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Summary 

 

Archaea are responsible for methane production in the human gastrointestinal tract. Twenty percent of 

the Western populations exhale substantial amounts of this gas. The underlying principle determining 

high or low methane emission and its effect on human health was still not sufficiently understood. 

In this study, we analysed the gastrointestinal microbiome, archaeome, metagenome, metabolome, and 

eating behaviour of 100 healthy young adults. We correlated high levels of human methane emission (5-

75 ppm) with a 1000-fold increase in Methanobrevibacter smithii. This archaeon co-occurred with a 

bacterial community specialised on dietary fibre degradation, which included members of 

Ruminococcaceae and Christensenellaceae. Methane production was negatively affected by high vitamin 

B12 and fat intake of the subjects, and was positively associated with increased formate concentrations 

in the gut. Overall, methane emission is explained by dietary habits, host genetics, local metabolite 

availability and microbiome/archaeome composition, emphasizing the unique biology of high methane-

emitters which has potentially positive impact on human health. 
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Introduction 

The composition and function of the human microbial community is closely linked with the fitness of the 

host. In addition to the predominant bacterial component, archaea, eukaryotes (in particular fungi) and 

viruses contribute important regulatory aspects, influencing the dynamics, host-interaction and 

metabolic output of the entire microbiome. However, the non-bacterial constituents are often 

overlooked and remain unconsidered, since standard molecular methods are currently not well 

developed to resolve this component of the microbiome (Mahnert et al., 2018; Borrel et al., 2020).  

Methane-forming archaea (<methanogens=) in the gastrointestinal tract (GIT) were first observed long 

ago - through the detection of methane in the human breath and flatus. The most-prevalent archaeon in 

the human body (Methanobrevibacter smithii) was isolated nearly 40 years ago (Calloway, Colasito and 

Mathews, 1966; Miller et al., 1982). In recent years, however, human-associated archaea that reside in 

the GIT as well as other body sites (e.g. skin, respiratory tract), have gained increased recognition 

(Koskinen et al., 2017; Moissl-Eichinger et al., 2018; Borrel et al., 2020). 

Although the average abundance of archaea in human faecal samples is low as compared to bacteria 

(Borrel et al., 2020), methanogens are considered to represent key-stone species in the GIT. By 

maintaining numerous syntrophic relationships with bacteria, methanogens control the efficiency of the 

bacterial primary and secondary fermentation of complex organic molecules. By consuming by-products 

of bacterial metabolism they particularly keep the hydrogen concentration low, which would inhibit the 

fermentation activity and reduce the overall energy yield. 

Methanogenic archaea have the unique metabolic capability to form methane (methanogenesis) using 

H2, CO2, formate, methyl-compounds, and acetate to thrive. Hydrogenotrophic methanogenesis (the 

most prevalent pathway in the human gut) uses hydrogen as the electron donor (applies to CO2 and 

methyl-reducing methanogens), whereas no external hydrogen source is needed in methylotrophic and 

acetoclastic methanogenic pathways (Adam, Borrel and Gribaldo, 2019; Mand and Metcalf, 2019).  

In the human GIT, methanogens are mainly represented by the Methanobacteriales (M. smithii, 

Methanosphaera stadtmanae) and Methanomassiliicoccales (Ca. Methanomassiliicoccus and Ca. 

Methanomethylophilus representatives). Studies based on next generation sequencing (NGS) have also 

detected signatures of Methanobacterium (Methanobacteriales), Methanosarcina (Methanosarcinales), 

Methanoculleus (Methanomicrobiales) and representatives of Methanocellales in samples from the 
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human gut. These methanogens contribute to an average human body methane emission of about 0.35 l 

per day (Lewis et al., 2018), released through the breath and flatus.  

Notably, not all human subjects produce the same amount of methane. High methane emission in breath 

correlates with e.g. sex, age, environmental factors, diet, diseases, and geography, but also with ethnicity 

and genetic aspects (Polag and Keppler, 2019). The latter has been supported by correlations between 

M. smithii and a single nucleotide polymorphism in a long non-coding RNA of the human genome 

(Bonder et al., 2016). The abundance of methanoarchaea correlates also with certain bacterial members 

of the microbiome, such as the Christensenellaceae, representing a highly-heritable bacterial clade in the 

human GIT (Goodrich et al., 2014; Ruaud et al., 2020). Specifically, the symbiosis of M. smithii and 

Christensenella minuta was found to be based on syntrophy, as driven by efficient H2 transfer via close 

physical interactions. Notably, Christensenellaceae have robustly been linked with a low host body mass 

index (Ruaud et al., 2020). 

Although the methods used to determine the individual9s methane production are not standardised with 

respect to the procedure and cut-off values, it has become clear that only a subpopulation is producing 

higher amounts of methane, ranging from 14 to 78% in Japanese and rural Africans, respectively (Borrel 

et al., 2020). The Western adult population was found to range somewhere in-between (24-60%) (Polag 

and Keppler, 2019). The results of cultivation assays have indicated that a <positive= methane breath test 

correlates with cultivable methanogen concentrations greater than 10
8
 cells per gram stool (dry weight), 

and reaching up to 3x 10
10 

cells in high methane producers (Weaver et al., 1986). Considering the 

measured value of 4x 10
11 

microbial cells per gram dry stool (Stephen and Cummings, 1980), this 

corresponds to 0.03 to 7.5% methanogens in methane-producing subjects. 

Based on this substantial increase in the population of methanogens, as well as the massive methane 

production (sometimes reaching up to 300 ppm, pers. com. C. Högenauer) in high methane producers, a  

putative impact on the GIT microbiome and host physiology can be expected. Indeed, the gaseous 

product of methanogens, methane, is not only a potent greenhouse gas, but also has a physiological 

effect on the host. While its role as a gasotransmitter is controversially discussed (Boros et al., 2015), 

methane is a causally linked to a slowed gastrointestinal motility (methane slows down the faeces transit 

time by up to 59%), probably caused by the direct action of methane on the cholinergic pathway of the 

enteric nervous system (Pimentel et al., 2006). This fact also partially explains the continuous reports of 

methanogens being associated with constipation. Other effects were shown in rodent models, such as 
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enhanced exercise capacity (Xin, Sun and Lou, 2016), increased secretion of GLP-1 (Laverdure et al., 

2018), or even anti-inflammatory and neuroprotective effects (Boros and Keppler, 2019). 

Overall, the role of methanogens per se in health and disease is not yet clear, and analyses suffer from 

methodological pitfalls to correctly detect and characterize the human archaeome, as well as the 

contradictory information that appears in the literature (for further reading, please refer to (Borrel et al., 

2020)). 

In this study, we aim to understand the correlation between methane production in young, healthy 

subjects with the composition of the microbiome (archaeome and bacteriome), microbial function, and 

diet. We have recruited 100 young volunteers (age 18-37 years), profiled their GIT microbiome, and 

performed a standardised methane breath measurement. Fifteen subjects out of 100 showed methane 

levels ≥ 5 ppm and were categorised as high-methane producers. Metagenomic information from stool 

samples of this subgroup was compared to 15 matched (age, sex, and vegetarianism), low-methane 

producing controls. Microbial profile and functions were correlated with methane production and 

dietary habits. 

Herein, we show that human methane production is caused by a uniform, archaeome predominated by 

M. smithii, and linked to a specific bacterial community, which is specialised to degrade dietary fibres. 

Methanobrevibacter smithii has a key-stone role, as this archaeon consumes H2 and CO2, which leads to 

the lower availability of these compounds to the gut microbial community, which, in turn, has effects on 

overall metabolite production. 
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Results (Section headings and subheadings) 

Description of the cohort and datasets 

In total, 100 participants (female: n = 52, male: n = 48; mean age =24.1) were recruited in this study. 

Metadata information (sex, age, vegetarian yes/no, contraception yes/no, breath methane content as 

well as metabolite information) of all participants is provided in Supplementary Table 1. All participants 

provided one stool sample, one breath sample for methane measurements, and a completed dietary 

questionnaire (Supplementary Table 1).  On the basis of the amount of methane emitted participants 

were grouped into high methane emitters (HE; CH4 value: 5-75 ppm) and low emitters (LE; CH4 value < 5 

ppm). Fifteen percent of the participants were categorised as HEs (Supplementary Table 2), with the 

percentage in congruence with known levels of methane emission of young adult European cohorts 

(Polag and Keppler, 2019).  

The following data sets were obtained through 16S rRNA gene amplicon sequencing, shotgun 

metagenomics sequencing, and a questionnaire: <universal= and archaeal 16S rRNA gene profiles for all 

stool samples (Supplementary Dataset 1 and 2; Supplementary Table 1), and a metagenomics dataset as 

well as metabolomic information (e.g. acetate, succinate, formate), and detailed dietary information 

(e.g. diversity, energy, protein, fat, carbohydrates) from matched participants (Supplementary Dataset 3 

and 4; Supplementary Table 2). 

 

High-methane microbiomes are characterised by a specific microbial community and a 1000-

fold increase in the Methanobrevibacter relative abundance 

Using the <universal= approach to amplify 16S rRNA genes, we obtained 2,293,161 sequences after 

denoising with DADA2 (Callahan et al., 2016) and processing through Qiime2 (Bolyen et al., 2019) which 

were classified into 17 microbial phyla, 254 genera and 2,570 unique ribosomal sequence variants 

(RSVs). Using an archaea-targeted approach (Pausan et al., 2019), we obtained 1,035,202 sequences 

grouped into 4 phyla, 6 genera and 41 unique RSVs. Respective RSV tables are provided in 

Supplementary Dataset 1 and 2.  

We focused on the intact microbial community by applying a propidium monoazide (PMA) treatment to 

remove the background signals of free DNA (Nocker et al., 2007; Young et al., 2017). Within the 

<universal= data set, the phylum Firmicutes was found to be predominant (45.84%; 1,051,161 reads), 
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followed by Bacteroidetes (40.46%; 927,837 reads) and Proteobacteria (7.53%; 172,656 reads); the main 

representative genera were Bacteroides (26.61% 610,127 reads), Alistipes (6.25%; 143,248 reads), and 

Faecalibacterium (5.82%; 133,442 reads) (Supplementary Figure 1; Supplementary Dataset 1). 

When we compared the stool microbial profiles of HEs and LEs, we observed a significant (p = 0.00033; 

ANOVA) increase in alpha diversity (Shannon Index; Figure 1A.I). Redundancy analysis (RDA) results 

confirmed that methane production had a significant impact on the microbiome composition (p = 0.001; 

Figure 1A.II). Although the HE microbial profiles did not group separately in the PCoA plot, HEs formed a 

sub-cluster within the cloud of LE (Supplementary Figure 2A.I). On a phylum level, results of LEfSe (Linear 

Discriminant Analysis Effect Size) analyses revealed a significant association between Euryarchaeota and 

HE and between Bacteroidetes and LE (Figure 1.B, Supplementary Figure 2). On genus level, taxa 

belonging to Ruminococcaceae UCG014 as well as the Christensenellaceae R7 group and 

Methanobrevibacter were shown to have potential associations with HEs, whereas Bacteroides and 

Blautia were associated with LEs (Figure 1.C). These associations on both taxonomic levels were 

confirmed through the results of independent ANOVA plot analyses (Supplementary Figure 2) and 

Spearman-based regression analyses, confirming a highly significant (p < 0.001) positive correlation of 

Methanobrevibacter, the Christensenellaceae_R7_group, Ruminococcaceae (UCG010 and UCG002), and 

Desulfovibrio with high methane emission, and a significant (p < 0.01) negative correlation among 

Bacteroides, the Ruminococcaceae gnavus group, Flavonifractor, and Holdemania (Supplementary Figure 

3; individual rs-values provided in the Figure). 

An overview of the taxonomic composition of HE and LE samples is given in a Krona Chart 

(Supplementary Item 1). This type of display confirms the different relative abundances of signatures 

from Methanobrevibacter (HE: 2%, LE: 0.002%), Bacteroides (HE: 19%, LE: 28%), the Christensenellaceae 

R7 group (HE: 6%, LE 2%), and Ruminococcaceae UCGs (HE: 22%, LE: 20%).  
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Figure 1. Differences in alpha and beta diversity based on the <universal= approach of 16S rRNA gene sequencing between 

high (HE) and low methane emitters (LE). A-C. Profiles of the whole study cohort (n=100). D-F. Profiles of the matched subset 

only (n=30). A.I/D.I. An examination of Shannon diversity index revealed significant differences in alpha diversity (RSV based; 

ANOVA). A.II/D.II. The microbiome of HEs clustered significantly differently in the RDA plot (RSV based). B.I/E.I. LEfSe analysis of 

the 100 most abundant phyla and B.II/E.II-B.V/E.V. Relative abundance of selected phyla in ANOVA plots. C.I/F.I. LEfSe analysis 

of the 100 most abundant genera and C.II/F.II-C.VII/F.VII. ANOVA plots of selected genera. 

 

Moreover, a significant co-occurrence was observed for Methanobrevibacter and Christensenellaceae in 

HEs in every constellation of a Spearman9s rho -based network analysis. Those taxa formed a stable 

network with different Ruminococcus/Ruminococcaceae, Holdemanella, and the Eubacterium 

ruminantium group in HEs. On the contrary, LEs were characterised by a network of Bacteroides, 

Lachnoclostridium, Sutterella, Flavonifractor, Blautia, and Anaerostipes (Figure 2; Supplementary Figure 

4). 
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Figure 2. Co-occurrence networks based on Spearman’s rho correlation of selected genera in HE and LE microbiome samples. 

Taxa were selected based on significantly different relative abundances in both sample types and LEfSe analyses. Left, upper 

panel: Whole study cohort (n=100), right, upper panel: matched study subset (n=30). Lower panels show co-occurrence patterns 

in the HE (left) or the LE samples (right).  

 

In order to obtain more detailed insights into the archaeal composition of the microbiomes, we 

performed archaea-targeted 16S rRNA gene amplicon sequencing. Notably, archaeal reads could not be 

obtained for all samples (10 out of 100 samples were negative and, namely, samples with IDs (all LEs): 

28, 31, 47, 48, 89, 96, 115, 118, 120, and 123 (Supplementary Dataset 2). 

Among the remaining samples, Euryarchaeota (99.07%; 1,025,526 reads) was shown to be the 

predominant phylum, followed by Thaumarchaeota, and Crenarchaeota. Euryarchaeota were 

represented by Methanobrevibacter (96.3%; 996,950 reads), Methanosphaera (1.26%; 13,092 reads), 
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and Methanobacterium (1.44%; 14,937 reads). Methanosarcina, Methanocorpusculum, 

Methanomassiliicoccus, and unclassified representatives were detected in traces (Figure 3; 

Supplementary Dataset 2). 

The archaeomes of HEs and LEs were not significantly different with respect to their alpha or beta 

diversity (Figure 3). Samples from HEs did not contain any archaeal signatures apart from the 

Euryarchaeota, which were represented solely by Methanobrevibacter and Methanosphaera. In the 

entire dataset, 21 Methanobrevibacter RSVs were observed, whereas Methanosphaera was represented 

by only two RSVs (both genera are represented by one RSV each in the universal dataset). The analysis of 

HEs samples resulted, on average, in a more than ten-fold, significantly increased number of archaeal 

reads per sample (HEs: 46,077 archaeal reads per sample, LEs:  4,048 reads (p<0.00001 (Mann-Whitney 

U Test)).  

Based on our observations, the archaeal diversity profile of HE emitters is not significantly different per 

se; the methane emission is driven solely by the predominance of one particular Methanobrevibacter 

strain. The 16S rRNA gene sequence of this strain (dominant in HEs in the universal and archaeal 

datasets), matched the 16S rRNA gene sequence of M. smithii strain KB11 by 100% (NCBI blast), which is 

a representative of the Methanobrevibacter_A smithii group according to the GTDB classification (SILVA). 
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Figure 3. Archaeome profile of HE and LE samples, based on the <archaeal= approach of 16S rRNA gene sequencing. A. Profile 

of the whole study cohort (n=100). B. Matched study subset (n=30). I. Bar chart of the 20 most abundant taxa compared 

regarding their low or high methane emission at the phylum level and II. at the genus level. III. Shannon diversity, and IV. RDA 

plot at RSV level. 

 

Due to the nature of the study set up, the number of recruited HE and LE subjects was divergent (n=15 

and n=85, respectively). Thus, we then focused on an equal subset of the cohort to investigate the 

statistical relevance of our data regarding methane production. For this purpose, 15 HEs were matched 

to 15 LEs by age, sex, vegetarianism, and hormonal contraception method (Supplementary Table 2). This 

data set (n=30) was subjected to the same statistical analyses as described above for the entire cohort. 

The overall profile of the reduced (n=30) <universal= dataset was highly similar to the profiles revealed 

for the non-matched volunteers, and the same predominant phyla and genera were also identified 

(Supplementary Figure 1B; Supplementary Dataset 1). In this data set, we could also confirm increased 

alpha diversity in HE (Figure 1D.I, p=0.0024), a the significant impact of methane on the microbiome 

composition (Figure 1D.II, p=0.004), the formation of a subcluster within the PCoA (Supplementary 

Figure 2B.I), and a significant difference in the relative abundance of Euryarchaeota and Bacteroidetes in 

HEs and LEs, respectively (Figure 1E, F; Supplementary Figure 2B).  

The significant (p<0.01) co-occurrence of Methanobrevibacter and Christensenellaceae in HEs could also 

be confirmed (Figure 2). In addition, the findings on the archaeome (alpha, beta diversity) did not change 
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(Figure 3B). Confirmation of the congruency of the n=30 data set was an important prerequisite for the 

subsequent shotgun metagenomic analyses.  

Shotgun metagenomic analyses reveal functional differences in the HE and LE microbiomes 

Extracted DNA from stool samples of the matched study subset (Supplementary Table 2) was further 

used to conduct a shotgun-based metagenomic analysis, which was resolved with respect to taxonomic 

(see below) and functional information. 

The functional analysis of the metagenomics dataset was based on 14,616,890 sequences which were 

categorised into 28 SEED subsystems and contained 6,956 actual function assignments and 6,589 unique 

features. The output was organised hierarchically into four levels; level one represented the SEED 

subsystem and level four represented the most detailed functional information. To gain additional 

clarity, the information on the detected functions was made available as interactive, hierarchical Krona 

charts (Supplementary Item 3). 

The most prominent subsystems (level 1) identified were <carbohydrate= (17.41%), <clustering-based 

subsystems=, (12.21%) and <protein metabolism= (8.01%) (Supplementary Figure 5, Supplementary 

Dataset 3). 

Like the profile information derived from 16S rRNA gene data, the diversity of unique functions was 

significantly higher in HEs as compared to LEs. The impact of methane emission on the overall functions 

was also found to be significant (Figure 4A, p-values included therein). At level 1, LEfSe analysis identified 

<protein metabolism=, <nucleosides and nucleotides= and <RNA metabolism= as being significantly 

correlated with HE samples, whereas LE microbiomes were significantly correlated with <iron acquisition 

and metabolism=, <carbohydrates=, and <sulfur metabolism= (Figure 4B; Supplementary Figure 6).  

The increase in the relative abundance in genes involved in <protein metabolism= in HE (HE: 9%, LE: 8% ) 

was mainly reflected by an increase in the genes associated with <protein biosynthesis= (level 2). This 

was caused by an increase in the relative abundance of the involved archaeal functions, such as archaea-

specific elongation factors or translation initiation factors. The increased proportion of genes involved in 

RNA metabolism (HE: 5%, LE: 4%) can be explained similarly, as the proportion of archaeal-specific genes 

was increased (e.g. tRNA modification or transcription elongation factor in Archaea; level 3). The 

archaeal RNA polymerase was undetectable in LE samples (HE 0.06%, LE: 0%)(Figure, 4B; Supplementary 

Item 3).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.21.423794doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423794
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

The relative abundance of genes involved in <iron acquisition and metabolism= was found to be reduced 

in the HE dataset (HE: 3%, LE: 4%), which was mainly caused by a relative increase in the number of 

genes involved in <iron acquisition in Vibrio= in the LE data set (HE: 2%, LE: 4%). These gene sets include 

the TonB-dependent transport of heme and several siderophores that are produced by a broad variety of 

bacteria (Wyckoff, Mey and Payne, 2007). Differences in the relative abundance of sulphur metabolism 

genes (HE: 0.7%, LE: 0.8%) were manifested by increased gene counts in the level of <galactosylceramide 

and sulfatide metabolism= (level 3; HE: 0.4%, LE: 0.5%), as well as <thioredoxin-disulfide reductase= (level 

3; HE: 0.09%, LE: 0.1%).  

Based on the results of the LEfSe analysis at level 3, we found that the <heat shock dnaK gene cluster= (in 

<Stress response=) (HE: 0.7%, LE: 0.6%), involved in chaperone Hsp70 formation, and the <UvrABC 

system= involved in <DNA repair= (in <DNA metabolism=; HE: 0.7%, LE: 0.6%) were significantly 

associated with HEs. Moreover, we detected an increased contribution of genes involved in <Synthesis of 

osmoregulated periplasmic glucans=, indicating that Gram-negative bacteria made a high contribution to 

HE samples (0.04% of functional genes; 0.03% in LE) (Figure 4C; Supplementary Item 3). 

Among the functions associated with <carbohydrate=, a particular increase in the LE dataset was 

observed in the <monosaccharide= (level 2) turnover-associated genes (HE: 3%, LE: 4%) (e.g. in D-

galacturonate, L-rhamnose, xylose, L-arabinose, and L-fucose metabolism), as well as in the uptake of 

lactose and galactose. Especially mannose metabolism (level 3; HE: 0.8%, LE: 1%), including the 

metabolism of alpha-1,2-mannosidase (level 4; HE: 0.6%, LE: 0.9%), was found to be increased in LE 

samples.  

Notably, the <Pyruvate ferredoxin oxidoreductase= (HE: 0.4%, LE: 0.3%; alpha and beta subunits; HE: 

0.04% LE: 0.01% and HE: 0.02% LE: 0.01%, respectively), which is part of the <central carbohydrate 

metabolism= of pyruvate, propanoate, and butanoate, and the reductive carboxylate cycle, was found to 

be significantly increased in HE samples. This enzyme (also known as pyruvate synthase), catalyses the 

interconversion of pyruvate and acetyl-CoA, and thus is responsible for the binding or release of CO2 with 

the help of ferredoxin. 

Genes involved in <methanogenesis= were rarely abundant in the LE dataset (0.00004%), but reached a 

0.1% overall relative abundance in the HE dataset. This was also reflected by the methyl-coenzyme M 

reductase, which is responsible for the release of methane in the last step of methanogenesis, and 

whose alpha subunit was represented in a proportion of 0.01% in the HE dataset but only of 0.00001% in 
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the LE dataset. Subunits beta and gamma were not detectable in the LE dataset. Notably, genes involved 

in <methanogenesis from methylated compounds= comprised 0.01% in the HE dataset, and 0.005% in 

the LE dataset, indicating that a similar proportion of these genes existed in both datasets, largely 

independent of methane emission. 
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Figure 4. Overview of the divergent functions of the HE and LE based on the shotgun metagenome analysis 

(subsystems). A.I. Shannon diversity and A.II. RDA plot at feature level. B.I. LEfSe analysis and B.II-.V. ANOVA plots at 

highest subsystem level (level 1). C.I. LEfSe analysis and C.II-V.II. subsystem at level 3. (100 most abundant; n=30) 

 

Shotgun metagenomics confirms taxonomic differences between HE and LE microbiomes 

From the metagenomics dataset, 68,084,011 fragments of ribosomal RNA genes were obtained. These 

were classified into 57 phyla, 889 genera, 2,192 species, and 2,193 unique features. The samples were 

predominated by signatures of Bacteroidetes (62.69%; 42,678,473 reads), Firmicutes (28.80%; 

19,611,159 reads), and Proteobacteria (3.98%; 2,706,855 reads) at the phylum level; Bacteroides 

(51.10%, 34,793,498 reads), Clostridium (6.54%; 4,456,393 reads), and Eubacterium (4.93%; 3,357,015 

reads) at the genus level; and Bacteroides vulgatus (8.60%; 5,855,942 reads), Bacteroides fragilis (4.48%; 

3,051,022 reads), and Bacteroides sp. 4_3_47FAA (4.14%; 2,817,577 reads) at the species level 

(Supplementary Figure 7; Supplementary Figure 8; Supplementary Dataset 4). 

Overall, 488,550 sequences (0.72%) were assigned to the archaeal domain, 67,447,694 (99.07%) to the 

bacterial domain, 110,352 (0.16%) to Eukaryota, 35,836 (0.05%) to viruses, and 1,579 (0.002%) to other 

sequences. In the HE metagenomic dataset, 0.61% of all taxonomic information could be assigned to 

archaea, whereas 0.11% were archaeal reads in the LE dataset (see also Supplementary Dataset 4). An 

additional Krona chart based on archaeal and bacterial signatures only is provided in Supplementary 

Item 4 (Supplementary Item 4). 

The taxonomic information that could be extracted from the metagenomics data was highly similar to 

the information that was derived from 16S rRNA gene amplicon sequencing. This information also 

revealed that the LEs and HEs were significantly different in terms of their alpha and beta diversity 

(Figure 5.I-.II; p-values provided within the figure; Supplementary Figure 9.I).  

The significantly higher abundance of archaea in HE samples was confirmed by the results of the LEfSe 

analysis and ANOVA plots at the super-kingdom level, whereas 14.64% of all archaeal reads were 

retrieved from the LE samples, and 85.36%, from the HE samples (Supplementary Figure 9.II-.III; 

Supplementary Dataset 4). Euryarchaeota, Deinococcus-Thermus, and Chlamydia were significantly more 

abundant in the microbiome of HEs and Bacteroidetes in the microbiome of LEs at phylum level. 

Methanobrevibacter, Subdoligranulum, and Catenibacterium were associated with HEs, and Bacteroides, 

Zunongwangia, and Pedobacter were associated with LEs at the genus level (Figure 5.III-.XIV; 
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Supplementary Figure 9.IV-.V). At the species level, Methanobrevibacter smithii, Eubacterium siraeum, 

and Subdoligranulum variabile, and Bacteroides vulgatus, Bacteroides sp. 4_3_47FAA, and Bacteroides 

sp. 2_2_4 were correlated with the microbiomes of HEs and LEs, respectively (Supplementary Figure 8.II-

.III). Notably, signatures of Christensenellaceae could not be retrieved, a phenomenon that has been 

reported earlier (Ruaud et al., 2020). 
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Figure 5. Shotgun metagenome-derived information on the microbial community composition in samples of HEs and LEs 

(RefSeq). I Shannon diversity and II. RDA plot based on strain level. III. LEfSe analysis and IV-VII. ANOVA plots at phylum level. 

VIII. LEfSe analysis and IX-XIV. ANOVA plots at the genus level (100 most abundant taxa; n=30). 
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Archaeal profiles can be used to predict methane emissions and are not associated with specific viral 

or eukaryotic signatures (n=30) 

In the next step, we analysed whether it was possible to predict the methane emission levels of 

individuals based on compositional and functional information derived from their stool microbiomes. 

Specifically, we applied supervised learning methods that had been trained on the amplicon and 

metagenomic datasets. Although the individual datasets were rather small, which increases the risk of 

overfitting the learning model, the overall prediction accuracies reached 63.6% in case of 16S rRNA gene 

amplicons and up to 100% for RefSeq in the shotgun dataset. When we applied the classification model 

to a larger public dataset with unknown methane emissions, the estimators achieved 85% prediction 

accuracy. Hence, despite the obvious limitations of our classification model due to sample size and likely 

overfitting, these results indicate that it has a high potential for predicting methane emissions above 5 

ppm. 

Network analyses of the archaeome profile in HE and LE on the species level revealed again the 

predominance of Methanobrevibacter species under HE conditions, whereas LE samples were 

characterised by a more diverse but rarely abundant archaeome (Supplementary Figure 11). HE samples 

were characterised by the overwhelming predominance of M. smithii (70% of all archaeal taxonomic 

features; 9% in LE), with M. stadtmanae representing 1% (3% of all archaeal tax. features in LE), and 

Thermoplasmatales (Methanomassiliicoccales), 0.3% (1% in LE). An extraordinarily broad diversity of 

archaea was detected in both datasets, including members of the Methanobacteriales, 

Methanomicrobiales, Methanosarcinales, Methanococcales, Thermococcaceae, Halobacteriaceae, and 

Archaeoglobaceae, as well as unclassified reads from Thaumarchaeota, and including a number of taxa 

that had not been previously detected in the human microbiome (Supplementary Figure 10; 

Supplementary Dataset 4; Supplementary Item 5).  

In order to identify other microbial variables that influence the archaeal profiles, and in particular the 

profile of the dominant M. smithii strain, eukaryotic signatures and viral/phage signatures were 

correlated accordingly. However, no archaeal viruses could be identified, and also no correlating 

eukaryotic/protist signatures could be observed, indicating that the detected methanogenic archaea are 

free-living nature. 
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Diet modulates HE and LE keystone taxa and methane production 

As indicated above, we identified a number of representative bacterial and archaeal genera which were 

indicative for HE and LE, respectively (Supplementary Table 3; Figure 6; see also Figure 2 co-occurrence 

patterns). To perform more detailed analyses on the RSV level, we proceeded with amplicon data 

(matched dataset) because taxonomic information for Christensenellaceae was missing from the 

metagenomics dataset. We identified 21 RSVs, revealing significantly discriminative abundances 

(identified through LEfSe analyses) and substantial mean abundances (top 600 taxa) (Supplementary 

Table 3, Figure 6). We found that the LE profile was mainly defined by four RSVs of Bacteroides, four 

RSVs of Butyricicoccus, and one RSV each of Flavonifractor, Blautia, <Tyzzerella=, Ruminococcus (R. 

gnavus group), and Roseburia, whereas the HE profile was driven by one RSV of Methanobrevibacter, 

three RSVs of the Christensenellaceae R7 group, two RSVs of Ruminiclostridium, one RSV of 

Ruminococcaceae UCG010, and one RSV of Eubacterium (E. ruminantium group) (Figure 6, 

Supplementary Table 3). This selection of keystone taxa was further supported by 84 dereplicated high 

quality MAGs (metagenome assembled genomes; mean completeness 90%, mean contamination 7%, 

Supplementary Table 4) with replication rates in the range of 1.3 to 2.6 (Methanobrevibacter smithii 4 

MAGs, Bacteroides 32 MAGs, Christensenellales 19 MAGs, Ruminococcaceae 19 MAGs, 

Ruminiclostridium 2 MAGs, Ruminococcus 4 MAGs). 
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Figure 6. Identified keystone taxa in HE and LE subjects. A. Cladogram of LE and HE keystone taxa. F: Firmicutes, C: 

Clostridia/Clostridiales, L: Lachnospiraceae, R: Ruminococcaceae. Numbers in brackets indicate the number of contributing 

RSVs; B. and C. Network of keystone taxa of HE and LE at RSV and genus levels, respectively. I → RSV1: Methanobrevibacter; II→ 

RSV2-4: Christensenellaceae R7 group; III → RSV5: Eubacterium ruminantium group; IV → RSV6-7: Ruminiclostridium; V → RSV8: 

Ruminococcaceaea UCG010; VI → RSV9-12: Bacteroides;  VII → RSV13: Ruminococcus gnavus group; VIII → RSV14: Blautia; IX → 

RSV15: Roseburia; X → RSV16: <Tyzzerella=; XI → RSV17-19: Butyricicoccus; XII → RSV20: Flavonifractor (also see Supplementary 

Table 3) 

In a subsequent step, we were interested in examining the way diet correlates with the relative 

abundance of the identified keystone taxa and methane emissions. A Food Frequency Questionnaire 

(FFQ) (Haftenberger et al., 2010) was used to assess the food habits of each participant during the four 

weeks prior to sampling. Overall, the daily intake of 19 food ingredients were tracked, including proteins, 

carbohydrates, fat/saturated fat/omega-3 fatty acids/omega-6-fatty acids, fibre, alcohol, sodium, 
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vitamins C/B12/E/D, zinc, calcium, magnesium, potassium, iron, water, as well as three diet9s quality 

indicators, including overall energy intake (kcal), nutritional variety, and diversity (Supplementary Table 

2).  

Regarding the HE states, trends for negative correlations could be identified for Methanobrevibacter 

counts and energy, vitamin D, or calcium in a BioEnv plot (Spearman9s rho correlation; Supplementary 

Figure 12). The results of a correlation analysis revealed that a higher relative abundance of 

Methanobrevibacter (n=30 amplicon-based dataset) was negatively correlated with total fat (rs=-0.435, 

p=0.016; if not stated otherwise a Spearman9s correlation analysis was performed), saturated fat (rs=-

0.421, 0.021) and omega-3 fatty acids (rs=-0.407, p=0.026). Trends indicating a correlation were 

observed for vitamin B12 intake (rs=-0.355, p=0.054). Similar trends for vitamin B12 (rs=-0.465, p=0.01) 

and omega-3 fatty acid (rs=-0.349, p=0.059) intake were seen when examining the relative abundance of 

the Christensenellaceae R7 group. Vitamin D intake was negatively correlated with the 

Christensenellaceae R7 group relative abundances (rs=-0.345, p=0.062;), whereas Ruminococcaceae 

UCG10 was positively correlated with alcohol consumption (rs=0.390, p=0.033) (Supplementary Table 5). 

Within the LE community cluster, an analysis of the genera Bacteroides, Flavonifractor and the 

Ruminococcus gnavus group revealed a trend with respect to a negative correlation with dietary fibre 

intake (rs=-0.379, p=0.039; rs=-0.517, p=0.003 and rs=-0.382, p=0.037, respectively;). The relative 

abundance of Blautia positively correlated with vitamin B12 levels (rs=0.505, p=0.004) and protein intake 

(R=0.422, p=0.020), whereas protein (rs=-0.375, p=0.041) as well as zinc (rs=-0.370, p=0.044) intake was 

negatively correlated with <Tyzerrella=. Interestingly, only the presence of the genus <Tyzerella= was also 

positively correlated with vegetarianism (rs=0.325, p=0.08). Apart from this, vegetarianism only 

correlated with different dietary compound intake, namely, vitamin C and sugar intake was positively 

correlated (rs=0.490, p=0.006 and rs=0.441, p=0.015, respectively), whereas food diversity and vitamin 

B12 levels (rs=-0.473, p=0.008 and rs=-0.449, p=0.013, respectively) were negatively correlated with 

vegetarianism (Figure 7, Supplementary Table 5).  

Altogether, the information derived from the subjects9 dietary information revealed that one specific 

bundle of dietary compounds (high dietary fibre levels, low fat and low vitamin B12 intake) is associated 

with HE status, confirming the above-mentioned observation that the HE microbial community possesses 

a higher ability to degrade dietary fibres (Supplementary Table 5).  
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Methane emission is driven by reduced vitamin B12 intake and fibre-derived, increased formate 

concentrations 

HE and LE keystone communities are each metabolically highly interwoven. Overall, degradation of 

dietary carbohydrates results in metabolic cycles of short chain fatty acids and CO2/H2 (Supplementary 

Figure Metabolic Interaction). Under LE conditions, these metabolites are trapped in the cycle until they 

are uptaken by the host or used for biomass production. The conversion of H2/CO2/formate into 

methane by Methanobrevibacter under HE conditions, however, results in a metabolic <dead end=, as 

methane cannot further be metabolised by gut microbiota or human epithelial cells.  Formate-based 

methanogenesis is widely distributed amongst human-associated methanogens, as e.g. all 

Methanobrevibacter species detected in a catalogue of 1,167 genomes have the capability to use 

formate for methanogenesis (Chibani et al., 2020). 

To characterize the role of these metabolites in more detail, we performed NMR-based metabolomic 

analyses of the stool samples to assess the relative quantities of formate, acetate, lactate, butyrate, 

succinate, and propionate in samples from both groups. Indeed, we recognised a significant correlation 

between the formate concentration and methane emissions (in ppm, Spearman9s-rho correlation 

coefficient 0.491, p=0.006), confirming the important role of the C1 metabolite. Formate concentration 

was significantly correlated with acetate (spearman-rho correlation coefficient 0.628), butyrate (0.416) 

and propionate (0.448) abundance, whereas no correlations were found for lactate and succinate (0.204 

and 0.258, respectively). In fact, we measured an increase in formate concentrations (1.5-fold, based on 

median concentrations per group), acetate (1.35-fold), and propionate (1.17-fold) under HE conditions, 

whereas the butyrate, lactate, and succinate concentrations remained largely equal (Supplementary 

Table 6).  

To collect more information about the metabolic interaction and growth rates of the different microbial 

communities, we used MICOM (Diener, Gibbons and Resendis-Antonio, 2020), a tool that allows us to 

apply flux balance analysis (FBA) to entire microbial communities. Growth simulations (growth rates, 

growth niches, metabolite consumptions and phenotype associated fluxes; Supplementary Dataset 5 and 

6) were based on the individual dietary information obtained from the donors (Supplementary Dataset 

7), and community models were based on the AGORA 1.03 genus model (Magnúsdóttir et al., 2017). The 

results of the analysis performed on previously identified keystone taxa confirmed a significant 

association between the HE conditions and an increased flux of C1 metabolites, such as methanol, 

formaldehyde, carbon dioxide and formate (Fig. 7), as well as acetate and propionate. LE conditions were 
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associated with D-mannose, lactate, ribose levels, and overall a greater complexity of organic molecules. 

Notably, the hydrogen flux was only minimally associated with HE (-0.021595761). Fluxes in vitamin 

compounds (nicotinamide, riboflavin, thiamine, pyridoxin, menaquinone 8) were strongly associated 

with the LE conditions. In addition, LE conditions were significantly associated with fluxes in magnesium, 

zinc, cobalt, chloride, and biomass production, whereas HE conditions were significantly associated with 

higher fluxes in potassium, ammonium, and hydrogen sulphide. 

Notably, in our model, all identified keystone members of both community types were involved in 

formate turnover, emphasizing the very important role of this C1 compound, whereas vitamin fluxes 

were mainly associated with Blautia, Clostridium (<Tyzzerella=) and Ruminococcus representatives, all of 

which are members of the LE community (Supplementary Dataset 6).  

In our model, the HE community was strongly associated with increased indole fluxes. Indole is an 

important tryptophan break-down product, and controls a number of microbial processes, such as 

biofilm formation, drug resistance, and virulence (Lee and Lee, 2010). 
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Figure 7. MICOM model-based flux balance analysis of keystone taxa. The 40 most significant metabolites are shown for each 

condition. Left: HE, right: LE. 

Discussion 

In this study, we focused on performing detailed analyses of human methane emissions, which are 

strong indicators of the biological contribution of the methano-archaeome to human physiology. Using 

amplicon-based and metagenomic sequencing, NMR-based metabolomics, dietary intake analysis and 

metabolic modelling, we were able to show that: i) high methane emission is linked to a significantly 

higher microbial alpha diversity in the GIT, ii) the microbial community composition and function differs 

significantly between high- and low- methane emitters and is pronounced in specific key-taxa, iii) 

methane emission is driven by dietary habits, such as high fibre, low fat, and low vitamin B12 uptakes, iv) 

C1 compounds, short-chain fatty acids and particularly formate, are keystone metabolites associated 

with methane formation. 

Our analysis results confirmed that detectable methane formation is associated with a uniform 

archaeome, which is predominated by M. smithii (Goodrich et al., 2014). Although this archaeal species 

is generally highly prevalent in the population (detectable in about 97.5% of all analysed subjects; (Dridi 

et al., 2009)), its abundance in our study was highly variable. High methane emitters (HEs) revealed a 

relative abundance of approx. 2% (1.37% in the shotgun metagenomic dataset), whereas LEs were 

characterised by theextraordinarily low contribution of about 0.002% of this species (0.19% in the 

shotgun metagenomic dataset; see also (Borrel et al., 2020).  

The abundance of Methanobrevibacter was strongly correlated with a core group of keystone species, 

including various Ruminococcaceae and Christensenellaceae (see also: (Vojinovic et al., 2019)). In our 

study, three Christenellaceae RSVs, which co-occurred stably with Methanobrevibacter, were indeed 

significantly associated with methane production. The interplay between Methanobrevibacter and 

Christensenellaceae is of great interest, as this syntrophic partnership has been associated with a lean 

phenotype (Goodrich et al., 2014) and a reduced gain of fat tissue (Oki et al., 2016; Alonso et al., 2017) in 

earlier publications. Notably, both taxa are considered to be highly inheritable (Goodrich et al., 2014; 

Waters and Ley, 2019). In co-culturing studies, the methanogenic partner shifted the Christensenella 

minuta metabolism, probably due to its potent hydrogen consumption, toward acetate production 

rather than toward butyrate production, leading to increased H2 and CO2 production (Goodrich et al., 

2014; Ruaud et al., 2020). Although this observation would indicate a bilateral syntrophic relationship of 

both microorganisms, we observed in our study, that both partners were unevenly affected by LE and HE 

conditions: Christensenellaceae were present in both communities (2% in LE), and signatures increased 
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only three-fold towards those observed under HE conditions, whereas Methanobrevibacter signatures 

increased 1000-fold, probably indicating a more complex underlying principle. Indeed, we could not 

identify any dietary-derived compound which had a direct, significantly stimulating or inhibiting effect on 

the Christensenellaceae population.    

The complexity of ingested saccharides is an important modulator for the composition and functionality 

of a gastrointestinal microbiome, and an interesting link between cellulose degradation and methane 

emission was observed by other researchers. Chassared et al. (2010) described that dominant cellulose 

degraders isolated from non-methane-excreting subjects are mainly affiliated with Bacteroidetes, while 

they are predominantly represented by Firmicutes in methane-excreting individuals (Chassard et al., 

2010). In our study, we also identified Bacteroides and Roseburia, which belong to the phylum 

Bacteroidetes, as well as Christensenellaceae, Ruminiclostridium and Ruminococcaceae (Firmicutes), as 

important key taxa in LE and HE subjects, respectively. Notably, Bacteroides (which was shown to be 

significantly negatively correlated with dietary fibres in our study) and Roseburia, unlike high- H2- 

producing Ruminococcus sp., are not able to digest e.g. microcrystalline cellulose (Aminov et al., 2006; 

Duncan et al., 2006; Chassard et al., 2010). This indicates that the type of dietary fibre has a potential 

modulating impact on methane production. 

The negative correlations observed for fat intake and methanogen abundance are highly congruent with 

previous observations made in ruminants, where an increased fat (oil) concentration in the diet led to a 

reduced enteric methane production of up to 36% ((Alvarez-Hess et al., 2019) and references therein). It 

is considered that dietary fat affects methane production in rumen because it reduces the hydrogen 

accumulation through fatty acid biohydrogenation, leading to the conversion of unsaturated fatty acids 

to saturated fatty acids, reducing the intake of fermentable organic matter and fibre digestion (Alvarez-

Hess et al., 2019).  

Methanobrevibacter abundance was also negatively correlated with vitamin B12 intake. As vitamin B12 is 

solely found in animal products (meat, fish, but also eggs and milk products), this association was 

considered as indicative of vegetarianism, and this was statistically confirmed (vitamin B12 intake was 

negatively correlated with vegetarianism in our study, R=-0.449, p=0.013, Spearman correlation, 

Supplementary Table 5). 

Another important finding, which was confirmed by the results of various analyses we carried out, was 

the keystone role of formate in methane emission. Notably, formate and vitamin B12 (cobalamin) 

metabolism are closely connected in humans. Cobalamin deficiency was associated with increased 

formate concentrations in urine and plasma (in rats, (MacMillan et al., 2018)), due to the so-called 
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methyl-folate trap (HERBERT and ZALUSKY, 1962; Scott and Weir, 1981; Lamarre et al., 2013).  Under 

these conditions, the cytosolic folate accumulates as 5-methyl-THF (thus reducing the concentration of 

THF), which impedes the incorporation of formate into the folate pool, and results in  formate 

accumulation. In general, replenishing the THF pool also involves ALDH1L1 (10-formyltetrahydrofolate 

dehydrogenase), an enzyme involved in formate oxidation, which converts 10-formyl-THF to THF and 

CO2. Notably, an association between the Christensenellaceae/Methanobrevibacter abundance and the 

abundance of a certain SNP (rs2276731) in the ALDH1L1 gene was observed when genetic correlations 

with microbiome profiles were analysed in a large UK twin study (Goodrich et al., 2016). SNP rs2276731 

is characterised by a nucleotide exchange towards C (instead of G, T) in approx. 17% of the population 

(rs2276731 RefSNP Report - dbSNP - NCBI, 2020). This ratio is in high agreement with the percentage of 

methane producers observed in our (15%) and other studies (Polag and Keppler, 2019), however, a more 

detailed analysis of this complex relationship still needs to be carried out.  

Based on these considerations and also the fact that we could measure an increased formate 

concentration in stool samples and observe an increased abundance of genes within the formate 

dehydrogenase cluster in HE samples (HE: 0.05%; LE: 0.03% of all genes), we conclude that formate 

represents a keystone metabolite in this entire process.  

Methanobrevibacter smithii is highly specialised to perform methanogenesis on H2/CO2 and formate 

compounds, and the ability to consume formate appears to be an important specialisation displayed by 

methanogens in the human gastrointestinal tract (Chibani et al., 2020). This hypothesis is supported by 

the observation that M. smithii upregulates formate utilisation gene clusters in syntrophic relationships 

(Samuel et al., 2007), and methano-archaeal adhesin-like proteins are expressed differently in response 

to formate, indicating that the physical relationship with bacterial partners changes when different 

amounts of different metabolites are available (Hansen et al., 2011).   

The findings of this study are based on a relatively small sample size and a homogenous study group (e.g. 

neither elderly persons nor children were recruited), and thus no general conclusions can be drawn 

regarding the impact of methanogen presence on aging, health status, or obesity. Future studies are 

needed to collect data from more variable study groups and to examine the longitudinal dynamics of the 

HE microbiome in more detail in terms of its correlation with additional parameters (e.g. blood 

metabolites, concentration of H2 and CO2). 

Conclusions 
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At this point it appears too early to ask how gastrointestinal methanogenesis impacts the host and 

whether the presence and activity of methanogens could contribute to health or disease. However, 

higher formate levels (herein correlated with increased methane emission) correlated with positive 

foetal development, T-cell activation, a lean phenotype, and cardiovascular function (Pietzke, Meiser and 

Vazquez, 2020). Although we lack detailed data on this metabolite-microbiome interplay, our study and 

its results re-emphasize the importance of archaeome activity in the human body. This activity serves as 

an important mirror, modulator, and regulator of the microbiome and overall body processes. 
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STAR★Methods  

Key Resources Table 

REAGENT or RESOURCE 
SOURCE IDENTIFIER 

Dietary information 

German Food Frequency Questionnaire (FFG)  (Haftenberger et 

al., 2010) 

Robert Koch Institute 

 

Methane measurement  

GastroCH4ECK breath bags  Bedfont Scientific  

Ltd, UK 

#GASTROCHECK-BAG-XL 

GastroCH4ECK Gastrolyzer Bedfont Scientific  

Ltd, UK 

NA. 

 

Commercial Kit  

PowerSoil
®
 DNA Isolation Kit QIAGEN, USA #12888-100 

 

PMA treatment 

PMA solution (20 mM) VWR #40019 

PMA-Lite™ LED Photolysis Device  
Biotum NA 

 

Cell disruption and DNA conc. measurement 
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MagNaLyser Roche Diagnostics 
NA 

Qubit fluorometer 2.0 Thermo Fisher 

Scientific, USA 
NA 

Qubit dsDNA HS Assay Kit Thermo Fisher 

Scientific, USA 
#Q32854 

  

PCR Reagents 

TAKARA Ex Taq® buffer with MgCl2 (10x) 

Takara Bio Inc. #RR001A 

dNTP mix (200 µM) 
Takara Bio Inc. #RR001A 

TAKARA Ex Taq
®
 Polymerase (0.5 U) 

Takara Bio Inc. #RR001A 

PCR grade water Jena Bioscience, 

Germany 

#PCR-258S 

 

Oligonucleotides 

Universal forward primer: Illu-515FB 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGT

G 

YCAGCMGCCGCGGTAA 

(Pausan et al., 

2019) 

Eurofins Genomics AT GmbH,  

Austria 

Universal reverse primer: Illu-806RB 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGG

G 

ACTACNVGGGTWTCTAAT 

(Pausan et al., 

2019) 

Eurofins Genomics AT GmbH,  

Austria 

Archaeal forward primer (nested PCR1): 344F 

ACGGGGYGCAGCAGGCGCGA 

(Pausan et al., 

2019) 

Eurofins Genomics AT GmbH,  

Austria  

Archaeal reverse primer (nested PCR1): 1041R 

ACGGGGYGCAGCAGGCGCGA 

(Pausan et al., 

2019) 

Eurofins Genomics AT GmbH,  

Austria 

Archaeal forward primer (nested PCR2): 519F 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCA 

GCMGCCGCGGTAA 

(Pausan et al., 

2019) 

Eurofins Genomics AT GmbH,  

Austria 
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Archaeal reverse primer (nested PCR2): 806R 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGG

G 

ACTACVSGGGTATCTAAT 

(Pausan et al., 

2019) 

Eurofins Genomics AT GmbH,  

Austria 

 

Illumina sequencing 

Illumina MiSeq sequencing platform  Illumina, 

Eindhoven, the 

Netherlands 

Core Facility for Molecular Biology (Center 

for Medical Research, Graz) 

(Klymiuk et al., 2016) 

Nextera XT Library construction kit Illumina, 

Eindhoven, the 

Netherlands 

Macrogen (Seoul, South Korea) 

Illumina HiSeq technique  Illumina, 

Eindhoven, the 

Netherlands 

Macrogen (Seoul, South Korea) 

 

Software and Algorithms  

QIIME2 version 2020.6 
(Bolyen et al., 

2019) 

 https://qiime2.org 

SILVA version 128-132 (Quast C, Pruesse 

E, Yilmaz P, 

Gerken J, Schweer 

T, Yarza P, Peplies 

J, 2013) 

 

R version 3.5.1 

R Studio version 1.2.1335 
(Team, 2019) 

https://www.r-project.org 

decontam version 1.1.0 
(Davis et al., 2018)  

https://github.com/benjjneb/decontam 

 vegan version 2.5-5  

(Oksanen et al., 

2007) 

 

Calypso (Zakrzewski M, 

Proietti C, Ellis JJ, 

Hasan S, Brion M-

http://cgenome.net:8080/calypso-

8.84/faces/uploadFiles.xhtml 
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J, Berger B, 2017) 

Galaxy set-up 

(Jalili et al., 2020) 

provided by the Core Facility 

Computational Biology at the Medical 

University of Graz 

LEfSe (Segata et al., 

2011) 

http://huttenhower.sph.harvard.edu/galax

y/ 

Krona chart (Ondov, Bergman 

and Phillippy, 

2011) 

Krona chart excel template 

nut.s - nutritional software version 1.32.79 (Denkwerkzeuge, 

2020) 

www.nutritional-software.at 

MG-Rast platform (server running version 4.0.3.) (Meyer et al., 

2008) 

https://www.mg-rast.org/  

IBM SPSS Amos version 26 
IBM 

http://www.ibm.com/analytics/us/en/tech

nology/spss/ 

fastqc v0.11.8  (Andrews, 2010) http://www.bioinformatics.babraham.ac.u

k/projects/fastqc/ 

trimmomatic v0.38  
(Bolger, Lohse and 

Usadel, 2014) 

http://www.usadellab.org/cms/?page=trim

momatic 

bowtie2 v2.3.5 
(Langmead and 

Salzberg, 2012) 

http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml 

samtools v1.9 (Li et al., 2009) 

http://www.htslib.org/ 

bedtools v2.29.0 
(Quinlan and Hall, 

2010) 

https://bedtools.readthedocs.io/en/latest/ 

diamond v0.9.25 
(Buchfink, Xie and 

Huson, 2014) 

http://www.diamondsearch.org/index.php 

MEGAN v6.20.13 (Huson et al., https://software-ab.informatik.uni-

tuebingen.de/download/megan6/welcome
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2007) .html 

Megahit v1.1.3 (Li et al., 2015) 

https://github.com/voutcn/megahit 

MaxBin v2.2.4 (Wu et al., 2014) 

https://sourceforge.net/projects/maxbin2/ 

dRep v2.0.5 (Olm et al., 2017) 

https://github.com/MrOlm/drep 

GTDBtk v1.2.0 
(Chaumeil et al., 

2020) 

https://github.com/Ecogenomics/GTDBTk 

MaGe 
(Vallenet et al., 

2006) https://mage.genoscope.cns.fr/microscope

/home/index.php 

iRep v1.1.9 
(Brown et al., 

2016) https://github.com/christophertbrown/iRe

p 

q2-sample-classifier-plugin 

(N. Bokulich et al., 

2018) 

 

https://docs.qiime2.org/2020.11/tutorials/

sample-classifier/ 

q2-micom plugin v.0.8.0 

(Diener, Gibbons 

and Resendis-

Antonio, 2020) 

https://github.com/micom-dev/q2-micom 

AGORA genus model database v1.03  
(Magnúsdóttir et 

al., 2017) 

https://www.vmh.life/#downloadview 

 

Deposited Data 

Raw data (amplicon, metagenome) 
European 

Nucleotide 
PRJEB41867 
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Archive (ENA) 

Supplementary Dataset (Sequencing data after 

decontam and removal of features with zero and 

one reads) 

Supplementary Figures, Tables and Items 

Mendeley data 

(Kumpitsch et al., 

2020) 

http://dx.doi.org/10.17632/hjj3tx7n84.1 

 

PCR conditions 

  universal Archaea 

(nested PCR 1) (nested PCR2) 

Initial denaturation 94°C, 3´ 95°C, 5´ 95°C, 5´ 

Denaturation 94°C, 45´´ 94°C, 30´´ 95°C, 40´´ 

Annealing 50°C, 60´´ 56°C, 45´´ 63°C, 2´ 

Elongation 72°C, 1´30´´ 72°C, 1´ 72°C, 1´ 

Final elongation 72°C, 10´ 72°C, 10´ 72°C, 10´ 

No. of cycles 35 25 30 

 

Contact for Reagent and Resource Sharing 

Further information and requests for resources should be directed to and will be fulfilled by the Lead 

Contact, Christine Moissl-Eichinger (christine.moissl-eichinger@medunigraz.at). 

Subject Details 

n=100 

One-hundred participants between 18-37 years were recruited at the University of Graz. Following 

exclusion criteria were set: smoker, left-handers, intake of antibiotics and probiotics within the last 3 

months before sampling and neurological, psychiatric or internal diseases. The study was evaluated and 

approved according to the Declaration of Helsinki by the local ethics committee of the University of Graz 

(EK-Nr. GZ. 39/44/63 ex 2017/18). Before participation, all participants signed an informed consent.  

 

Method Details 
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Methane measurement 

All volunteers were asked to inhale deeply through the nose and hold their breath for 15 s before 

complete exhalation into the GastroCH4ECK breath bags (Bedfont Scientific Ltd, UK) via the mouth. 

Breath was collected on the same day as the stool sample in the morning before brushing their teeth and 

eating breakfast. Methane in the breath was measured by GastroCH4ECK Gastrolyzer (Bedfont Scientific 

Ltd, UK). Participants with CH4 values above 5 ppm were stated as methane producers. With these 

measurements 15% of the study group (n=15) were classified as high methane emitters (Ch4 value ≥ 

5ppm). 

Matched subset (n=30) 

15 high methane emitters were matched to 15 low methane emitters by sex, age, hormonal 

contraception, and vegetarianism (Supplementary Table 2). All other participants were excluded in this 

subset. 

Nutritional Assessment 

Dietary habits and food intake information of the 4 weeks before the investigation were collected by a 

validated food frequency questionnaire (<German Food Frequency Questionnaire (FFG)= of the Robert 

Koch Institute) (Haftenberger et al., 2010). The diet9s nutritive composition (e.g. intake of fat, protein, 

magnesium, zinc, etc) and dietary diversity indices were analyzed by a specific nutrition software using 

food and nutritive values specific for Austria (Denkwerkzeuge, 2020). 

 

Sample collection, DNA extraction and amplicon sequencing 

Collection and PMA treatment 

Stool samples were collected of every participant. To make sure that we analyse intact cells, a 10% stool 

suspension with 0.9% sodium chloride was treated with propidium monoazide (PMA) solution to mask 

freely accessible DNA. During PMA treatment, all steps were performed in the dark. PMA solution (final 

concentration: 50 uM) was added to the stool samples. Samples were vortexed briefly, incubated for 10 

min on a shaker and 15 min in a PMA-Lite™ LED Photolysis Device (Biotum) afterwards. Samples were 

stored at -20 °C until further use. 

DNA extraction 

PMA-treated stool samples were used to extract microbial genomic DNA by using the DNeasy PowerSoil 

Kit (QIAGEN, USA) according to manufacturer9s protocol. Only modification was the use of MagNaLyser 
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at 6500 rpm for 2 times 30 s instead of vortexing the samples. DNA concentration of extracted DNA was 

quantified via Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, USA). 

16S rRNA gene-based next generation sequencing (NGS) and sequence data processing 

To determine the bacterial microbial diversity the variable region V4 of 16S rRNA gene was amplified 

using universal PCR primers 515FB and 806RB. For the archaeal set up a nested PCR approach was used, 

using the primer pair 344F and 1041R at the first and 519F and 806R for the second PCR.  For detailed 

protocol and primer sequences see (Pausan et al., 2019). Each PCR reaction was performed in triplicates. 

Triplicates were pooled after visualization in 3 % agarose gel. Fragments were sequenced using the 

Illumina MiSeq sequencing platform (Illumina, Eindhoven, the Netherlands) performed in cooperation 

with the Core Facility for Molecular Biology of the Center for Medical Research in Graz (Klymiuk et al., 

2016).  

Raw reads were analyzed with QIIME2 (Quantitative Insights Into Microbial Ecology) version 2019.1 using 

DADA2 (Divisive Amplicon Denoising Algorithm) to denoise sequences (Callahan et al., 2016; Bolyen et 

al., 2019). Briefly, paired end reads were joined together before a quality check of the produced 

sequences was performed. Afterwards, taxonomic assignment was determined with SILVA v128 

(universal approach), and  SILVA v132 (archaeal approach)(Quast C, Pruesse E, Yilmaz P, Gerken J, 

Schweer T, Yarza P, Peplies J, 2013) as a reference database for a Naïve-Bayes classifier (N. A. Bokulich et 

al., 2018). For phylogenetic metrics and analysis a rooted tree was generated with FastTree 2 (Price, 

Dehal and Arkin, 2010).   

LEfSe (LDA Effect Size) (Segata et al., 2011) was used to identify genomic features characterizing the 

differences between two given conditions. In our case, the LEfSe tool was integrated in a user-friendly 

Galaxy set-up provided by the Core Facility Computational Biology at the Medical University of Graz. The 

cladogram was created by the <Plot Cladogram= function, and further-on optimized using Inkscape 

(inkscape.org).  

Controls 

Extraction blanks and PCR negative controls were processed in parallel. All controls were removed using 

the R package decontam (Davis et al., 2018) with the prevalence method and threshold set to 0.5 

(https://github.com/benjjneb/decontam). Unassigned sequences mitochondrial and chloroplast 

signatures as well as features with zero or only one read were also removed. Remaining RSV tables 

(Supplementary Dataset 1-3) were processed in Calypso (Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.21.423794doi: bioRxiv preprint 

https://github.com/benjjneb/decontam
https://doi.org/10.1101/2020.12.21.423794
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

M-J, Berger B, 2017) to generate RDA, Shannon, PCoA, ANOVA plots as well as networks and correlation 

analysis. 

 

BioEnv  

R Studio version 1.2.1335 (2018-07-02) and R package vegan 2.5-5 (Oksanen et al., 2007) was used to 

generate a BioEnv diagram with environmental variables (dietary information, CH4 emission, ..) with 

maximum correlation with microbial community dissimilarities. 

 

 

Metagenome Analysis 

Shotgun metagenome sequencing 

200 ng extracted DNA (PMA treated) of each of the 30 matched samples was sent for sequencing to 

Macrogen (Seoul, South Korea). Library was extracted via Nextera XT Library construction kit (Illumina, 

Eindhoven, the Netherlands) and sequenced using Illumina HiSeq technique (Illumina, Eindhoven, the 

Netherlands).  

Metagenomics analysis via MG-Rast 

Raw data was quality controlled, sequences were paired and  analyzed with the open-submission data 

portal MG-Rast platform (server running version 4.0.3.)(Meyer et al., 2008). Features with zero or one 

read were removed before feature tables (RefSeq and SEED) were uploaded in Calypso (Zakrzewski M, 

Proietti C, Ellis JJ, Hasan S, Brion M-J, Berger B, 2017). 

Metagenome assembled genomes (MAGs) 

After checking quality with fastqc (v0.11.8)(Andrews, 2010), raw shotgun reads were filtered accordingly 

with trimmomatic (v0.38) (Bolger, Lohse and Usadel, 2014) by using a minimal length of 50 bp and a 

Phred quality score of 20 in  a sliding window of  5 bp.  Quality filtered sequences were then mapped 

against the human chromosome hg19 with bowtie2 (v2.3.5) (Langmead and Salzberg, 2012) to remove 

sequences of the human host by retaining all unmapped reads with samtools (v1.9, settings: -b -f 12 -F 

256)(Li et al., 2009). Host removed forward and reverse fastq files were then extracted from sorted bam 

files with bedtools (v2.29.0) (Quinlan and Hall, 2010). Reads were then analyzed in a gene and genome-

centric manner. For the gene-centric analysis, host removed quality filtered reads were annotated by 

blastX searches against the NCBInr database (release of Sep. 9th 2020) using diamond (v0.9.25) 

(Buchfink, Xie and Huson, 2014). Resulting m8 files were then visualized in MEGAN (v6.20.13) (Huson et 
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al., 2007). For the genome-centric analysis host removed quality filtered reads were co-assembled in 

Megahit (v1.1.3) (Li et al., 2015) by using the preset meta-sensitive. Resulting contigs were binned with 

MaxBin v2.2.4 (Wu et al., 2014). Further on, bins were quality scored (based on CheckM (Parks et al., 

2015) estimates for completeness, contamination and strain heterogeneity as well as N50 based 

assembly continuity) and de-replicated to pick representative MAGs (metagenome assembled genomes) 

with dRep (v2.0.5) (Olm et al., 2017). Quality MAGs were then classified with GTDBtk (v1.2.0) (Chaumeil 

et al., 2020).  Identified key MAGs were further annotated and analyzed including gene synteny in MaGe 

(Vallenet et al., 2006). Finally, replication rates were determined with iRep (v1.1.9) (Brown et al., 2016).  

 

Prediction model 

Raw metagenome data was used to create prediction models in QIIME2 (Caporaso et al., 2010).  

Supervised metadata classifications and regressions 

The q2-sample-classifier-plugin (N. Bokulich et al., 2018) was used to predict high and low methane 

emitters from feature table compositions. To determine accuracy by comparing predicted values the 

data set was randomly split by 5 into a training set (⅘) and a test set (⅕). The training set was used for 

the learning model including settings for optimized feature-selection, parameter tuning and K-fold cross 

validation based on RandomForest. The resulting sample estimator (trained classification model) was 

also used to predict methane emissions between the shotgun (RefSeqs) and amplicon dataset.  

 

 

Krona charts 

Datasets (amplicon and metagenome) were normalized and Krona chart templates (Ondov, Bergman and 

Phillippy, 2011) were used to visualize the differences between HE and LE. 

 

Metabolic quantification using NMR 

Nuclear magnetic resonance spectroscopy (NMR) analysis was used to analyze concentrations of acetate, 

succinate, formate, lactate, butyrate and propionate in stool samples (PMA untreated) performed at the 

Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and 

Biochemistry, Medical University of Graz. To quench enzymatic reactions and remove proteins, 

methanol-water solution was added to the stool sample (2:1), cells were lysed using a Precellys 

homogenizer and stored at -20°C for 1 hour until further processing. Samples were centrifuged (4°C, 30 

min, 17949 rcf) and supernatants were lyophilized afterwards. Samples were then mixed with 500 µl 
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NMR buffer in D2O (0.08 M Na2HPO4, 5 mM 3-(trimethylsilyl) propionic acid-2,2,3,3-d4 sodium salt (TSP), 

0.04 (w/v) % NaN3 in D2O, pH adjusted to 7.4 with 8 M HCl and 5 M NaOH) and transferred into 5 mm 

NMR tubes. NMR was performed on an AVANCE™ Neo Bruker Ultrashield 600 MHz spectrometer 

equipped with a TXI probe head at 310 K and processed as described elsewhere (Alkan et al., 2018).  

The 1D CPMG (Carr-Purcell_Meiboom_Gill) pulse sequence (cpmgpr1d, 512 scans, 73728 points in F1, 

11904.76 HZ spectral width, 512 transients, recycle delays 4 s) with water suppression using pre-

saturation, was used for 
1
H 1D NMR experiments. Bruker Topspin version 4.0.2 was used for NMR data 

acquisition. The spectra for all samples were automatically processed (exponential line broadening of 0.3 

Hz), phased, and referenced using TSP at 0.0 ppm using Bruker Topspin 4.0.2 software (Bruker GmbH, 

Rheinstetten, Germany). 

Spectra pre-processing and data analysis have been carried out using the state-of-the-art data analysis 

pipeline (group of Prof. Jeremy Nicholson at Imperials College London) using Matlab® scripts and 

MetaboAnalyst 4.0 (Chong et al., 2018). NMR data were imported to Matlab® vR2014a (Mathworks, 

Natick, Massachusetts, United States), regions around the water, TSP, and remaining methanol signals 

excluded, and to correct for sample metabolite dilution probabilistic quotient normalization (Dieterle et 

al., 2006) was performed.  

Stated concentrations correspond to normalized concentrations after probabilistic quotient 

normalization. 

Metabolic predictions 

Potential metabolites were predicted with the q2-micom plugin (v. 0.8.0, (Diener, Gibbons and Resendis-

Antonio, 2020). All analysis were conducted with the AGORA genus model database (v1.03) 

(Magnúsdóttir et al., 2017) and covered the entire dataset (n=100) and the matched dataset (n=30) as 

well as all and selected key features. In addition, the standard western diet gut medium was adapted 

(with provided jupyter notebooks from the developers) according to measured nutrients to provide a per 

sample diet model as well. No abundance cutoff was used for all and selected features. In addition, a 

leave one out strategy was included for selected features to determine the behaviour of the established 

metabolic models in absence of a potential microbial key-player. The growth simulation was performed 

with individual settings for the tradeoff between community growth rate and individual taxon growth 

rate. This pressure to the model was determined by an evaluation of the tradeoff from 0-1 (zero to 

maximum enforced growth) and was set between 0.1 and 0.7 accordingly (all features and selected 
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features respectively). Resulting growth rates could be partly verified with calculated replication rates 

using iRep of representative key MAGs. Subsequent visualizations and analysis included potential 

metabolite consumptions, growth niches, and metabolite fluxes in dependence of measured methane 

emissions.  Finally, a minimal medium was determined for selected key features of matched samples.  

 

Quantification and Statistical Analysis 

Statistical test on metadata, metabolomics and amplicon data 

Statistical tests (Spearman rho9s and Pearson9s correlation) were performed using IBM SPSS Amos 

version 26. Different parameters were checked for normal distribution. Correlations were calculated 

based on distribution of the compared parameters via Spearman9s rho and Pearson9s correlation, 

respectively. In the manuscript, non-corrected p values were used to describe specific trends, however 

Bonferroni corrected p values can be found in Supplementary Table 5. 

 

Data and Software Availability 

Raw sequencing data obtained from amplicon-based sequencing and metagenomics sequencing data 

(technical sequences including adaptor sequences, linker sequences and barcode sequences as well as 

human reads were removed) used in this paper can be found in the European Nucleotide Archive (ENA): 

PRJEB41867. Supplementary Datasets (after decontam and removal of features with zero and one reads) 

and all Supplementary Figures, Tables and Items were deposited on Mendeley at 

http://dx.doi.org/10.17632/hjj3tx7n84.1.  
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Figure 1. Differences in alpha and beta diversity based on the <universal= approach of 16S rRNA gene sequencing between 

high (HE) and low methane emitters (LE). A-C. Profiles of the whole study cohort (n=100). D-F. Profiles of the matched subset 

only (n=30). A.I/D.I. An examination of Shannon diversity index revealed significant differences in alpha diversity (RSV based; 

ANOVA). A.II/D.II. The microbiome of HEs clustered significantly differently in the RDA plot (RSV based). B.I/E.I. LEfSe analysis of 

the 100 most abundant phyla and B.II/E.II-B.V/E.V. Relative abundance of selected phyla in ANOVA plots. C.I/F.I. LEfSe analysis 

of the 100 most abundant genera and C.II/F.II-C.VII/F.VII. ANOVA plots of selected genera. 

 

Figure 2. Co-occurrence networks based on Spearman’s rho correlation of selected genera in HE and LE microbiome samples. 

Taxa were selected based on significantly different relative abundances in both sample types and LEfSe analyses. Left, upper 

panel: Whole study cohort (n=100), right, upper panel: matched study subset (n=30). Lower panels show co-occurrence patterns 

in the HE (left) or the LE samples (right). 

Figure 3. Archaeome profile of HE and LE samples, based on the <archaeal= approach of 16S rRNA gene sequencing. A. Profile 

of the whole study cohort (n=100). B. Matched study subset (n=30). I. Bar chart of the 20 most abundant taxa compared 

regarding their low or high methane emission at the phylum level and II. at the genus level. III. Shannon diversity, and IV. RDA 

plot at RSV level. 

Figure 4. Overview of the divergent functions of the HE and LE based on the shotgun metagenome analysis (subsystems). A.I. 

Shannon diversity and A.II. RDA plot at feature level. B.I. LEfSe analysis and B.II-.V. ANOVA plots at highest subsystem level 

(level 1). C.I. LEfSe analysis and C.II-V.II. subsystem at level 3. (100 most abundant; n=30) 

Figure 5. Shotgun metagenome-derived information on the microbial community composition in samples of HEs and LEs 

(RefSeq). I Shannon diversity and II. RDA plot based on strain level. III. LEfSe analysis and IV-VII. ANOVA plots at phylum level. 

VIII. LEfSe analysis and IX-XIV. ANOVA plots at genus level (100 most abundant taxa; n=30). 

Figure 6. Identified keystone taxa in HE and LE subjects. A. Cladogram of LE and HE keystone taxa. F: Firmicutes, C: 

Clostridia/Clostridiales, L: Lachnospiraceae, R: Ruminococcaceae. Numbers in brackets indicate the number of contributing 

RSVs; B. and C. Network of keystone taxa of HE and LE at RSV and genus levels, respectively. I → RSV1: Methanobrevibacter; II→ 

RSV2-4: Christensenellaceae R7 group; III → RSV5: Eubacterium ruminantium group; IV → RSV6-7: Ruminiclostridium; V → RSV8: 

Ruminococcaceaea UCG010; VI → RSV9-12: Bacteroides;  VII → RSV13: Ruminococcus gnavus group; VIII → RSV14: Blautia; IX → 

RSV15: Roseburia; X → RSV16: <Tyzzerella=; XI → RSV17-19: Butyricicoccus; XII → RSV20: Flavonifractor (also see Supplementary 

Table 3) 

Figure 7. MICOM model-based flux balance analysis of keystone taxa. The 40 most significant metabolites are shown for each 

condition. Left: HE, right: LE. 

 

Supplementary Figures 
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Supplementary Figure 1. Bubble plots of the 50 most abundant taxa based on the <universal= approach of 16S rRNA gene 

sequencing. A. Microbiome profiles of the whole study cohort (n=100). B. Microbiome profiles of matched study subset (n=30). 

AI/BI. Phylum level. AII/BII. Genus level. Christensenellaceae_R7_group and Methanobrevibacter are highlighted. 

Supplementary Figure 2. Microbiome profiles and differences in abundances of specific taxa in HEs compared to LEs based on 

the <universal= approach (16S rRNA gene sequencing). A. Whole study cohort (n=100). B. Matched study subset (n=30). AI/BI. 

PCoA plots (RSV based); AII/BII. ANOVA analysis at phylum level and AIII/BIII at genus level on the 100 most abundant taxa. AIV-

VII/BIV-VII. Relative abundances of individual genera.  

Supplementary Figure 3. Significant positive and negative correlation of specific taxa with emitted methane concentrations 

based on <universal= approach 16S rRNA gene sequencing, Spearman-based regression analysis. A. Whole study cohort 

(n=100). B. matched study subset only (n=30). I-V. Significant positive correlation with emitted methane. VI-X. Significant 

negative correlation with emitted methane. (100 most abundant genera; Spearman); r=Spearman9s rho correlation coefficient 

(rs) 

Supplementary Figure 4. Co-correlation network of taxa associated with HE and LE based on <universal= approach 16S rRNA 

gene sequencing and Spearman’s rho. Networks showing connections of the 100 most abundant genera of A. the whole study 

cohort (n=100), B. our matched study subset (n=30), C. HE only (n=15) and D. LE only (n=15). Taxa highlighted in red and blue 

were shown to be most significantly different in LEfSe and ANOVA analysis. 

Supplementary Figure 5. Bubble plot overview on subsystems at the highest (I.) and at functional level (II.) based on shotgun 

metagenome analysis. In II., the 50 most abundant features are shown.; n=30. 

Supplementary Figure 6. Relative abundance of the most significantly different subsystems of HEs compared to LEs shown in 

ANOVA plots based on shotgun metagenome analysis (Subsystems). I. At highest subsystem level (level 1) and II. level3. (100 

most features; n=30) 

Supplementary Figure 7. Bubble plots of gut microbiome of HEs and LEs based on shotgun metagenome (RefSeq). I. visualized 

at phylum level and II. genus level. (50 most abundant taxa; n=30) 

Supplementary Figure 8. Significant differences were also observed at species level based on shotgun metagenome analysis 

(RefSeq). I.  Bubble plot of the 50 most abundant taxa. II. LefSe analysis and III. ANOVA plot of 100 most abundant taxa. (n=30) 

Supplementary Figure 9. Microbial community differs significantly with respect to methane production based on shotgun 

metagenome analysis (RefSeq). I. LEfSe analysis and II. ANOVA plot at superkingdom level. III. PCoA plot at RSV level. IV. 

ANOVA plot showing significant differences at phylum (100 most abundant) and V. genus level (50 most abundant taxa). (n=30) 

Supplementary Figure 10. Diversity and composition of the archaeal community as detected in HE and LE samples based on 

shotgun metagenomic analyses (RefSeq). I Alpha diversity based on Shannon index, II. RDA plot, III. PCoA plot, IV: LEfSe analysis 

on genus level.  

Supplementary Figure 11. Archaeal network in LE and HE (blue) based on shotgun metagenomics information (RefSeq). 
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Supplementary Figure 12. Correlations with dietary intake. BIOENV analysis showing explanatory variables triggering the 

microbial communities of HEs (blue) and LEs (red) based on Euclidean distances that were superimposed on a Non-metric 

multidimensional scaling (NMDS) plot derived from Bray-Curtis dissimilarities of HE and LE samples (stress:0.1939). 

Methanobrevibacter read counts were included as a variable for better orientation. 

Supplementary Figure 13. Metabolic network of keystone taxa in LE and HE microbiomes. Metabolites measured in stool 

samples are indicated by arrows; respective increase or decrease of the median by >5% is displayed. 

 

Supplementary Tables 

Supplementary Table 1. Characteristics of all participants (n=100).  

Supplementary Table 2. Characteristics of the matched subset (n=30).  

Supplementary Table 3. Keystone taxa of high and low methane emitters (n=30). Identified key taxa based on LEfSe analysis of 

the 600 most abundant genera/RSVs. Numbers in column 2 and 3 refer to Figure 6b and c. 

Supplementary Table 4. High quality dereplicated key MAGs including quality and replication estimates as well as taxonomic 

classification according to GTDB. 

Supplementary Table 5. Correlations of different parameters (general, keystone taxa, metabolites and diet) of this study 

among each other.  

Supplementary Table 6. Metabolite concentrations in high and low methane emitters (n=30). 

 

Supplementary Items 

Supplementary Item 1. Krona chart based on amplicon data (universal, n=100). 

Supplementary Item 2. Krona chart based on amplicon data (archaea, n=100). 

Supplementary Item 3. Krona chart based on metagenomic data (SEED, n=30). 

Supplementary Item 4. Krona chart based on metagenomic data (RefSeq, archaea and bacteria only,  n=30). 

Supplementary Item 5. Krona chart based on metagenomic data (RefSeq, archaea only,  n=30). 

Supplementary Item 6. Heatmap of amino acid flux predictions according to MICOM (universal primer: 515F-806R; n=30) 

Supplementary Item 7. Heatmap of C1-C4 flux predictions according to MICOM (universal primer: 515F-806R; n=30) 

Supplementary Item 8. Heatmap of complex compound flux predictions according to MICOM (universal primer: 515F-806R; 

n=30) 

Supplementary Item 9. Heatmap of fat flux predictions according to MICOM (universal primer: 515F-806R; n=30) 

Supplementary Item 10. Heatmap of nucleotide flux predictions according to MICOM (universal primer: 515F-806R; n=30) 
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Supplementary Item 11. Heatmap of other metabolite flux predictions according to MICOM (universal primer: 515F-806R; 

n=30) 

Supplementary Item 12. Heatmap of sugar flux predictions according to MICOM (universal primer: 515F-806R; n=30) 

Supplementary Item 13. Heatmap of vitamine flux predictions according to MICOM (universal primer: 515F-806R; n=30) 

 

Supplementary Datasets 

Supplementary Dataset 1. Feature table amplicon data of universal approach (universal primer: 515F-806R; n=100). 

Supplementary Dataset 2. Feature table amplicon data of archaeal approach (nested PCR: 344F-1041R, 519F-806R; (n=100). 

Supplementary Dataset 3. Feature table metagenomic data showing functional gene information (SEED; n=30). 

Supplementary Dataset 4. Feature table metagenomic data showing taxonomic information (RefSeq; n=30). 

Supplementary Dataset 5. MICOM growth rate predictions (universal primer: 515F-806R; n=30). 

Supplementary Dataset 6. MICOM metabolite flux predictions (universal primer: 515F-806R; n=30). 

Supplementary Dataset 7. Adapted per sample diet model for MICOM (n=30). 
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