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Abstract: Respiratory syncytial virus (RSV) infection retssuh millions of hospitalizations and
thousands of deaths each year. Genetic varianilingsin alterations in the adaptive and innate
immune response appear to be associated with R&¥itye To investigate the host response to
RSV infection in infants, we performed a system&lestudy of RSV pathophysiology,
incorporating high-throughput measurements of #rgperal innate and adaptive immune
systems and the airway epithelium and microbiota.ilplemented a novel multi-omic data
integration method based on multilayered princgmahponent analysis, penalized regression,
and feature weight back-propagation, which enabetb identify cellular pathways associated
with RSV severity. In both airway and immune cellg, found an association between RSV
severity and activation of pathways controlling Thdhd acute phase response signaling, as well
as inhibition of B cell receptor signaling. Dysré&gion of both the humoral and mucosal
response to RSV may play a critical role in deterng illness severity.

[Main Text: ]
I ntroduction

Respiratory syncytial virus (RSV), a negative stir&®NA virus in the Pneumoviridae family, is

a major cause of respiratory illness affecting pessof all ages, especially newborn infafts
Although the majority of infections are relativetyjld, RSV remains the most common cause of
hospitalization for pneumonia and severe pneumonigants and young children in both the
developed and developing wofld. In the US half of newborns are infected in ttiest winter,
with 1-?% hospitalized, 4-7% seen in emergency depnts, and 10-16% seen in physician
offices”.

A number of well-defined host factors predisposimgnts to severe disease include prematurity,
congenital cardiac and neuromuscular diseasecantelels of maternally derived neutralizing
antibody®. More recent studies have also found genetic pofpitisms in cytokine and
chemokine genes, altered innate interferon resjgang@e respiratory tract, T cell responses
favoring a Th2 and Th17 bias, and the compositidh@nasal microbiota to be associated with
more severe illness™. Although each of these factors offer insight itite complex nature of
RSV infection in young infants, they have generbken analyzed independently; thus, it is
difficult to assess their interactions and relatmportance to disease outcome.

Previous multi-omic analyses of RSV, by our grond athers, demonstrated the potential of
integrative analyses to further our understandintg® biological mechanisms underlying RSV
disease progression and severity. To address fiamtaof prior studies, we designed a systems-
level study of RSV pathophysiolor]g];%/ in a precisedfided population of low risk newborns with
the full spectrum of disease severityWe studied purified populations of CD4+, CD8+ and
CD19+ cells, as mixed PBMCs have been used extgsn studies of iliness severity for
respiratory infection§**"*® We reasoned that the local airway response woelld key
component to defining illness severity, by conttibg to the ability of the host to control or
localize the infectiori’. We also included data from the nasal microbiasarecent studies have
indicated colonization at the time of viral infemtimay significantly influence illness severity

This study builds on these previous studies botherscope of the data and in the methodology
developed to analyze these data. By modeling theexions between these high-throughput
data and clinical RSV severity, we are able to mstoict the intricate relationships among
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different data types and demonstrate the poteottialtegrative analyses to identify shared and
cell type specific cellular pathways associatedh BV severity.

Results

The data presented in this manuscript were genceat@art of the Assessing Prediction of
Infant Respiratory Syncytial Virus Effects and S#tygAsPIRES) study, which sought to
identify host, viral, and environmental factorsasated with RSV disease severity A total of
139 infants with RT-PCR confirmed RSV illness wergolled. Venous blood, nasal microbiota
and nasal epithelial cell samples were collectedhiigh-throughput molecular analysis (Figure
1). lliness severity was measured using the GIBsbiratory Severity Score (GRS$)which
guantifies the full spectrum of primary RSV diseaseerity using nine clinical variables in a
weighted score. We employ a novel approach tantiegration and analysis of five high
dimensional omic data modalities: the nasal epahbanscriptome, the transcriptome of CD4,
CDS8, and CD19 cells from peripheral blood, andrthgsal microbiome.
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Figure 1: Overview of the study design. Measurements of the nasal epithelial cell transcriptome and nasal microbiome were
generated from nasal swabs of infants. Measurements of peripheral inmune cells (CD4, CD8, and CD19) were obtained from
blood samples. These measurements were subsequently integrated and associated with RSV disease severity (GRSS).

Integrated Method Devel opment

Preliminary exploratory analyses of individual dafaes found that most individual features
(e.g. a single gene measured in CD4 cells) haaéively weak correlation with GRSS.
Additionally, we observed strong correlation amdéeatures within a data type. These two
observations motivated us to use appropriate dimemsduction methods to aggregate
numerous “weak features” in the hopes of identdyanfew key latent factors for each data type.
Screeplots from performing PCA on each data typeveld that a small number of PCs
explained the vast majority of the variation inledata type (Supplementary Figure 1).
Furthermore, we applied a secondary PCA on thepgP@hiced by each data type and found
shared variation between data types. These iaitialyses motivated the methods of data
integration we describe in this paper.
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Due to practical limitations, only a small subskesubjects (23 out of 106) have all five high
dimensional data types (Supplementary Figure 2)s€guently, we decided to conduct
integrative analyses of several combinations oftsrdata. The first set of data modalities was
chosen to interrogate three disparate putativemetants of RSV severity, the nasal epithelial
transcriptome (NT), the nasal microbiome (NM), #mel adaptive immune response measur
peripheral blood CD4 cells (CD4). These data weeglable for 61 subjects. The second data
integration focused on the collective role of tdagive and innate immune response in RSV
severity, measured in CD4, CD8, and CD19 cellsatedl from peripheral blood. These data
were available for 35 subjects.
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Figure 2: Five potential methods of multi-omic data integration. Methods differ in their handling of nasal microbiome data
(OTU), number of levels of PCA, and the stage at which the integration occurs. In our assessments, the leftmost model out-
performed the other models in terms of cross-validated error.

We proposed five related integrative analytic mdthlbased on multilayer PCA and regularized
regression based variable selection (Figure 2)Ms#hods for details. Based on extensive Gross
validation (CV) experiments, we found that PCArafnscriptomic data, followed by an
integrative elastic-net regression model with thascriptomic PCs and individual operational
taxonomic units (OTUs) of nasal microbiome datg(ir¢ 2, Method 1) achieved better GRSS
prediction accuracy than the other methods (Supgieany Tables 2 & 3).

We also applied a similar approach, initial PCAdghdimension reduction followed by
regularized regression, to individual data types fanind that the integrative models
significantly out-performed the single data typedas in terms of cross-validated prediction
accuracy (Figure 3). Specifically, while the inteigdd and single data types models are all
approximately unbiased, the integrated models bhdtantially smaller mean squared error
(MSE).
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Figure 3: Integration of different data modalities improves prediction of GRSS. The panel on the left shows the difference
between the predicted and observed GRSS for a model that integrates the nasal epithelial transcriptome, peripheral blood CD4
transcriptome, and nasal microbiome, as well as for models using just one of these data types. Similarly, the panel on the right
compares a model that integrates the transcriptomes of 3 immune cell types measured in peripheral blood with models using

just one of these data types. In both cases, integration increases the precision of the GRSS predictions.

Model Application and Interpretation

We previously reported gene expression correldtebnical disease severity in RSV infected
infants™?3 To gain further insight, we generated multipleotiels” by integrating unbiased,
comprehensive gene expression data from both tim®ital and mucosal compartments as
described above. We hypothesized that a “systeve$’ lanalytical approach would provide
distinct biological insights into disease pathopbiggy. We first focused upon humoral
responses specifically characterized in CD4 Tsasrted from peripheral blood collected duy
acute illness, in two models containing gene exgioesdata from these cells (Figure 4).
Following data integration, using RSV-associatextdse severity as the outcome, the modeled
weights (see “Feature weight calculation” in Suppatary Text for more detail&r expressia
of individual genes is displayed in word cloudsgepleft), and unweighted gene expression
values are displayed in a heatmap (lower left).dMesi for individual genes are clearly different
between the two models, as evident from the wayddd, and could be expected due to the
different subsets of the cohort included in eacldehdnterestingly, CD101, one of the highest
weighted genes in both models, plays a role asfahitor of T cell proliferation induced by
CD3. Furthermore, unweighted gene expression setii@egrated models are not fundamer
different between mild and severe subjects. Thbsergations support the novel and distinct
insight derived from our new integrated modelingraach to identify gene expression
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Figure 4: CD4 gene weights, expression, pathways, transcriptional factors and upstream regulators associated with clinical
severity in integration models. Shown are an integration model of CD4, nasal epithelial cells and microbiota (CM) and a model of
lymphocytes (LM). Weights generated by integration models are shown in word-clouds. The size of word represents the absolute
value of gene weight. Word-clouds of CM & LM consist of genes that have absolute weight is greater than 0.0003. Gene
expression are normalized expression levels for the 454 genes selected by univariate analysis; rows represent genes and columns
represent samples. Red indicates higher expression, blue indicates low /no expression, green indicates Global RSV Severity Score
(GRSS), soft orange indicates mild phenotype, lime green indicates severe phenotype, purple indicates negative weight and olive
indicate positive weight. Transcriptional factors associated with severity in CD4 lymphocytes were identified using a
hypergeometric test. Four transcriptional factors are shown where p-values were less than 0.05. Ingenuity Pathway Analysis
(IPA) was used to identify canonical pathways and upstream regulators represented by genes associated with severity in CD4
lymphocytes. Thirty pathways and upstream regulators are shown where Fisher's exact test p-values were less than 0.05. Red
and blue indicate predicted increased or decreased pathway activation (activation z-score), respectively.

To minimize modekpecific variation, we focused our interpretatiéih@se data at the pathv
level (middle of Figure 4 and Supplementary Figudé®. We found a high degree of model
convergence, with a majority of pathways consisgestgnificantly activated or inhibited in
association with disease severity. Significantiheated pathways were associated with hyp
signaling, nucleotide salvage and telomerase signphthways. Of particular interest, many
significantly inhibited pathways were associatethwi helper (Th) cell signaling (CD28 and
NFAT signaling) and differentiation of Th subtypd$1 and TH17 regulation).

We next attempted to predict key regulatory evassociated with disease severity, including
transcription factors and intracellular signal sdmction molecules, that could be driving the
global gene expression responses. Upstream regaladtysis using Ingenuity suggested that
MYC and PI3K were associated with many of the gdigantly regulated pathways. Four sets of
genes were selected based on their model weidgsop 200 genes, genes in the first quantile,
genes in the second quantiéed all genes. Promoter analysis of these threensae performe,
using high quality transcription factor bindingesitconserved across human, mice and rat
genomes. The analysis revealed that multiple Tdiérentiation pathways with consistent
evidence for inhibition (CD28 signaling, Th17 aetion, Thl and T cell exhaustion signaling)
are under the transcriptional control of PRDM1 (@ppght/Panel D). Interestingly, PRDML1 is
known tomodulate peripheral T cell activation and prolifesa, promote T helper (Th2) linee
commitment and limit Th1/Th17/Tth cell differentia. Our results implicate inhibition of T
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cell differentiation, towards the Th2/Th17 phenayp particular, as a putative mediator of
severe illness.

We rationalized that the mucosal response wouldistenct from the humoral response and
would reflect the pathophysiology of the diseasgdaborgan, as suggested by our prior studies
1124 Therefore, we next focused on interpreting theegeeights of nasal samples from the
comprehensive model (CM). Similar to the CD4 datsented in Figure 4, the modeled weis

for expression of individual genes in relation isedise severity is displayed in word clouds
(Figure 5, upper left), and actual unweighted gexgression values are displayed in a heatmap
(Figure 5, lower left). Highly weighted genes (pogly correlated with disease severity) inc2
BTN2A2, which inhibits the proliferation of CD4 al@D8 T-cells, T-cell metabolism and IFN
secretion, and HOMER1, which negatively regulategl activation by inhibiting NFAT
pathway.

We next completed pathway level analysis of thegr@mensive model (CM) nasal gene
expression weights (Figure 5, center). The analyst®vered a decrease in multiple pathways
driven by both retinoic acid-related (e.g., LXR/RXERd PPAR/RXR signaling) and p53-related
(e.g., NF-kappaB) signaling were associated witlersedisease. Further analysis of these genes
and pathways identified significant evidence foamges in RXR and REL/A transcription fac
regulation (Figure 5, upper right). Interestingdlyis analysis indicated increased activation of
pathways which were focused on regulation of theume system were also associated with
severe disease; in particular those associatedi2rand Th17 CD4 T cells. Remarkably,
upstream regulator analysis suggested this mayéeadincreases in the expression of IL4 and
IL17A (Figure 5, lower right). Again, as for CD4cCEll data, our ability to use this integrated
modeling approach to identify evidence for pathgbipgically relevant interactions between
the mucosal and humoral responses supports itodwtigical validity.
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Figure 5: Nasal Epithelial gene weights, expression, pathways, transcriptional factors and upstream regulators associated with
clinical severity in integration models. Shown are Integration model of CD4, nasal epithelial cells and microbiota (CM). Weights
generated by integration models are shown in world-clouds. The size of word represents the absolute value of gene weight. A
M1 word-cloud consists of genes with absolute weight greater than 0.0003. Gene expression are normalized expression levels
for the 993 genes selected by univariate analysis; rows represent genes and columns represent samples. Red indicates higher
expression, blue indicates low /no expression, green indicates Global RSV Severity Score (GRSS), soft orange indicates mild
phenotype, lime green indicates severe phenotype, purple indicates negative weight and olive indicate positive weight.
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Transcriptional factors associated with severity in nasal epithelial cells were identified using a hypergeometric test. Four
transcriptional factors are shown where p-values were less than 0.05. Ingenuity Pathway Analysis (IPA) was used to identify
canonical pathways and upstream regulators represented by genes associated with severity in nasal epithelial cells. Thirty
pathways and upstream regulators are shown where Fisher's exact test p-values were less than 0.05. Red and blue indicate
predicted increased or decreased pathway activation (activation z-score), respectively.

Finally, we assessed unique and consistent respamige mucosal and humoral compartments
as indicated by our integrated models (CM and LUR&thway-based analysis of the weights
derived from CD8 T cells indicated unique activatal cytotoxic responses including those
related to classical CD8 T cell functions were agged with severe disease. CD8 T cells also
demonstrated unique activation of TGFb and TNFRaligg in severe disease. Conversely,
analysis of the weights derived from CD19 B caidicated regulation of multiple, alternate
pathways. CD19 B cells displayed evidence for uaigctivation of PLC, and unique inhibition
of PIBK/AKT signaling, among others. Pathway-baagdlysis of the weights also identified a
number of responses that were conserved acragsalhocytes (e.g., CD4, CD8, CD19) and
associated with disease severity. Consistentlyatetil pathways indicated broad increases in
oxidative phosphorylation, nucleotide salvage amdylation. Significantly inhibited pathwe
indicated broad reductions in lymphocyte prolifemat activation (e.g., iCOS and NFAT) and
surtuin signaling. Finally, we looked for pathwaylich were consistently identified not just in
lymphocytes, but across all humoral and mucosal slets (Figure 6). This analysis indicated
activation of pathways controlling Th17 and acutage respomssignaling, as well as consist
inhibition of B cell receptor signaling, are corteigly associated with disease severity in all
types studied.
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Figure 6: Common and unique pathways in lymphocytes & nasal epithelial cells of integration models. Sankey diagram showing
the common and unique pathways among lymphocytes & nasal epithelial cells of integration model of CD4, nasal epithelial cells
and microbiota (M1) and model of lymphocytes (M4). Ingenuity Pathway Analysis (IPA) was used to identify canonical pathways
represented by genes associated with severity in lymphocytes and nasal epithelial cells. Pathways are shown where Fisher's
exact test p-values were less than 0.05. Red and blue indicate predicted increased or decreased pathway activation (activation z-
score), respectively. The width of the flow bar is proportional to absolute value of activation z-score.
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Two alternative integration models were also cogr@d in our study: one integrating CD4 and
CD19 lymphocytes (Supplementary Figures 13-16)aarather integrating nasal epithelial cells
with CD4 and CD19 lymphocytes (Supplementary Figuré-22). These additional models
produced similar pathway level results for eachdcaiptomic data type, suggesting a degree of
robustness to our approach to data integratioraaatysis and support our decision to focus on a
comprehensive model of nasal epithelial cells, nasarobiota, and CD4 lymphocytes (CM) and
a model focused on three lymphocyte cell types (LM)

Discussion

In summary, we conducted a multi-omics study oantRSV infection. We demonstrated that a
multi-layer statistical learning framework was eetat predicting disease severity than
comparable single-layer approaches; and integratugjple omics datasets provided with us
better prediction accuracy of disease severity gradictors built from any single dataset. In
addition, based on the trained sparse linear pi@diove were able to assess the contribution of
individual genes/microbes by quantitative weighisich facilitate the biological interpretations
of these predictive models.

Previous studies, including our own, utilized tramsomic analysis of single sample types such
as whole blood, purified T cells, or nasal secretito investigate RSV disease pathogenesis.
These analyses found an association between ircrelisease severity and both T and B cell
suppression, evidence of systemic Th2 skewed Tregtlonses, alterations in systemic and local
interferon responses, and the potential influeridbenlocal microbiome on these responses. In
the current work, by integrating gene expressida fam multiple cell types from the

peripheral blood and the respiratory epitheliumhwite complex microbiome of the upper
respiratory tract, we confirmed the deregulatiothefimmune profile associated with RSV
disease severity. Specifically, the results dematesd that Th2 and Th17 activation, and
inhibition of Th1l pathways dominate the T cell r@sge. In addition, there was evidence of B
cell suppression in the airway of infants with seM@SV. The results also demonstrated that
inclusion of the microbiome, specificalyaemophilus influenzae, was informative for
understanding a complete picture of RSV diseadeopanesis in young infants. Because our
microbiome analysis did not identi§reptococcus pneumoniae, we were unable to confirm its
influence. As described in the results, our analidgentified many severity-associated pathways
that were activated or suppressed during infecepecially those indicating immune
suppression. As shown in Figure 5, the airwaysa@htributed importantly to this inhibition.
Airway epithelial cell expression identified BTN2A3 an influential gene and was important in
inhibiting CD4 and CD8 cells and interferon suppres.

Due to the high-throughput nature of omics datergltould be thousands of features that are
potentially associative with biological endpoirBesides, there exist an astronomically large
number of possible interdependences among thosesatata. Consequently, we believe that
the most fundamental challenge in multi-omics ®sdiuch as ours is to reduce the complexity
in statistical models in a sensible way, such thast spurious correlations are removed yet the
major modes of informative relationships are regdin

Last but not the least, we believe our proposedhatkehas better interpretability than those
machine learning algorithms based on deep neutabries. In fact, the two methodologies
share one architectural similarity, namely, both raulti-layered feedforward systems (see Fig.
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2). Due to the deliberate choice of using linedivation function (via PCA) and linear output
function (via glmnet regression), we were abledsign a multilayer backpropagation algorithm
that translates the weights at the output layer, linear coefficients in the trained predictor of
GRSS, to mathematically equivalent weights at tipaiti layer, i.e., individual genes and
microbes. In a sense, the absolute value of acp&atiweight represents the contribution of this
gene/microbe in predicting the GRSS. We performatkeget enrichment analyses based on
these weights and discovered both cell-type speaifd shared severity-associated biological
pathways. In contrast, it is generally not possiblebtain such a direct relationship between the
output and input layer in feedforward neural neksorith nonlinear activation functions, which
is why these algorithms are sometimes referred ttlackbox methods”.

Arguably, several components in our integrativeysis pipeline may be replaced by other more
specialized methods. For example, instead of ustangdard PCA, we could consider
probabilistic PCA® or sparse PCA. The former is more robust to outliers and missialyes

due to the use of a ridge-like regularization teamg the latter is not only more consistent for
“large p, small n” data than the standard PCAIsib &as better interpretability because it can
produce sparse loading scores. In addition, tlseaehiost of recently developed variants of PCA
that are advantageous in various situations, asnsuized in’’.

Notwithstanding their advantages, these advanaedrdiion reduction methods are: (a)
computationally more demanding; and (b) dependerthe tuning parameter that may have to
be selected by cross-validation, which adds monepeing cost and uncertainties in the
analyses. In the future, we plan to systematialbluate the impact of different dimension
reduction strategies to the second stage integratialyses and make algorithmic adaptations to
improve their computational efficiency in high-toghput data analysis if necessary.

Another potentially rewarding future research dimtis to design better statistical methods
optimized for “incompletely matched” data like ourswhich all subjects do not have all types
of data. In fact, as seen in Figure S2, only 28exuis have all five types of high-throughput
data, thus we decided to build integrative modaiséveral combinations of data separately.
Development of efficient and unbiased high-dimenmaiomputation methods in the future may
allow us to fully integrate all available data amgrove the accuracy of the predictive models.

What we present in this paper is a holistic apgrdaainderstanding the response to RSV
infection during infancy, and the system-level etates of clinical outcomes. The data provide a
better resolution for accurately and sensitiveniifying molecular changes associated with
illness severity, and also uncover specific andigbbhanges that may be easily detectable using
distinct biospecimens (e.g., airway, T cells, Bg;adtc.). These novel data can guide future
efforts to identify sensitive and specific biomadkéor identifying or predicting outcome
following infant RSV infection. They may also besfid as biomarkers to inform the efficacy of
future interventions (e.g., therapies) or prevévganeasures to suppress the rate of severe
disease (e.g., vaccines). For example, our appro@add potentially be used to quantify the
response to novel RSV vaccines, either live atttliar subunit vaccines, to be certain they do
not mimic responses that may lead to a patholdgie$?°

Materialsand Methods
Sudy population and sample collection
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The full description of the ASPIRES study has beeblished?’. The Research Subject Review
Board approved the study and all families provioiddrmed consenBriefly, three groups of
previously healthy full-term infants with priman8¥ infection were evaluated during three
winter seasons from 2012 to 2015 in Rochester, R8YV infection was identified in

hospitalized infants, outpatients brought to mddatizntion either at the Emergency Department
or primary care offices for respiratory symptomsg anfants in a birth cohort followed
prospectively in their homes for RSV infection. Frthese three groups, infants with a range of
RSV disease severity were included.

Infants were evaluated at three time points: areaittness visit at diagnosis, a second visit ~14
days after illness onset, and a convalescent28sitays after illness onset. At each visit
symptoms were recorded, and a physical exam wésrped. At the first and third visit a
flocked swab (Copan) was used to obtain a nasalrape from one nares nares for
microbiological testing, a nasal wash was performethe contralateral nares to remove mucus
and debris followed by the use of a second flockeab to obtain epithelial cells by brushing the
mucosa at the level of the inferior turbinate. desblood (~2-3 ml) was collected at each visit.
RSV infections were confirmed by quantitative reetranscriptase polymerase chain reaction
(QRT-PCR) assay at diagnosis.

RSV disease severity was measured using the GRémiratory Severity Score (GRSYS),
calculated using nine weighted clinical variablgsneral appearance; presence of wheezing,
rales, retractions, cyanosis, lethargy, or poomaivement; maximal age-adjusted respiratory
rate; and worst room-air oxygen saturation) yiaidinscore of 1 through @

RNA processing

Four types of RNA-seq data were used in this stbdy(nasal transcriptome), CD4, CD8, and
CD19. Technical details for recovering nasal RN be found irf°. Briefly, following

flushing of the nares with saline to remove muaus eellular debris, a flocked swab was used to
recover cells at the level of the turbinates. Thatswas immediately placed in RNA stabilizer
(RNAprotect, Qiagen, Germantown, MD) and storedi&tC. Cells were recovered by filtering
through a 0.45uM membrane filter. Recovered cells were lysedlamdogenized using the
AbsolutelyRNA Miniprep kit (Agilent, Santa ClaraAraccording to the manufacturer’s
instructions.

CD4, CD8, and CD19 were mRNA expression profilethefcorresponding cell populations
purified from peripheral blood as previously delsed'**". Specifically, heparinized blood was
maintained at room temperature for up to 2 hourd,eripheral blood mononuclear cells were
isolated by Ficoll-hypaque gradient, flow-sortetbithese three subsets of cells, and stored in
RNA lysis buffer at —20°C.

For all four types of RNA-seq data, sequencingalil@s were constructed using the NexteraXT
library kit (lllumina, San Diego, CA) and then segaed on the lllumina HiSeq2500 platform.
Sequences were aligned against human genome vefdngri9 using STARv2.5, counted with
HTSeq, and normalized by Fragments Per Kilobaseao&cript per Million mapped reads
(FPKM). A small subset of samples with very lowlgigor very low correlation with other
samples were removed from the subsequent anabseésye applied non-specific filtering based
on both mean expression values and inter-quaatilge (IQR) to identify subsets of genes for
further investigation. We winsorized potential @i at the gene-level, and then tested the
correlation between gene expressions and the GR®®8drson correlation test. For each type of
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transcriptomic data, we were able to select sevenadireds of potentially informative features at
0.05 significance level, as summarized in Suppléargmable 1. Additional technical details on
data preprocessing can be found in Supplementatty Te

Microbiome processing

Bacterial 161S rRNA from nasal swab specimens was extractedlifidpand sequenced, and
the resulting data were used to determine the amencompositions, in terms of the relative
abundances of those present operational taxonamig (©TUS). Briefly, the V3-V4
hypervariable regions were targeted for amplifmatnd sequenced using an lllumina MiSeq
platform according to a paired end2 1300 'bp read protocol. Preliminary read processing and
quality control were performed using the Quantiainsights into Microbial Ecology (QIIME)
software packag&?® and a closed-reference OTU picking was done WBEARCH and the
GreenGenes reference datab¥ds&he initial microbiome data contained informatfon 148
distinct OTUs at the genus-level across 104 sampl@®ng them, only 15 genera had nonzero
abundance level for more than half (n=52) of thgexts. These features were selected for the
integrative analyses. A full list of them is progdlin Supplementary Table 3.

Methods of data integration

We considered five methods of data integrationpfalvhich shared three common components:
a uni- or multi-layered dimension reduction téesea manageable set of features from various
types of data, and elastic-net regularized regradsi integrate these features into one weighted
score to predict GRSS, our main outcome varialesti€-net regularized regression uses both
L' (LASSO) and E (ridge) penalties to produce a sparse linear ptigdimodel and is known to
be numerically stable for high-dimensional datés Implemented by the R package gimiiet
Regularization parameters were selected by amlinén-fold cross-validation. After we obtained
a sparse regression model, we re-estimated thar lowefficients by OLS-based procedures to
improve the accuracy of modeling fitting. This pagder refinement strategy can improve
predictive accuracy and is widely used in high-tigfeput data analysfs.

Method 1 performed principal components analysi$APseparately on each transcriptomic
data set and then uses the resulting PCs togettie©WUs representing the nasal microbiota in
a penalized regression model of GRSS. Methodsfampeed PCA collectively on all data types
and then used the resulting PCs in a penalizegssgm model of GRSS. Method 3 was
identical to Method 1 except for the addition afewond layer of PCA prior to a penalized
regression model of GRSS. Method 4 was identicMethod 1 except the nasal microbiota
OTUs also undergo dimension reduction via PCA. Ikin&ethod 5 combined the additions of
Methods 3 & 4 resulting in a full two-layer PCA. Vdssessed the ability of the models produced
by each of these methods to predict GRSS throuwytetene-out cross-validation.

Weight Assignment and Transcription factor analysis

By design, the estimated linear coefficients in iotegrative models are weights that represent
the importance of principal components, not théufiess in the original data such as genes and
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microbes. To enhance the interpretability of thasegrative models, we calculated weights for
each of the original features based on a backpategalgorithm. Details of this calculation
can be found in “Feature weight calculation” thgg@ementary Text. These weights were then
used in the transcription factor analyses. Consepueding sites from JASPER across hgl9,
mmZ10 and rn6 were identified from as describediptesly *’. A hypergeometric test was
performed to identify enriched binding sif&s®

Pathway analysis

Genes that were identified as significantly cotedavith GRSS were subsequently used for
canonical pathway identification and upstream ragulanalysis using Ingenuity Pathway
Analysis (QIAGEN Silicon Valley, Redwood City, CAgen). The combined feature weights
were used in pathway analysis to enhance the semuilt were compared with the results
obtained without those weights.

Data availability: Complete molecular and microbiota data for tretadies is available in
dbGaP (phs001201.v2.pl).

References and Notes:

1 Edwards, K. Met al. Burden of human metapneumovirus infection in yoahidgdren.N Engl J Med 368,
633-643, doi:10.1056/NEJM0a1204630 (2013).

2 Falsey, A. R., Hennessey, P. A., Formica, M. @ox, C. & Walsh, E. E. Respiratory syncytial virus
infection in elderly and high-risk adult® Engl J Med 352, 1749-1759, doi:10.1056/NEJM0a043951
(2005).

3 Meissner, H. C. Viral Bronchiolitis in Childrehl Engl J Med 374, 62-72, doi:10.1056/NEJMral413456
(2016).

4 Causes of severe pneumonia requiring hospitaisstbn in children without HIV infection from Afr&

and Asia: the PERCH multi-country case-control gtutancet 394, 757-779, doi:10.1016/s0140-
6736(19)30721-4 (2019).

5 Jain, S. & Finelli, L. Community-acquired pneuri@oamong U.S. childremN Engl J Med 372, 2167-2168,
doi:10.1056/NEJMc1504028 (2015).
6 Shi, T.et al. Global, regional, and national disease burdemeastis of acute lower respiratory infections

due to respiratory syncytial virus in young childrm 2015: a systematic review and mitidg study.
Lancet 390, 946-958, d0i:10.1016/s0140-6736(17)30938-8 (2017).

7 Hall, C. B. et al. Respiratory syncytial virus-associated hospitéitimes among children less than 24
months of agePediatrics 132, €341-348, doi:10.1542/peds.2013-0303 (2013).
8 Capella, Cet al. Prefusion F, Postfusion F, G Antibodies, and Dise8everity in Infants and Young

Children With Acute Respiratory Syncytial Virus éation. J Infect Dis 216, 1398-1406,
doi:10.1093/infdis/jix489 (2017).

9 de Steenhuijsen Piters, W. é&.al. Nasopharyngeal Microbiota, Host Transcriptome, Bisttase Severity
in Children with Respiratory Syncytial Virus Infem. Am J Respir Crit Care Med 194, 1104-1115,
doi:10.1164/rccm.201602-02200C (2016).


https://doi.org/10.1101/2020.12.18.423266
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.423266; this version posted December 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

available under aCC-BY-NC 4.0 International license.

Glezen, W. P., Paredes, A., Allison, J. E., TabeH. & Frank, A. L. Risk of respiratory syncativirus
infection for infants from low-income families irelationship to age, sex, ethnic group, and maternal
antibody levelJ Pediatr 98, 708-715, doi:10.1016/s0022-3476(81)80829-3 (1981)

Mariani, T. J.et al. Association of Dynamic Changes in the CD4 T-Cathnkcriptome With Disease
Severity During Primary Respiratory Syncytial Virlrdection in Young Infants) Infect Dis 216, 1027-
1037, doi:10.1093/infdis/jix400 (2017).

Miyairi, I. & DeVincenzo, J. P. Human genetictiars and respiratory syncytial virus disease sgvetlin
Microbiol Rev 21, 686-703, doi:10.1128/cmr.00017-08 (2008).

Sonawane, A. Ret al. Microbiome-Transcriptome Interactions Related teveSity of Respiratory
Syncytial Virus InfectionSci Rep 9, 13824, doi:10.1038/s41598-019-50217-w (2019).

Thwaites, R. St al. Reduced Nasal Viral Load and IFN Responses imtafaith Respiratory Syncytial
Virus Bronchiolitis and Respiratory FailureAm J Respir Crit Care Med 198, 1074-1084,
doi:10.1164/rccm.201712-25670C (2018).

Walsh, E. Eet al. Virus-Specific Antibody, Viral Load, and DiseasevBrity in Respiratory Syncytial
Virus Infection.J Infect Dis 218, 208-217, doi:10.1093/infdis/jiy106 (2018).

Chu, C.-Y.et al. Insufficiency in airway interferon activation dedis clinical severity to infant RSV
infection.bioRxiv, 641795, do0i:10.1101/641795 (2019).

Bhattacharya, %t al. Transcriptomic Biomarkers to Discriminate Bactefiam Nonbacterial Infection in
Adults Hospitalized with Respiratory lllnesi Rep 7, 6548, doi:10.1038/s41598-017-06738-3 (2017).

Bucasas, K. Let al. Global gene expression profiling in infants witbute respiratory syncytial virus
broncholitis demonstrates systemic activation ¢érieron signaling networksediatr Infect Dis J 32,
€68-76, doi:10.1097/INF.0b013e318278b4b3 (2013).

Mejias, A.et al. Whole blood gene expression profiles to assedsogahesis and disease severity in
infants  with respiratory  syncytial  virus  infection. PLoS Med 10, 1001549,
doi:10.1371/journal.pmed.1001549 (2013).

Do, L. A. H.et al. Host Transcription Profile in Nasal Epithelium awéhole Blood of Hospitalized
Children Under 2 Years of Age With Respiratory Sgtiad Virus Infection.J Infect Dis 217, 134-146,
doi:10.1093/infdis/jix519 (2017).

Walsh, E. Eet al. Aims, Study Design, and Enroliment Results From Assessing Predictors of Infant
Respiratory Syncytial Virus Effects and Severitydt JMIR Res Protoc 8, €12907, doi:10.2196/12907
(2019).

Caserta, M. Tet al. Development of a Global Respiratory Severity SdoreRespiratory Syncytial Virus
Infection in InfantsJ Infect Dis 215, 750-756, doi:10.1093/infdis/jiw624 (2017).

Wang, L.et al. Airway Gene-Expression Classifiers for Respirat@yncytial Virus (RSV) Disease
Severity in InfantsbioRxiv, 628701, doi:10.1101/628701 (2020).

Chu, C. Yet al. Airway gene expression correlates of RSV diseasergy and microbiome composition
in infants.J Infect Dis, doi:10.1093/infdis/jiaa576 (2020).

Tipping, M. E. & Bishop, C. M. Probdistic Principal Component Analysislournal of the Royal
Satistical Society: Series B (Statistical Methodology) 61, 611-622, doi:10.1111/1467-9868.00196 (1999).

Johnstone, I. M. & Lu, A. Y. On Consistency d&plarsity for Principal Components Analysis in High
DimensionsJ Am Sat Assoc 104, 682-693, doi:10.1198/jasa.2009.0121 (2009).

Jolliffe, 1. T. & Cadima, J. Principal componeartalysis: a review and recent developmepitd.os Trans
A Math Phys Eng Sci 374, 20150202, doi:10.1098/rsta.2015.0202 (2016).

Mejias, A., Rodriguez-Fernandez, R., Oliva,P&eples, M. E. & Ramilo, O. The journey to a respity
syncytial virus vaccineAnn Allergy Asthma Immunol 125, 36-46, doi:10.1016/j.anai.2020.03.017 (2020).


https://doi.org/10.1101/2020.12.18.423266
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.423266; this version posted December 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

29

30

31

32

33

34

35

36

37

38

39

available under aCC-BY-NC 4.0 International license.

Vekemans, Jet al. Respiratory syncytial virus vaccine research amdetbpment. World Health
Organization technological roadmap and preferreddyet characteristicsVaccine 37, 7394-7395,
doi:10.1016/j.vaccine.2017.09.092 (2019).

Chu, C. Y.et al. The Healthy Infant Nasal Transcriptome: A Benchm8tudy. Sci Rep 6, 33994,
doi:10.1038/srep33994 (2016).

Misra, R. Set al. Flow-based sorting of neonatal lymphocyte popatetifor transcriptomics analysis.
Immunol Methods 437, 13-20, doi:10.1016jjm.2016.07.001 (2016).

Bolyen, Eet al. Reproducible, interactive, scalable and extensititrobiome data science using QIIME
2. Nat Biotechnol 37, 852-857, d0i:10.1038/s41587-019-0209-9 (2019).

Caporaso, J. @t al. QIIME allows analysis of high-throughput communégquencing dat&Nat Methods
7, 335-336, doi:10.1038/nmeth.f.303 (2010).

DeSantis, T. Zet al. Greengenes, a chimera-checked 16S rRNA gene datalpa workbench compatible
with ARB. Appl Environ Microbiol 72, 5069-5072, doi:10.1128/aem.03006-05 (2006).

Friedman, J., Hastie, T. & Tibshirani, R. Reguktion Paths for Generalized Linear Models via
Coordinate Descenl.Sat Softw 33, 1-22 (2010).

Belloni, A. & Chernozhukov, V. Least squaresaitnodel selection in high-dimensional sparse nwdel
Bernoulli 19, 521-547, doi:10.3150/11-BEJ410 (2013).

Van Twisk, D., Murphy, S. P. & Thakar, J. Opteid logic rules reveal interferaninduced modes
regulated by histone deacetylases and protein ibgophosphatasesimmunology 151, 71-80,
doi:10.1111imm.12707 (2017).

Thakar, J., Hartmann, B. M., Marjanovic, N., If#g S. C. & Kleinstein, S. H. Comparative anadysi
anti-viral transcriptomics reveals novel effectsimffuenza immune antagonisrBMC Immunol 16, 46,
doi:10.1186/s12865-015-0107-y (2015).

Zaslavsky, Eet al. Reconstruction of regulatory networks through terapenrichment profiling and its
application to H1N1 influenza viral infectioBMC Bioinformatics 14 Suppl 6, S1, doi:10.1186/1471-
2105-14-s6-s1 (2013).

Acknowledgments. The authors would like to thank the ASPIRES teancfitical assistance

with subject recruitment and sample collection tie@lUR Genomic Research Center for
processing of the genomic samples. Finally, weratebted to the patients and families
who agreed to participate in these studies.

Funding: This project has been funded with Federal fundis fthe National Institute of Allergy

and Infectious Diseases, National Institutes oflthe®epartment of Health and Human
Services, under Contract No. HHSN272201200005()iadusity of Rochester School
of Medicine and Dentistry Scientific Advisory Contiee Incubator grant and University
of Rochester Center for Clinical & Translationaleé®ce Institute grant number UL1
TR002001.

Author contributions: MNM, MTC, EEW, XQ, and TJM conceptualized thedstuCC, SRG,

MTC, EEW, and TJM designed the experiments. ARH, DITC, and EEW developed
the cohort, and collected the specimens and clidei@. AC and JHW facilitated data
organization, management and analysis. MNM, LW, I'B,and XQ developed the
statistical and computational methods. MNM, CC, L\B, JT, CS, AG, SRG, MTC,
EEW, XQ, and TJM generated, analyzed and intergtbie data. MNM, CC, LW, JT,
SRG, MTC, EEW, XQ, and TIM wrote and/or revisedrianuscript.


https://doi.org/10.1101/2020.12.18.423266
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.423266; this version posted December 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Competing interests: ARF is currently receiving funding from Merck $pa and Dohme,
Pfizer, Janssen, Astra Zeneca and BioFire and par$ees for DSMB from Novavax.
The others authors do not have any competing sitete report.


https://doi.org/10.1101/2020.12.18.423266
http://creativecommons.org/licenses/by-nc/4.0/

