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Abstract

Recent advances in single-cell technologies have enabled

time-resolved measurements of the cell size over several cell

cycles. This data encodes information on how cells correct size

aberrations so that they do not grow abnormally large or small.

Here we formulate a piecewise deterministic Markov model

describing the evolution of the cell size over many generations,

for all three cell size homeostasis strategies (timer, sizer, and

adder). The model is solved to obtain an analytical expression

for the non-Gaussian cell size distribution in a cell lineage; the

theory is used to understand how the shape of the distribution is

influenced by the parameters controlling the dynamics of the cell

cycle and by the choice of cell tracking protocol. The theoretical

cell size distribution is found to provide an excellent match to the

experimental cell size distribution of E. coli lineage data collected

under various growth conditions.

Introduction

Cell size plays an important role in cellular processes; e.g.

changes in cell volume or surface area have profound effects on

metabolic flux and nutrient exchange [1], and therefore it stands

to reason that cell size should be actively maintained. In order

for cells to achieve and maintain some characteristic size (size

homeostasis), the amount of growth produced during the cell

cycle must be controlled such that, on average, large cells at birth

grow less than small ones.

There are three popular phenomenological models of cell

size control leading to size homeostasis [2]: (i) the timer strategy

which implies a constant time between successive divisions; (ii)

the sizer strategy which implies cell division upon attainment

of a critical size, and (iii) the adder strategy which implies a

constant size addition between consecutive generations. The

timer strategy is not viable for exponentially growing cells; in this

case, size fluctuations diverge as the square root of the number of

consecutive cell divisions implying that the timer strategy cannot

maintain stable size distributions [3]. In contrast, if cells grow

linearly, a timer strategy is viable as a means to maintain size

homeostasis [4]. Several studies have proposed that the sizer and

adder strategies can explain experimental data in bacteria, yeast,

and mammalian cells [5–10]. Cell-size control mechanisms

likely vary depending on growth conditions, strains, and species;

for instance in Escherichia coli (E. coli), evidence suggests a

sizer mechanism in slow growth conditions and an adder in fast

growth conditions [11].

Cell size statistics can be computed using data from cell

lineages or population snapshots. To observe a single cell

lineage, at each cell division event, one keeps track of only

one of the newborn cells (daughter cells); thus at an arbitrary

time point, only a single cell is observed. Whereas to observe

population snapshots, one tracks both daughters of each mother

cell in the population and thus the evolution of the whole

population over time. Recently, mathematical models have

shown that cell size statistics calculated using lineage data, e.g.

collected using mother machines, can vary considerably from

those obtained from population snapshot data, e.g. collected

using flow cytometry [12–14]. In fact, differences between these

two types of measurements are also observable in protein and

mRNA count statistics [15–17].

Modelling has elucidated various other interesting insights

into cell size statistics, however to our knowledge no study thus

far has attempted to explain the complex shapes of cell size

distributions computed from many generations of cell lineage

measurements. This is because such high throughput data has

become available only recently [18] and also since the majority

of modelling approaches have analytically derived expressions

for the first few moments of cell size statistics — these are

not enough to characterize the highly non-Gaussian distributions

of cell size computed from a cell lineage (see Fig. 1(a) for a

typical distribution for an E. coli lineage). These histograms are

characterized by three features: a fast increase in the size count

for small cells, a slow decay in the size count for moderately large

cells, and a fast decay in the size count for large cells. We note

that these distributions contain much more information than birth

size distributions previously derived [19], since they reflect the

full cell cycle dynamics.

Here we develop a complete analytical theory of the cell size

distribution in cell lineages. We formulate and solve a piecewise

deterministic Markov model describing the evolution of the

cell size over many generations, for all three size homeostasis

strategies (timer, sizer, and adder). The model takes into account

the major features responsible for the underlying dynamics: cell

birth following division (including the asymmetric case and

partitioning noise), exponential cell growth (including the case

of noisy growth rates), variability in the duration of the cell cycle,
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and the user-defined choice of single-cell tracking protocols

when division occurs, e.g. tracking always the smaller daughters,

tracking always the larger daughters, or randomly picking one

of the two daughters. The analytical solutions for the cell size

distribution enable us to understand how the highly non-Gaussian

shape of the distribution emerges from the underlying biophysical

processes. Finally by matching the analytical to the experimental

cell size and doubling time distributions, we infer the values of

various model parameters in E. coli for three different growth

conditions.

Results

Model specification

Here we consider a detailed model of cell size dynamics

across the cell cycle which is similar to the model proposed in

[20] but has more complicated cell division mechanisms such

as asymmetric and stochastic partitioning (see Fig. 1(b) for an

illustration). The model is based on a number of assumptions

that are closely tied to experimental data. The assumptions are as

follows.

1) The size of each cell grows exponentially in each generation

with growth rate g. This assumption is supported by experiments

in many cell types [21].

2) Each cell can exist in N effective cell cycle stages, denoted

by 1, 2, ..., N . The transition rate from one stage to the next

at a particular time is proportional to the αth power of the cell

size at that time, with a > 0 being the proportionality constant

[20]. In other words, the transition rate between stages at time t is

equal to aV (t)α, where α > 0 is the strength of cell-size control

and V (t) is the cell size at that time. Under this assumption,

larger cells at birth have larger transition rates between stages

and thus, on average, have lesser cell cycle duration and lesser

volume change than smaller ones; in the way size homeostasis

is achieved. Examples of possible biophysical mechanisms that

can explain the power law form of the transition rate have been

discussed in [20].

Let Vb and Vd denote the cell sizes at birth and at division in

a particular generation, respectively. Then the increment in the

αth power of the cell size across the cell cycle, ∆ = V α
d − V α

b ,

has an Erlang distribution with shape parameter N and mean

A = Nαg/a (see Supplementary Section 1 for the proof). The

quantity ∆ will be referred to as the generalized added size in

what follows. In our model, the noise in the generalized added

size, characterized by the coefficient of variation squared, is

equal to 1/N . As N increases, the generalized added size, as

well as Vb and Vd themselves, have smaller fluctuations. Since

the cell cycle duration is given by T = (1/g) log(Vd/Vb), an

increasing N also results in lesser fluctuations in the doubling

time. Hence, our model allows the investigation of the influence

of cell cycle duration variability on cell size dynamics.

We next focus on three crucial special cases. When α → 0,

the transition rate between stages is a constant and thus the

doubling time has an Erlang distribution that is independent of the

birth size; this corresponds to the timer strategy. When α = 1, the

added size Vd −Vb has an Erlang distribution that is independent

of the birth size; this corresponds to the adder strategy. When

α → ∞, the αth power of the cell size at division, V α
d , has

an Erlang distribution that is independent of the birth size; this

corresponds to the sizer strategy. Intermediate strategies are

naturally obtained for intermediate values of α; timer-like control

is obtained when 0 < α < 1 and sizer-like control is obtained

when 1 < α < ∞ [20].

3) Cell division occurs when the cell transitions from effective

stage N to the next stage 1. At division, most previous papers

assume that the mother cell divides into two daughters that are

exactly the same in size via symmetric partitioning [19, 22–25];

however, asymmetric cell division is common in biology. For

instance, Saccharomyces cerevisiae divides asymmetrically into

two daughters with different sizes. Escherichia coli may also

undergo asymmetric division with old daughters receiving fewer

gene products than new daughters [26]. Here we follow the

methodology that we devised in [27] and extend previous models

by considering asymmetric partitioning at cell division: the

mother cell divides into two daughters with different sizes.

If the partitioning of the cell size is symmetric, we track

one of the two daughters randomly after division [28, 29]; if the

partitioning is asymmetric, we either track the smaller daughter

or track the larger daughter after division [30, 31]. Hence our

model corresponds to cell lineage measurements performed using

a mother machine. Let Vd and V ′

b denote the cell sizes at

division and just after division, respectively. If the partitioning

is deterministic, then we have V ′

b = pVd, where 0 < p < 1 is

a constant with p = 1/2 corresponding to the case of symmetric

division, p < 1/2 corresponding to smaller daughter tracking,

and p > 1/2 corresponding to larger daughter tracking. However,

in naturally occurring systems, the partitioning is appreciably

stochastic. In this case, we assume that the partition ratio V ′

b /Vd

has a beta distribution with mean p [32], whose probability

density function is given by

f(z) =
1

B(pν, qν)
zpν−1(1− z)qν−1, 0 < z < 1, (1)

where B is the beta function, q = 1− p, and ν > 0 is referred to

as the sample size parameter. Then the change in the logarithm

of the cell size at division, log Vd − log V ′

b = log(Vd/V
′

b ), has

the probability density function µ(w) = e−wf(e−w), which can

be written more explicitly as

µ(w) =
1

B(pν, qν)
e−pνw(1− e−w)qν−1, w > 0. (2)

When ν → ∞, the variance of the beta distribution tends to

zero and thus stochastic partitioning reduces to deterministic

partitioning, i.e. f(z) = δ(z − p) and µ(w) = δ(w + log p).
We next describe our stochastic model of cell size dynamics

across the cell cycle. The microstate of the cell can be represented

by an ordered pair (k, y), where k is the cell cycle stage which

is a discrete variable and y is the cell size which is a continuous

variable. Let p̃k(y) denote the probability density function of

the cell size when the cell is in stage k. Note that the cell

undergoes deterministic exponential growth in each stage and the

system can hop between successive stages stochastically. Hence

the evolution of the cell size dynamics can be described by

a piecewise deterministic Markov process whose Kolmogorov
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Fig. 1. Cell size dynamics and a stochastic model describing it. (a) Single-cell time course data of cell length along a typical cell lineage

measured in E. coli at 37oC (upper) and the histogram of cell sizes along all cell lineages (lower). The data shown are published in [7]. The cell

size distribution computed from cell lineage measurements has an uncommon shape that is characterized by three features: a fast increase in the

size count for small cells, followed by a slow decay for moderately large cells and a fast decay for large cells. (b) Schematic illustrating a detailed

model of cell size dynamics describing cell growth, multiple effective cell cycle stages, cell-size control, and symmetric or asymmetric partitioning

at cell division (see inset graph). Each cell can exist in N effective cell cycle stages. The transition rate from one stage to the next at a particular

time t is proportional to the αth power of the cell size V (t) with α > 0 being the strength of cell-size control and a > 0 being the proportionality

constant. This guarantees that larger cells at birth divide faster than smaller ones to achieve size homeostasis. At stage N , a mother cell divides into

two daughters that are typically different in size via asymmetric cell division. Symmetric division is the special case where daughters are equisized.

backward equation is given by

∂tp̃k =− ∂y(gyp̃k) + ayαp̃k−1 − ayαp̃k, 2 ≤ k ≤ N,

∂tp̃1 =− ∂y(gyp̃1) +

∫ 1

0

a

z

(y

z

)α

p̃N
(y

z

)

f(z)dz

− ayαp̃1.

(3)

where f(z) is the function defined in Eq. (1). Similar

hybrid models have, for example, been used to describe

demographic noise in ecosystems [33] and single-cell stochastic

gene expression [34, 35]. In the first equation above, the first

term on the right-hand side represents the exponential growth

of the cell size with growth rate g, the second and third terms

represent the transition between stages whose transition rate is

proportional to the αth power of the cell size y. In the second

equation, the second term corresponds to the partitioning of the

cell size at division.

To solve Eq. (3), the key step is to consider the dynamics of

the logarithmic cell size, x = log y, rather than the original cell

size y. This is because the dynamic equation for the former is

easier to solve. Let pk(x) denote the probability density function

of the logarithmic cell size when the cell is in stage k. Since the

probability density functions of the original and logarithmic cell

sizes are related by pk(x) = yp̃k(y), it follows from Eq. (3)

that the evolution of the logarithmic cell size is governed by the

following master equation:

∂tpk =− g∂xpk + aeαxpk−1 − aeαxpk, 2 ≤ k ≤ N,

∂tp1 =− g∂xp1 +

∫

∞

0

aeα(x+w)pN (x+ w)µ(w)dw

− aeαxp1,

(4)

where µ(w) is the function defined in Eq. (2).

Analytical distribution of the cell size along a cell lineage

under deterministic partitioning

Recall that any probability distribution is fully determined by

its characteristic function. Let p(x) =
∑N

k=1 pk(x) denote the

probability density function of the logarithmic cell size. To obtain

the analytical distribution of the cell size along a cell lineage, we

introduce the characteristic function G(λ) =
∫

∞

−∞
p(x)eiλxdx,

which is nothing but the inverse Fourier transform of p(x). For

simplicity, we first focus on deterministic partitioning at cell

division, i.e. ν → ∞. Despite the biological complexity

described by our model, the characteristic function can still

be solved exactly in steady-state conditions (see Supplementary

Section 2 for the proof):

G(λ) = K
N−1
∑

k=0

k
∑

l=0

Ck,l

(

A
N

)l+1
Γ
(

1− iλ
α

)−1

×

∫

∞

0

ul− iλ
α

∞
∏

n=0

aN (pαnu)du,

(5)

where aN (u) = (1 +Au/N)−N is a function of u and

K =

[

∫

∞

0

1

u
(aN (u)−1 − 1)

∞
∏

n=0

aN (pαnu)du

]

−1

.

is a normalization constant. Since the Fourier transform and

the inverse Fourier transform are inverses of each other, taking

the Fourier transform of the characteristic function gives the

steady-state probability density function p(x) of the logarithmic

cell size. Finally, the probability density function of the original
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Fig. 2. Influence of model parameters on the cell size distribution. (a) Cell size distribution as N increases. The red curve shows the analytical

distribution given in Eq. (6) and the red circles show the distribution obtained using the stochastic simulation algorithm proposed in [25]. The

parameters are chosen as α = 2, p = 0.5. (b) Cell size distribution as α varies. The parameters are chosen as N = 20, p = 0.5. (c) Cell size

distribution as p varies. The parameters are chosen as N = 20, α = 2. (d) Comparison of the cell size distributions for the model with stochastic

partitioning (blue curve and red circles) and the model with deterministic partitioning (solid grey region). The blue curve shows the approximate

distribution given in Eq. (18) and the red circles show the distribution obtained from simulations. (e) Comparison of the cell size distributions for

the model with stochastic growth rate (red circles) and the model with deterministic growth rate (solid grey region). In (d),(e), the parameters are

chosen as N = 30, α = 3, p = 0.5. In (a)-(e), the growth rate is chosen as g = 0.02 and the parameters A and a are chosen so that 〈V 〉 = 3 for

the model with deterministic growth rate and deterministic partitioning. In (e) the standard deviation of the growth rate is 10% of the mean; here

we assume that the growth rates for different generations are i.i.d. normally distributed random variables.

cell size y = ex along a cell lineage is given by

p̃(y) =
1

y
p(log y). (6)

The analytical solution is ideal since it allows a fast exploration of

large swathes of parameter space without performing stochastic

simulations.

To gain deeper insights into the cell size distribution, we

next consider the limiting case of N → ∞. In this case, the

generalized added size ∆, as well as the cell cycle duration T ,

becomes deterministic and thus the system does not involve any

stochasticity. As N → ∞, we have an(u) = e−Au and thus the

characteristic function can be simplified to a large extent as (see

Supplementary Section 2 for the proof)

G(λ) =
V̄ iλ
d − V̄ iλ

b

(log V̄d − log V̄b)iλ
, (7)

where

V̄b = p

(

A

1− pα

)
1

α

, V̄d =

(

A

1− pα

)
1

α

,

are two constants. Taking the Fourier transform of G(λ) shows

that the logarithmic cell size has the uniform distribution

p(x) =
1

log V̄d − log V̄b
I[log V̄b,log V̄d](x), (8)

and thus the original cell size y = ex has the following

distribution:

p̃(y) =
1

y
p(log y) =

1

(log V̄d − log V̄b)y
I[V̄b,V̄d](y), (9)

where IB(x) is the indicator function which takes the value of 1
when x ∈ B and the value of 0 otherwise. This indicates that

when cell cycle duration variability is small, the cell size has

a distribution that is concentrated on the finite interval [V̄b, V̄d],
where V̄b and V̄d are the typical cell sizes at birth and at division,

respectively.

Fig. 2(a)-(c) illustrate the distribution of the original cell

size as a function of the parameters N , α, and p. It can be

seen that as cell cycle duration variability become smaller (N
increases), the analytical distribution given in Eq. (6) converges

to the limit distribution given in Eq. (9). The cell size distribution

has a regular shape for small N . As N increases, the shape of

the distribution becomes more complicated. In particular, the

distribution has three apparent sections: an exponential increase

for small sizes, a power law decay for moderate sizes, and an

exponential decay for large sizes. As N → ∞, the dynamics

becomes deterministic and the distribution has a compact support,

characterized by infinite slopes of the two shoulders. In addition,

we find that the influence of α on the cell size distribution is

similar to the influence of N . Finally, increasing p gives rise to a

distribution that is more symmetric and more concentrated.

Moments, noise, and skewness of the cell size distribution

Our analytic results can also be used to derive explicit

expressions for several other quantities of interest. Recall that

the probability density function p(x) for the logarithmic cell size

and the probability density function p̃(y) for the original cell size

are related by Eq. (6). For any real number λ, the λth moment of
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the original cell size is given by

〈V λ〉 =

∫

∞

0

yλp̃(y)dy =

∫

∞

−∞

eλxp(x)dx = F (λ),

where F (λ) is the moment generating function of p(x). This

shows that the λth moment of the original cell size is exactly

the moment generating function of the logarithmic cell size taken

value at λ. Since the moment generating function F (λ) and

the characteristic function G(λ) are related by G(λ) = F (iλ),
replacing the variable iλ in Eq. (5) by λ yields the moment

generating function. Hence the λth moment of the original cell

size is given by

〈V λ〉 = F (λ) = K
N−1
∑

k=0

k
∑

l=0

Ck,l

(

A
N

)l+1
Γ
(

1− λ
α

)−1

×

∫

∞

0

ul− λ
α

∞
∏

n=0

aN (pαnu)du.

(10)

An important property of the cell size distribution is that it is

a function of A = Nαg/a, which depends on the ratio of g
and a. Therefore, different growth rates g may lead to the same

size distribution whenever g/a is kept constant. In single-cell

experiments, the noise in the cell size, characterized by the

coefficient of variation squared, is given by

η =
σ2

µ2
=

F (2)

F (1)2
− 1, (11)

where µ is the mean and σ2 is the variance. Fig. 3(a),(b) illustrate

the noise η as a function of N , α, and p. Clearly, the fluctuations

in the cell size become smaller with the increase of all the three

parameters (see also Fig. 2). This implies that small cell cycle

duration variability and sizer-like strategy can lead to a more

accurate control of the cell size.

A special case occurs when the cell cycle duration variability

is very small, i.e. N � 1. In this case, replacing the variable iλ
in the characteristic function Eq. (7) by λ yields

〈V λ〉 = F (λ) =
1− pλ

−λ log p

(

A

1− pα

)
λ
α

. (12)

Thus the noise in the cell size is given by

η = −
(1 + p) log p

2(1− p)
− 1,

which is a decreasing function of p. Note that when N is small,

the noise η is a function of both α and p (Fig. 3(b)). However,

when N is large, the noise only depends on p. It is easy to see that

the noise in the cell size tends to infinity as p → 0 and tends to

zero as p → 1. For the case of symmetric division (p = 0.5), the

noise in the cell size is given by η ≈ 0.04, which shows that the

standard deviation of the cell size is roughly 20% of the mean.

Recall that the skewness of the cell size distribution is

defined as

γ =

〈

(

V − µ

σ

)3
〉

=
F (3)− 3F (1)F (2) + 2F (1)3

[F (2)− F (1)2]3/2
, (13)
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Fig. 3. Noise and skewness of the cell size distribution. (a) Heat map

of the noise η versus α and N . (b) Heat map of the noise η versus α
and p. (c) Heat map of the skewness γ versus α and N . (d) Heat map of

the skewness γ versus α and p. The parameters are chosen as p = 0.5
in (a),(c) and N = 20 in (b),(d). In (a)-(d), the parameter A is chosen

so that the mean cell size 〈V 〉 = 3.

Fig. 3(c),(d) illustrate the skewness γ as a function of N , α,

and p, from which we can see that the skewness increases with

the decrease of all the three parameters. This implies that large

cycle cycle duration variability, timer-like division strategy, and

tracking the smaller daughter at division lead to larger skewness

of the cell size distribution. Moreover, we find that the skewness

is always positive, which means that the cell size distribution is

always right-skewed. When N � 1, it follows from Eq. (12)

that the skewness only depends on p and is given by

γ =
2(1− p3)(log p)2 + 9(1− p)(1− p2) log p+ 12(1− p)3

6[−(1− p2) log p− (1− p)2]3/2
,

which is also a decreasing function of p.

Analytical distribution of the cell cycle duration

In our model, the distribution of the doubling time can also

be derived analytically in steady-state conditions. Actually, given

that the birth size Vb is known, the conditional probability density

of the cell cycle duration T has been obtained in [20] as

P(T = t|V α
b = x) =

αgNN

AN (N − 1)!
xN (eαgt − 1)N−1

× eαgt−
N
A
x(eαgt

−1).

Here we compute the unconditional distribution of the cell cycle

duration. To this end, we find that the Laplace transform of V α
b

is given by (see Supplementary Section 6 for the proof)

〈e−λV α
b 〉 =

∞
∏

n=1

(

1 +
Apαnλ

N

)

−N

=
∞
∏

n=1

aN (pαnu). (14)

Taking the inverse Laplace transform gives the probability

density function of V α
b . Finally, the distribution of the cell cycle
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duration T is given by

P(T = t) =

∫

∞

0

P(T = t|V α
b = x)P(V α

b = x)dx. (15)

A special case occurs when α is large (strong cell-size

control) or when p is small (smaller daughter tracking). Under

the large α or small p approximation, the term pαn is negligible

for n ≥ 2 and it suffices to keep only the first term in the infinite

product given in Eq. (14). In this case, the inverse Laplace

transform has an explicit expression and the birth size distribution

is given by

P(Vb = x) =
NNxαN−1e−

N
Apα

xα

(N − 1)!ANpαN
. (16)

Inserting this equation into Eq. (15) yields the doubling time

distribution

P(T = t) =
αg(2N − 1)!

pαN [(N − 1)!]2
·
eαgt(eαgt − 1)N−1

(p−α + eαgt − 1)2N
. (17)

We emphasize that in the special case of N = 1, our model

reduces to the model in [36] and the above two equations coincide

with the results in that paper.

Recent experiments [17, 37–40] have shown that the cell

cycle durations in various cell types are all well fitted by a gamma

distribution. Therefore it is natural to ask whether the doubling

time in our model shares the same property. To see this, we

illustrate the doubling time distribution and its approximation

by the gamma distribution as N and α vary (Fig. 4). It can

be seen that the true distribution is in good agreement with its

gamma approximation when α is small (Fig. 4(a),(b)). This is

because a small α implies a timer-like size control, which leads

to an approximately Erlang distributed doubling time due to the

effect of multiple cell cycle stages and constant transition rates

between them. When α is large, there are some slight differences

between them for small N (Fig. 4(c)); compared with the gamma

approximation, the true distribution is more symmetric around its

mean. However, when N is large, they are very close to each

other and both well fitted by a normal distribution (any gamma

distribution converges to the normal distribution as the shape

parameter tends to infinity, see Fig. 4(d)).

Distribution of the cell size along a cell lineage under

stochastic partitioning and stochastic growth rate

Thus far, the analytical distribution of the cell size is obtained

when the partitioning at division is deterministic. In the presence

of noise in partitioning, it is very difficult to obtain the explicit

expression of the cell size distribution. Fortunately, in naturally

occurring systems, the stochasticity in partitioning is often very

small. For example, recent cell lineage data [7] suggested that

the coefficient of variation of the partition ratio z = V ′

b /Vd

in E. coli is about 7% - 9%. When noise in partitioning is

small, we obtain an approximate expression for the cell size

distribution, whose moment generating function is given by (see

dc

cell size cell size

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

90
0

0.01

0.02

0.03

0.04

0 30 60 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0

0.01

0.02

0.03

1200 40 80
0

0.02

0.04

0.06

7010 30 50

ba

gamma approximation

analytical solution

stochastic simulation

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

N = 3,  α = 0.2 N = 15,  α = 0.2

N = 3,  α = 2 N = 15,  α = 2

Fig. 4. Distribution of the cell cycle duration and its approximation

by the gamma distribution. We use the information of the sample

mean and sample variance of the true distribution to determine the two

parameters involved in the gamma approximation. (a) Large cell cycle

duration variability and small size control strength. (b) Small cell cycle

duration variability and small size control strength. (c) Large cell cycle

duration variability and large size control strength. (d) Small cell cycle

duration variability and large size control strength. In (a)-(d), the blue

curve represents the analytical distribution given in Eq. (15), the red

circles represent the distribution obtained from simulations, and the grey

region represents the gamma approximation. The parameters are chosen

as p = 0.5, g = 0.02 and A and a are determined so that 〈V 〉 = 3.

Supplementary Section 3 for the proof)

F (λ) = K
N−1
∑

k=0

k
∑

l=0

Ck,l

(

A

N

)l+1

Γ

(

1−
λ

α

)

−1

×

∫

∞

0

ul− λ
α

∞
∏

n=0

aN (p(λ)αnu)du,

(18)

where K is a normalization constant and

p(λ) =

(
∫ 1

0

f(x)xλ−αdx

)

1

λ−α

.

To see the effect of stochastic partitioning, we illustrate

the cell size distributions under deterministic and stochastic

partitioning in Fig. 2(d) with the standard deviation of the

partition ratio z being 10% of the mean for the latter. Clearly, the

approximate solution given in Eq. (18) matches the simulation

results very well. In addition, it can be seen that noise in

partitioning gives rise to larger fluctuations in the cell size,

characterized by the smaller slope of the left shoulder of the cell

size distribution.

In addition to noise in partitioning, there is another important

source of stochasticity, i.e. noise in the growth rate g. In many

biological systems, such noise is also very small. For example,

recent cell lineage data [7] suggested that the coefficient of

variation of the growth rate g in E. coli is about 7% - 8%. To

see the influence of noise in the growth rate, we illustrate the

cell size distributions under deterministic and stochastic growth

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.24.424287doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.24.424287
http://creativecommons.org/licenses/by-nc-nd/4.0/


rates in Fig. 2(e) with the standard deviation of g being 10%

of the mean for the latter (here we assume that the growth rates

for different generations are i.i.d. normally distributed random

variables). Interestingly, we find that noise in the growth rate

has very little effect on the cell size distribution; this is in sharp

contrast to noise in partitioning which has an apparent effect on

the cell size distribution.

Random tracking protocol can lead to complex multimodal

cell size distributions

If cell division is asymmetric, the two daughters are different

in size and thus far we have assumed that the smaller/larger

daughter (such as the bud/mother cell in budding yeast) is tracked

after division [30, 31]. We have seen that whether the smaller

or the larger daughter is tracked, the cell size distribution along

a cell lineage is always unimodal and right-skewed, and larger

daughter tracking yields lesser fluctuations in size than smaller

daughter tracking. Next we consider another tracking protocol,

namely where we track one of the two daughters randomly with

probability 1/2 after division [7, 28, 29]. Clearly, the three

types of tracking protocols (tracking a random daughter, the

smaller daughter, or the larger daughter) are exactly the same for

symmetric cell division; however, they are remarkably different

for asymmetric cell division.

For the random tracking protocol, the probability density

function of the partition ratio z = V ′

b /Vd is given by (here the

noise in partitioning is ignored)

f(z) =
1

2
δ(z − p) +

1

2
δ(z − q), (19)

where 0 < p ≤ 1/2 is the ratio of the size of the smaller

daughter to the size of the mother cell and q = 1 − p. Fig. 5

illustrates the simulated cell size distribution under the random

tracking protocol. Interestingly, we find that the shape of the

distribution undergoes two stochastic bifurcations as cell cycle

duration variability becomes smaller (N increases). When N is

small, the cell size distribution is in general unimodal (Fig. 5(a)),

as in the case of smaller/larger daughter tracking. When N is

moderate, random tracking is capable of producing a bimodal

cell size distribution (Fig. 5(b)), where the two peaks can be

attributed intuitively to the subpopulations of smaller and larger

daughters, respectively. Surprisingly, when N is large, we

find that random tracking can give rise to a complex cell size

distribution that displays multiple peaks (Fig. 5(b)), two major

peaks and some minor peaks. Increasing the cell cycle duration

variability (decreasing N ) smoothens the cell size distribution, by

first removing the smaller peaks and then merging the two major

peaks into one.

Parameter inference using synthetic data

Recent breakthroughs in microfluidic devices have made it

possible to monitor the single-cell volume dynamics along a cell

lineage over many generations. Given such cell lineage data, an

important question is whether all the parameters involved in our

model can be inferred accurately. Parameter inference is crucial

since it provides insights on the strength of cell-size control as

well as cell cycle duration variability in various cell types.
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Fig. 5. Cell size distribution for asymmetric cell division under the

random tracking protocol. After division, one the two daughters is

randomly tracked with probability 1/2. (a) Typical stochastic trajectory

of the cell size (upper) and the cell size distribution (lower) in the case

of large cell cycle duration variability (N = 2). (b) Same as (a) but

for moderate cell cycle duration variability (N = 20). (c) Same as

(a) but for small cell cycle duration variability (N = 200). In (a)-(c),

the colored curve and the grey region show the cell size distributions

obtained from two independently repeated stochastic simulations. The

parameters are chosen as p = 0.3, α = 2, A = 25.

The steps of our parameter estimation method are described

as follows. First, the data of cell sizes at birth and at division

in each generation, Vb and Vd, can be easily extracted from the

cell lineage data. Since ∆ = V α
d − V α

b is Erlang distributed

with shape parameter N and mean A, once the parameter α is

determined, both the parameters N and A can be determined by

fitting the data of V α
d − V α

b to an Erlang distribution. For clarity,

let N(α) and A(α) denote the optimal estimates of N and A
given the value of α. They can be inferred from the generalized

added size ∆ as

A(α) = 〈∆〉, N(α) =
A(α)2

〈∆2〉 − 〈∆〉2
. (20)

Next, the parameters α and p are determined by an optimal fit

of the experimental to the theoretical cell size distribution using

the least square criterion. Specifically, we determine α and p by

solving the following optimization problem:

min
α,p

M
∑

i=1

|p(xi;α, p,N(α), A(α))− p̂(xi)|
2
, (21)

where p(x;α, p,N,A) is the theoretical cell size distribution

given the parameters α, p,N,A, p̂(x) is the sample cell size

distribution obtained from experiments, xi are some reference

points, and M is the number of bins chosen. Once α and p
are estimated, both N and A are automatically determined. The

reason why we do not estimate p directly as the mean of the

partition ratio V ′

b /Vd is that the cell size distribution is sensitive

to the value of p. A comparatively small error in p will result in

a comparatively large change in the cell size distribution.

Since the cell size distribution is a function of A = Nαg/a,

which depends on the ratio of g and a, it is impossible to infer the

growth rate g from the cell size distribution. Finally, the growth

rate g is determined by an optimal fit of the experimental to the

theoretical/simulated doubling time distribution using the least

square criterion. Once g is inferred, the last parameter a can be

determined from the estimated α, N , and A as a = Nαg/A.
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p α N A g a

input parameters 0.4 0.5 30 0.79 0.01 0.191

estimated parameters using Model I 0.40± 0.0002 0.44± 0.02 28.70± 0.82 0.65± 0.06 0.0100± 0.0001 0.195± 0.015

estimated parameters using Model II 0.40± 0.0003 0.50± 0.04 28.10± 1.52 0.79± 0.11 0.0100± 0.0002 0.179± 0.016

p α N A g a

input parameters 0.5 1 20 2.08 0.02 0.192

estimated parameters using Model I 0.50± 0.0003 0.77± 0.06 21.15± 0.88 1.26± 0.18 0.0200± 0.0002 0.263± 0.026

estimated parameters using Model II 0.50± 0.0003 0.99± 0.08 19.20± 1.14 2.04± 0.35 0.0200± 0.0003 0.187± 0.027

p α N A g a

input parameters 0.6 2 10 9.39 0.03 0.064

estimated parameters using Model I 0.60± 0.0005 1.29± 0.04 12.90± 0.32 2.73± 0.20 0.0301± 0.0003 0.183± 0.010

estimated parameters using Model II 0.60± 0.0004 1.92± 0.04 10.40± 0.52 8.29± 0.57 0.0300± 0.0004 0.072± 0.004

Table 1. Parameter inference using synthesis data from the stochastic model. The cell lineage data are generated from the model with

stochastic partitioning, where some noise is added to the growth rate g and the partition ratio z with the coefficients of variation of both parameters

being chosen as 7%. For each set of model parameters, we generate synthetic data simulating 50 cell lineages. For each cell lineage, the model

parameters are estimated by fitting the synthetic data to both the model with deterministic partitioning at cell division (Model I) and the model with

stochastic partitioning (Model II). The value in each cell shows the mean and standard deviation of the estimated parameter computed over 50 cell

lineages.

To verify the effectiveness of our method, we use our model

to generating synthetic data of cell size dynamics. To make the

time course data better mimic real biological process, we add

some noise to both the growth rate g and the partition ratio z. We

then perform parameter inference by fitting the noisy data to two

models: the model with deterministic partitioning (Model I) and

the model with stochastic partitioning (Model II). The parameters

input to the synthetic data and the parameters estimated using

the above method are given in Table 2, where three sets of input

parameters are chosen to cover large swathes of parameter space

and to include three types of control strategies (timer-like, adder,

and sizer-like). It can be seen that fitting the noisy data to both

models leads to an accurate estimation of p and g, and a relatively

accurate estimation of N . However, fitting the data to Model I

gives rise to a systematic underestimation of α and A, and an

overestimation of a due to stochasticity in partitioning. Fitting

the data to Model II can remarkably improve the accuracy of

estimation of these three parameters.

Experimental validation of the theory

To test our theory, we apply it to study the single-cell time

course data of the cell size collected for E. coli in [18]. In this

data set, the time course data of the cell length were recorded

every minute for 279 cell lineages over 70 generations using a

mother machine microfluidic device under three different growth

conditions (25oC, 27oC, and 37oC). At the three temperatures,

there are a total of 65, 54, and 160 cell lineages measured,

respectively. Based on such data, it is possible to estimate all the

parameters involved in our model at each temperature by fitting

the data to both Model I and Model II. The estimated parameters

and the estimation errors are listed in Table 2.

From the estimated parameters, it can be seen that both

models lead to similar estimation of p, N , and g. However,

the introduction of partitioning noise into the model leads to

higher estimation of α and A and lower estimation of a; this is

Model I 25
oC 27

oC 37
oC

p 0.421± 0.0011 0.440± 0.0009 0.432± 0.0013

α 1.479± 0.0442 1.659± 0.0626 2.071± 0.0712

N 7.882± 0.4730 19.679± 0.9595 17.979± 1.1129

A 6.046± 0.5006 6.094± 0.6469 17.586± 2.2018

g 0.0134± 0.0001 0.0158± 0.0001 0.0261± 0.0001

a 0.0263± 0.0027 0.0855± 0.0086 0.0544± 0.0063

Model II 25
oC 27

oC 37
oC

p 0.420± 0.0010 0.440± 0.0011 0.433± 0.0011

α 1.750± 0.0401 2.050± 0.0697 2.382± 0.0851

N 7.481± 0.4377 18.547± 0.8704 17.683± 0.9466

A 9.604± 0.7193 10.923± 1.1494 29.060± 4.1959

g 0.0133± 0.0001 0.0157± 0.0001 0.0260± 0.0002

a 0.0184± 0.0020 0.0553± 0.0060 0.0381± 0.0054

ν 268.23± 5.9839 217.03± 6.2611 242.65± 7.2579

Table 2. The parameters estimated using cell lineage data at three

different temperatures. The parameters p, α,N,A are determined by

fitting the experimental to the theoretical cell size distribution. The

parameters g and a are determined by fitting the experimental to the

theoretical doubling time distribution. Two theoretical models are used:

the model with deterministic partitioning (Model I) and the model with

stochastic partitioning (Model II). For model II, once the parameter p
is estimated, the sample size parameter ν in Eq. (1) can be inferred

by fitting the partition ratio data to a beta distribution. The estimation

error for each parameter was computed using bootstrap. Specifically,

we performed parameter inference 50 times; for each estimation, the

theoretical model was fitted to the data of 30 randomly selected cell

lineages. The estimation error was then calculated as the standard

deviation over 50 repeated samplings.

consistent with our observation for synthesis data. Regardless of

the model used, the strength of cell-size control, α, is estimated

to be 1.4 - 2.4 for all the three temperatures, implying that the

size homeostasis strategy in E. coli is between the adder and the
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Fig. 6. Fitting the experimental cell size and doubling time distributions to theory. (a) Experimental cell size distributions (blue bars) at the

three temperatures and their optimal fitting to Model II (red curve) where partitioning is stochastic. Here the theoretical distribution is computed

using Eq. (18). (b) Experimental doubling time distributions (blue bars) at the three temperatures and their optimal fitting to Model II (red curve),

where the theoretical distribution is computed using stochastic simulations. (c) Five typical trajectories of cell size dynamics for cells at 37oC. The

red dots show the cell sizes just after division and the green dots show the minimal cell sizes in each generation. For over 60% generations, there is

a small abrupt decline in the cell size after division, shown as the sharp drop from a red dot to a green dot.

sizer. Moreover, higher temperature leads to a higher strength α
than lower temperature.

Fig. 6(a),(b) illustrate the experimental cell size and

cell cycle duration distributions using the data of all cell

lineages versus the theoretical distributions using the estimated

parameters. Here the theoretical distributions are plotted based

on Model II but both models lead to similar distribution shapes.

Interestingly, both experimental distributions at all the three

temperatures coincide perfectly with our model, which implies

that our model can indeed reproduce the cell size dynamics in

E. coli very well. In addition, it verifies the main assumption of

choosing the rate of moving from one effective cell cycle stage to

the next to be a power law of the cell size.

Typically, a mother cell divides into two daughters that are

different in size due to stochasticity in partitioning and possible

asymmetric cell division [32]. Note that the data of cell sizes just

before division and just after division, Vd and V ′

b , can be easily

extracted from the cell lineage data and thus the parameter p can

be estimated as the mean partition ratio 〈V ′

b /Vd〉. An interesting

characteristic implied by the E. coli data is that at cell division,

the smaller daughter is always tracked with the mean partition

ratio p being estimated to be about 0.46 for all the three growth

conditions (0.459 ± 0.040 for cells at 25oC, 0.461 ± 0.039 for

cells at 27oC, and 0.464± 0.034 for cells at 37oC).

Recall that in our estimation procedure, we do not use the

information of Vd and V ′

b to determine the parameter p; rather,

we infer p by an optimal fit of the experimental to the theoretical

cell size distribution. The estimate of p in Table 2 is 0.42 - 0.44
for the three temperatures, which is slightly lower than the value

of 0.46 estimated using Vd and V ′

b . The reason of this discrepancy

is that after cell division, over 60% generations have a small

but sharp decline in the cell size (see Fig. 6(c) for the cell size

dynamics of five typical cell lineages with the red dots being the

cell sizes just after division and the green dots being the minimal

cell sizes in each generation; the small sharp drop in the cell size

after division is shown as the transition from a red dot to a green

dot). Therefore, the realistic effective partition ratio should be

computed using the green dots rather than the red dots. This

explains why the parameter p estimated in Table 2 is lower than

the mean partition ratio 〈V ′

b /Vd〉.

Summary and Discussion

In this work, we have analytically derived the cell size

distribution of measurements obtained from a cell lineage. We

have solved two models. The first model assumes that (i) the birth

size is a fixed (generation independent) fraction of the division

size in the last generation; (ii) the cell grows exponentially

between birth and division events where the growth rate is a

generation independent constant; (iii) the length of the cell cycle

is stochastic; (iv) size homeostasis is enforced by timer-like,

sizer-like, or adder strategies. A second model was also solved

which relaxes the assumption (i) above, namely it allows for a

stochastic ratio of the birth to division size.

The main features of the experimental cell size distribution

in E. coli, namely a fast increase in the size count for small cells,

a slow decay for moderately large cells, and a fast decay for large

cells, are reproduced by the analytical solution of both models

when the parameters N and α are large enough; this implies

that these features emerge when the variability in the cell cycle

duration is not too large and when adder or sizer-like mechanisms

enforce size homeostasis. We also find that noise in partitioning

at cell division (noise in the ratio of the birth to division size) has

a considerable influence on the shape of the cell size distribution
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whereas noise in the growth rate hardly exerts any influence; this

is in agreement with an earlier moment-based study [41].

Our theory predicts that large cell cycle duration variability,

timer-like division strategy, and tracking the smaller daughter at

division lead to larger skewness and coefficient of variation of

the cell size distribution. We have furthermore shown that (i) the

distribution of cell cycle duration that emerges from our model

is well approximated by a gamma distribution that has been

measured experimentally for many cell types [37]; (ii) if cells

divide asymmetrically, they are tracked randomly after division,

and cell cycle duration variability is intermediate or low, then the

cell size distribution is multimodal.

Lastly, we have shown that the theoretical distributions

provide an excellent fit to the experimental E. coli cell size and

doubling time distributions reported in [18] for three different

growth conditions. This match provides support for the implicit

assumption of our model that the speed of the cell cycle (the

transition rate between effective stages) monotonically increases

with the cell volume and specifically has a power law dependence

on the cell volume. We note that whilst this law may be

compatible with certain biophysical mechanisms [25], more

likely it is simply a phenomenological means to model cell size

homeostasis; in fact more generally and beyond the context of

our model, the usage of kinetic rates with power laws has found

widespread applications in the effective modelling of complex

biochemical kinetics in cells [42]. Finally based on the matching

of the experimental to the theoretical cell size and doubling time

distributions, we have estimated all the model parameters directly

from E. coli cell lineage data and found that the strength α of

cell-size control exhibits a weak increase with temperature. The

estimated values of α (using Model II, the most accurate model

in this paper) ranging between 1.8 and 2.4 confirm the results of

a previous analysis [7] that neither an adder mechanism (α = 1)

nor a sizer mechanism (α � 1) can completely account for cell

size homeostasis.

Concluding, the major advance in our work is the

analytic derivation of the cell size distribution of lineage

measurements, whereas previous studies focused more on

population measurements or moments of lineage measurements.

The advantages of the analytical distribution are (i) the ease and

speed with which one can explore the dependence of cell size

statistics on parameters across large swathes of parameter space

(compared to stochastic simulations); (ii) the reliable estimation

of parameters from data based on distribution matching which

is generally much more robust than moment-based estimation

[43]. The present model presents a framework onto which one

can build further biological realism; current research work aims

to extend the model to include gene expression and its correlation

to cell size resulting in concentration homeostasis of mRNAs and

proteins [2, 44–48].
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