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Abstract

Recent advances in single-cell technologies have enabled
time-resolved measurements of the cell size over several cell
cycles. This data encodes information on how cells correct size
aberrations so that they do not grow abnormally large or small.
Here we formulate a piecewise deterministic Markov model
describing the evolution of the cell size over many generations,
for all three cell size homeostasis strategies (timer, sizer, and
adder). The model is solved to obtain an analytical expression
for the non-Gaussian cell size distribution in a cell lineage; the
theory is used to understand how the shape of the distribution is
influenced by the parameters controlling the dynamics of the cell
cycle and by the choice of cell tracking protocol. The theoretical
cell size distribution is found to provide an excellent match to the
experimental cell size distribution of E. coli lineage data collected
under various growth conditions.

Introduction

Cell size plays an important role in cellular processes; e.g.
changes in cell volume or surface area have profound effects on
metabolic flux and nutrient exchange [1], and therefore it stands
to reason that cell size should be actively maintained. In order
for cells to achieve and maintain some characteristic size (size
homeostasis), the amount of growth produced during the cell
cycle must be controlled such that, on average, large cells at birth
grow less than small ones.

There are three popular phenomenological models of cell
size control leading to size homeostasis [2]: (i) the timer strategy
which implies a constant time between successive divisions; (ii)
the sizer strategy which implies cell division upon attainment
of a critical size, and (iii) the adder strategy which implies a
constant size addition between consecutive generations. The
timer strategy is not viable for exponentially growing cells; in this
case, size fluctuations diverge as the square root of the number of
consecutive cell divisions implying that the timer strategy cannot
maintain stable size distributions [3|]. In contrast, if cells grow
linearly, a timer strategy is viable as a means to maintain size
homeostasis [4]]. Several studies have proposed that the sizer and
adder strategies can explain experimental data in bacteria, yeast,
and mammalian cells [5H10]. Cell-size control mechanisms
likely vary depending on growth conditions, strains, and species;

for instance in Escherichia coli (E. coli), evidence suggests a
sizer mechanism in slow growth conditions and an adder in fast
growth conditions [[L1].

Cell size statistics can be computed using data from cell
lineages or population snapshots. To observe a single cell
lineage, at each cell division event, one keeps track of only
one of the newborn cells (daughter cells); thus at an arbitrary
time point, only a single cell is observed. Whereas to observe
population snapshots, one tracks both daughters of each mother
cell in the population and thus the evolution of the whole
population over time. Recently, mathematical models have
shown that cell size statistics calculated using lineage data, e.g.
collected using mother machines, can vary considerably from
those obtained from population snapshot data, e.g. collected
using flow cytometry [[12H14]. In fact, differences between these
two types of measurements are also observable in protein and
mRNA count statistics [[15H17].

Modelling has elucidated various other interesting insights
into cell size statistics, however to our knowledge no study thus
far has attempted to explain the complex shapes of cell size
distributions computed from many generations of cell lineage
measurements. This is because such high throughput data has
become available only recently [18]] and also since the majority
of modelling approaches have analytically derived expressions
for the first few moments of cell size statistics — these are
not enough to characterize the highly non-Gaussian distributions
of cell size computed from a cell lineage (see Fig. [I(a) for a
typical distribution for an E. coli lineage). These histograms are
characterized by three features: a fast increase in the size count
for small cells, a slow decay in the size count for moderately large
cells, and a fast decay in the size count for large cells. We note
that these distributions contain much more information than birth
size distributions previously derived [19]], since they reflect the
full cell cycle dynamics.

Here we develop a complete analytical theory of the cell size
distribution in cell lineages. We formulate and solve a piecewise
deterministic Markov model describing the evolution of the
cell size over many generations, for all three size homeostasis
strategies (timer, sizer, and adder). The model takes into account
the major features responsible for the underlying dynamics: cell
birth following division (including the asymmetric case and
partitioning noise), exponential cell growth (including the case
of noisy growth rates), variability in the duration of the cell cycle,
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and the user-defined choice of single-cell tracking protocols
when division occurs, e.g. tracking always the smaller daughters,
tracking always the larger daughters, or randomly picking one
of the two daughters. The analytical solutions for the cell size
distribution enable us to understand how the highly non-Gaussian
shape of the distribution emerges from the underlying biophysical
processes. Finally by matching the analytical to the experimental
cell size and doubling time distributions, we infer the values of
various model parameters in E. coli for three different growth
conditions.

Results

Model specification

Here we consider a detailed model of cell size dynamics
across the cell cycle which is similar to the model proposed in
[20] but has more complicated cell division mechanisms such
as asymmetric and stochastic partitioning (see Fig. [I[b) for an
illustration). The model is based on a number of assumptions
that are closely tied to experimental data. The assumptions are as
follows.

1) The size of each cell grows exponentially in each generation
with growth rate g. This assumption is supported by experiments
in many cell types [21]].

2) Each cell can exist in N effective cell cycle stages, denoted
by 1,2,..., N. The transition rate from one stage to the next
at a particular time is proportional to the ath power of the cell
size at that time, with @ > 0 being the proportionality constant
[20]. In other words, the transition rate between stages at time ¢ is
equal to aV/ (t)®, where o > 0 is the strength of cell-size control
and V (t) is the cell size at that time. Under this assumption,
larger cells at birth have larger transition rates between stages
and thus, on average, have lesser cell cycle duration and lesser
volume change than smaller ones; in the way size homeostasis
is achieved. Examples of possible biophysical mechanisms that
can explain the power law form of the transition rate have been
discussed in [20].

Let V}, and V; denote the cell sizes at birth and at division in
a particular generation, respectively. Then the increment in the
ath power of the cell size across the cell cycle, A = Vi* — V&,
has an Erlang distribution with shape parameter N and mean
A = Nag/a (see Supplementary Section 1 for the proof). The
quantity A will be referred to as the generalized added size in
what follows. In our model, the noise in the generalized added
size, characterized by the coefficient of variation squared, is
equal to 1 /N . As N increases, the generalized added size, as
well as V}, and V; themselves, have smaller fluctuations. Since
the cell cycle duration is given by 7' = (1/g) log(Vy4/V4), an
increasing N also results in lesser fluctuations in the doubling
time. Hence, our model allows the investigation of the influence
of cell cycle duration variability on cell size dynamics.

We next focus on three crucial special cases. When a@ — 0,
the transition rate between stages is a constant and thus the
doubling time has an Erlang distribution that is independent of the
birth size; this corresponds to the timer strategy. When o = 1, the
added size V; — V}, has an Erlang distribution that is independent
of the birth size; this corresponds to the adder strategy. When

a — oo, the ath power of the cell size at division, V;*, has
an Erlang distribution that is independent of the birth size; this
corresponds to the sizer strategy. Intermediate strategies are
naturally obtained for intermediate values of «; timer-like control
is obtained when 0 < « < 1 and sizer-like control is obtained
when 1 < a < oo [20]].

3) Cell division occurs when the cell transitions from effective
stage N to the next stage 1. At division, most previous papers
assume that the mother cell divides into two daughters that are
exactly the same in size via symmetric partitioning [19} [22H235];
however, asymmetric cell division is common in biology. For
instance, Saccharomyces cerevisiae divides asymmetrically into
two daughters with different sizes. Escherichia coli may also
undergo asymmetric division with old daughters receiving fewer
gene products than new daughters [26]]. Here we follow the
methodology that we devised in [27] and extend previous models
by considering asymmetric partitioning at cell division: the
mother cell divides into two daughters with different sizes.

If the partitioning of the cell size is symmetric, we track
one of the two daughters randomly after division [28} [29]; if the
partitioning is asymmetric, we either track the smaller daughter
or track the larger daughter after division [30, 31]. Hence our
model corresponds to cell lineage measurements performed using
a mother machine. Let Vg and V] denote the cell sizes at
division and just after division, respectively. If the partitioning
is deterministic, then we have VZ = pVy, where 0 < p < 1is
a constant with p = 1/2 corresponding to the case of symmetric
division, p < 1/2 corresponding to smaller daughter tracking,
and p > 1/2 corresponding to larger daughter tracking. However,
in naturally occurring systems, the partitioning is appreciably
stochastic. In this case, we assume that the partition ratio Vb' /Va
has a beta distribution with mean p [32], whose probability
density function is given by

1

Zpl/—l 1— 2 ql/—l7
B(pv, qv) ( )

f(z)= 0<z<1, (1)

where B is the beta function, ¢ = 1 — p, and v > 0 is referred to
as the sample size parameter. Then the change in the logarithm
of the cell size at division, log V; — log V)] = log(Vy/V} ), has
the probability density function pu(w) = e~ f(e~*), which can
be written more explicitly as

1

= empvw(l _
B(pv, qv) (

p(w) = e )L w>0. ()

When v — oo, the variance of the beta distribution tends to
zero and thus stochastic partitioning reduces to deterministic
partitioning, i.e. f(z) = §(z — p) and p(w) = 6(w + log p).
We next describe our stochastic model of cell size dynamics
across the cell cycle. The microstate of the cell can be represented
by an ordered pair (k,y), where k is the cell cycle stage which
is a discrete variable and y is the cell size which is a continuous
variable. Let p(y) denote the probability density function of
the cell size when the cell is in stage k. Note that the cell
undergoes deterministic exponential growth in each stage and the
system can hop between successive stages stochastically. Hence
the evolution of the cell size dynamics can be described by
a piecewise deterministic Markov process whose Kolmogorov
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Fig. 1. Cell size dynamics and a stochastic model describing it. (a) Single-cell time course data of cell length along a typical cell lineage
measured in E. coli at 37°C (upper) and the histogram of cell sizes along all cell lineages (lower). The data shown are published in [7]. The cell
size distribution computed from cell lineage measurements has an uncommon shape that is characterized by three features: a fast increase in the
size count for small cells, followed by a slow decay for moderately large cells and a fast decay for large cells. (b) Schematic illustrating a detailed
model of cell size dynamics describing cell growth, multiple effective cell cycle stages, cell-size control, and symmetric or asymmetric partitioning
at cell division (see inset graph). Each cell can exist in NV effective cell cycle stages. The transition rate from one stage to the next at a particular
time ¢ is proportional to the ath power of the cell size V (¢) with « > 0 being the strength of cell-size control and a > 0 being the proportionality
constant. This guarantees that larger cells at birth divide faster than smaller ones to achieve size homeostasis. At stage [N, a mother cell divides into
two daughters that are typically different in size via asymmetric cell division. Symmetric division is the special case where daughters are equisized.

backward equation is given by

Oipr = — Oy(gybr) + ay*pr—1 — ay“pr, 2<k <N,

_ . Ya gy -y
9ypr = — Oy (gypr) +/ - (*) PN (f) f(z)dz S
0 % \Z z
— ay®ps.
where f(z) is the function defined in Eq. (I). Similar
hybrid models have, for example, been used to describe
demographic noise in ecosystems [33]] and single-cell stochastic
gene expression [34} |35)]. In the first equation above, the first
term on the right-hand side represents the exponential growth
of the cell size with growth rate g, the second and third terms
represent the transition between stages whose transition rate is
proportional to the aith power of the cell size y. In the second
equation, the second term corresponds to the partitioning of the
cell size at division.

To solve Eq. (3], the key step is to consider the dynamics of
the logarithmic cell size, * = logy, rather than the original cell
size y. This is because the dynamic equation for the former is
easier to solve. Let pi(x) denote the probability density function
of the logarithmic cell size when the cell is in stage k. Since the
probability density functions of the original and logarithmic cell
sizes are related by pi(z) = ypr(y), it follows from Eq. (3)
that the evolution of the logarithmic cell size is governed by the
following master equation:

Osprx = — gOzpr, + ae“pr_1 —ae“py, 2<k <N,

Op1 = — gOup1 + / ae® Tt py (z + w)p(w)dw (@)
0

ax
—ae pi,

where p(w) is the function defined in Eq. (2).

Analytical distribution of the cell size along a cell lineage
under deterministic partitioning

Recall that any probability distribution is fully determined by
its characteristic function. Let p(z) = Zivzl pi(x) denote the
probability density function of the logarithmic cell size. To obtain
the analytical distribution of the cell size along a cell lineage, we
introduce the characteristic function G(A) = [ p(z)e"*dz,
which is nothing but the inverse Fourier transform of p(z). For
simplicity, we first focus on deterministic partitioning at cell
division, i.e. v — oo. Despite the biological complexity
described by our model, the characteristic function can still
be solved exactly in steady-state conditions (see Supplementary
Section 2 for the proof):

N—-1 k l 1 1
=KY > Cu(4) 7 T(1-2)
k=0 [=0

(o]
x/u HaNpu
0

(1+ Au/N)~N

(&)

where an (u) = is a function of w and

o= | [ bawter -

is a normalization constant. Since the Fourier transform and
the inverse Fourier transform are inverses of each other, taking
the Fourier transform of the characteristic function gives the
steady-state probability density function p(x) of the logarithmic
cell size. Finally, the probability density function of the original

-1

HaNp u)d
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Fig. 2. Influence of model parameters on the cell size distribution. (a) Cell size distribution as N increases. The red curve shows the analytical
distribution given in Eq. (6) and the red circles show the distribution obtained using the stochastic simulation algorithm proposed in [23]. The
parameters are chosen as o = 2,p = 0.5. (b) Cell size distribution as « varies. The parameters are chosen as N = 20, p = 0.5. (c¢) Cell size
distribution as p varies. The parameters are chosen as N = 20, o = 2. (d) Comparison of the cell size distributions for the model with stochastic
partitioning (blue curve and red circles) and the model with deterministic partitioning (solid grey region). The blue curve shows the approximate
distribution given in Eq. (I8) and the red circles show the distribution obtained from simulations. (¢) Comparison of the cell size distributions for
the model with stochastic growth rate (red circles) and the model with deterministic growth rate (solid grey region). In (d),(e), the parameters are
chosen as N = 30, « = 3,p = 0.5. In (a)-(e), the growth rate is chosen as g = 0.02 and the parameters A and a are chosen so that (V') = 3 for
the model with deterministic growth rate and deterministic partitioning. In (e) the standard deviation of the growth rate is 10% of the mean; here
we assume that the growth rates for different generations are i.i.d. normally distributed random variables.

cell size y = e” along a cell lineage is given by

ply) = ip(log Y)- (6)
The analytical solution is ideal since it allows a fast exploration of
large swathes of parameter space without performing stochastic
simulations.

To gain deeper insights into the cell size distribution, we
next consider the limiting case of N — oo. In this case, the
generalized added size A, as well as the cell cycle duration T,
becomes deterministic and thus the system does not involve any
stochasticity. As N — oo, we have a,,(u) = e~4* and thus the
characteristic function can be simplified to a large extent as (see
Supplementary Section 2 for the proof)

Vir A
(log Vg — log V3 )i\’

) 4 oNE Ao\E
%:p(lpO‘)’Vd:(lpa)’

are two constants. Taking the Fourier transform of G()) shows
that the logarithmic cell size has the uniform distribution

1
p(r) = ml[log Vi, log V4] (),

G\ = )

where

®)

and thus the original cell size y =
distribution:

e” has the following

1

1
5(y) = —p(l = _ M A 9
p(y) yp( ogy) (log Va —Tog Vi)y Vo, va] (W) (9

where Ip(z) is the indicator function which takes the value of 1
when x € B and the value of 0 otherwise. This indicates that
when cell cycle duration variability is small, the cell size has
a distribution that is concentrated on the finite interval [V, V],
where V;, and V; are the typical cell sizes at birth and at division,
respectively.

Fig. [2fa)-(c) illustrate the distribution of the original cell
size as a function of the parameters N, «, and p. It can be
seen that as cell cycle duration variability become smaller (N
increases), the analytical distribution given in Eq. (6) converges
to the limit distribution given in Eq. (9). The cell size distribution
has a regular shape for small N. As NV increases, the shape of
the distribution becomes more complicated. In particular, the
distribution has three apparent sections: an exponential increase
for small sizes, a power law decay for moderate sizes, and an
exponential decay for large sizes. As N — oo, the dynamics
becomes deterministic and the distribution has a compact support,
characterized by infinite slopes of the two shoulders. In addition,
we find that the influence of « on the cell size distribution is
similar to the influence of N. Finally, increasing p gives rise to a
distribution that is more symmetric and more concentrated.

Moments, noise, and skewness of the cell size distribution

Our analytic results can also be used to derive explicit
expressions for several other quantities of interest. Recall that
the probability density function p(z) for the logarithmic cell size
and the probability density function p(y) for the original cell size
are related by Eq. (6). For any real number ), the Ath moment of
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the original cell size is given by

(v —/OOO yAﬁ(y)dy:/jO

where F'()\) is the moment generating function of p(z). This
shows that the Ath moment of the original cell size is exactly
the moment generating function of the logarithmic cell size taken
value at \. Since the moment generating function F'(\) and
the characteristic function G(\) are related by G(\) = F(iA),
replacing the variable i\ in Eq. (3) by A yields the moment
generating function. Hence the Ath moment of the original cell
size is given by

p(a)d = F(N),

(VM=F\) =K
(10)

An important property of the cell size distribution is that it is

a function of A = Nag/a, which depends on the ratio of g

and a. Therefore, different growth rates g may lead to the same

size distribution whenever g/a is kept constant. In single-cell

experiments, the noise in the cell size, characterized by the

coefficient of variation squared, is given by
o2 F(2)

“w T FEmr b (o
where 11 is the mean and o2 is the variance. Fig. a),(b) illustrate
the noise 7 as a function of N, «, and p. Clearly, the fluctuations
in the cell size become smaller with the increase of all the three
parameters (see also Fig. [2). This implies that small cell cycle
duration variability and sizer-like strategy can lead to a more
accurate control of the cell size.

A special case occurs when the cell cycle duration variability
is very small, i.e. N >> 1. In this case, replacing the variable ¢\
in the characteristic function Eq. by A yields

by x
W =F) = = ()
—Alogp \ 1 —p*

Thus the noise in the cell size is given by

(12)

~(I+p)logp
2(1-p) ’

which is a decreasing function of p. Note that when N is small,
the noise 7 is a function of both « and p (Fig. [3[b)). However,
when N is large, the noise only depends on p. It is easy to see that
the noise in the cell size tends to infinity as p — 0 and tends to
zero as p — 1. For the case of symmetric division (p = 0.5), the
noise in the cell size is given by n ~ 0.04, which shows that the
standard deviation of the cell size is roughly 20% of the mean.

Recall that the skewness of the cell size distribution is
defined as

B <V - u>‘°’ _ F(3) - 3F(1)F(2) +2F(1)?
- o a [F(2) — F(1)?]3/2 ’

13)

c . . 3 d . . . 4
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Fig. 3. Noise and skewness of the cell size distribution. (a) Heat map
of the noise n versus o and N. (b) Heat map of the noise 7 versus «
and p. (¢) Heat map of the skewness ~y versus o and N. (d) Heat map of
the skewness v versus a and p. The parameters are chosen as p = 0.5
in (a),(c) and N = 20 in (b),(d). In (a)-(d), the parameter A is chosen
so that the mean cell size (V') = 3.

Fig. EKC),(d) illustrate the skewness v as a function of NV, «,
and p, from which we can see that the skewness increases with
the decrease of all the three parameters. This implies that large
cycle cycle duration variability, timer-like division strategy, and
tracking the smaller daughter at division lead to larger skewness
of the cell size distribution. Moreover, we find that the skewness
is always positive, which means that the cell size distribution is
always right-skewed. When N > 1, it follows from Eq. (12)
that the skewness only depends on p and is given by

2(1 —p*)(logp)® + 9(1 — p)(1 — p*) logp + 12(1 — p)*
6[—(1 —p?)logp — (1 —p)?]3/2 ’

which is also a decreasing function of p.

’7:

Analytical distribution of the cell cycle duration

In our model, the distribution of the doubling time can also
be derived analytically in steady-state conditions. Actually, given
that the birth size V}, is known, the conditional probability density
of the cell cycle duration 7" has been obtained in [20]] as

a agN™ _
P(T:t“/b =.’L‘): AN(N71)|:L‘N( agt_l)N !
> eagt—%x(eugt—l)-

Here we compute the unconditional distribution of the cell cycle
duration. To this end, we find that the Laplace transform of V},*
is given by (see Supplementary Section 6 for the proof)

o) Apan ) —N o)
H<1+ pN ) :nl;[laN(pomu). (14)

n=1

() =

Taking the inverse Laplace transform gives the probability
density function of V. Finally, the distribution of the cell cycle
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duration T is given by

P(T =t) = /Oc P(T = t|Vy = 2)P(Vy® = z)dz.  (15)
0

A special case occurs when « is large (strong cell-size
control) or when p is small (smaller daughter tracking). Under
the large o or small p approximation, the term p®” is negligible
for n > 2 and it suffices to keep only the first term in the infinite
product given in Eq. (T4). In this case, the inverse Laplace
transform has an explicit expression and the birth size distribution
is given by
N

[e3
e Ap=’®

(N — 1)!ANpoN

NN aN-—1
P(Vb = .%') = m

(16)

Inserting this equation into Eq. yields the doubling time
distribution

2N — 1) agt agt_l N-1

(T = 1) = 9 G )
PN(N=DI (po + evot — 12N

We emphasize that in the special case of N = 1, our model

reduces to the model in [36] and the above two equations coincide
with the results in that paper.

Recent experiments [[17, [37H40] have shown that the cell
cycle durations in various cell types are all well fitted by a gamma
distribution. Therefore it is natural to ask whether the doubling
time in our model shares the same property. To see this, we
illustrate the doubling time distribution and its approximation
by the gamma distribution as N and o vary (Fig. H). It can
be seen that the true distribution is in good agreement with its
gamma approximation when « is small (Fig. [fa),(b)). This is
because a small « implies a timer-like size control, which leads
to an approximately Erlang distributed doubling time due to the
effect of multiple cell cycle stages and constant transition rates
between them. When « is large, there are some slight differences
between them for small N (Fig. ffc)); compared with the gamma
approximation, the true distribution is more symmetric around its
mean. However, when N is large, they are very close to each
other and both well fitted by a normal distribution (any gamma
distribution converges to the normal distribution as the shape
parameter tends to infinity, see Fig. [f{d)).

Distribution of the cell size along a cell lineage under
stochastic partitioning and stochastic growth rate

Thus far, the analytical distribution of the cell size is obtained
when the partitioning at division is deterministic. In the presence
of noise in partitioning, it is very difficult to obtain the explicit
expression of the cell size distribution. Fortunately, in naturally
occurring systems, the stochasticity in partitioning is often very
small. For example, recent cell lineage data [7]] suggested that
the coefficient of variation of the partition ratio z = V}//V;
in E. coli is about 7% - 9%. When noise in partitioning is
small, we obtain an approximate expression for the cell size
distribution, whose moment generating function is given by (see
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Fig. 4. Distribution of the cell cycle duration and its approximation
by the gamma distribution. We use the information of the sample
mean and sample variance of the true distribution to determine the two
parameters involved in the gamma approximation. (a) Large cell cycle
duration variability and small size control strength. (b) Small cell cycle
duration variability and small size control strength. (c) Large cell cycle
duration variability and large size control strength. (d) Small cell cycle
duration variability and large size control strength. In (a)-(d), the blue
curve represents the analytical distribution given in Eq. (T3), the red
circles represent the distribution obtained from simulations, and the grey
region represents the gamma approximation. The parameters are chosen
asp = 0.5, = 0.02 and A and a are determined so that (V') = 3.

Supplementary Section 3 for the proof)

N-1 k

FA) =K Y Chi (ﬁ)m r (1 — 2)1

k=0 =0
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0 n=0

where K is a normalization constant and

p(\) = </01 f(x):z:’\_“dx) o .

To see the effect of stochastic partitioning, we illustrate
the cell size distributions under deterministic and stochastic
partitioning in Fig. [J(d) with the standard deviation of the
partition ratio z being 10% of the mean for the latter. Clearly, the
approximate solution given in Eq. (I8) matches the simulation
results very well. In addition, it can be seen that noise in
partitioning gives rise to larger fluctuations in the cell size,
characterized by the smaller slope of the left shoulder of the cell
size distribution.

In addition to noise in partitioning, there is another important
source of stochasticity, i.e. noise in the growth rate g. In many
biological systems, such noise is also very small. For example,
recent cell lineage data [7] suggested that the coefficient of
variation of the growth rate g in E. coli is about 7% - 8%. To
see the influence of noise in the growth rate, we illustrate the
cell size distributions under deterministic and stochastic growth
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rates in Fig. [Je) with the standard deviation of g being 10%
of the mean for the latter (here we assume that the growth rates
for different generations are i.i.d. normally distributed random
variables). Interestingly, we find that noise in the growth rate
has very little effect on the cell size distribution; this is in sharp
contrast to noise in partitioning which has an apparent effect on
the cell size distribution.

Random tracking protocol can lead to complex multimodal
cell size distributions

If cell division is asymmetric, the two daughters are different
in size and thus far we have assumed that the smaller/larger
daughter (such as the bud/mother cell in budding yeast) is tracked
after division [30, [31]]. We have seen that whether the smaller
or the larger daughter is tracked, the cell size distribution along
a cell lineage is always unimodal and right-skewed, and larger
daughter tracking yields lesser fluctuations in size than smaller
daughter tracking. Next we consider another tracking protocol,
namely where we track one of the two daughters randomly with
probability 1/ 2 after division [7, 28, 29]. Clearly, the three
types of tracking protocols (tracking a random daughter, the
smaller daughter, or the larger daughter) are exactly the same for
symmetric cell division; however, they are remarkably different
for asymmetric cell division.

For the random tracking protocol, the probability density
function of the partition ratio z = V}//V} is given by (here the
noise in partitioning is ignored)

1 1

f(z) = 55(2*P)+§5(Z*Q), 19)
where 0 < p < 1/2 is the ratio of the size of the smaller
daughter to the size of the mother cell and ¢ = 1 — p. Fig. [j]
illustrates the simulated cell size distribution under the random
tracking protocol. Interestingly, we find that the shape of the
distribution undergoes two stochastic bifurcations as cell cycle
duration variability becomes smaller (/V increases). When NN is
small, the cell size distribution is in general unimodal (Fig. Eka)),
as in the case of smaller/larger daughter tracking. When N is
moderate, random tracking is capable of producing a bimodal
cell size distribution (Fig. [5(b)), where the two peaks can be
attributed intuitively to the subpopulations of smaller and larger
daughters, respectively. Surprisingly, when N is large, we
find that random tracking can give rise to a complex cell size
distribution that displays multiple peaks (Fig. [B(b)), two major
peaks and some minor peaks. Increasing the cell cycle duration
variability (decreasing /V) smoothens the cell size distribution, by
first removing the smaller peaks and then merging the two major
peaks into one.

Parameter inference using synthetic data

Recent breakthroughs in microfluidic devices have made it
possible to monitor the single-cell volume dynamics along a cell
lineage over many generations. Given such cell lineage data, an
important question is whether all the parameters involved in our
model can be inferred accurately. Parameter inference is crucial
since it provides insights on the strength of cell-size control as
well as cell cycle duration variability in various cell types.

a N=2 b N=20 c N=200
i gM«L*WWM“LM»“%W §WWI4WVMWWMM’WMi
time time time

probability density

o 2 4 6 8 10 0 2 4 6 8 0 2 4 6 8
cell size cell size cell size

Fig. 5. Cell size distribution for asymmetric cell division under the
random tracking protocol. After division, one the two daughters is
randomly tracked with probability 1/2. (a) Typical stochastic trajectory
of the cell size (upper) and the cell size distribution (lower) in the case
of large cell cycle duration variability (N = 2). (b) Same as (a) but
for moderate cell cycle duration variability (N = 20). (c¢) Same as
(a) but for small cell cycle duration variability (N = 200). In (a)-(c),
the colored curve and the grey region show the cell size distributions
obtained from two independently repeated stochastic simulations. The
parameters are chosen as p = 0.3, = 2, A = 25.

The steps of our parameter estimation method are described
as follows. First, the data of cell sizes at birth and at division
in each generation, V3 and Vy, can be easily extracted from the
cell lineage data. Since A = V3 — V,* is Erlang distributed
with shape parameter N and mean A, once the parameter « is
determined, both the parameters IV and A can be determined by
fitting the data of V* — V,* to an Erlang distribution. For clarity,
let N(a) and A(«) denote the optimal estimates of N and A
given the value of «. They can be inferred from the generalized
added size A as

A(e)?

A= - (&

N(a) = (20)

Next, the parameters v and p are determined by an optimal fit
of the experimental to the theoretical cell size distribution using
the least square criterion. Specifically, we determine « and p by
solving the following optimization problem:

M

Iglglz:hj(luaap,N(a)vA(a)) 7]5(1'7.)'27 (21)
=1

where p(x;«,p, N, A) is the theoretical cell size distribution
given the parameters o, p, N, A, p(x) is the sample cell size
distribution obtained from experiments, x; are some reference
points, and M is the number of bins chosen. Once a and p
are estimated, both V and A are automatically determined. The
reason why we do not estimate p directly as the mean of the
partition ratio V] /Vy is that the cell size distribution is sensitive
to the value of p. A comparatively small error in p will result in
a comparatively large change in the cell size distribution.

Since the cell size distribution is a function of A = Nag/a,
which depends on the ratio of g and a, it is impossible to infer the
growth rate g from the cell size distribution. Finally, the growth
rate ¢ is determined by an optimal fit of the experimental to the
theoretical/simulated doubling time distribution using the least
square criterion. Once g is inferred, the last parameter a can be
determined from the estimated «, N, and A as a = Nag/A.
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D «a N A g a
input parameters 0.4 0.5 30 0.79 0.01 0.191
estimated parameters using Model I | 0.40 & 0.0002 | 0.44 +0.02 | 28.70 £0.82 | 0.65 £ 0.06 | 0.0100 & 0.0001 | 0.195 %+ 0.015
estimated parameters using Model II | 0.40 4+ 0.0003 | 0.50 £0.04 | 28.10 +1.52 | 0.79£0.11 | 0.0100 4+ 0.0002 | 0.179 + 0.016
D o N A g a
input parameters 0.5 1 20 2.08 0.02 0.192
estimated parameters using Model I | 0.50 £ 0.0003 | 0.77£0.06 | 21.154+0.88 | 1.26 £0.18 | 0.0200 £ 0.0002 | 0.263 £+ 0.026
estimated parameters using Model II | 0.50 £ 0.0003 | 0.99 +0.08 | 19.20 £ 1.14 | 2.04 £0.35 | 0.0200 £ 0.0003 | 0.187 £ 0.027
D a N A g a
input parameters 0.6 2 10 9.39 0.03 0.064
estimated parameters using Model I | 0.60 = 0.0005 | 1.29£0.04 | 12.90 £0.32 | 2.73 £0.20 | 0.0301 £+ 0.0003 | 0.183 +0.010
estimated parameters using Model II | 0.60 & 0.0004 | 1.92 £0.04 | 10.40 £0.52 | 8.29 £ 0.57 | 0.0300 4 0.0004 | 0.072 4 0.004

Table 1. Parameter inference using synthesis data from the stochastic model. The cell lineage data are generated from the model with
stochastic partitioning, where some noise is added to the growth rate g and the partition ratio z with the coefficients of variation of both parameters
being chosen as 7%. For each set of model parameters, we generate synthetic data simulating 50 cell lineages. For each cell lineage, the model
parameters are estimated by fitting the synthetic data to both the model with deterministic partitioning at cell division (Model I) and the model with
stochastic partitioning (Model II). The value in each cell shows the mean and standard deviation of the estimated parameter computed over 50 cell

lineages.

To verify the effectiveness of our method, we use our model
to generating synthetic data of cell size dynamics. To make the
time course data better mimic real biological process, we add
some noise to both the growth rate g and the partition ratio z. We
then perform parameter inference by fitting the noisy data to two
models: the model with deterministic partitioning (Model I) and
the model with stochastic partitioning (Model II). The parameters
input to the synthetic data and the parameters estimated using
the above method are given in Table 2| where three sets of input
parameters are chosen to cover large swathes of parameter space
and to include three types of control strategies (timer-like, adder,
and sizer-like). It can be seen that fitting the noisy data to both
models leads to an accurate estimation of p and g, and a relatively
accurate estimation of V. However, fitting the data to Model I
gives rise to a systematic underestimation of o and A, and an
overestimation of a due to stochasticity in partitioning. Fitting
the data to Model II can remarkably improve the accuracy of
estimation of these three parameters.

Experimental validation of the theory

To test our theory, we apply it to study the single-cell time
course data of the cell size collected for E. coli in [18]. In this
data set, the time course data of the cell length were recorded
every minute for 279 cell lineages over 70 generations using a
mother machine microfluidic device under three different growth
conditions (25°C, 27°C, and 37°C). At the three temperatures,
there are a total of 65, 54, and 160 cell lineages measured,
respectively. Based on such data, it is possible to estimate all the
parameters involved in our model at each temperature by fitting
the data to both Model I and Model II. The estimated parameters
and the estimation errors are listed in Table 2l

From the estimated parameters, it can be seen that both
models lead to similar estimation of p, N, and g. However,
the introduction of partitioning noise into the model leads to
higher estimation of « and A and lower estimation of a; this is

Model I 25°C 27°C 37°C
P 0.421 £ 0.0011 0.440 +£ 0.0009 0.432 £ 0.0013
o 1.479 £+ 0.0442 1.659 + 0.0626 2.071 £ 0.0712
N 7.882 £ 0.4730 19.679 £ 0.9595 | 17.979 4+ 1.1129
A 6.046 £ 0.5006 6.094 £ 0.6469 17.586 + 2.2018
g 0.0134 £ 0.0001 | 0.0158 £ 0.0001 | 0.0261 % 0.0001
a 0.0263 £ 0.0027 | 0.0855 £ 0.0086 | 0.0544 % 0.0063

Model I 25°C 27°C 37°C
p 0.420 £ 0.0010 0.440 £ 0.0011 0.433 £ 0.0011
«a 1.750 + 0.0401 2.050 £ 0.0697 2.382 £ 0.0851
N 7.481 £0.4377 18.547 £ 0.8704 | 17.683 £ 0.9466
A 9.604 £ 0.7193 10.923 £ 1.1494 | 29.060 £ 4.1959
g 0.0133 £ 0.0001 | 0.0157 £ 0.0001 | 0.0260 % 0.0002
a 0.0184 £ 0.0020 | 0.0553 £ 0.0060 | 0.0381 % 0.0054
v 268.23 £5.9839 | 217.03 £6.2611 | 242.65 + 7.2579

Table 2. The parameters estimated using cell lineage data at three
different temperatures. The parameters p, o, N, A are determined by
fitting the experimental to the theoretical cell size distribution. The
parameters g and a are determined by fitting the experimental to the
theoretical doubling time distribution. Two theoretical models are used:
the model with deterministic partitioning (Model I) and the model with
stochastic partitioning (Model II). For model II, once the parameter p
is estimated, the sample size parameter v in Eq. (I) can be inferred
by fitting the partition ratio data to a beta distribution. The estimation
error for each parameter was computed using bootstrap. Specifically,
we performed parameter inference 50 times; for each estimation, the
theoretical model was fitted to the data of 30 randomly selected cell
lineages. The estimation error was then calculated as the standard
deviation over 50 repeated samplings.

consistent with our observation for synthesis data. Regardless of
the model used, the strength of cell-size control, «, is estimated
to be 1.4 - 2.4 for all the three temperatures, implying that the
size homeostasis strategy in E. coli is between the adder and the
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Fig. 6. Fitting the experimental cell size and doubling time distributions to theory. (a) Experimental cell size distributions (blue bars) at the
three temperatures and their optimal fitting to Model II (red curve) where partitioning is stochastic. Here the theoretical distribution is computed
using Eq. (T8). (b) Experimental doubling time distributions (blue bars) at the three temperatures and their optimal fitting to Model II (red curve),
where the theoretical distribution is computed using stochastic simulations. (¢) Five typical trajectories of cell size dynamics for cells at 37°C. The
red dots show the cell sizes just after division and the green dots show the minimal cell sizes in each generation. For over 60% generations, there is

a small abrupt decline in the cell size after division, shown as the sharp drop from a red dot to a green dot.

sizer. Moreover, higher temperature leads to a higher strength o
than lower temperature.

Fig. |§ka),(b) illustrate the experimental cell size and
cell cycle duration distributions using the data of all cell
lineages versus the theoretical distributions using the estimated
parameters. Here the theoretical distributions are plotted based
on Model II but both models lead to similar distribution shapes.
Interestingly, both experimental distributions at all the three
temperatures coincide perfectly with our model, which implies
that our model can indeed reproduce the cell size dynamics in
E. coli very well. In addition, it verifies the main assumption of
choosing the rate of moving from one effective cell cycle stage to
the next to be a power law of the cell size.

Typically, a mother cell divides into two daughters that are
different in size due to stochasticity in partitioning and possible
asymmetric cell division [32]]. Note that the data of cell sizes just
before division and just after division, V; and V})’, can be easily
extracted from the cell lineage data and thus the parameter p can
be estimated as the mean partition ratio (V}/ /Vy). An interesting
characteristic implied by the E. coli data is that at cell division,
the smaller daughter is always tracked with the mean partition
ratio p being estimated to be about 0.46 for all the three growth
conditions (0.459 £ 0.040 for cells at 25°C, 0.461 + 0.039 for
cells at 27°C, and 0.464 + 0.034 for cells at 37°C).

Recall that in our estimation procedure, we do not use the
information of V; and V} to determine the parameter p; rather,
we infer p by an optimal fit of the experimental to the theoretical
cell size distribution. The estimate of p in Table[2]is 0.42 - 0.44
for the three temperatures, which is slightly lower than the value
of 0.46 estimated using V and V. The reason of this discrepancy
is that after cell division, over 60% generations have a small
but sharp decline in the cell size (see Fig. [f[c) for the cell size

dynamics of five typical cell lineages with the red dots being the
cell sizes just after division and the green dots being the minimal
cell sizes in each generation; the small sharp drop in the cell size
after division is shown as the transition from a red dot to a green
dot). Therefore, the realistic effective partition ratio should be
computed using the green dots rather than the red dots. This
explains why the parameter p estimated in Table [2]is lower than
the mean partition ratio (V}/ /Vy).

Summary and Discussion

In this work, we have analytically derived the cell size
distribution of measurements obtained from a cell lineage. We
have solved two models. The first model assumes that (i) the birth
size is a fixed (generation independent) fraction of the division
size in the last generation; (ii) the cell grows exponentially
between birth and division events where the growth rate is a
generation independent constant; (iii) the length of the cell cycle
is stochastic; (iv) size homeostasis is enforced by timer-like,
sizer-like, or adder strategies. A second model was also solved
which relaxes the assumption (i) above, namely it allows for a
stochastic ratio of the birth to division size.

The main features of the experimental cell size distribution
in E. coli, namely a fast increase in the size count for small cells,
a slow decay for moderately large cells, and a fast decay for large
cells, are reproduced by the analytical solution of both models
when the parameters /N and « are large enough; this implies
that these features emerge when the variability in the cell cycle
duration is not too large and when adder or sizer-like mechanisms
enforce size homeostasis. We also find that noise in partitioning
at cell division (noise in the ratio of the birth to division size) has
a considerable influence on the shape of the cell size distribution
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whereas noise in the growth rate hardly exerts any influence; this
is in agreement with an earlier moment-based study [41].

Our theory predicts that large cell cycle duration variability,
timer-like division strategy, and tracking the smaller daughter at
division lead to larger skewness and coefficient of variation of
the cell size distribution. We have furthermore shown that (i) the
distribution of cell cycle duration that emerges from our model
is well approximated by a gamma distribution that has been
measured experimentally for many cell types [37]; (ii) if cells
divide asymmetrically, they are tracked randomly after division,
and cell cycle duration variability is intermediate or low, then the
cell size distribution is multimodal.

Lastly, we have shown that the theoretical distributions
provide an excellent fit to the experimental E. coli cell size and
doubling time distributions reported in [18] for three different
growth conditions. This match provides support for the implicit
assumption of our model that the speed of the cell cycle (the
transition rate between effective stages) monotonically increases
with the cell volume and specifically has a power law dependence
on the cell volume. We note that whilst this law may be
compatible with certain biophysical mechanisms [25], more
likely it is simply a phenomenological means to model cell size
homeostasis; in fact more generally and beyond the context of
our model, the usage of kinetic rates with power laws has found
widespread applications in the effective modelling of complex
biochemical kinetics in cells [42]. Finally based on the matching
of the experimental to the theoretical cell size and doubling time
distributions, we have estimated all the model parameters directly
from E. coli cell lineage data and found that the strength o of
cell-size control exhibits a weak increase with temperature. The
estimated values of o (using Model II, the most accurate model
in this paper) ranging between 1.8 and 2.4 confirm the results of
a previous analysis [7] that neither an adder mechanism (o = 1)
nor a sizer mechanism (o > 1) can completely account for cell
size homeostasis.

Concluding, the major advance in our work is the
analytic derivation of the cell size distribution of lineage
measurements, whereas previous studies focused more on

population measurements or moments of lineage measurements.

The advantages of the analytical distribution are (i) the ease and
speed with which one can explore the dependence of cell size
statistics on parameters across large swathes of parameter space
(compared to stochastic simulations); (ii) the reliable estimation
of parameters from data based on distribution matching which
is generally much more robust than moment-based estimation
[43]. The present model presents a framework onto which one
can build further biological realism; current research work aims
to extend the model to include gene expression and its correlation
to cell size resulting in concentration homeostasis of mRNAs and
proteins [2| 144-48].
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