supplementary Table 1) to
99 37,921 unique alleles in five minutes on a standard desktop, achieving 18-fold
100 compression and losing no information. To create an ST for each isolate GNUVID
101 automatically assigned 35,010 unique ST numbers based on their allelic profile
102  (Supplementary Table 1). We then used a minimum spanning tree (MST) to group STs
103  into larger taxonomic units, clonal complexes (CCs), which we define here as clusters of
104 >20 STs that are single or double allele variants away from a “founder”. Using the
105 goeBURST algorithm (Feil, et al. 2004; Francisco, et al. 2009) to build the MST and
106 identify founders, we found 154 CCs (Figure 1A and Supplementary Table 1).
107 A random forest classifier was then trained on 53,565 CC-labelled genomes. The
108 overall prediction statistics of the model were accuracy: 0.955, F-score: 0.950,
109 precision: 0.947, and recall: 0.964 (Figure 1B).
110 For any new query genome, GNUVID attempts to classify it first by exact
111  matching of the allelic profile to one of the other STs. If there is no exact match, the CC
112  for the query genome is predicted using the trained model. This query process saves

113  time and also allows each ORF to be typed and tallied individually (Figure 1C and 1D).
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114 To show that CCs are mostly consistent with whole genome phylogenetic trees,
115 we mapped the 10 most common CC designations onto a maximum likelihood tree.
116  Members of the same CC usually grouped together in clades (Supplementary Figure 1).
117  To further validate our wgMLST classification system we compared it to the proposed
118  “dynamic lineages nomenclature” for SARS-CoV-2 (Rambaut, et al. 2020) and GISAID
119 clades naming system (Shu and McCauley 2017). A high percentage of CCs, 95.5%
120 (147/154) and 87.7% (135/154) of the CCs, had 90% of their genomes assigned to the
121  same GISAID clade and pangolin lineage, respectively, showing strong agreement

122  between these classification schemes (Supplementary Table 1). One limitation of our
123  classification strategy, as with many schemes that operate in real time, is that

124  paraphyletic groups can occur as a new ST arises from an older ST (e.g. CC258 and
125 CC768 emerged from CC255 and CC258 making CC255 and CC258 paraphyletic,

126  respectively) (Supplementary Figure 1). While this means that not all ST/CC groups will
127  be monophyletic, this property of the nomenclature may be helpful in gauging

128 emergence and replacement of an ancestral form.

129 When the global region of origin for each genome sequence was mapped to

130 each CC there was a strong association of later emerging CCs with certain

131  geographical locations, possibly reflecting relative containment after international travel
132  restrictions (Figure 2). To obtain an up-to-date picture of virus diversity in the US, we
133  analyzed 107,414 high coverage genomes (isolation dates between December 2019 to
134  October 20" 2020) from the GISAID (Supplementary table 1). There were 26,528

135 genomes isolated in the US in this dataset that belong to 87 of 154 CCs. Strikingly, 35%
136  of the genomes belong to CC258 (GISAID clade GH) and 75% of the genomes are

137  represented by just 10 CCs (CC4, 255, 256, 258, 300, 498 768, 3530, 10221, 21210)).
138  Moreover, 72% (63/87) of the CCs (representing 82% of the genomes) had the spike
139 D614G mutation that has been associated with increased spread (Korber, et al. 2020).
140 Interestingly, none of the US genomes were associated with any of the 12 CCs (26377,
141 26754, 27693, 27950, 28012, 28825, 29259, 29310, 30362, 31179, 31744 and 31942)
142  that have the spike protein A222V mutation (GISAID clade GV) that has been recently
143  associated with increased spread in the Europe (Hodcroft, et al. 2020). Ten of the 12

144  CCs with the A222V mutation were isolated only from Europe while the two other CCs
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145 (27693 and 27950) had 2 genomes from Hong Kong and 6 from New Zealand,

146  respectively. This shows a strong association of this clade with Europe.

147 The relative proportions of STs or CCs isolated and sequenced may be a highly
148  biased statistic that is contingent upon where the isolate comes from, the decision to
149  sequence its genome, and the local capacity to sequence a whole genome. Certain
150 states (Washington, Texas and California) clearly sequenced more genomes than the
151  other states. Focusing on specific states may help to partially ameliorate this bias, and
152  we chose to focus on 16 states (Washington (WA), Texas (TX), California (CA),

153  Wisconsin (WI), New York (NY), Michigan (MI), Minnesota (MN), Louisiana (LA), Utah
154  (UT), Virginia (VA), Florida (FL), Oregon (OR), Massachusetts (MA), New Mexico (NM),
155  Maryland (MD), and Connecticut (CT)) with at least 200 genomes in the studied time
156  period, representing 92.6% (24,565/26,528) of all viral genomes available from the US.
157  The most common 20 CCs in these states, representing 86.5% (21261/24565) of the
158 genomes, are shown in Figure 2.

159 Because we included collection dates for each genomic sequence, we can use
160 STs and CCs to better understand the emergence and replacement of certain lineages
161  and viral diversity in geographical regions over time. Figure 3A and Supplementary
162  Figure 2 show temporal plots of the most common 20 CCs in 16 states. In WA, the

163  earlier introduction CC256 (GISAID clade S) was replaced by CC258 (GISAID clade
164  GH), perhaps by introduction from the East Coast or Europe (Bedford, et al. 2020;

165 Deng, et al. 2020). CC258 was then replaced by CC300 (GISAID clade GR) and

166  subsequently by CC498 (GISAID clade G).

167 In the neighboring state CA, a different pattern was seen in the early pandemic
168  where the lineage found early on in WA, CC256, only represented 20% of sequenced
169 genomes at its most prevalent (1st-15th March) while CC4 (GISAID clade L) was the
170 dominant variant, and was then replaced by CC258. Interestingly, a locally emerged
171  variant CC10221 (GISAID clade G), probably from CC498, increased in abundance
172 over time and then was likely exported to OR and NM (Supplementary Figure 2). A
173  similar pattern was seen in WI where a local variant CC13301 increased in abundance
174  over time and then appeared to spread to other states (NY, MI, MA and MN). In TX,

175 multiple diverse CCs persisted in the population until mid-July.
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In NY, a different pattern is seen with CC258 being persistently dominant.
However, a more granular view of STs, not CCs, in New York shows a shifting
epidemiology with ST258 declining and the rise of closely related single and double
locus variants of ST258 reflecting local diversification (Supplementary Figure 3).

In MI, CC258 was the predominant strain until the summer when it gave way to a
more diverse group of isolates. Similarly, in states like VA, CT, NM and LA mostly one
predominant CC is seen over time, while in other states like UT, FL, OR, MA, MD and
MN a diverse pattern of multiple CCs was noticed (Supplementary Figure 2).

The expansions and contractions in the temporal plots over time could be due to
locally generated diversity (mutation) and/or introductions from other states or overseas.
To better understand the source of ST diversity over time, we calculated indices
reflecting effective circulating diversity as well as proportions of new STs in each state,
and inferred domestic or global introductions and exportations based on previous
observations in other locations or subsequent observations in other geographical
locations (Figure 3B, Table 1 and Supplementary Figure 4). To infer introductions, we
required that exactly the same ST was seen at least 10 days prior in some other
geographical location. For exportations we required an ST to be seen first in the state in
question at least 10 days prior to being seen anywhere else.

The results of this analysis showed distinct patterns in different states with
evidence supporting introductions usually outweighing evidence supporting exportations
(Table 1). Interestingly, NY has the highest number of putative exportations (n=26),
which was almost equal to the number of putative importations (n=25) potentially
reflecting its role as a hub driving the initial pandemic. In most states there was a high
amount of diversity that had no evidence of being introduced, which may signal
problems with sampling, or may signal that local mutation is a strong force in generating
diversity.

To understand the diversity within and between states, we calculated Hill
numbers for all genomes from each state and over time in each state (Figure 4A, Table
1). Hill numbers are a diversity metric used widely in ecological studies that express
effective diversity in units of sequence types, and they are less prone to biases

introduced by incomplete or biased sampling (Alberdi and Gilbert 2019). Recognizing
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207 that our sample was not drawn from a systematically or evenly sampled dataset, we
208 chose to use a Hill number metric (q=2) that emphasizes abundant taxa in estimating
209 the effective diversity. Several other metrics such as the Shannon Index and a

210 normalized richness index were highly dependent on the number of sampled genomes
211  from each state. Hill numbers based on STs varied widely by state with TX showing the
212  highest diversity and M| showing the lowest (Figure 3B and 4 and Table 1).

213 Interestingly, there is a correlation (R?= 0.1625) between effective diversity and when a
214  state-wide mask mandate was imposed (Figure 4B).

215 Higher effective diversity may signal increased introduction of variants or

216 increased local generation of new sequence types, which in turn may signal more open
217  flow of virus into certain states or large circulating populations of virus able to mutate
218 and diversify, respectively. To attempt to discriminate between these processes we

219 calculated the effective diversity over time in each state and compared this to the

220 proportion of novel variants that were determined to be introductions (Figure 3B and
221  Supplementary Figure 4). In most states, initially high numbers of introductions were
222 followed by a drop in the relative proportion of introductions as states began to impose
223 restrictions in March. In some states the proportion of introductions also appears to

224  increase over the summer as states eased regulations. Interestingly effective diversity
225 also appeared to be correlated with peaks in the number of cases (Supplementary

226 Figure 5) in several states, especially New York, but more data will be needed to be
227 assessed to understand the connection between effective diversity and numbers of
228 cases reported.

229 While our wgMLST approach is rapid and robust it has several limitations.

230 Because a change in any allele creates a new ST our method may accumulate and

231  count “unnecessary” STs that have been seen only once or may be due to a

232 sequencing error. This is partially ameliorated by the use of the CC definition that allows
233 some variability amongst the members of a group, and the use of only high-quality

234  sequences. A large number of STs also may allow more granular approaches to

235 tracking new lineages. Another limitation is the stability of the classification system,

236 some virus genomes may be reassigned to new CCs as clones expand
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237  epidemiologically, but this may also reflect a dynamic strength as circulating viruses
238 emerge and replace older lineages.

239 Perhaps most important limitation of our classification system is that it is limited
240 by the quality and extent of the database. This is also reflected in the major limitation
241  associated with the epidemiological and diversity inferences reported here. Uneven or
242  biased sampling could lead to both inaccurate statements of the direction or origin of
243  import/export events, and the source and quantification of diversity. The use of diversity
244  statistics that emphasize more predominant variants and address sampling bias such as
245  Hill numbers may help ameliorate this problem, but it seems clear that well-designed
246  sampling strategies are needed to confidently understand ecological dynamics for

247  SARS-CoV-2.

248

249  Conclusion

250 The genomic epidemiology of the 69,686 SARS-CoV-2 isolates studied here

251 show that 154 CCs have circulated globally and that more than half of these have been
252  dynamically spreading through the US population with waves of changing diversity. Our
253  tool (GNUVID) allows for fast sequence typing and clustering of whole genome

254  sequences in a rapidly changing pandemic. As illustrated above, this can be used to
255 temporally track emerging clones, identify the likely origin of viruses, and understand

256  circulating diversity.

257
258 Materials and Methods
259 All SARS-CoV-2 genomes (n=110,953) that were complete and have high

260 coverage were downloaded from GISAID (Shu and McCauley 2017) on October 20%
261  2020. Our wgMLST scheme was composed of all ten ORFs in the SARS-CoV-2

262 genome (Wu, et al. 2020). Genomes had to be at least 29,000 bp in length and have
263  fewer than 1% “N”s. The ten ORFs were identified in the genomes using blastn

264  (Altschul, et al. 1990) and any genome that had any ambiguity or degenerate bases

265 (any base other than A, T,G and C) in the ten open reading frames (ORF) was excluded.
266  The remaining 69,686 genomes (Supplementary table 1) were fed to the GNUVID tool

267 in a time order queue (first-collected to last-collected), which assigned an ST profile to
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268 each genome. The identified STs by GNUVID were fed into the PHYLOViZ tool

269  (Nascimento, et al. 2017) to identify CCs at the double locus variant (DLV) level using
270 the goeBURST MST (Feil, et al. 2004; Francisco, et al. 2009). CCs were mapped back
271 to the STs using a custom script. Pie charts were plotted using a custom script. The sci-
272 kit learn implementation of Random Forest was then used to train a model. The model
273  was trained using 53,565 SARS-CoV-2 sequences from GISAID representing the 154
274  CCs. Briefly, the 53,565 genomes were aligned to MN908947.3(Wu, et al. 2020) to

275 generate a multiple sequence alignment using MAFFT’s FFT-NS-2 algorithm(Katoh, et
276 al. 2002) (options: --add --keeplength). The 5’ and 3’ untranslated regions were masked
277  in the alignment file using a custom script. Variant positions were then called using snp-
278  sites (Page, et al. 2016) (options: -0 -v). The 15,136 variant positions (features) matrix
279  of the 53,565 CC-labelled genomes were then one-hot encoded, in which each SNP is
280 replaced with a binary vector, and were used to train a random forest classifier in Scikit-
281 learn (Pedregosa, et al. 2011). The prediction capability of the model was evaluated
282 according to four statistics (accuracy, precision, recall and F-score).

283 To show the relationship between our typing scheme and phylogeny, we used a
284  Global phylogeny of SARS-CoV-2 sequences from GISAID (last accessed 2020-11-13).
285 The tree uses 99,160 high quality genomes(Lanfear and Mansfield. 2020). The tree and
286 the 10 most common CCs were visualized in iTOL (Letunic and Bork 2019). We

287  assigned a pangolin lineage (Rambaut, et al. 2020) (https://github.com/hCoV-
288  2019/pangolin) and GISAID clade to each genome of the 53,565 genomes using the

289 metadata details available on GISAID. We then compared the composition of each CC
290 and calculated the percentage of the predominant clade/lineage in each CC

291 (Supplementary table 1).

292 A total of 107,414 genomes (Supplementary table 1), that were training examples
293  or assigned CCs and have date of isolation, were then used to analyze the number of
294  introductions and exportations. Putative introductions were defined as an exact ST that
295 was isolated somewhere else at least 10 days before the first date of isolation in the

296 state in question. Exportations were defined as STs that were first isolated in the state

297 in question and then isolated subsequently somewhere else at least 10 days later.

10
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298 To compare diversity between the states and in each state over time, we

299 calculated the Simpson index (Simpson 1949). To measure effective diversity in units of
300 STs, we then transformed Simpson index (°H) to a Hill number (°D), which is the

301 multiplicative inverse of the Simpson index (Alberdi and Gilbert 2019). The dates of

302 state-wide mask mandates were the dates when face covering was required in indoor
303 public spaces and in outdoor public spaces when social distancing is not possible

304 (Abbott 2020; Allen 2020; Angell 2020; Baker 2020; Cuomo 2020; Edwards 2020; Evers
305 2020; Hogan 2020; Inslee 2020; Kunkel 2020; Lamont 2020; Northam 2020; Saunders
306 2020; Walz 2020; Whitmer 2020). The state-wide mandate dates used for WA, CA, TX,
307 WI, NY, MI, LA, FL, MN, NM, OR, MA, MD, VA, UT and CT are 6/26/20, 6/18/20, 7/3/20,
308 8/1/20, 4/17/20, 7/10/20, 7/11/20, no mandate, 7/25/20, 5/16/20, 7/13/20, 5/6/20,

309 7/31/20, 12/14/20, 11/9/20, and 4/17/20,respectively. The Hill number is described as
310 the effective number of STs (or CCs) of equally abundant STs (or CCs) that are needed
311 to give the same diversity (Hill 1973; Jost 2006). The plots for number of confirmed

312 cases in the 16 states were obtained from publicly available data in the Johns Hopkins
313  University dashboard (Dong, et al. 2020).

314 The GNUVID database will be updated regularly with new added high-quality

315 genomes from GISAID (Shu and McCauley 2017). Commands used are in

316  Supplementary Methods. All the scripts are available from the authors and

317  https://github.com/ahmedmagds/GNUVID (Moustafa and Planet 2020a). GNUVID can
318 be installed through Bioconda (Grlning, et al. 2018).

319

320 Availability of data and material

321 The compressed database and the trained model from our quality controlled genomes
322 are available from the corresponding author and available online for download

323  (Moustafa and Planet 2020a). The compressed database will be updated regularly on
324  https://github.com/ahmedmagds/GNUVID. Source code for GNUVID can be found in its

325 most up-to-date version here, https://github.com/ahmedmagds/GNUVID, under the
326 GNU General Public License. All scripts are available from the authors.
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347 Table 1. Number of Genomes, Sequence Types, Simpson index, Hill Number,

348 introductions and exportations for 16 US states.

349
State Genomes  Simpson Hill Number Non- Introductions Exportations
(STs) Index (*H) (°D) introductions (US)
WA 3960 0.987 77 1817 44 (26) 19
(1887)
X 2167 0.997 319 1258 31 (16) 17
(1299)
CA 1984 0.997 296 1173 35 (19) 7
(1236)
NY 1483 0.960 25 766 25 (9) 26
(825)
MN 1107 0.988 81 470 29 (17) 12
(522)
WI 954 (574) 0.993 147 529 26 (15) 8
VA 908 (543) 0.994 165 511 18 (13) 4
LA 850 (416) 0.988 85 397 10 (10) 1
Ml 795 (416) 0.889 9 384 16 (5) 9
FL 750 (519) 0.995 215 474 29 (18) 6
OR 531 (343) 0.995 190 320 19 (14) 5
UT 350 (216) 0.992 123 204 8 (4) 2
MA 336 (170) 0.940 17 144 17 (12) 2
MD 196 (145) 0.987 76 134 8 (4) 2
NM 162 (109) 0.987 80 103 3(1) 0
CT 154 (101) 0.964 28 84 12 (8) 0

13


https://doi.org/10.1101/2020.12.28.424582
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.28.424582; this version posted December 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

350 Figure Legends

351 Figure 1. Workflow for the GNUVID tool and its compression technique. A.

352 Compression and classification. The tool starts by compressing the database of the
353 10 ORFs of each of the SARS-CoV-2 genomes to only include a unique sequence for
354 each allele type. The tool then uses a whole genome multilocus sequence typing

355 (wgMLST) approach by assigning an allele number to each gene nucleotide sequence
356 in the virus’s genome creating a sequence type (ST) which is codified as the sequence
357 of allele numbers for each of the ten genes in the viral genome. The STs are then linked
358 into clearly defined clonal complexes (CCs) using goeBURST . B. Training a machine
359 learning classifier. The CC-labelled genomes are then aligned to the SARS-CoV-2
360 reference genome (MN908947.3) and single nucleotide polymorphisms (SNPs) are

361 called. The SNP matrix is then one-hot encoded and used to train a random forest

362 classifier. The training followed a 5-fold cross-validation approach to assess the

363  prediction capabilities of GNUVID according to four statistics (accuracy, precision, recall
364 and F-score). TP, TN, FP and FN are true positives, true negatives, false positives and
365 false negatives, respectively. C. New Genome classification by exact matching or
366 prediction. GNUVID first tries to match each of the 10 ORFs from a query SARS-CoV-
367 2 genome to an exact match in the compressed database to define an ST, and matches
368 that to any associated CC. If no exact match is found due to novelty or ambiguity in any
369 of the 10 ORFs, the query genome is aligned to the reference, one-hot encoded and a
370 CC is predicted by the trained classifier. A report is then created showing the allele

371  number of each ORF, ST, CC and a probability of membership in the CC. D. Map of
372 SARS-CoV-2 virus genome showing the length in base pairs (bp) of the ten ORFs and
373  numbers of alleles in the current database 69,686 isolates. The majority of the identified
374 37,921 unique alleles (69%) are for ORF1ab which represents 71% of the genome

375 length. Strikingly, the two highest ratios (number of alleles/ORF length) are for the

376  nucleocapsid protein (2.2) and ORF3a (2.1) while the spike protein had a ratio of 1.32.
377

378 Figure 2. Global SARS-CoV-2 Diversity. Minimum spanning tree from goeBURST of
379 the 35,010 Sequence Types (STs) showing the 154 Clonal Complexes (CCs) identified

380 in the dataset. Only the most common 20 CCs in the 16 states are shown in black. The
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381 pie charts show the percentage of genomes from the different geographic regions in
382 each CC.

383

384 Figure 3. SARS-CoV-2 diversity in 6 states over time. A. Temporal Plots of

385 circulating Clonal Complexes and corresponding GISAID clade in parentheses in six
386 different states (Washington (WA), California (CA), Wisconsin (WI), Texas (TX), New
387 York (NY) and Michigan (MI)). The visualizations were limited to the 20 most common
388 CCs. B. Diversity of Sequence Types (STs) in the six states over time are represented
389 for each 2-week time period in the following ratios: 1. Effective diversity (Hill number
390 equivalent (°D) of Simpson index (°H)) (red) 2. Number of STs new to a state that were
391 previously isolated and sequenced outside a state divided by the number of STs not
392 seen previously in a state (blue).

393

394  Figure 4. Effective Diversity of Sequence Types (STs) in 16 states. A. The Hill
395 number equivalent (°D) of Simpson index (H), is on the y-axis. Total number of

396 genomes sequenced on the x-axis. B. Effective diversity (Hill number 2D) plotted

397 against the week when state-wide mask mandate was imposed. Florida (FL) has no
398 mask mandate so it was plotted at the end of the y-axis. The 16 different states are
399  Washington (WA), California (CA), Wisconsin (WI), Texas (TX), New York (NY),

400 Michigan (M), Utah (UT), Virginia (VA), Florida (FL), Oregon (OR), Massachusetts
401 (MA), New Mexico (NM), Maryland (MD), Connecticut (CT), Minnesota (MN) and

402  Louisiana (LA).

403

404  Additional files

405 Additional file 1: Supplementary Methods and Figures.

406  Additional file 2: Table S1. GNUVID Database Strains Report Table.
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