bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423794; this version posted December 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Methane emission of humans is explained by dietary habits, host genetics, local

formate availability and a uniform archaeome

Christina Kumpitsch?, Florian Ph. S. Fischmeister®®, Alexander Mahnert’, Sonja Lackner*, Marilena

56
|

Wilding?, Corina Sturm?, Anna Springer’, Tobias MadI*®, Sandra Holasek”, Christoph Hogenauer’, lvan

Berg?, Veronika Schopf®, Christine MoissI-Eichingerl’s’*

! Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical

University of Graz, Graz 8010, Austria
?Department of Psychology, University of Graz, Graz 8010, Austria

? Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna

1090, Austria
* Division of Immunology and Pathophysiology, Medical University of Graz, Graz 8010, Austria

> Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology &

Biochemistry, Medical University of Graz, Graz 8010, Austria
6 BioTechMed, Graz, Graz 8010, Austria
’ Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria.

® Institute for Molecular Microbiology and Biotechnology, University of Miinster, Miinster, Germany.

* Correspondence: christine.moissl-eichinger@medunigraz.at, Twitter: @chmoei

Running title: Methane emission of humans

This study was approved by the Ethics Committee of the University of Graz (EK-Nr. GZ. 39/44/63 ex
2017/18). Experimental protocols were approved by the Ethics Committee and the Department of

Otorhinolaryngology of the Medical University of Graz.

Conflict of interests: No conflict of interest and financial disclosures.


https://online.medunigraz.at/mug_online/pl/ui/$ctx;design=ca2;header=max;lang=en;rbacId=/wborg.display?pOrgNr=14014
mailto:christine.moissl-eichinger@medunigraz.at
https://doi.org/10.1101/2020.12.21.423794
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423794; this version posted December 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Key Words: archaeome, microbiome, methanogens, methane, gut, gastrointestinal tract, metabolome,

metagenome, Methanobrevibacter, Christensenellaceae

Graphical abstract:

low emitter high emitter
A S ﬁ
<%
5 k%) CHa < 5ppm CHa = 5ppm
£
A — = —
& N
(7] Bacteroides .
Ruminococcaceae
-g @S Ruminococcus et \\
Q Butyricicoccus Ruminiclostridium
{ : Blautia Eubacterium ) ©
( o Roseburia Christensenellaceae
Flavonifractor Mathhoobvevitoct \
"Tyzzefe”a" ietnanobreviDacier
\ (L WA J
7 ™
W iron acquisition and
g f metabolism ? pyruvate ferredoxin
S monosaccharide utilization oxidoreductase
b4 (e.g. mannose, lactose,
—
] alactose, rhamnose g
£ 9 : ? methanogenesis
f potassium metabolism
k - - s J
f T
W
g ‘ acetate 1 acetate
_8 ‘ formate f formate
- .
“E’ ‘ propionate f propionate
. J

=


https://doi.org/10.1101/2020.12.21.423794
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423794; this version posted December 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Summary

Archaea are responsible for methane production in the human gastrointestinal tract. Twenty percent of
the Western populations exhale substantial amounts of this gas. The underlying principle determining

high or low methane emission and its effect on human health was still not sufficiently understood.

In this study, we analysed the gastrointestinal microbiome, archaeome, metagenome, metabolome, and
eating behaviour of 100 healthy young adults. We correlated high levels of human methane emission (5-
75 ppm) with a 1000-fold increase in Methanobrevibacter smithii. This archaeon co-occurred with a
bacterial community specialised on dietary fibre degradation, which included members of
Ruminococcaceae and Christensenellaceae. Methane production was negatively affected by high vitamin
B12 and fat intake of the subjects, and was positively associated with increased formate concentrations
in the gut. Overall, methane emission is explained by dietary habits, host genetics, local metabolite
availability and microbiome/archaeome composition, emphasizing the unique biology of high methane-

emitters which has potentially positive impact on human health.
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Introduction

The composition and function of the human microbial community is closely linked with the fitness of the
host. In addition to the predominant bacterial component, archaea, eukaryotes (in particular fungi) and
viruses contribute important regulatory aspects, influencing the dynamics, host-interaction and
metabolic output of the entire microbiome. However, the non-bacterial constituents are often
overlooked and remain unconsidered, since standard molecular methods are currently not well

developed to resolve this component of the microbiome (Mahnert et al., 2018; Borrel et al., 2020).

Methane-forming archaea (“methanogens”) in the gastrointestinal tract (GIT) were first observed long
ago - through the detection of methane in the human breath and flatus. The most-prevalent archaeon in
the human body (Methanobrevibacter smithii) was isolated nearly 40 years ago (Calloway, Colasito and
Mathews, 1966; Miller et al., 1982). In recent years, however, human-associated archaea that reside in
the GIT as well as other body sites (e.g. skin, respiratory tract), have gained increased recognition

(Koskinen et al., 2017; Moissl-Eichinger et al., 2018; Borrel et al., 2020).

Although the average abundance of archaea in human faecal samples is low as compared to bacteria
(Borrel et al., 2020), methanogens are considered to represent key-stone species in the GIT. By
maintaining numerous syntrophic relationships with bacteria, methanogens control the efficiency of the
bacterial primary and secondary fermentation of complex organic molecules. By consuming by-products
of bacterial metabolism they particularly keep the hydrogen concentration low, which would inhibit the

fermentation activity and reduce the overall energy yield.

Methanogenic archaea have the unique metabolic capability to form methane (methanogenesis) using
H,, CO,, formate, methyl-compounds, and acetate to thrive. Hydrogenotrophic methanogenesis (the
most prevalent pathway in the human gut) uses hydrogen as the electron donor (applies to CO, and
methyl-reducing methanogens), whereas no external hydrogen source is needed in methylotrophic and

acetoclastic methanogenic pathways (Adam, Borrel and Gribaldo, 2019; Mand and Metcalf, 2019).

In the human GIT, methanogens are mainly represented by the Methanobacteriales (M. smithii,
Methanosphaera stadtmanae) and Methanomassiliicoccales (Ca. Methanomassiliicoccus and Ca.
Methanomethylophilus representatives). Studies based on next generation sequencing (NGS) have also
detected signatures of Methanobacterium (Methanobacteriales), Methanosarcina (Methanosarcinales),

Methanoculleus (Methanomicrobiales) and representatives of Methanocellales in samples from the
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human gut. These methanogens contribute to an average human body methane emission of about 0.35 |

per day (Lewis et al., 2018), released through the breath and flatus.

Notably, not all human subjects produce the same amount of methane. High methane emission in breath
correlates with e.g. sex, age, environmental factors, diet, diseases, and geography, but also with ethnicity
and genetic aspects (Polag and Keppler, 2019). The latter has been supported by correlations between
M. smithii and a single nucleotide polymorphism in a long non-coding RNA of the human genome
(Bonder et al., 2016). The abundance of methanoarchaea correlates also with certain bacterial members
of the microbiome, such as the Christensenellaceae, representing a highly-heritable bacterial clade in the
human GIT (Goodrich et al., 2014; Ruaud et al., 2020). Specifically, the symbiosis of M. smithii and
Christensenella minuta was found to be based on syntrophy, as driven by efficient H, transfer via close
physical interactions. Notably, Christensenellaceae have robustly been linked with a low host body mass

index (Ruaud et al., 2020).

Although the methods used to determine the individual’s methane production are not standardised with
respect to the procedure and cut-off values, it has become clear that only a subpopulation is producing
higher amounts of methane, ranging from 14 to 78% in Japanese and rural Africans, respectively (Borrel
et al., 2020). The Western adult population was found to range somewhere in-between (24-60%) (Polag
and Keppler, 2019). The results of cultivation assays have indicated that a “positive” methane breath test
correlates with cultivable methanogen concentrations greater than 10° cells per gram stool (dry weight),
and reaching up to 3x 10" cells in high methane producers (Weaver et al., 1986). Considering the
measured value of 4x 10" microbial cells per gram dry stool (Stephen and Cummings, 1980), this

corresponds to 0.03 to 7.5% methanogens in methane-producing subjects.

Based on this substantial increase in the population of methanogens, as well as the massive methane
production (sometimes reaching up to 300 ppm, pers. com. C. Hégenauer) in high methane producers, a
putative impact on the GIT microbiome and host physiology can be expected. Indeed, the gaseous
product of methanogens, methane, is not only a potent greenhouse gas, but also has a physiological
effect on the host. While its role as a gasotransmitter is controversially discussed (Boros et al., 2015),
methane is a causally linked to a slowed gastrointestinal motility (methane slows down the faeces transit
time by up to 59%), probably caused by the direct action of methane on the cholinergic pathway of the
enteric nervous system (Pimentel et al., 2006). This fact also partially explains the continuous reports of

methanogens being associated with constipation. Other effects were shown in rodent models, such as
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enhanced exercise capacity (Xin, Sun and Lou, 2016), increased secretion of GLP-1 (Laverdure et al.,

2018), or even anti-inflammatory and neuroprotective effects (Boros and Keppler, 2019).

Overall, the role of methanogens per se in health and disease is not yet clear, and analyses suffer from
methodological pitfalls to correctly detect and characterize the human archaeome, as well as the
contradictory information that appears in the literature (for further reading, please refer to (Borrel et al.,

2020)).

In this study, we aim to understand the correlation between methane production in young, healthy
subjects with the composition of the microbiome (archaeome and bacteriome), microbial function, and
diet. We have recruited 100 young volunteers (age 18-37 years), profiled their GIT microbiome, and
performed a standardised methane breath measurement. Fifteen subjects out of 100 showed methane
levels 2 5 ppm and were categorised as high-methane producers. Metagenomic information from stool
samples of this subgroup was compared to 15 matched (age, sex, and vegetarianism), low-methane
producing controls. Microbial profile and functions were correlated with methane production and

dietary habits.

Herein, we show that human methane production is caused by a uniform, archaeome predominated by
M. smithii, and linked to a specific bacterial community, which is specialised to degrade dietary fibres.
Methanobrevibacter smithii has a key-stone role, as this archaeon consumes H, and CO,, which leads to
the lower availability of these compounds to the gut microbial community, which, in turn, has effects on

overall metabolite production.
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Results (Section headings and subheadings)

Description of the cohort and datasets

In total, 100 participants (female: n = 52, male: n = 48; mean age =24.1) were recruited in this study.
Metadata information (sex, age, vegetarian yes/no, contraception yes/no, breath methane content as
well as metabolite information) of all participants is provided in Supplementary Table 1. All participants
provided one stool sample, one breath sample for methane measurements, and a completed dietary
guestionnaire (Supplementary Table 1). On the basis of the amount of methane emitted participants
were grouped into high methane emitters (HE; CH, value: 5-75 ppm) and low emitters (LE; CH, value < 5
ppm). Fifteen percent of the participants were categorised as HEs (Supplementary Table 2), with the
percentage in congruence with known levels of methane emission of young adult European cohorts

(Polag and Keppler, 2019).

The following data sets were obtained through 16S rRNA gene amplicon sequencing, shotgun
metagenomics sequencing, and a questionnaire: “universal” and archaeal 16S rRNA gene profiles for all
stool samples (Supplementary Dataset 1 and 2; Supplementary Table 1), and a metagenomics dataset as
well as metabolomic information (e.g. acetate, succinate, formate), and detailed dietary information
(e.g. diversity, energy, protein, fat, carbohydrates) from matched participants (Supplementary Dataset 3

and 4; Supplementary Table 2).

High-methane microbiomes are characterised by a specific microbial community and a 1000-

fold increase in the Methanobrevibacter relative abundance

Using the “universal” approach to amplify 16S rRNA genes, we obtained 2,293,161 sequences after
denoising with DADA2 (Callahan et al., 2016) and processing through Qiime2 (Bolyen et al., 2019) which
were classified into 17 microbial phyla, 254 genera and 2,570 unique ribosomal sequence variants
(RSVs). Using an archaea-targeted approach (Pausan et al., 2019), we obtained 1,035,202 sequences
grouped into 4 phyla, 6 genera and 41 unique RSVs. Respective RSV tables are provided in

Supplementary Dataset 1 and 2.

We focused on the intact microbial community by applying a propidium monoazide (PMA) treatment to
remove the background signals of free DNA (Nocker et al., 2007; Young et al., 2017). Within the

“universal” data set, the phylum Firmicutes was found to be predominant (45.84%; 1,051,161 reads),
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followed by Bacteroidetes (40.46%; 927,837 reads) and Proteobacteria (7.53%; 172,656 reads); the main
representative genera were Bacteroides (26.61% 610,127 reads), Alistipes (6.25%; 143,248 reads), and

Faecalibacterium (5.82%; 133,442 reads) (Supplementary Figure 1; Supplementary Dataset 1).

When we compared the stool microbial profiles of HEs and LEs, we observed a significant (p = 0.00033;
ANOVA) increase in alpha diversity (Shannon Index; Figure 1A.l). Redundancy analysis (RDA) results
confirmed that methane production had a significant impact on the microbiome composition (p = 0.001;
Figure 1A.11). Although the HE microbial profiles did not group separately in the PCoA plot, HEs formed a
sub-cluster within the cloud of LE (Supplementary Figure 2A.1). On a phylum level, results of LEfSe (Linear
Discriminant Analysis Effect Size) analyses revealed a significant association between Euryarchaeota and
HE and between Bacteroidetes and LE (Figure 1.B, Supplementary Figure 2). On genus level, taxa
belonging to Ruminococcaceae UCGO014 as well as the Christensenellaceae R7 group and
Methanobrevibacter were shown to have potential associations with HEs, whereas Bacteroides and
Blautia were associated with LEs (Figure 1.C). These associations on both taxonomic levels were
confirmed through the results of independent ANOVA plot analyses (Supplementary Figure 2) and
Spearman-based regression analyses, confirming a highly significant (p < 0.001) positive correlation of
Methanobrevibacter, the Christensenellaceae_R7_group, Ruminococcaceae (UCG010 and UCGO002), and
Desulfovibrio with high methane emission, and a significant (p < 0.01) negative correlation among
Bacteroides, the Ruminococcaceae gnavus group, Flavonifractor, and Holdemania (Supplementary Figure

3; individual rs-values provided in the Figure).

An overview of the taxonomic composition of HE and LE samples is given in a Krona Chart
(Supplementary Item 1). This type of display confirms the different relative abundances of signatures
from Methanobrevibacter (HE: 2%, LE: 0.002%), Bacteroides (HE: 19%, LE: 28%), the Christensenellaceae
R7 group (HE: 6%, LE 2%), and Ruminococcaceae UCGs (HE: 22%, LE: 20%).
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Figure 1. Differences in alpha and beta diversity based on the “universal” approach of 16S rRNA gene sequencing between

high (HE) and low methane emitters (LE). A-C. Profiles of the whole study cohort (n=100). D-F. Profiles of the matched subset
only (n=30). A.l/D.l. An examination of Shannon diversity index revealed significant differences in alpha diversity (RSV based;
ANOVA). A.lII/D.II. The microbiome of HEs clustered significantly differently in the RDA plot (RSV based). B.I/E.l. LEfSe analysis of
the 100 most abundant phyla and B.II/E.lII-B.V/E.V. Relative abundance of selected phyla in ANOVA plots. C.I/F.l. LEfSe analysis
of the 100 most abundant genera and C.II/F.II-C.VII/F.VIl. ANOVA plots of selected genera.

Moreover, a significant co-occurrence was observed for Methanobrevibacter and Christensenellaceae in
HEs in every constellation of a Spearman’s rho -based network analysis. Those taxa formed a stable
network with different Ruminococcus/Ruminococcaceae, Holdemanella, and the Eubacterium
ruminantium group in HEs. On the contrary, LEs were characterised by a network of Bacteroides,
Lachnoclostridium, Sutterella, Flavonifractor, Blautia, and Anaerostipes (Figure 2; Supplementary Figure

4).
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Figure 2. Co-occurrence networks based on Spearman’s rho correlation of selected genera in HE and LE microbiome samples.
Taxa were selected based on significantly different relative abundances in both sample types and LEfSe analyses. Left, upper
panel: Whole study cohort (n=100), right, upper panel: matched study subset (n=30). Lower panels show co-occurrence patterns

in the HE (left) or the LE samples (right).

In order to obtain more detailed insights into the archaeal composition of the microbiomes, we
performed archaea-targeted 16S rRNA gene amplicon sequencing. Notably, archaeal reads could not be
obtained for all samples (10 out of 100 samples were negative and, namely, samples with IDs (all LEs):

28,31, 47,48, 89, 96, 115, 118, 120, and 123 (Supplementary Dataset 2).

Among the remaining samples, Euryarchaeota (99.07%; 1,025,526 reads) was shown to be the
predominant phylum, followed by Thaumarchaeota, and Crenarchaeota. Euryarchaeota were

represented by Methanobrevibacter (96.3%; 996,950 reads), Methanosphaera (1.26%; 13,092 reads),

10
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and  Methanobacterium  (1.44%; 14,937 reads). Methanosarcina, = Methanocorpusculum,
Methanomassiliicoccus, and unclassified representatives were detected in traces (Figure 3;

Supplementary Dataset 2).

The archaeomes of HEs and LEs were not significantly different with respect to their alpha or beta
diversity (Figure 3). Samples from HEs did not contain any archaeal signatures apart from the
Euryarchaeota, which were represented solely by Methanobrevibacter and Methanosphaera. In the
entire dataset, 21 Methanobrevibacter RSVs were observed, whereas Methanosphaera was represented
by only two RSVs (both genera are represented by one RSV each in the universal dataset). The analysis of
HEs samples resulted, on average, in a more than ten-fold, significantly increased number of archaeal
reads per sample (HEs: 46,077 archaeal reads per sample, LEs: 4,048 reads (p<0.00001 (Mann-Whitney
U Test)).

Based on our observations, the archaeal diversity profile of HE emitters is not significantly different per
se; the methane emission is driven solely by the predominance of one particular Methanobrevibacter
strain. The 16S rRNA gene sequence of this strain (dominant in HEs in the universal and archaeal
datasets), matched the 16S rRNA gene sequence of M. smithii strain KB11 by 100% (NCBI blast), which is

a representative of the Methanobrevibacter_A smithii group according to the GTDB classification (SILVA).

11
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Figure 3. Archaeome profile of HE and LE samples, based on the “archaeal” approach of 16S rRNA gene sequencing. A. Profile
of the whole study cohort (n=100). B. Matched study subset (n=30). I. Bar chart of the 20 most abundant taxa compared
regarding their low or high methane emission at the phylum level and Il. at the genus level. lll. Shannon diversity, and IV. RDA
plot at RSV level.

Due to the nature of the study set up, the number of recruited HE and LE subjects was divergent (n=15
and n=85, respectively). Thus, we then focused on an equal subset of the cohort to investigate the
statistical relevance of our data regarding methane production. For this purpose, 15 HEs were matched
to 15 LEs by age, sex, vegetarianism, and hormonal contraception method (Supplementary Table 2). This

data set (n=30) was subjected to the same statistical analyses as described above for the entire cohort.

III

The overall profile of the reduced (n=30) “universal” dataset was highly similar to the profiles revealed
for the non-matched volunteers, and the same predominant phyla and genera were also identified
(Supplementary Figure 1B; Supplementary Dataset 1). In this data set, we could also confirm increased
alpha diversity in HE (Figure 1D.l, p=0.0024), a the significant impact of methane on the microbiome
composition (Figure 1D.Il, p=0.004), the formation of a subcluster within the PCoA (Supplementary

Figure 2B.l), and a significant difference in the relative abundance of Euryarchaeota and Bacteroidetes in

HEs and LEs, respectively (Figure 1E, F; Supplementary Figure 2B).

The significant (p<0.01) co-occurrence of Methanobrevibacter and Christensenellaceae in HEs could also

be confirmed (Figure 2). In addition, the findings on the archaeome (alpha, beta diversity) did not change
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(Figure 3B). Confirmation of the congruency of the n=30 data set was an important prerequisite for the

subsequent shotgun metagenomic analyses.

Shotgun metagenomic analyses reveal functional differences in the HE and LE microbiomes

Extracted DNA from stool samples of the matched study subset (Supplementary Table 2) was further
used to conduct a shotgun-based metagenomic analysis, which was resolved with respect to taxonomic

(see below) and functional information.

The functional analysis of the metagenomics dataset was based on 14,616,890 sequences which were
categorised into 28 SEED subsystems and contained 6,956 actual function assignments and 6,589 unique
features. The output was organised hierarchically into four levels; level one represented the SEED
subsystem and level four represented the most detailed functional information. To gain additional
clarity, the information on the detected functions was made available as interactive, hierarchical Krona

charts (Supplementary Item 3).

The most prominent subsystems (level 1) identified were “carbohydrate” (17.41%), “clustering-based
subsystems”, (12.21%) and “protein metabolism” (8.01%) (Supplementary Figure 5, Supplementary

Dataset 3).

Like the profile information derived from 16S rRNA gene data, the diversity of unique functions was
significantly higher in HEs as compared to LEs. The impact of methane emission on the overall functions
was also found to be significant (Figure 4A, p-values included therein). At level 1, LEfSe analysis identified
“protein metabolism”, “nucleosides and nucleotides” and “RNA metabolism” as being significantly
correlated with HE samples, whereas LE microbiomes were significantly correlated with “iron acquisition

”n u

and metabolism”, “carbohydrates”, and “sulfur metabolism” (Figure 4B; Supplementary Figure 6).

The increase in the relative abundance in genes involved in “protein metabolism” in HE (HE: 9%, LE: 8% )
was mainly reflected by an increase in the genes associated with “protein biosynthesis” (level 2). This
was caused by an increase in the relative abundance of the involved archaeal functions, such as archaea-
specific elongation factors or translation initiation factors. The increased proportion of genes involved in
RNA metabolism (HE: 5%, LE: 4%) can be explained similarly, as the proportion of archaeal-specific genes
was increased (e.g. tRNA modification or transcription elongation factor in Archaea; level 3). The
archaeal RNA polymerase was undetectable in LE samples (HE 0.06%, LE: 0%)(Figure, 4B; Supplementary

Item 3).
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The relative abundance of genes involved in “iron acquisition and metabolism” was found to be reduced
in the HE dataset (HE: 3%, LE: 4%), which was mainly caused by a relative increase in the number of
genes involved in “iron acquisition in Vibrio” in the LE data set (HE: 2%, LE: 4%). These gene sets include
the TonB-dependent transport of heme and several siderophores that are produced by a broad variety of
bacteria (Wyckoff, Mey and Payne, 2007). Differences in the relative abundance of sulphur metabolism
genes (HE: 0.7%, LE: 0.8%) were manifested by increased gene counts in the level of “galactosylceramide
and sulfatide metabolism” (level 3; HE: 0.4%, LE: 0.5%), as well as “thioredoxin-disulfide reductase” (level

3; HE: 0.09%, LE: 0.1%).

Based on the results of the LEfSe analysis at level 3, we found that the “heat shock dnaK gene cluster” (in
“Stress response”) (HE: 0.7%, LE: 0.6%), involved in chaperone Hsp70 formation, and the “UvrABC
system” involved in “DNA repair” (in “DNA metabolism”; HE: 0.7%, LE: 0.6%) were significantly
associated with HEs. Moreover, we detected an increased contribution of genes involved in “Synthesis of
osmoregulated periplasmic glucans”, indicating that Gram-negative bacteria made a high contribution to

HE samples (0.04% of functional genes; 0.03% in LE) (Figure 4C; Supplementary Item 3).

Among the functions associated with “carbohydrate”, a particular increase in the LE dataset was
observed in the “monosaccharide” (level 2) turnover-associated genes (HE: 3%, LE: 4%) (e.g. in D-
galacturonate, L-rhamnose, xylose, L-arabinose, and L-fucose metabolism), as well as in the uptake of
lactose and galactose. Especially mannose metabolism (level 3; HE: 0.8%, LE: 1%), including the
metabolism of alpha-1,2-mannosidase (level 4; HE: 0.6%, LE: 0.9%), was found to be increased in LE

samples.

Notably, the “Pyruvate ferredoxin oxidoreductase” (HE: 0.4%, LE: 0.3%; alpha and beta subunits; HE:
0.04% LE: 0.01% and HE: 0.02% LE: 0.01%, respectively), which is part of the “central carbohydrate
metabolism” of pyruvate, propanoate, and butanoate, and the reductive carboxylate cycle, was found to
be significantly increased in HE samples. This enzyme (also known as pyruvate synthase), catalyses the
interconversion of pyruvate and acetyl-CoA, and thus is responsible for the binding or release of CO, with

the help of ferredoxin.

Genes involved in “methanogenesis” were rarely abundant in the LE dataset (0.00004%), but reached a
0.1% overall relative abundance in the HE dataset. This was also reflected by the methyl-coenzyme M
reductase, which is responsible for the release of methane in the last step of methanogenesis, and

whose alpha subunit was represented in a proportion of 0.01% in the HE dataset but only of 0.00001% in
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the LE dataset. Subunits beta and gamma were not detectable in the LE dataset. Notably, genes involved
in “methanogenesis from methylated compounds” comprised 0.01% in the HE dataset, and 0.005% in
the LE dataset, indicating that a similar proportion of these genes existed in both datasets, largely

independent of methane emission.
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Figure 4. Overview of the divergent functions of the HE and LE based on the shotgun metagenome analysis
(subsystems). A.l. Shannon diversity and A.Il. RDA plot at feature level. B.l. LEfSe analysis and B.ll-.V. ANOVA plots at
highest subsystem level (level 1). C.l. LEfSe analysis and C.II-V.II. subsystem at level 3. (100 most abundant; n=30)

Shotgun metagenomics confirms taxonomic differences between HE and LE microbiomes

From the metagenomics dataset, 68,084,011 fragments of ribosomal RNA genes were obtained. These
were classified into 57 phyla, 889 genera, 2,192 species, and 2,193 unique features. The samples were
predominated by signatures of Bacteroidetes (62.69%; 42,678,473 reads), Firmicutes (28.80%;
19,611,159 reads), and Proteobacteria (3.98%; 2,706,855 reads) at the phylum level; Bacteroides
(51.10%, 34,793,498 reads), Clostridium (6.54%; 4,456,393 reads), and Eubacterium (4.93%; 3,357,015
reads) at the genus level; and Bacteroides vulgatus (8.60%; 5,855,942 reads), Bacteroides fragilis (4.48%;
3,051,022 reads), and Bacteroides sp. 4 3 47FAA (4.14%; 2,817,577 reads) at the species level

(Supplementary Figure 7; Supplementary Figure 8; Supplementary Dataset 4).

Overall, 488,550 sequences (0.72%) were assigned to the archaeal domain, 67,447,694 (99.07%) to the
bacterial domain, 110,352 (0.16%) to Eukaryota, 35,836 (0.05%) to viruses, and 1,579 (0.002%) to other
sequences. In the HE metagenomic dataset, 0.61% of all taxonomic information could be assigned to
archaea, whereas 0.11% were archaeal reads in the LE dataset (see also Supplementary Dataset 4). An
additional Krona chart based on archaeal and bacterial signatures only is provided in Supplementary

Iltem 4 (Supplementary Item 4).

The taxonomic information that could be extracted from the metagenomics data was highly similar to
the information that was derived from 16S rRNA gene amplicon sequencing. This information also
revealed that the LEs and HEs were significantly different in terms of their alpha and beta diversity

(Figure 5.1-.11; p-values provided within the figure; Supplementary Figure 9.1).

The significantly higher abundance of archaea in HE samples was confirmed by the results of the LEfSe
analysis and ANOVA plots at the super-kingdom level, whereas 14.64% of all archaeal reads were
retrieved from the LE samples, and 85.36%, from the HE samples (Supplementary Figure 9.1I-.lI;
Supplementary Dataset 4). Euryarchaeota, Deinococcus-Thermus, and Chlamydia were significantly more
abundant in the microbiome of HEs and Bacteroidetes in the microbiome of LEs at phylum level.
Methanobrevibacter, Subdoligranulum, and Catenibacterium were associated with HEs, and Bacteroides,

Zunongwangia, and Pedobacter were associated with LEs at the genus level (Figure 5.11I-.XIV;
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Supplementary Figure 9.IV-.V). At the species level, Methanobrevibacter smithii, Eubacterium siraeum,
and Subdoligranulum variabile, and Bacteroides vulgatus, Bacteroides sp. 4 3 47FAA, and Bacteroides
sp. 2_2_4 were correlated with the microbiomes of HEs and LEs, respectively (Supplementary Figure 8.II-
11). Notably, signatures of Christensenellaceae could not be retrieved, a phenomenon that has been

reported earlier (Ruaud et al., 2020).
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Figure 5. Shotgun metagenome-derived information on the microbial community composition in samples of HEs and LEs
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Archaeal profiles can be used to predict methane emissions and are not associated with specific viral

or eukaryotic signatures (n=30)

In the next step, we analysed whether it was possible to predict the methane emission levels of
individuals based on compositional and functional information derived from their stool microbiomes.
Specifically, we applied supervised learning methods that had been trained on the amplicon and
metagenomic datasets. Although the individual datasets were rather small, which increases the risk of
overfitting the learning model, the overall prediction accuracies reached 63.6% in case of 16S rRNA gene
amplicons and up to 100% for RefSeq in the shotgun dataset. When we applied the classification model
to a larger public dataset with unknown methane emissions, the estimators achieved 85% prediction
accuracy. Hence, despite the obvious limitations of our classification model due to sample size and likely

overfitting, these results indicate that it has a high potential for predicting methane emissions above 5

ppm.

Network analyses of the archaeome profile in HE and LE on the species level revealed again the
predominance of Methanobrevibacter species under HE conditions, whereas LE samples were
characterised by a more diverse but rarely abundant archaeome (Supplementary Figure 11). HE samples
were characterised by the overwhelming predominance of M. smithii (70% of all archaeal taxonomic
features; 9% in LE), with M. stadtmanae representing 1% (3% of all archaeal tax. features in LE), and
Thermoplasmatales (Methanomassiliicoccales), 0.3% (1% in LE). An extraordinarily broad diversity of
archaea was detected in both datasets, including members of the Methanobacteriales,
Methanomicrobiales, Methanosarcinales, Methanococcales, Thermococcaceae, Halobacteriaceae, and
Archaeoglobaceae, as well as unclassified reads from Thaumarchaeota, and including a number of taxa
that had not been previously detected in the human microbiome (Supplementary Figure 10;

Supplementary Dataset 4; Supplementary Item 5).

In order to identify other microbial variables that influence the archaeal profiles, and in particular the
profile of the dominant M. smithii strain, eukaryotic signatures and viral/phage signatures were
correlated accordingly. However, no archaeal viruses could be identified, and also no correlating
eukaryotic/protist signatures could be observed, indicating that the detected methanogenic archaea are

free-living nature.
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Diet modulates HE and LE keystone taxa and methane production

As indicated above, we identified a number of representative bacterial and archaeal genera which were
indicative for HE and LE, respectively (Supplementary Table 3; Figure 6; see also Figure 2 co-occurrence
patterns). To perform more detailed analyses on the RSV level, we proceeded with amplicon data
(matched dataset) because taxonomic information for Christensenellaceae was missing from the
metagenomics dataset. We identified 21 RSVs, revealing significantly discriminative abundances
(identified through LEfSe analyses) and substantial mean abundances (top 600 taxa) (Supplementary
Table 3, Figure 6). We found that the LE profile was mainly defined by four RSVs of Bacteroides, four
RSVs of Butyricicoccus, and one RSV each of Flavonifractor, Blautia, “Tyzzerella”, Ruminococcus (R.
gnavus group), and Roseburia, whereas the HE profile was driven by one RSV of Methanobrevibacter,
three RSVs of the Christensenellaceae R7 group, two RSVs of Ruminiclostridium, one RSV of
Ruminococcaceae UCG010, and one RSV of Eubacterium (E. ruminantium group) (Figure 6,
Supplementary Table 3). This selection of keystone taxa was further supported by 84 dereplicated high
quality MAGs (metagenome assembled genomes; mean completeness 90%, mean contamination 7%,
Supplementary Table 4) with replication rates in the range of 1.3 to 2.6 (Methanobrevibacter smithii 4
MAGs, Bacteroides 32 MAGs, Christensenellales 19 MAGs, Ruminococcaceae 19 MAGs,

Ruminiclostridium 2 MAGs, Ruminococcus 4 MAGs).
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Figure 6. Identified keystone taxa in HE and LE subjects. A. Cladogram of LE and HE keystone taxa. F: Firmicutes, C:
Clostridia/Clostridiales, L: Lachnospiraceae, R: Ruminococcaceae. Numbers in brackets indicate the number of contributing
RSVs; B. and C. Network of keystone taxa of HE and LE at RSV and genus levels, respectively. | - RSV1: Methanobrevibacter; |1
RSV2-4: Christensenellaceae R7 group; Ill - RSV5: Eubacterium ruminantium group; IV - RSV6-7: Ruminiclostridium; V - RSV8:
Ruminococcaceaea UCG010; VI - RSV9-12: Bacteroides; VII - RSV13: Ruminococcus gnavus group; VIII - RSV14: Blautia; IX -
RSV15: Roseburia; X - RSV16: “Tyzzerella”; XI - RSV17-19: Butyricicoccus; XIl - RSV20: Flavonifractor (also see Supplementary
Table 3)

In a subsequent step, we were interested in examining the way diet correlates with the relative
abundance of the identified keystone taxa and methane emissions. A Food Frequency Questionnaire
(FFQ) (Haftenberger et al., 2010) was used to assess the food habits of each participant during the four
weeks prior to sampling. Overall, the daily intake of 19 food ingredients were tracked, including proteins,

carbohydrates, fat/saturated fat/omega-3 fatty acids/omega-6-fatty acids, fibre, alcohol, sodium,
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vitamins C/B12/E/D, zinc, calcium, magnesium, potassium, iron, water, as well as three diet’s quality
indicators, including overall energy intake (kcal), nutritional variety, and diversity (Supplementary Table

2).

Regarding the HE states, trends for negative correlations could be identified for Methanobrevibacter
counts and energy, vitamin D, or calcium in a BioEnv plot (Spearman’s rho correlation; Supplementary
Figure 12). The results of a correlation analysis revealed that a higher relative abundance of
Methanobrevibacter (n=30 amplicon-based dataset) was negatively correlated with total fat (rs=-0.435,
p=0.016; if not stated otherwise a Spearman’s correlation analysis was performed), saturated fat (rs=-
0.421, 0.021) and omega-3 fatty acids (rs=-0.407, p=0.026). Trends indicating a correlation were
observed for vitamin B12 intake (rs=-0.355, p=0.054). Similar trends for vitamin B12 (rs=-0.465, p=0.01)
and omega-3 fatty acid (rs=-0.349, p=0.059) intake were seen when examining the relative abundance of
the Christensenellaceae R7 group. Vitamin D intake was negatively correlated with the
Christensenellaceae R7 group relative abundances (rs=-0.345, p=0.062;), whereas Ruminococcaceae
UCG10 was positively correlated with alcohol consumption (rs=0.390, p=0.033) (Supplementary Table 5).
Within the LE community cluster, an analysis of the genera Bacteroides, Flavonifractor and the
Ruminococcus gnavus group revealed a trend with respect to a negative correlation with dietary fibre
intake (rs=-0.379, p=0.039; rs=-0.517, p=0.003 and rs=-0.382, p=0.037, respectively;). The relative
abundance of Blautia positively correlated with vitamin B12 levels (rs=0.505, p=0.004) and protein intake
(R=0.422, p=0.020), whereas protein (rs=-0.375, p=0.041) as well as zinc (rs=-0.370, p=0.044) intake was
negatively correlated with “Tyzerrella”. Interestingly, only the presence of the genus “Tyzerella” was also
positively correlated with vegetarianism (rs=0.325, p=0.08). Apart from this, vegetarianism only
correlated with different dietary compound intake, namely, vitamin C and sugar intake was positively
correlated (rs=0.490, p=0.006 and rs=0.441, p=0.015, respectively), whereas food diversity and vitamin
B12 levels (rs=-0.473, p=0.008 and rs=-0.449, p=0.013, respectively) were negatively correlated with
vegetarianism (Figure 7, Supplementary Table 5).

Altogether, the information derived from the subjects’ dietary information revealed that one specific
bundle of dietary compounds (high dietary fibre levels, low fat and low vitamin B12 intake) is associated
with HE status, confirming the above-mentioned observation that the HE microbial community possesses

a higher ability to degrade dietary fibres (Supplementary Table 5).
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Methane emission is driven by reduced vitamin B12 intake and fibre-derived, increased formate

concentrations

HE and LE keystone communities are each metabolically highly interwoven. Overall, degradation of
dietary carbohydrates results in metabolic cycles of short chain fatty acids and CO,/H, (Supplementary
Figure Metabolic Interaction). Under LE conditions, these metabolites are trapped in the cycle until they
are uptaken by the host or used for biomass production. The conversion of H,/CO,/formate into
methane by Methanobrevibacter under HE conditions, however, results in a metabolic “dead end”, as
methane cannot further be metabolised by gut microbiota or human epithelial cells. Formate-based
methanogenesis is widely distributed amongst human-associated methanogens, as e.g. all
Methanobrevibacter species detected in a catalogue of 1,167 genomes have the capability to use

formate for methanogenesis (Chibani et al., 2020).

To characterize the role of these metabolites in more detail, we performed NMR-based metabolomic
analyses of the stool samples to assess the relative quantities of formate, acetate, lactate, butyrate,
succinate, and propionate in samples from both groups. Indeed, we recognised a significant correlation
between the formate concentration and methane emissions (in ppm, Spearman’s-rho correlation
coefficient 0.491, p=0.006), confirming the important role of the C1 metabolite. Formate concentration
was significantly correlated with acetate (spearman-rho correlation coefficient 0.628), butyrate (0.416)
and propionate (0.448) abundance, whereas no correlations were found for lactate and succinate (0.204
and 0.258, respectively). In fact, we measured an increase in formate concentrations (1.5-fold, based on
median concentrations per group), acetate (1.35-fold), and propionate (1.17-fold) under HE conditions,
whereas the butyrate, lactate, and succinate concentrations remained largely equal (Supplementary

Table 6).

To collect more information about the metabolic interaction and growth rates of the different microbial
communities, we used MICOM (Diener, Gibbons and Resendis-Antonio, 2020), a tool that allows us to
apply flux balance analysis (FBA) to entire microbial communities. Growth simulations (growth rates,
growth niches, metabolite consumptions and phenotype associated fluxes; Supplementary Dataset 5 and
6) were based on the individual dietary information obtained from the donors (Supplementary Dataset
7), and community models were based on the AGORA 1.03 genus model (Magnusdattir et al., 2017). The
results of the analysis performed on previously identified keystone taxa confirmed a significant
association between the HE conditions and an increased flux of C1 metabolites, such as methanol,

formaldehyde, carbon dioxide and formate (Fig. 7), as well as acetate and propionate. LE conditions were
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associated with D-mannose, lactate, ribose levels, and overall a greater complexity of organic molecules.
Notably, the hydrogen flux was only minimally associated with HE (-0.021595761). Fluxes in vitamin
compounds (nicotinamide, riboflavin, thiamine, pyridoxin, menaquinone 8) were strongly associated
with the LE conditions. In addition, LE conditions were significantly associated with fluxes in magnesium,
zinc, cobalt, chloride, and biomass production, whereas HE conditions were significantly associated with

higher fluxes in potassium, ammonium, and hydrogen sulphide.

Notably, in our model, all identified keystone members of both community types were involved in
formate turnover, emphasizing the very important role of this C1 compound, whereas vitamin fluxes
were mainly associated with Blautia, Clostridium (“Tyzzerella”) and Ruminococcus representatives, all of

which are members of the LE community (Supplementary Dataset 6).

In our model, the HE community was strongly associated with increased indole fluxes. Indole is an
important tryptophan break-down product, and controls a number of microbial processes, such as

biofilm formation, drug resistance, and virulence (Lee and Lee, 2010).
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Figure 7. MICOM model-based flux balance analysis of keystone taxa. The 40 most significant metabolites are shown for each

condition. Left: HE, right: LE.

Discussion

In this study, we focused on performing detailed analyses of human methane emissions, which are
strong indicators of the biological contribution of the methano-archaeome to human physiology. Using
amplicon-based and metagenomic sequencing, NMR-based metabolomics, dietary intake analysis and
metabolic modelling, we were able to show that: i) high methane emission is linked to a significantly
higher microbial alpha diversity in the GIT, ii) the microbial community composition and function differs
significantly between high- and low- methane emitters and is pronounced in specific key-taxa, iii)
methane emission is driven by dietary habits, such as high fibre, low fat, and low vitamin B12 uptakes, iv)
C1 compounds, short-chain fatty acids and particularly formate, are keystone metabolites associated

with methane formation.

Our analysis results confirmed that detectable methane formation is associated with a uniform
archaeome, which is predominated by M. smithii (Goodrich et al., 2014). Although this archaeal species
is generally highly prevalent in the population (detectable in about 97.5% of all analysed subjects; (Dridi
et al., 2009)), its abundance in our study was highly variable. High methane emitters (HEs) revealed a
relative abundance of approx. 2% (1.37% in the shotgun metagenomic dataset), whereas LEs were
characterised by theextraordinarily low contribution of about 0.002% of this species (0.19% in the

shotgun metagenomic dataset; see also (Borrel et al., 2020).

The abundance of Methanobrevibacter was strongly correlated with a core group of keystone species,
including various Ruminococcaceae and Christensenellaceae (see also: (Vojinovic et al., 2019)). In our
study, three Christenellaceae RSVs, which co-occurred stably with Methanobrevibacter, were indeed
significantly associated with methane production. The interplay between Methanobrevibacter and
Christensenellaceae is of great interest, as this syntrophic partnership has been associated with a lean
phenotype (Goodrich et al., 2014) and a reduced gain of fat tissue (Oki et al., 2016; Alonso et al., 2017) in
earlier publications. Notably, both taxa are considered to be highly inheritable (Goodrich et al., 2014;
Waters and Ley, 2019). In co-culturing studies, the methanogenic partner shifted the Christensenella
minuta metabolism, probably due to its potent hydrogen consumption, toward acetate production
rather than toward butyrate production, leading to increased H, and CO, production (Goodrich et al.,
2014; Ruaud et al., 2020). Although this observation would indicate a bilateral syntrophic relationship of
both microorganisms, we observed in our study, that both partners were unevenly affected by LE and HE

conditions: Christensenellaceae were present in both communities (2% in LE), and signatures increased
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only three-fold towards those observed under HE conditions, whereas Methanobrevibacter signatures
increased 1000-fold, probably indicating a more complex underlying principle. Indeed, we could not
identify any dietary-derived compound which had a direct, significantly stimulating or inhibiting effect on

the Christensenellaceae population.

The complexity of ingested saccharides is an important modulator for the composition and functionality
of a gastrointestinal microbiome, and an interesting link between cellulose degradation and methane
emission was observed by other researchers. Chassared et al. (2010) described that dominant cellulose
degraders isolated from non-methane-excreting subjects are mainly affiliated with Bacteroidetes, while
they are predominantly represented by Firmicutes in methane-excreting individuals (Chassard et al.,
2010). In our study, we also identified Bacteroides and Roseburia, which belong to the phylum
Bacteroidetes, as well as Christensenellaceae, Ruminiclostridium and Ruminococcaceae (Firmicutes), as
important key taxa in LE and HE subjects, respectively. Notably, Bacteroides (which was shown to be
significantly negatively correlated with dietary fibres in our study) and Roseburia, unlike high- H,-
producing Ruminococcus sp., are not able to digest e.g. microcrystalline cellulose (Aminov et al., 2006;
Duncan et al., 2006; Chassard et al., 2010). This indicates that the type of dietary fibre has a potential

modulating impact on methane production.

The negative correlations observed for fat intake and methanogen abundance are highly congruent with
previous observations made in ruminants, where an increased fat (oil) concentration in the diet led to a
reduced enteric methane production of up to 36% ((Alvarez-Hess et al., 2019) and references therein). It
is considered that dietary fat affects methane production in rumen because it reduces the hydrogen
accumulation through fatty acid biohydrogenation, leading to the conversion of unsaturated fatty acids
to saturated fatty acids, reducing the intake of fermentable organic matter and fibre digestion (Alvarez-
Hess et al., 2019).

Methanobrevibacter abundance was also negatively correlated with vitamin B12 intake. As vitamin B12 is
solely found in animal products (meat, fish, but also eggs and milk products), this association was
considered as indicative of vegetarianism, and this was statistically confirmed (vitamin B12 intake was
negatively correlated with vegetarianism in our study, R=-0.449, p=0.013, Spearman correlation,
Supplementary Table 5).

Another important finding, which was confirmed by the results of various analyses we carried out, was
the keystone role of formate in methane emission. Notably, formate and vitamin B12 (cobalamin)
metabolism are closely connected in humans. Cobalamin deficiency was associated with increased

formate concentrations in urine and plasma (in rats, (MacMillan et al., 2018)), due to the so-called
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methyl-folate trap (HERBERT and ZALUSKY, 1962; Scott and Weir, 1981; Lamarre et al., 2013). Under
these conditions, the cytosolic folate accumulates as 5-methyl-THF (thus reducing the concentration of
THF), which impedes the incorporation of formate into the folate pool, and results in formate
accumulation. In general, replenishing the THF pool also involves ALDH1L1 (10-formyltetrahydrofolate
dehydrogenase), an enzyme involved in formate oxidation, which converts 10-formyl-THF to THF and
CO,. Notably, an association between the Christensenellaceae/Methanobrevibacter abundance and the
abundance of a certain SNP (rs2276731) in the ALDH1L1 gene was observed when genetic correlations
with microbiome profiles were analysed in a large UK twin study (Goodrich et al., 2016). SNP rs2276731
is characterised by a nucleotide exchange towards C (instead of G, T) in approx. 17% of the population
(rs2276731 RefSNP Report - dbSNP - NCBI, 2020). This ratio is in high agreement with the percentage of
methane producers observed in our (15%) and other studies (Polag and Keppler, 2019), however, a more
detailed analysis of this complex relationship still needs to be carried out.

Based on these considerations and also the fact that we could measure an increased formate
concentration in stool samples and observe an increased abundance of genes within the formate
dehydrogenase cluster in HE samples (HE: 0.05%; LE: 0.03% of all genes), we conclude that formate
represents a keystone metabolite in this entire process.

Methanobrevibacter smithii is highly specialised to perform methanogenesis on H,/CO, and formate
compounds, and the ability to consume formate appears to be an important specialisation displayed by
methanogens in the human gastrointestinal tract (Chibani et al., 2020). This hypothesis is supported by
the observation that M. smithii upregulates formate utilisation gene clusters in syntrophic relationships
(Samuel et al., 2007), and methano-archaeal adhesin-like proteins are expressed differently in response
to formate, indicating that the physical relationship with bacterial partners changes when different

amounts of different metabolites are available (Hansen et al., 2011).

The findings of this study are based on a relatively small sample size and a homogenous study group (e.g.
neither elderly persons nor children were recruited), and thus no general conclusions can be drawn
regarding the impact of methanogen presence on aging, health status, or obesity. Future studies are
needed to collect data from more variable study groups and to examine the longitudinal dynamics of the
HE microbiome in more detail in terms of its correlation with additional parameters (e.g. blood

metabolites, concentration of H, and CO,).

Conclusions
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At this point it appears too early to ask how gastrointestinal methanogenesis impacts the host and
whether the presence and activity of methanogens could contribute to health or disease. However,
higher formate levels (herein correlated with increased methane emission) correlated with positive
foetal development, T-cell activation, a lean phenotype, and cardiovascular function (Pietzke, Meiser and
Vazquez, 2020). Although we lack detailed data on this metabolite-microbiome interplay, our study and
its results re-emphasize the importance of archaeome activity in the human body. This activity serves as

an important mirror, modulator, and regulator of the microbiome and overall body processes.
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STAR%Methods

Key Resources Table

REAGENT or RESOURCE
SOURCE IDENTIFIER
Dietary information
German Food Frequency Questionnaire (FFG) (Haftenberger et Robert Koch Institute
al., 2010)

Methane measurement

GastroCH4ECK breath bags Bedfont Scientific #GASTROCHECK-BAG-XL
Ltd, UK

GastroCH4ECK Gastrolyzer Bedfont Scientific NA.
Ltd, UK

Commercial Kit

PowerSoil’ DNA Isolation Kit QIAGEN, USA #12888-100

PMA treatment

PMA solution (20 mM) VWR #40019

PMA-Lite™ LED Photolysis Device Biotum NA

Cell disruption and DNA conc. measurement
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MagNalyser Roche Diagnostics
NA

Qubit fluorometer 2.0 Thermo Fisher NA

Scientific, USA
Qubit dsDNA HS Assay Kit Thermo Fisher

Scientific, USA #Q32854
PCR Reagents
TAKARA Ex Tag® buffer with MgCl, (10x)

Takara Bio Inc. #RROO1A
dNTP mix (200 uM)

Takara Bio Inc. #RROO1A
TAKARA Ex Taq” Polymerase (0.5 U)

Takara Bio Inc. #RROO1A
PCR grade water Jena Bioscience, #PCR-258S

Germany

Oligonucleotides

Universal forward primer: lllu-515FB
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGT
G

YCAGCMGCCGCGGTAA

(Pausan et al.,
2019)

Eurofins Genomics AT GmbH,
Austria

Universal reverse primer: lllu-806RB
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGG
G

ACTACNVGGGTWTCTAAT

(Pausan et al.,
2019)

Eurofins Genomics AT GmbH,
Austria

Archaeal forward primer (nested PCR1): 344F
ACGGGGYGCAGCAGGCGCGA

(Pausan et al.,
2019)

Eurofins Genomics AT GmbH,
Austria

Archaeal reverse primer (nested PCR1): 1041R
ACGGGGYGCAGCAGGCGCGA

(Pausan et al.,
2019)

Eurofins Genomics AT GmbH,
Austria

Archaeal forward primer (nested PCR2): 519F
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCA
GCMGCCGCGGTAA

(Pausan et al.,
2019)

Eurofins Genomics AT GmbH,
Austria
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Archaeal reverse primer (nested PCR2): 806R

(Pausan et al.,

Eurofins Genomics AT GmbH,

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGG 2019) Austria
G

ACTACVSGGGTATCTAAT

lllumina sequencing

Illumina MiSeq sequencing platform Illumina, | Core Facility for Molecular Biology (Center

Eindhoven, the
Netherlands

for Medical Research, Graz)
(Klymiuk et al., 2016)

Nextera XT Library construction kit llumina, Macrogen (Seoul, South Korea)
Eindhoven, the
Netherlands

Illumina HiSeq technique llumina, Macrogen (Seoul, South Korea)

Eindhoven, the
Netherlands

Software and Algorithms

QIIME2 version 2020.6

(Bolyen et al.,
2019)

https://giime2.org

SILVA version 128-132

(Quast C, Pruesse
E, Yilmaz P,
Gerken J, Schweer
T, Yarza P, Peplies
J,2013)

R version 3.5.1

R Studio version 1.2.1335

(Team, 2019)

https://www.r-project.org

decontam version 1.1.0

(Davis et al., 2018)

https://github.com/benjjneb/decontam

vegan version 2.5-5

(Oksanen et al.,
2007)

Calypso

(Zzakrzewski M,
Proietti C, Ellis JJ,
Hasan S, Brion M-

http://cgenome.net:8080/calypso-
8.84/faces/uploadFiles.xhtml
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J, Berger B, 2017)

Galaxy set-up

(Jalili et al., 2020)

provided by the Core Facility
Computational Biology at the Medical
University of Graz

LEfSe

(Segata et al.,

http://huttenhower.sph.harvard.edu/galax

2011) y/

Krona chart (Ondov, Bergman Krona chart excel template
and Phillippy,
2011)

nut.s - nutritional software version 1.32.79 (Denkwerkzeuge, www.nutritional-software.at
2020)

MG-Rast platform (server running version 4.0.3.) (Meyer et al., https://www.mg-rast.org/
2008)

IBM SPSS Amos version 26 IBM http://www.ibm.com/analytics/us/en/tech

nology/spss/

fastqc v0.11.8

(Andrews, 2010)

http://www.bioinformatics.babraham.ac.u
k/projects/fastqc/

trimmomatic v0.38

(Bolger, Lohse and
Usadel, 2014)

http://www.usadellab.org/cms/?page=trim
momatic

bowtie2 v2.3.5

(Langmead and

Salzberg, 2012)

http://bowtie-
bio.sourceforge.net/bowtie2/index.shtml

samtools v1.9

(Li et al., 2009)

http://www.htslib.org/

bedtools v2.29.0

(Quinlan and Hall,
2010)

https://bedtools.readthedocs.io/en/latest/

diamond v0.9.25

(Buchfink, Xie and
Huson, 2014)

http://www.diamondsearch.org/index.php

MEGAN v6.20.13

(Huson et al.,

https://software-ab.informatik.uni-
tuebingen.de/download/megan6/welcome
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2007)

.html

Megahit v1.1.3

(Li et al., 2015)

https://github.com/voutcn/megahit

MaxBin v2.2.4

(Wu et al., 2014)

https://sourceforge.net/projects/maxbin2/

dRep v2.0.5

(Olm et al., 2017)

https://github.com/MrOIm/drep

GTDBtk v1.2.0

(Chaumeil et al.,

2020)

https://github.com/Ecogenomics/GTDBTk

MaGe

(Vallenet et al.,

2006)

https://mage.genoscope.cns.fr/microscope
/home/index.php

iRepv1.1.9

(Brown et al.,

2016)

https://github.com/christophertbrown/iRe
p

g2-sample-classifier-plugin

(N. Bokulich et al.,
2018)

https://docs.qiime2.org/2020.11/tutorials/
sample-classifier/

g2-micom plugin v.0.8.0

(Diener, Gibbons
and Resendis-

Antonio, 2020)

https://github.com/micom-dev/q2-micom

AGORA genus model database v1.03

(Magnusdottir et

al., 2017)
https://www.vmh.life/#downloadview
Deposited Data
. European
Raw data (amplicon, metagenome) Nucleotide PRJIEB41867
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Archive (ENA)

Supplementary Dataset (Sequencing data after
decontam and removal of features with zero and
one reads)

Supplementary Figures, Tables and Items

Mendeley data
(Kumpitsch et al.,

http://dx.doi.org/10.17632/hjj3tx7n84.1

PCR conditions

universal Archaea
(nested PCR 1) (nested PCR2)

Initial denaturation 94°C, 3’ 95°C, 5’ 95°C, 5’
Denaturation 94°C, 45" 94°C, 30" 95°C, 40"
Annealing 50°C, 60" 56°C, 45" 63°C, 2’
Elongation 72°C,1'30” 72°C, 1’ 72°C, 1°
Final elongation 72°C, 10° 72°C, 10° 72°C, 10°
No. of cycles 35 25 30

Contact for Reagent and Resource Sharing

Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Christine Moissl-Eichinger (christine.moissl-eichinger@medunigraz.at).

Subject Details

n=100

One-hundred participants between 18-37 years were recruited at the University of Graz. Following

exclusion criteria were set: smoker, left-handers, intake of antibiotics and probiotics within the last 3

months before sampling and neurological, psychiatric or internal diseases. The study was evaluated and

approved according to the Declaration of Helsinki by the local ethics committee of the University of Graz

(EK-Nr. GZ. 39/44/63 ex 2017/18). Before participation, all participants signed an informed consent.

Method Details
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Methane measurement

All volunteers were asked to inhale deeply through the nose and hold their breath for 15 s before
complete exhalation into the GastroCH4ECK breath bags (Bedfont Scientific Ltd, UK) via the mouth.
Breath was collected on the same day as the stool sample in the morning before brushing their teeth and
eating breakfast. Methane in the breath was measured by GastroCH,;ECK Gastrolyzer (Bedfont Scientific
Ltd, UK). Participants with CH, values above 5 ppm were stated as methane producers. With these

measurements 15% of the study group (n=15) were classified as high methane emitters (Ch, value 2

Sppm).

Matched subset (n=30)
15 high methane emitters were matched to 15 low methane emitters by sex, age, hormonal
contraception, and vegetarianism (Supplementary Table 2). All other participants were excluded in this

subset.

Nutritional Assessment

Dietary habits and food intake information of the 4 weeks before the investigation were collected by a
validated food frequency questionnaire (“German Food Frequency Questionnaire (FFG)” of the Robert
Koch Institute) (Haftenberger et al., 2010). The diet’s nutritive composition (e.g. intake of fat, protein,
magnesium, zinc, etc) and dietary diversity indices were analyzed by a specific nutrition software using

food and nutritive values specific for Austria (Denkwerkzeuge, 2020).

Sample collection, DNA extraction and amplicon sequencing

Collection and PMA treatment

Stool samples were collected of every participant. To make sure that we analyse intact cells, a 10% stool
suspension with 0.9% sodium chloride was treated with propidium monoazide (PMA) solution to mask
freely accessible DNA. During PMA treatment, all steps were performed in the dark. PMA solution (final
concentration: 50 uM) was added to the stool samples. Samples were vortexed briefly, incubated for 10
min on a shaker and 15 min in a PMA-Lite™ LED Photolysis Device (Biotum) afterwards. Samples were

stored at -20 °C until further use.

DNA extraction
PMA-treated stool samples were used to extract microbial genomic DNA by using the DNeasy PowerSoil

Kit (QIAGEN, USA) according to manufacturer’s protocol. Only modification was the use of MagNaLyser

35


https://doi.org/10.1101/2020.12.21.423794
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423794; this version posted December 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

at 6500 rpm for 2 times 30 s instead of vortexing the samples. DNA concentration of extracted DNA was

guantified via Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, USA).

16S rRNA gene-based next generation sequencing (NGS) and sequence data processing

To determine the bacterial microbial diversity the variable region V4 of 16S rRNA gene was amplified
using universal PCR primers 515FB and 806RB. For the archaeal set up a nested PCR approach was used,
using the primer pair 344F and 1041R at the first and 519F and 806R for the second PCR. For detailed
protocol and primer sequences see (Pausan et al., 2019). Each PCR reaction was performed in triplicates.
Triplicates were pooled after visualization in 3 % agarose gel. Fragments were sequenced using the
Illumina MiSeq sequencing platform (lllumina, Eindhoven, the Netherlands) performed in cooperation
with the Core Facility for Molecular Biology of the Center for Medical Research in Graz (Klymiuk et al.,

2016).

Raw reads were analyzed with QIIME2 (Quantitative Insights Into Microbial Ecology) version 2019.1 using
DADA2 (Divisive Amplicon Denoising Algorithm) to denoise sequences (Callahan et al., 2016; Bolyen et
al., 2019). Briefly, paired end reads were joined together before a quality check of the produced
sequences was performed. Afterwards, taxonomic assighment was determined with SILVA v128
(universal approach), and SILVA v132 (archaeal approach)(Quast C, Pruesse E, Yilmaz P, Gerken J,
Schweer T, Yarza P, Peplies J, 2013) as a reference database for a Naive-Bayes classifier (N. A. Bokulich et
al., 2018). For phylogenetic metrics and analysis a rooted tree was generated with FastTree 2 (Price,

Dehal and Arkin, 2010).

LEfSe (LDA Effect Size) (Segata et al., 2011) was used to identify genomic features characterizing the
differences between two given conditions. In our case, the LEfSe tool was integrated in a user-friendly
Galaxy set-up provided by the Core Facility Computational Biology at the Medical University of Graz. The
cladogram was created by the “Plot Cladogram” function, and further-on optimized using Inkscape

(inkscape.org).

Controls
Extraction blanks and PCR negative controls were processed in parallel. All controls were removed using
the R package decontam (Davis et al., 2018) with the prevalence method and threshold set to 0.5

(https://github.com/benjineb/decontam). Unassigned sequences mitochondrial and chloroplast

signatures as well as features with zero or only one read were also removed. Remaining RSV tables

(Supplementary Dataset 1-3) were processed in Calypso (Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion
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M-J, Berger B, 2017) to generate RDA, Shannon, PCoA, ANOVA plots as well as networks and correlation

analysis.

BioEnv
R Studio version 1.2.1335 (2018-07-02) and R package vegan 2.5-5 (Oksanen et al., 2007) was used to
generate a BioEnv diagram with environmental variables (dietary information, CH4 emission, ..) with

maximum correlation with microbial community dissimilarities.

Metagenome Analysis

Shotgun metagenome sequencing

200 ng extracted DNA (PMA treated) of each of the 30 matched samples was sent for sequencing to
Macrogen (Seoul, South Korea). Library was extracted via Nextera XT Library construction kit (lllumina,
Eindhoven, the Netherlands) and sequenced using lllumina HiSeq technique (lllumina, Eindhoven, the

Netherlands).

Metagenomics analysis via MG-Rast

Raw data was quality controlled, sequences were paired and analyzed with the open-submission data
portal MG-Rast platform (server running version 4.0.3.)(Meyer et al., 2008). Features with zero or one
read were removed before feature tables (RefSeq and SEED) were uploaded in Calypso (Zakrzewski M,

Proietti C, Ellis JJ, Hasan S, Brion M-J, Berger B, 2017).

Metagenome assembled genomes (MAGs)

After checking quality with fastqc (v0.11.8)(Andrews, 2010), raw shotgun reads were filtered accordingly
with trimmomatic (v0.38) (Bolger, Lohse and Usadel, 2014) by using a minimal length of 50 bp and a
Phred quality score of 20 in a sliding window of 5 bp. Quality filtered sequences were then mapped
against the human chromosome hg19 with bowtie2 (v2.3.5) (Langmead and Salzberg, 2012) to remove
sequences of the human host by retaining all unmapped reads with samtools (v1.9, settings: -b -f 12 -F
256)(Li et al., 2009). Host removed forward and reverse fastq files were then extracted from sorted bam
files with bedtools (v2.29.0) (Quinlan and Hall, 2010). Reads were then analyzed in a gene and genome-
centric manner. For the gene-centric analysis, host removed quality filtered reads were annotated by
blastX searches against the NCBInr database (release of Sep. 9th 2020) using diamond (v0.9.25)
(Buchfink, Xie and Huson, 2014). Resulting m8 files were then visualized in MEGAN (v6.20.13) (Huson et
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al., 2007). For the genome-centric analysis host removed quality filtered reads were co-assembled in
Megabhit (v1.1.3) (Li et al., 2015) by using the preset meta-sensitive. Resulting contigs were binned with
MaxBin v2.2.4 (Wu et al., 2014). Further on, bins were quality scored (based on CheckM (Parks et al.,
2015) estimates for completeness, contamination and strain heterogeneity as well as N50 based
assembly continuity) and de-replicated to pick representative MAGs (metagenome assembled genomes)
with dRep (v2.0.5) (Olm et al., 2017). Quality MAGs were then classified with GTDBtk (v1.2.0) (Chaumeil
et al., 2020). Identified key MAGs were further annotated and analyzed including gene synteny in MaGe

(Vallenet et al., 2006). Finally, replication rates were determined with iRep (v1.1.9) (Brown et al., 2016).

Prediction model
Raw metagenome data was used to create prediction models in QIIME2 (Caporaso et al., 2010).

Supervised metadata classifications and regressions

The g2-sample-classifier-plugin (N. Bokulich et al., 2018) was used to predict high and low methane
emitters from feature table compositions. To determine accuracy by comparing predicted values the
data set was randomly split by 5 into a training set (%) and a test set (}). The training set was used for
the learning model including settings for optimized feature-selection, parameter tuning and K-fold cross
validation based on RandomForest. The resulting sample estimator (trained classification model) was

also used to predict methane emissions between the shotgun (RefSeqgs) and amplicon dataset.

Krona charts
Datasets (amplicon and metagenome) were normalized and Krona chart templates (Ondov, Bergman and

Phillippy, 2011) were used to visualize the differences between HE and LE.

Metabolic guantification using NMR

Nuclear magnetic resonance spectroscopy (NMR) analysis was used to analyze concentrations of acetate,
succinate, formate, lactate, butyrate and propionate in stool samples (PMA untreated) performed at the
Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and
Biochemistry, Medical University of Graz. To quench enzymatic reactions and remove proteins,
methanol-water solution was added to the stool sample (2:1), cells were lysed using a Precellys
homogenizer and stored at -20°C for 1 hour until further processing. Samples were centrifuged (4°C, 30

min, 17949 rcf) and supernatants were lyophilized afterwards. Samples were then mixed with 500 ul
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NMR buffer in D,0 (0.08 M Na,HPO,, 5 mM 3-(trimethylsilyl) propionic acid-2,2,3,3-d, sodium salt (TSP),
0.04 (w/v) % NaNj in D,0, pH adjusted to 7.4 with 8 M HCl and 5 M NaOH) and transferred into 5 mm
NMR tubes. NMR was performed on an AVANCE™ Neo Bruker Ultrashield 600 MHz spectrometer

equipped with a TXI probe head at 310 K and processed as described elsewhere (Alkan et al., 2018).

The 1D CPMG (Carr-Purcell_Meiboom_Gill) pulse sequence (cpmgprld, 512 scans, 73728 points in F1,
11904.76 HZ spectral width, 512 transients, recycle delays 4 s) with water suppression using pre-
saturation, was used for 'H 1D NMR experiments. Bruker Topspin version 4.0.2 was used for NMR data
acquisition. The spectra for all samples were automatically processed (exponential line broadening of 0.3
Hz), phased, and referenced using TSP at 0.0 ppm using Bruker Topspin 4.0.2 software (Bruker GmbH,

Rheinstetten, Germany).

Spectra pre-processing and data analysis have been carried out using the state-of-the-art data analysis
pipeline (group of Prof. Jeremy Nicholson at Imperials College London) using Matlab® scripts and
MetaboAnalyst 4.0 (Chong et al., 2018). NMR data were imported to Matlab® vR2014a (Mathworks,
Natick, Massachusetts, United States), regions around the water, TSP, and remaining methanol signals
excluded, and to correct for sample metabolite dilution probabilistic quotient normalization (Dieterle et

al., 2006) was performed.

Stated concentrations correspond to normalized concentrations after probabilistic quotient

normalization.

Metabolic predictions

Potential metabolites were predicted with the g2-micom plugin (v. 0.8.0, (Diener, Gibbons and Resendis-
Antonio, 2020). All analysis were conducted with the AGORA genus model database (v1.03)
(Magnusdottir et al., 2017) and covered the entire dataset (n=100) and the matched dataset (n=30) as
well as all and selected key features. In addition, the standard western diet gut medium was adapted
(with provided jupyter notebooks from the developers) according to measured nutrients to provide a per
sample diet model as well. No abundance cutoff was used for all and selected features. In addition, a
leave one out strategy was included for selected features to determine the behaviour of the established
metabolic models in absence of a potential microbial key-player. The growth simulation was performed
with individual settings for the tradeoff between community growth rate and individual taxon growth
rate. This pressure to the model was determined by an evaluation of the tradeoff from 0-1 (zero to

maximum enforced growth) and was set between 0.1 and 0.7 accordingly (all features and selected
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features respectively). Resulting growth rates could be partly verified with calculated replication rates
using iRep of representative key MAGs. Subsequent visualizations and analysis included potential
metabolite consumptions, growth niches, and metabolite fluxes in dependence of measured methane

emissions. Finally, a minimal medium was determined for selected key features of matched samples.

Quantification and Statistical Analysis

Statistical test on metadata, metabolomics and amplicon data

Statistical tests (Spearman rho’s and Pearson’s correlation) were performed using IBM SPSS Amos
version 26. Different parameters were checked for normal distribution. Correlations were calculated
based on distribution of the compared parameters via Spearman’s rho and Pearson’s correlation,
respectively. In the manuscript, non-corrected p values were used to describe specific trends, however

Bonferroni corrected p values can be found in Supplementary Table 5.

Data and Software Availability

Raw sequencing data obtained from amplicon-based sequencing and metagenomics sequencing data
(technical sequences including adaptor sequences, linker sequences and barcode sequences as well as
human reads were removed) used in this paper can be found in the European Nucleotide Archive (ENA):
PRJIEB41867. Supplementary Datasets (after decontam and removal of features with zero and one reads)
and all Supplementary Figures, Tables and Items were deposited on Mendeley at

http://dx.doi.org/10.17632/hjj3tx7n84.1.
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Ill

Figure 1. Differences in alpha and beta diversity based on the “universal” approach of 16S rRNA gene sequencing between
high (HE) and low methane emitters (LE). A-C. Profiles of the whole study cohort (n=100). D-F. Profiles of the matched subset
only (n=30). A.l/D.l. An examination of Shannon diversity index revealed significant differences in alpha diversity (RSV based;
ANOVA). A.II/D.II. The microbiome of HEs clustered significantly differently in the RDA plot (RSV based). B.I/E.l. LEfSe analysis of
the 100 most abundant phyla and B.II/E.lII-B.V/E.V. Relative abundance of selected phyla in ANOVA plots. C.I/F.l. LEfSe analysis

of the 100 most abundant genera and C.1II/F.II-C.VII/F.VIl. ANOVA plots of selected genera.

Figure 2. Co-occurrence networks based on Spearman’s rho correlation of selected genera in HE and LE microbiome samples.
Taxa were selected based on significantly different relative abundances in both sample types and LEfSe analyses. Left, upper
panel: Whole study cohort (n=100), right, upper panel: matched study subset (n=30). Lower panels show co-occurrence patterns

in the HE (left) or the LE samples (right).

Figure 3. Archaeome profile of HE and LE samples, based on the “archaeal” approach of 16S rRNA gene sequencing. A. Profile
of the whole study cohort (n=100). B. Matched study subset (n=30). I. Bar chart of the 20 most abundant taxa compared
regarding their low or high methane emission at the phylum level and Il. at the genus level. lll. Shannon diversity, and IV. RDA
plot at RSV level.

Figure 4. Overview of the divergent functions of the HE and LE based on the shotgun metagenome analysis (subsystems). A.l.
Shannon diversity and A.ll. RDA plot at feature level. B.l. LEfSe analysis and B.lI-.V. ANOVA plots at highest subsystem level
(level 1). C.I. LEfSe analysis and C.II-V.II. subsystem at level 3. (100 most abundant; n=30)

Figure 5. Shotgun metagenome-derived information on the microbial community composition in samples of HEs and LEs
(RefSeq). | Shannon diversity and Il. RDA plot based on strain level. lll. LEfSe analysis and IV-VIl. ANOVA plots at phylum level.
VIIL. LEfSe analysis and IX-XIV. ANOVA plots at genus level (100 most abundant taxa; n=30).

Figure 6. Identified keystone taxa in HE and LE subjects. A. Cladogram of LE and HE keystone taxa. F: Firmicutes, C:
Clostridia/Clostridiales, L: Lachnospiraceae, R: Ruminococcaceae. Numbers in brackets indicate the number of contributing
RSVs; B. and C. Network of keystone taxa of HE and LE at RSV and genus levels, respectively. | - RSV1: Methanobrevibacter; |1->
RSV2-4: Christensenellaceae R7 group; Ill - RSV5: Eubacterium ruminantium group; IV - RSV6-7: Ruminiclostridium; V - RSV8:
Ruminococcaceaea UCG010; VI - RSV9-12: Bacteroides; VIl = RSV13: Ruminococcus gnavus group; VIl - RSV14: Blautia; IX -
RSV15: Roseburia; X > RSV16: “Tyzzerella”; XI - RSV17-19: Butyricicoccus; XIl > RSV20: Flavonifractor (also see Supplementary
Table 3)

Figure 7. MICOM model-based flux balance analysis of keystone taxa. The 40 most significant metabolites are shown for each

condition. Left: HE, right: LE.

Supplementary Figures
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Supplementary Figure 1. Bubble plots of the 50 most abundant taxa based on the “universal” approach of 16S rRNA gene
sequencing. A. Microbiome profiles of the whole study cohort (n=100). B. Microbiome profiles of matched study subset (n=30).

Al/BI. Phylum level. All/BII. Genus level. Christensenellaceae_R7_group and Methanobrevibacter are highlighted.

Supplementary Figure 2. Microbiome profiles and differences in abundances of specific taxa in HEs compared to LEs based on
the “universal” approach (16S rRNA gene sequencing). A. Whole study cohort (n=100). B. Matched study subset (n=30). Al/BI.
PCoA plots (RSV based); All/BIl. ANOVA analysis at phylum level and Alll/BIII at genus level on the 100 most abundant taxa. AIV-

VII/BIV-VII. Relative abundances of individual genera.

Supplementary Figure 3. Significant positive and negative correlation of specific taxa with emitted methane concentrations

based on “universal” approach 16S rRNA gene sequencing, Spearman-based regression analysis. A. Whole study cohort
(n=100). B. matched study subset only (n=30). I-V. Significant positive correlation with emitted methane. VI-X. Significant
negative correlation with emitted methane. (100 most abundant genera; Spearman); r=Spearman’s rho correlation coefficient

(rs)

Supplementary Figure 4. Co-correlation network of taxa associated with HE and LE based on “universal” approach 16S rRNA
gene sequencing and Spearman’s rho. Networks showing connections of the 100 most abundant genera of A. the whole study
cohort (n=100), B. our matched study subset (n=30), C. HE only (n=15) and D. LE only (n=15). Taxa highlighted in red and blue

were shown to be most significantly different in LEfSe and ANOVA analysis.

Supplementary Figure 5. Bubble plot overview on subsystems at the highest (l.) and at functional level (ll.) based on shotgun

metagenome analysis. In Il., the 50 most abundant features are shown.; n=30.

Supplementary Figure 6. Relative abundance of the most significantly different subsystems of HEs compared to LEs shown in
ANOVA plots based on shotgun metagenome analysis (Subsystems). I. At highest subsystem level (level 1) and Il. level3. (100

most features; n=30)

Supplementary Figure 7. Bubble plots of gut microbiome of HEs and LEs based on shotgun metagenome (RefSeq). I. visualized

at phylum level and Il. genus level. (50 most abundant taxa; n=30)

Supplementary Figure 8. Significant differences were also observed at species level based on shotgun metagenome analysis

(RefSeq). I. Bubble plot of the 50 most abundant taxa. . LefSe analysis and Ill. ANOVA plot of 100 most abundant taxa. (n=30)

Supplementary Figure 9. Microbial community differs significantly with respect to methane production based on shotgun
metagenome analysis (RefSeq). I. LEfSe analysis and Il. ANOVA plot at superkingdom level. Ill. PCoA plot at RSV level. IV.

ANOVA plot showing significant differences at phylum (100 most abundant) and V. genus level (50 most abundant taxa). (n=30)

Supplementary Figure 10. Diversity and composition of the archaeal community as detected in HE and LE samples based on
shotgun metagenomic analyses (RefSeq). | Alpha diversity based on Shannon index, Il. RDA plot, lll. PCoA plot, IV: LEfSe analysis

on genus level.

Supplementary Figure 11. Archaeal network in LE and HE (blue) based on shotgun metagenomics information (RefSeq).
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Supplementary Figure 12. Correlations with dietary intake. BIOENV analysis showing explanatory variables triggering the
microbial communities of HEs (blue) and LEs (red) based on Euclidean distances that were superimposed on a Non-metric
multidimensional scaling (NMDS) plot derived from Bray-Curtis dissimilarities of HE and LE samples (stress:0.1939).

Methanobrevibacter read counts were included as a variable for better orientation.

Supplementary Figure 13. Metabolic network of keystone taxa in LE and HE microbiomes. Metabolites measured in stool

samples are indicated by arrows; respective increase or decrease of the median by >5% is displayed.

Supplementary Tables

Supplementary Table 1. Characteristics of all participants (n=100).
Supplementary Table 2. Characteristics of the matched subset (n=30).

Supplementary Table 3. Keystone taxa of high and low methane emitters (n=30). Identified key taxa based on LEfSe analysis of
the 600 most abundant genera/RSVs. Numbers in column 2 and 3 refer to Figure 6b and c.

Supplementary Table 4. High quality dereplicated key MAGs including quality and replication estimates as well as taxonomic
classification according to GTDB.

Supplementary Table 5. Correlations of different parameters (general, keystone taxa, metabolites and diet) of this study
among each other.

Supplementary Table 6. Metabolite concentrations in high and low methane emitters (n=30).

Supplementary Items

Supplementary Item 1. Krona chart based on amplicon data (universal, n=100).

Supplementary Item 2. Krona chart based on amplicon data (archaea, n=100).

Supplementary Item 3. Krona chart based on metagenomic data (SEED, n=30).

Supplementary Item 4. Krona chart based on metagenomic data (RefSeq, archaea and bacteria only, n=30).
Supplementary Item 5. Krona chart based on metagenomic data (RefSeq, archaea only, n=30).

Supplementary Item 6. Heatmap of amino acid flux predictions according to MICOM (universal primer: 515F-806R; n=30)
Supplementary Item 7. Heatmap of C1-C4 flux predictions according to MICOM (universal primer: 515F-806R; n=30)

Supplementary Item 8. Heatmap of complex compound flux predictions according to MICOM (universal primer: 515F-806R;
n=30)

Supplementary Item 9. Heatmap of fat flux predictions according to MICOM (universal primer: 515F-806R; n=30)

Supplementary Item 10. Heatmap of nucleotide flux predictions according to MICOM (universal primer: 515F-806R; n=30)
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Supplementary Item 11. Heatmap of other metabolite flux predictions according to MICOM (universal primer: 515F-806R;
n=30)

Supplementary Item 12. Heatmap of sugar flux predictions according to MICOM (universal primer: 515F-806R; n=30)

Supplementary Item 13. Heatmap of vitamine flux predictions according to MICOM (universal primer: 515F-806R; n=30)

Supplementary Datasets

Supplementary Dataset 1. Feature table amplicon data of universal approach (universal primer: 515F-806R; n=100).
Supplementary Dataset 2. Feature table amplicon data of archaeal approach (nested PCR: 344F-1041R, 519F-806R; (n=100).
Supplementary Dataset 3. Feature table metagenomic data showing functional gene information (SEED; n=30).
Supplementary Dataset 4. Feature table metagenomic data showing taxonomic information (RefSeq; n=30).
Supplementary Dataset 5. MICOM growth rate predictions (universal primer: 515F-806R; n=30).

Supplementary Dataset 6. MICOM metabolite flux predictions (universal primer: 515F-806R; n=30).

Supplementary Dataset 7. Adapted per sample diet model for MICOM (n=30).
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