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Abstract

1 It is generally accepted that the number of neurons in a given brain area far exceeds the 

2 information that area encodes. For example, motor areas of the human brain contain tens of 

3 millions of neurons that control the activation of tens or at most hundreds of muscles. This 

4 massive redundancy implies the covariation of many neurons, which constrains the population 

5 activity to a low-dimensional manifold within the space of all possible patterns of neural activity. 

6 To gain a conceptual understanding of the complexity of the neural activity within a manifold, it 

7 is useful to estimate its dimensionality, which quantifies the number of degrees of freedom 

8 required to describe the observed population activity without significant information loss. While 

9 there are many algorithms for dimensionality estimation, we do not know which are well suited 

10 for analyzing neural activity. The objective of this study was to evaluate the efficacy of several 

11 representative algorithms for estimating linearly and nonlinearly embedded data. We generated 

12 synthetic neural recordings with known intrinsic dimensionality and used them to test the 

13 algorithms� accuracy and robustness. We emulated some of the important challenges 

14 associated with experimental data by adding noise, altering the nature of the embedding from 

15 the low-dimensional manifold to the high-dimensional recordings, varying the dimensionality of 

16 the manifold, and limiting the amount of available data. We demonstrated that linear algorithms 

17 overestimate the dimensionality of nonlinear, noise-free data. In cases of high noise, most 

18 algorithms overestimated dimensionality. We thus developed a denoising algorithm based on 

19 deep learning, the �Joint Autoencoder�, which significantly improved subsequent dimensionality 

20 estimation. Critically, we found that all algorithms failed when the dimensionality was high 

21 (above 20) or when the amount of data used for estimation was low. Based on the challenges 

22 we observed, we formulated a pipeline for estimating the dimensionality of experimental neural 

23 data.
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Author Summary

24 The number of neurons that we can record from has increased exponentially for decades; today 

25 we can simultaneously record from thousands of neurons. However, the individual firing rates 

26 are highly redundant. One approach to identifying important features from redundant data is to 

27 estimate the dimensionality of the neural recordings, which represents the number of degrees of 

28 freedom required to describe the data without significant information loss. Better understanding 

29 of dimensionality may also uncover the mechanisms of computation within a neural circuit. 

30 Circuits carrying out complex computations might be higher-dimensional than those carrying out 

31 simpler computations. Typically, studies have quantified neural dimensionality using one of 

32 several available methods despite a lack of consensus on which method would be most 

33 appropriate for neural data. In this work, we used several methods to investigate the accuracy of 

34 simulated neural data with properties mimicking those of actual neural recordings. Based on 

35 these results, we devised an analysis pipeline to estimate the dimensionality of neural 

36 recordings. Our work will allow scientists to extract informative features from a large number of 

37 highly redundant neurons, as well as quantify the complexity of information encoded by these 

38 neurons.   
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Introduction

39 Studies that simultaneously record the activity of many neurons have shown that cortical neural 

40 activity is highly redundant [1]. In primary motor cortex (M1), redundancy arises as tens of 

41 millions of neurons control tens or at most hundreds of muscles. This redundancy implies 

42 significant covariation in the activity of many neurons, which confines the population neural 

43 activity to a low-dimensional manifold embedded in the neural space of all possible patterns of 

44 neural population activity [2-9]. Low-dimensional manifolds have also been observed in a variety 

45 of other cortical regions [10-18]. Reliable algorithms for identifying these manifolds and 

46 characterizing their dimensionality are increasingly important as our ability to record from large 

47 populations of neurons increases [19]. The dimensionality of the manifold describing the 

48 coordinated firing of a set of neurons quantifies the number of degrees of freedom needed to 

49 describe population activity without significant information loss [20, 21]. Projecting the observed 

50 firing patterns onto the manifold yields a low-dimensional set of latent signals that can simplify 

51 the interpretation of population neural activity [2, 9, 22]. Low-dimensional latent signals can 

52 facilitate  the manipulation or the extraction of signals for brain-computer interfaces, a 

53 rehabilitative technology that converts neural signals into control commands to restore 

54 movement to paralyzed patients [23, 24].

55 Unfortunately, it is surprisingly difficult to estimate the dimensionality of neural manifolds, 

56 particularly in the realistic condition of a noisy, nonlinear embedding. There is evidence of a 

57 nonlinear mapping between the recorded neural activity and the associated low-dimensional 

58 latent signals [10, 25-27]. Noise propagates from the level of sensory transduction and 

59 amplification, the opening and closing of voltage-gated ion channels, and builds up at the level 

60 of synapses, causing neural firing to be a stochastic process [28]. The two effects, nonlinearity 

61 and noise, combine to pose significant challenges to existing dimensionality estimation 

62 algorithms. The accuracy of the estimators also depends on the amount of available data [29, 
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63 30], which is limited in most experimental paradigms. If we wish to identify the manifolds 

64 associated with experimentally measured neural activity, we need methods that are robust in 

65 the presence of these challenges.  

66 The methods that have been proposed for estimating the dimensionality of neural manifolds can 

67 be broadly categorized into linear or nonlinear algorithms, based on assumptions about the 

68 nature of the mapping between the low-dimensional representation of the latent signals and the 

69 high-dimensional space of neural activity. The most commonly used linear method for 

70 dimensionality reduction is Principal Component Analysis (PCA), based on identifying mutually 

71 orthogonal directions in the empirical neural space of recorded activity; these directions are 

72 monotonically associated with the largest data variance. PCA provides a hierarchical description 

73 in which the data projected onto the manifold subtended by the principal components become 

74 closer and closer to the recorded data as the dimensionality of the linear manifold is increased 

75 towards the dimensionality of the empirical neural space. Although PCA provides a useful and 

76 systematic tool for variance-based dimensionality reduction, it does not specify how to uniquely 

77 identify the dimensionality of the manifold: the typical implementation requires the choice of an 

78 arbitrary variance threshold. Other PCA-based algorithms such as Participation Ratio (PR) [5, 

79 18] and Parallel Analysis (PA) [31, 32] provide more principled prescriptions for linear 

80 dimensionality estimation, by incorporating  criteria for determining an optimal number of leading 

81 principal components to use when constructing the low-dimensional manifold.

82 Linear dimensionality estimation algorithms may work well for linear datasets, but are likely to 

83 overestimate the dimensionality of a manifold arising from a nonlinear mapping between the 

84 low-and high-dimensional spaces [20, 21, 33, 34]. In contrast, nonlinear methods (e.g., 

85 Correlation Dimension [35-37], Levina-Bickel Maximum Likelihood Estimation [38], Two Nearest 
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86 Neighbors [39], and Fisher Separability Analysis [40] may provide accurate dimensionality 

87 estimates for both linearly and nonlinearly embedded data.

88 Most dimensionality estimation methods have been tested in the absence of noise even though 

89 it is known that linear and nonlinear methods overestimate dimensionality when the data is 

90 noisy [20]. The robustness of dimensionality estimation algorithms to noise remains to be 

91 characterized.

92 The objective of this study was to characterize the accuracy of several dimensionality estimation 

93 algorithms when applied to high-dimensional recordings of neural activity. We evaluated 

94 previously proposed algorithms on synthetic datasets of known dimensionality to identify 

95 conditions under which each method succeeded and/or failed. Specifically, we evaluated how 

96 the algorithms handled the nature of the embedding (linear or nonlinear), the amount of noise 

97 added to the simulated neural data, and the amount of data available. We found increasing 

98 levels of noise to be a challenge for all tested algorithms. We therefore also evaluated different 

99 approaches for reducing noise prior to performing dimensionality estimation, including the �Joint 

100 Autoencoder�, a method we developed based on deep learning techniques. Together, our 

101 results allowed us to propose a methodological pipeline for estimating the intrinsic 

102 dimensionality of high-dimensional datasets of recorded neural activity.
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Methods

103 Simulation of neural signals

104 We generated the synthetic data used to evaluate dimensionality estimation algorithms as 

105 follows. First, we created d signals by randomly sampling from an empirical distribution of firing 

106 rates that we obtained from multi-electrode array recordings of neural activity in the macaque 

107 primary motor cortex (M1) made while the subject was performing a center-out reaching task 

108 [41]. We verified that these randomly selected signals were uncorrelated. These signals 

109 provided a d-dimensional set used to construct synthetic high-dimensional data sets (Fig 1). We 

110 allowed d to vary from 3 to 40. These signals were multiplied by a d x 96 mixing matrix W with 

111 entries that were randomly selected from a zero-mean Gaussian distribution with unit variance. 

112 This resulted in a 96-dimensional data set X. The activity in each of the N=96 simulated 

113 channels was scaled to the range from zero to one to compensate for variability in firing rates 

114 across neurons and across time. A nonlinear embedding was implemented by processing each 

115 simulated channel X with an exponential activation function:

116  �(�)=   
���― 1��― 1

           (Equation 1)

117 We chose this exponential activating function to control the degree of nonlinearity by varying the 

118 parameter α, and to ensure that the range of the nonlinearly embedded synthetic data remained 

119 between zero and one. Finally, we added independent Gaussian noise to each of the channels 

120 in X, to generate signals with known signal-to-noise ratio. This procedure generated datasets of 

121 known dimensionality, embedding type (linear/nonlinear), and signal-to-noise ratio.

122 Fig 1: Generation of simulated datasets. First, representative neural signals were obtained by 

123 randomly sampling the firing rates of primary motor cortical recordings. The number of sampled 

124 signals determined the intrinsic dimensionality of the dataset. Then, the dimensionality of the 
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125 sampled signals was increased through linear combinations by multiplying the signals with a weight 

126 matrix W. The entries of W were sampled from a zero-mean Gaussian distribution with unit 

127 variance. Then, the signals were then scaled to the [0,1] range by dividing them by their maximum 

128 value. This procedure yielded noise-free, linear datasets. In nonlinear simulations only, the signals 

129 were then activated nonlinearly through the exponential function in Equation 1 (red box in 

130 diagram). In noisy simulations, zero-mean Gaussian noise with variance specified by the 

131 predetermined signal-to-noise ratio was added to the signals. This procedure yielded linear or 

132 nonlinear, noisy datasets with known signal-to-noise ratio. 

133 Dimensionality estimation algorithms

134 We evaluated two classes of dimensionality estimation algorithms, those that assumed a linear 

135 embedding and those that also allowed for a nonlinear embedding. 

136 Linear algorithms. Linear algorithms map high-dimensional data to a lower dimensional, 

137 linear subspace. Principal Component Analysis (PCA) is often used for linear dimensionality 

138 estimation in neuroscience [2, 4, 7, 41-43]. All the linear algorithms that we tested (summarized 

139 below) are based on PCA but use different criteria for dimensionality estimation.

140 Principal Component Analysis with a variance cutoff. PCA creates a low-dimensional 

141 representation of the data by sequentially finding orthogonal directions that explain the most 

142 remaining variance. Unit vectors that identify those directions, the PCA eigenvectors {��}, 

143 provide an orthonormal basis for the N-dimensional data space. The eigenvectors are labeled in 

144 decreasing order of the variance associated with each direction, the eigenvalues {��}. The 

145 simplest way to use PCA for dimensionality estimation is to find the number of principal 

146 components required to reach a predetermined threshold of cumulative variance. The selection 

147 of a variance threshold can be rather arbitrary, and a range of thresholds have been used in the 
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148 literature. In this study, we used a threshold of 90%, which yielded accurate estimates of 

149 dimensionality for the noise-free linear datasets.

150 Participation Ratio (PR). This approach provides a principled way of finding a variance 

151 threshold when the ground truth is not known [5, 18]. PR uses a simple formula based on the 

152 eigenvalues: 

153  ��=   
(∑��=1 ��)2∑��=1 (��)2 (Equation 2) 

154 If the leading eigenvalue carries all the variance (λi ≠ 0 for i = 1 and λi = 0 for all i ≥ 2), then PR 

155 = 1. At the other extreme, if all eigenvalues are equal, the variance is spread evenly across all 

156 the dimensions, and PR=N. The actual value of PR interpolates between these two extreme 

157 conditions to estimate the intrinsic dimensionality, and thus the number of principal components 

158 to be kept [5].

159 Parallel Analysis (PA). Much like the Participation Ratio, Parallel Analysis is a principled 

160 approach to finding a variance threshold [31, 32]. Parallel Analysis generates null distributions 

161 for the eigenvalues by repeatedly shuffling each dimension of the data separately. The shuffling 

162 step ensures that the correlations remaining across the different dimensions of the data are due 

163 to chance. The eigenvalues that exceed the 95th percentile of the null distribution are identified 

164 as significant, and their number is the number of dimensions to be kept. Although this method 

165 has not been directly applied to neural data, similar approaches based on finding null 

166 distributions of eigenvalues have been used for neural dimensionality estimation [44].

167 Nonlinear algorithms. Nonlinear algorithms can in principle estimate the dimensionality of 

168 either linearly or nonlinearly embedded data. Unlike the linear algorithms we tested, the 
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169 nonlinear algorithms need not rely on a global model for the probability distribution from which 

170 the data are assumed to be drawn (in the case of PCA, the model is a multivariate Gaussian 

171 distribution). Instead, many nonlinear algorithms estimate intrinsic dimensionality directly from 

172 local geometric properties of the data. Common local properties include distance and 

173 separability of each data point relative to its neighbors. Although nonlinear algorithms are not 

174 yet commonly used in neuroscience, they have been used to estimate dimensionality in several 

175 other fields that produce high-dimensional datasets [45]. 

176 Correlation Dimension (CD). Correlation Dimension estimates dimensionality by calculating 

177 how the number of data samples that fall within a hypersphere change as a function of its 

178 radius. This method, originally developed in 1983 [35], has benefitted from recent efforts to 

179 improve computational speed and accuracy [36, 37]. Although there are only a few applications 

180 of Correlation Dimension analysis to neural data [46, 47], it is widely used in other disciplines 

181 [36]. 

182 Levina-Bickel Maximum Likelihood Estimation (LBMLE). The Levina-Bickel Maximum 

183 Likelihood Estimation method [38] is an extension of Correlation Dimension that uses a 

184 maximum likelihood approach to estimate distances between data points. This method has 

185 been successfully applied to some of the benchmark datasets used in machine learning, such 

186 as the Faces [33] and Hands datasets [48].  

187 Two Nearest Neighbors (TNN). The Two Nearest Neighbors method also uses the distance 

188 between data points to estimate dimensionality [39]. However, unlike Levina-Bickel Maximum 

189 Likelihood Estimation, it considers only the first and second neighbors of each point. The ratio of 

190 the cumulative distribution of second-neighbor to first-neighbor distances is a function of data 

191 dimensionality. By focusing on shorter distances, the method avoids unwanted effects resulting 
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192 from density changes across the manifold. This method has been successfully applied to 

193 synthetic datasets of hyperspheres with known dimensionality [39], and to real-world datasets 

194 including molecular simulations [49] and images of hand-written digits [33].

195 Fisher Separability Analysis (FSA). High-dimensional datasets exhibit simple geometric 

196 properties such as the likely orthogonality of two randomly picked directions. These properties 

197 have recently been characterized as the blessings of dimensionality [50], in contrast to the well-

198 known concept of the curse of dimensionality. A useful example is the increasing ease with 

199 which a hyperplane can separate any given sample in a dataset from all other samples as the 

200 dimensionality of the dataset increases.  Fisher separability is a computationally efficient, 

201 simple, and robust method to assess such separability [51, 52].  Dimensionality can be 

202 estimated in terms of the probability that a point in the dataset is Fisher separable from the 

203 remaining points [40]. The probability distribution of Fisher separability allows the dimensionality 

204 of both linear and nonlinear manifolds to be estimated. This method has been applied to study 

205 the mutation profiles of the genes resulting in tumors as a means to evaluate therapeutic 

206 approaches [53]. 

207 Denoising algorithms

208 Noise that is uncorrelated across channels will lead to dimensionality estimates that approach 

209 the number of channels as the level of noise increases. To mitigate this overestimation problem, 

210 we implemented two approaches to denoise neural data. Both rely on an initial estimate of an 

211 upper bound dimensionality D, for which we used Parallel Analysis. To quantify the performance 

212 of the denoising algorithms, we reported variance accounted for (VAF) between the denoised 

213 signals and the noise-free signals. 
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214 PCA denoising. The linear approach to denoising was based on PCA. Once the value of D  

215 was determined, we used the D  leading principal components to reconstruct the original data, 

216 under the assumption that most of the noise was relegated to the discarded, low-variance 

217 principal components.  

218 Joint Autoencoder denoising. We also used a neural network for denoising (Fig 2). We 

219 divided the 96-dimensional simulated dataset X into two 48-dimensional partitions: X1 and X2. 

220 These partitions were each mapped by the compressive half of an autoencoder to compressed 

221 subspaces Z1 and Z2 respectively, each of dimension D < 48.  These compressed subspaces 

222 were used to obtain reconstructed versions of X1 and  X2, denoted  �1 and �2 , using the 

223 expansive halves of the corresponding autoencoders. The cost function C  for the Joint 

224 Autoencoder network not only minimized the reconstruction error for X1 and X2, but also the 

225 difference between Z1 and Z2:

226 �=��� (�1, �1) + ��� (�2, �2) +��� (�1, �2)   (Equation 3)

227 Fig 2. Architecture of the Joint Autoencoder. Channels of the 96-dimensional simulated 

228 datasets were randomly partitioned into two sets of signals (blue and yellow). Each 48-dimensional 

229 set was reconstructed through a D-dimensional subspace (green). The reconstructed outputs of 

230 the networks were the denoised channels.

231 This design assumes that each of the partitions X1 and X2  contains the information necessary to 

232 robustly identify the underlying D-dimensional signals Z1 and Z2, but not the independent noise 

233 components that will differ between the two partitions. We trained the Joint Autoencoder using 

234 the ADAM optimizer with a learning rate �=  0.001 and dropout regularization on the input layer 

235 with �=  0.05. The use of Rectified Linear Unit activation functions in all layers ensured that the 
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236 autoencoder network would both operate on and output non-negative signals while allowing for 

237 nonlinear embeddings.

238 Ethics statement

239 All surgical and experimental procedures that yielded the multi-electrode array recordings from 

240 non-human primates [41], which formed the basis of our simulated neural signals, were 

241 approved by Institutional Animal Care and Use Committee (IACUC) of Northwestern University. 

242 The subject was monitored daily. The subject�s diet consisted of standard laboratory animal diet, 

243 fresh fruits, and vegetables, and was provided with access to various types of enrichment.

244 Statistical analyses

245 We used Monte Carlo simulations to generate up to 10 replications of synthetic data sets, each 

246 corresponding to microelectrode array recording data from an experimental session. We noted 

247 the number of replications (n) in the figure captions where applicable. Our choice of the number 

248 of replications is reasonable compared to the number of experimental sessions that we would 

249 expect to see in experiments with monkeys [41, 54, 55]. The simulations differed by their 

250 random number generator seed, which dictated the pseudorandom sampling procedures 

251 required for generating the signals. There were three sampling steps in our simulations (Fig 1). 

252 First was the creation of the low-dimensional basis signals, which were sampled from an 

253 empirical firing rate distribution. The second was the entries of the mixing matrix W, which were 

254 sampled from a zero-mean Gaussian distribution with unit variance. The third was the additive 

255 noise, sampled from a zero-mean Gaussian distribution with variance determined by the signal-

256 to-noise ratio. We used bootstrapping with 10,000 iterations to compute the statistic of interest 

257 and computed its confidence interval using α = 0.05. We used Bonferroni correction for multiple 

258 comparisons.
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Results

259 Despite the large number of available algorithms for dimensionality estimation, there has been 

260 no systematic study of how well-suited they are for the analysis of neural data. Here we test 

261 several representative algorithms on synthetic datasets for which the intrinsic dimensionality is 

262 known, to assess their ability to estimate the true dimensionality of the data across a range of 

263 simulated conditions relevant to neuroscience. These assessments resulted in a recommended 

264 procedural pipeline for estimating the intrinsic dimensionality of a set of neural recordings.

265 Dimensionality of noise-free datasets

266 We first considered the simplest case: how accurately can we determine the dimensionality of 

267 linearly embedded, noise-free datasets? To answer this question, we applied the six selected 

268 algorithms to datasets with dimensionality d = 6. We focused on d = 6 as this was the 

269 dimensionality estimate of actual multi-electrode array recordings found when using the 

270 methods investigated here. In this scenario, all tested linear and nonlinear algorithms estimated 

271 the true dimensionality accurately (Fig 3). Under noise-free conditions, the nonlinear algorithms 

272 were as accurate as the linear ones on linearly embedded datasets.

273 Fig 3. Dimensionality of noise free datasets. A) We applied PCA with 90% variance cutoff 

274 (PCA90, gray), Participation Ratio (PR, brown), Parallel Analysis (PA, blue), Levina-Bickel 

275 Maximum Likelihood Estimation (LBMLE, green), Two Nearest Neighbors (TNN, purple), and 

276 Fisher Separability Analysis (FSA, orange) to linearly embedded, d = 6 datasets (n=10). B) Same 

277 as in A, but for nonlinearly embedded datasets. Circles indicate the mean and error bars indicate 

278 the standard deviation of the dimensionality estimates. Asterisks indicate significant difference of 

279 the mean from the true dimensionality of 6 at (bootstrapped confidence intervals do not overlap 6 

280 at the significance level of α=0.05.
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281 Next, we evaluated all algorithms on nonlinearly embedded noise-free datasets, also for d = 6. 

282 Nonlinearities were introduced as in Equation 1, using α = 16. In this case, the three linear 

283 algorithms dramatically overestimated the true dimensionality, with errors reaching more than 

284 400% of the true value (Fig 3B). In contrast, the nonlinear algorithms performed well; the 

285 Levina-Bickel Maximum Likelihood Estimation and the Two Nearest Neighbors methods were 

286 more accurate than Fisher Separability Analysis, which slightly underestimated the true 

287 dimensionality.

288 Because of the superior accuracy of Levina-Bickel Maximum Likelihood Estimation and Two 

289 Nearest Neighbors, we focused on these two methods for the remainder of the nonlinear 

290 analyses. We also retained Parallel Analysis as a benchmark for some of the analyses, as it 

291 was the most accurate linear method for estimating the dimensionality of nonlinearly embedded 

292 data.

293 Effect of true dimensionality on algorithm accuracy

294 We next evaluated how the true intrinsic dimensionality of the noise-free data influenced 

295 algorithm accuracy. Can any intrinsic dimensionality be reliably estimated? We found that the 

296 answer is no: the accuracy of all algorithms suffered when the intrinsic dimensionality of the 

297 synthetic data was too high. Parallel Analysis was accurate on linear datasets with d < 20, but   

298 inaccurate on nonlinear datasets of all dimensions, as expected (Fig 4). Below about d = 6, 

299 Levina-Bickel Maximum Likelihood Estimation and Two-Nearest Neighbors were accurate on 

300 both linear and nonlinear datasets. However, Levina-Bickel Maximum Likelihood Estimation 

301 began to underestimate the dimensionality of both linearly embedded (Fig 4A) and nonlinearly 

302 embedded (Fig 4B) datasets for d  > 6. This underestimation increased with increasing d. For 

303 nonlinear datasets, the estimate saturated at d = 13, where underestimation began to get much 
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304 worse. These results revealed that the intrinsic dimensionality of nonlinearly embedded datasets 

305 is hard to estimate reliably when it is large.

306 Fig 4. Effect of increasing true dimensionality on dimensionality estimates. A) The 

307 dimensionality of noise free, linear datasets (n=3) was assessed using Parallel Analysis (PA), 

308 Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two Nearest Neighbors (TNN). 

309 Dashed line indicates the identity line. B) Same as A, but for nonlinear datasets. The curve for TNN 

310 precisely overlays that of LBMLE, causing it to be obscured.

311 Effect of the level of nonlinearity

312 We next evaluated how the degree of nonlinearity influenced the accuracy of the dimensionality 

313 estimation algorithms. We controlled the degree of nonlinearity by varying the parameter �  in 

314 Equation 1; this parameter controls the slope of the exponential activation function used to 

315 generate the nonlinearly embedded datasets. We found that both Levina-Bickel Maximum 

316 Likelihood Estimation and Two Nearest Neighbors provided accurate dimensionality estimates 

317 for all tested levels of nonlinearity (Fig 5). Surprisingly, even Parallel Analysis was accurate at 

318 levels of nonlinearity around � ≈ 8, where it started to overestimate the intrinsic dimensionality. 

319 These results revealed that Levina-Bickel Maximum Likelihood Estimation and Two Nearest 

320 Neighbors provide accurate dimensionality estimates for wide levels of nonlinearity, whereas 

321 Parallel Analysis is accurate only for low levels of nonlinearity.

322 Fig 5. Effect of changing the degree of nonlinearity. Dimensionality of nonlinear datasets 

323 (n=10) with varying levels of nonlinearity, controlled by the α parameter (See Methods), was 

324 assessed using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE), 

325 and Two Nearest Neighbors (TNN). Circles indicate the mean and error bars indicate the standard 

326 deviation of the dimensionality estimates. Asterisks indicate significant difference between mean 
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327 values (bootstrapped confidence intervals do not overlap 0 at the significance level of α=0.05/3, 

328 Bonferroni corrected for multiple comparisons).

329 Amount of data required for estimating dimensionality

330 Ideally, algorithms would require only small amounts of data, so that the intrinsic dimensionality 

331 could be estimated even during transient behaviors and for a small number of recording 

332 channels. We thus evaluated the amount of data required to estimate dimensionality of datasets 

333 with d = 6, by varying both the duration of the recordings and the number of recording channels. 

334 On linear datasets, the accuracy of Parallel Analysis depended only on the number of channels: 

335 the algorithm was accurate if 20 or more channels were available (Fig 6A). In contrast, the 

336 accuracy of both Levina-Bickel Maximum Likelihood Estimation and Two Nearest Neighbors 

337 also depended on the duration of the data (Fig 6B and C). Around 30 seconds of data was 

338 sufficient for accurate estimates of intrinsic dimensionality using either of these two nonlinear 

339 methods.

340 Fig 6. Amount of data required by dimensionality estimators. Amount of data required by A) 

341 Parallel Analysis (PA), B) Levina-Bickel Maximum Likelihood Estimation (LBMLE), and C) Two 

342 Nearest Neighbors (TNN) on linear datasets. Data length is logarithmically scaled between 5 

343 seconds and 600 seconds. Correct dimensionality d = 6 is shown in gray. Warm colors indicate 

344 overestimation and cold colors indicate underestimation of dimensionality. D, E, and F) Same as A, 

345 B, and C, respectively, but for nonlinear datasets.

346 As expected for highly nonlinear datasets (� = 16, d = 6), Parallel Analysis was not accurate 

347 (Fig 6D) regardless of the amount of data. Both Levina-Bickel Maximum Likelihood Estimation 

348 and Two Nearest Neighbors were accurate provided that data from more than 50 channels were 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.17.423196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423196
http://creativecommons.org/licenses/by/4.0/


18

349 available (Fig 6E and F). Furthermore, while Levina-Bickel Maximum Likelihood estimation 

350 required around 30 seconds of data for accurate dimensionality estimates, Two Nearest 

351 Neighbors required more than one minute. These results would also depend on the actual 

352 dimensionality d of the tested signals; here we focused on d = 6.

353 Evaluating and reducing the effects of noise

354 Any experiment will include some amount of noise in the recorded signals. As expected, all 

355 tested algorithms overestimated intrinsic dimensionality in the presence of noise (Fig 7). For 

356 any given noise level, estimation errors for the linear datasets (Fig 7A) were a bit smaller than 

357 those for the nonlinear datasets (Fig 7B). Adding noise with a power of only 1% of that of the 

358 signal (SNR = 20 dB) caused Levina-Bickel Maximum Likelihood Estimation and Two Nearest 

359 Neighbors to overestimate the dimensionality of the nonlinear data by ~200% (Fig 7B).  PA 

360 yielded consistent overestimation errors across all nonzero levels of noise for both linear and 

361 nonlinear data.

362 Fig 7. Effect of noise on dimensionality estimates. Estimated dimensionality of linear (A) and 

363 nonlinear (B) datasets (n=10) with 20 dB, 10 dB, and 7 dB signal-to-noise ratio was assessed using 

364 Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two Nearest 

365 Neighbors (TNN). Circles indicate the mean and error bars indicate the standard deviation of the 

366 dimensionality estimates. Asterisks indicate significant difference between mean values 

367 (bootstrapped confidence intervals do not overlap 0 at the significance level of α=0.05/3, 

368 Bonferroni corrected for multiple comparisons).

369 We evaluated two algorithms for mitigating the effects of noise prior to estimating 

370 dimensionality: a PCA-based linear method and a Joint Autoencoder nonlinear neural network 

371 (see Methods). Both methods were quite effective for denoising the linear datasets (Fig 8A), 
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372 with the PCA-based approach slightly better than the Joint Autoencoder at the higher noise 

373 levels. For linear datasets, dimensionality estimates following PCA-based denoising were highly 

374 accurate, yielding correct estimates of the true intrinsic dimension even for high-noise signals 

375 (Fig 8B). The Joint Autoencoder was significantly more effective for denoising the nonlinear 

376 datasets (Fig 8C). Joint Autoencoder denoising on nonlinear datasets resulted in dimensionality 

377 estimates that still increasingly overestimated with increasing noise, but at a much slower rate 

378 than without denoising (Fig 8D). The highest noise level we tested (20%; SNR = 7 dB) caused 

379 the dimensionality to be overestimated by about 100%.

380 Fig 8. Performance of PCA and Joint Autoencoder (JAE) denoising algorithms. A) PCA and 

381 JAE denoising applied to linear datasets (n=10) with varying signal-to-noise ratio. Symbols indicate 

382 the mean and error bars indicate the standard deviation of the Variance accounted for between 

383 noise-free and denoised signals. Asterisks indicate significant difference between mean values 

384 (bootstrapped confidence intervals do not overlap 0 at the significance level of α=0.05). B) 

385 Dimensionality estimation on linear datasets after PCA denoising. Dimensionality was estimated 

386 using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two 

387 Nearest Neighbors (TNN). Symbols indicate the mean and error bars indicate the standard 

388 deviation of the dimensionality estimates. Asterisks indicate significant difference between mean 

389 values (bootstrapped confidence intervals do not overlap 0 at the significance level of α=0.05/3, 

390 Bonferroni corrected for multiple comparisons). C) Same as in A, but for nonlinear datasets. D) 

391 Same as in B, but for nonlinear datasets after JAE denoising.
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Discussion

392 This study evaluated techniques for estimating the intrinsic dimensionality of high-dimensional 

393 neural recordings. We considered representative linear and nonlinear algorithms, testing their 

394 performance on synthetic datasets that captured properties of neural recordings likely to affect 

395 dimensionality estimation. The tested datasets had known intrinsic dimensionality, known levels 

396 of noise, and embeddings that were either linear or nonlinear. Our results demonstrated that 

397 none of the tested algorithms work for all possible scenarios, but they yielded important insights 

398 for when estimates of intrinsic dimensionality are likely to be valid and when they are not. As 

399 expected, we found that linear estimation methods are generally not as accurate as nonlinear 

400 methods when the mapping between the low-dimensional latent space and the high-

401 dimensional space of neural recordings is nonlinear. Surprisingly, the linear method Parallel 

402 Analysis estimated the dimensionality of mildly nonlinear datasets well though it failed for more 

403 highly nonlinear embeddings. In contrast, the nonlinear methods worked well on both linear and 

404 highly nonlinear datasets but failed once the intrinsic dimensionality of the data became too 

405 high.

406 Noise was a challenge for all methods, causing dimensionality to be overestimated even for 

407 signal-to-noise ratios as low as 20 dB (1% noise variance). We presented two approaches for 

408 denoising the data so as to improve the accuracy of the dimensionality estimation. These were 

409 a linear PCA-based approach and a novel nonlinear, deep learning approach that we call the 

410 Joint Autoencoder. Both denoising approaches attempted to remove signal components that 

411 were not shared across the data channels. To achieve this, the PCA-based approach simply 

412 removed Principal Components with low variance, whereas the Joint Autoencoder identified an 

413 underlying manifold that was common to two randomly sampled sets of channels. Both 

414 approaches relied on a linear, upper-bound estimate of the intrinsic dimensionality. Denoising 

415 by either method substantially improved subsequent dimensionality estimation, but the Joint 
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416 Autoencoder was substantially more effective in denoising nonlinear datasets. In the linear 

417 case, dimensionality estimates using Parallel Analysis, Levina-Bickel Maximum Likelihood 

418 Estimation, and Two Nearest Neighbors were accurate after PCA-denoising. In the nonlinear 

419 case, dimensionality estimates using the same three methods were similarly accurate after JAE-

420 denoising. 

421 Implications for evaluation of experimental recordings

422 Due to its computational efficiency and ease of interpretation, most studies have used PCA with 

423 an arbitrary variance cutoff to estimate the dimensionality of M1 neural recordings [4, 17, 41-43]. 

424 While we have shown that some of the linear methods can be quite effective, simply eliminating 

425 non leading PCs based on a cumulative variance cutoff was the least accurate of the algorithms 

426 that we tested. Parallel Analysis, the most accurate linear method, performed as well or even 

427 better than some of the more advanced and computationally demanding nonlinear methods. 

428 Therefore, PA should suffice as a quick and effective approach to estimating dimensionality, 

429 even for mildly noisy and nonlinear datasets.

430 Despite the simplicity of linear algorithms, estimating dimensionality of nonlinear manifolds 

431 requires nonlinear algorithms. There is some evidence that neural manifolds may be nonlinear. 

432 Recent studies have shown that nonlinear methods for �decoding� behavioral parameters from 

433 M1 neural manifolds are superior to linear methods [56-59]. This suggests that the underlying 

434 neural manifold representing motor intent may be nonlinear, and that linear dimensionality 

435 estimation methods may be inadequate when estimating the intrinsic dimensionality of primary 

436 motor cortical recordings. Studies that investigated the dimensionality of M1 using linear 

437 methods most likely overestimated its true intrinsic dimensionality. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.17.423196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423196
http://creativecommons.org/licenses/by/4.0/


22

438 Nonlinear algorithms were more accurate than linear methods for nonlinear datasets of 

439 dimensionality below 10. However, nonlinear methods underestimated dimensionalities above 

440 10. This is a critical concern for experimental recordings, since a low dimensionality estimate 

441 from a nonlinear method might be inaccurate if the true dimensionality were large. Multiple 

442 studies using linear methods have reported an estimated dimensionality of M1 of around 10 for 

443 simple, well-practiced behaviors [5, 43, 55]. Our results show that linear methods provide an 

444 upper bound to the estimate of intrinsic dimensionality as long as the true dimensionality of the 

445 data is below 20. If the intrinsic dimensionality of M1 is substantially higher for more dexterous 

446 use of arm and hand than for the scenarios that have typically been studied, the nonlinear 

447 methods investigated here may underestimate it. 

448 One method for addressing this concern would be to use nonlinear methods to reduce the 

449 dimensionality of a dataset to that of its nonlinear dimensionality estimate, and then to assess 

450 the amount of variance that the nonlinear low-dimensional representation captures. If the 

451 resulting variance accounted for (VAF) is high, the data may be truly nonlinearly low 

452 dimensional. If, on the other hand, the VAF is low, the true intrinsic dimensionality could be 

453 higher than estimated. For the latter case, a practical approach would be to report only the 

454 linear dimensionality estimate and emphasize that it only provides an upper bound to the true 

455 dimensionality.

456 We currently lack techniques for reliably assessing datasets with high intrinsic dimensionality, at 

457 least when considering practical situations with limited data. There have been some theoretical 

458 studies of the amount of data needed for accurate estimation of dimensionality [60, 61]. 

459 Correlation Dimension, the method on which many nonlinear algorithms are based, requires that 

460 the number of data samples be on the order of 10d/2  [29]. The amount of data can be increased 

461 by either recording from more channels or for a longer duration. One study that investigated the 
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462 dimensionality of the primary visual cortex (V1) found the eigenvalue spectrum of the neural 

463 signals obtained from approximately thousand neurons to decay as a power law [62]. Their 

464 finding would not have been possible had they recorded from fewer neurons, which would have 

465 prevented them from observing the long tail of the eigenvalue distribution. One interpretation of 

466 this finding is that the linear dimensionality is arbitrarily large. However, an alternative 

467 interpretation is the existence of an extremely nonlinear manifold embedded within the neural 

468 space investigated in that study.

469 The stochastic nature of neural firing and the noise associated with experimental measurements 

470 will also cause the intrinsic dimensionality to be overestimated. The two denoising approaches 

471 that we presented are simple and effective. Depending on the assumptions about the underlying 

472 structure of firing patterns, alternative denoising approaches may be useful. For example, if the 

473 temporal relationship between the firing patterns of the population neural activity is of interest, 

474 one could use denoising methods that explicitly attempt to model these dynamics, such as 

475 Latent Factor Analysis through Dynamical Systems (LFADS), prior to estimating the 

476 dimensionality [57]. 

477 Limitations of the study

478 While we tried to replicate essential features of experimental data, there are certain 

479 characteristics that we did not try to model in our simulations. For example, we only considered 

480 additive Gaussian isotropic noise, for simplicity. Experimental recordings might include non-

481 additive, non-isotropic, or non-Gaussian noise. In such cases, PCA may not be an appropriate 

482 approach to denoising, even for linearly embedded data. Methods such as factor analysis or 

483 extensions such as Gaussian-Process Factor Analysis [63], and preprocessing steps such as 

484 square-root transforms or pre-whitening could be used instead.
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485 We scaled the firing rates of each channel to be in the [0,1] range. This procedure does not 

486 reflect experimental neural firing data, since the range of neural firing can differ significantly 

487 even across neurons of the same type. The arbitrary scaling of firing rates provided a simple 

488 means for the nonlinear datasets to have the same range as their linear counterparts, as the 

489 activation function that we used mapped the [0,1] range onto itself.

490 Recommended analysis pipeline

491 Based on our results, we recommend the following approach for estimating the dimensionality of 

492 neural recordings. First, obtain an upper-bound estimate D of the intrinsic dimensionality of the 

493 data. We found that Parallel Analysis works well for this purpose, being both computationally 

494 efficient and the most accurate linear method in our tests. Next, the signals should be denoised. 

495 Our denoising approach worked by projecting the neural signals into a subspace of 

496 dimensionality D equal to the upper-bound dimensionality estimate, and then reconstructing 

497 them based on these projections. A PCA based reconstruction is easy to implement and 

498 interpret and may be preferable if computational efficiency is important. A nonlinear denoising 

499 algorithm, such as the Joint Autoencoder we proposed, should also be used to assess the 

500 nonlinearity of the manifold. The usefulness of the denoising step was quantified through the 

501 variance accounted for (VAF) between the reconstructed signals, assumed to be denoised, and 

502 the noise-free synthetic signals before noise was added to them. Our results showed that for 

503 nonlinear datasets this VAF was higher for the Joint Autoencoder than it was for PCA. However, 

504 this VAF cannot be computed for experimental data, for which we do not have access to the 

505 noise-free signals. In this scenario, the reconstruction VAF between noisy inputs and the 

506 denoised reconstructed outputs may be useful for detecting nonlinear manifolds: a higher 

507 reconstruction VAF for Joint Autoencoder denoising than for PCA denoising would signal a 

508 nonlinear manifold. If the reconstruction VAF results prefer the Joint Autoencoder, this denoising 

509 method yields better denoised signals. Once the signals are denoised, and the linearity of the 
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510 manifold is established, either a linear or nonlinear dimensionality estimation method should be 

511 used depending on the expected linearity of the manifold as determined by the comparative 

512 performance of the denoising algorithms. The most accurate linear method we tested was 

513 Parallel Analysis. Of the nonlinear methods, Levina-Bickel Maximum Likelihood Estimation and 

514 Two Nearest Neighbors were the most accurate; Levina-Bickel Maximum Likelihood Estimation 

515 required fewer samples. 

516 Conclusions

517 Estimating the dimensionality of neural data is challenging. In this study, we tested several 

518 available algorithms, and determined the conditions under which estimating dimensionality may 

519 be particularly difficult or even impractical. Noise is a confounding factor and must be eliminated 

520 prior to dimensionality estimation. Most existing studies have estimated intrinsic dimensionality 

521 using linear methods, as they are computationally efficient and easy to interpret. We showed 

522 that linear methods provide an upper-bound to the intrinsic dimensionality, and in cases of high 

523 noise, may even work better than nonlinear methods, although neither linear nor nonlinear 

524 methods will yield accurate estimates in this scenario. Nonlinear algorithms were more accurate 

525 for nonlinear datasets when noise was adequately removed. Finally, algorithms failed when the 

526 intrinsic dimensionality was high. It may be impractical or impossible to estimate the 

527 dimensionality of neural data when it is above ~20. However, estimation of the dimensionality of 

528 neural activity in the primary motor cortex may be possible, as many studies have reported its 

529 linear dimensionality to be within the practical limits for accurate estimation by the methods we 

530 tested. 
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