

Full title

Estimating the dimensionality of the manifold underlying multi-electrode neural recordings

Short title

Intrinsic dimensionality of neural signals

Authors

Ege Altan^{1,2,*}, Sara A. Solla^{1,3}, Lee E. Miller^{1,2,4,5}, Eric J. Perreault^{2,4,5}

¹ Department of Physiology, Northwestern University, Chicago, IL, United States of America

² Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America

³ Department of Physics and Astronomy, Northwestern University, Evanston, IL, United States of America

⁴ Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America

⁵ Shirley Ryan AbilityLab, Chicago, IL, United States of America

* Corresponding author. Email: egealtan@u.northwestern.edu

Abstract

1 It is generally accepted that the number of neurons in a given brain area far exceeds the
2 information that area encodes. For example, motor areas of the human brain contain tens of
3 millions of neurons that control the activation of tens or at most hundreds of muscles. This
4 massive redundancy implies the covariation of many neurons, which constrains the population
5 activity to a low-dimensional manifold within the space of all possible patterns of neural activity.
6 To gain a conceptual understanding of the complexity of the neural activity within a manifold, it
7 is useful to estimate its dimensionality, which quantifies the number of degrees of freedom
8 required to describe the observed population activity without significant information loss. While
9 there are many algorithms for dimensionality estimation, we do not know which are well suited
10 for analyzing neural activity. The objective of this study was to evaluate the efficacy of several
11 representative algorithms for estimating linearly and nonlinearly embedded data. We generated
12 synthetic neural recordings with known intrinsic dimensionality and used them to test the
13 algorithms' accuracy and robustness. We emulated some of the important challenges
14 associated with experimental data by adding noise, altering the nature of the embedding from
15 the low-dimensional manifold to the high-dimensional recordings, varying the dimensionality of
16 the manifold, and limiting the amount of available data. We demonstrated that linear algorithms
17 overestimate the dimensionality of nonlinear, noise-free data. In cases of high noise, most
18 algorithms overestimated dimensionality. We thus developed a denoising algorithm based on
19 deep learning, the "Joint Autoencoder", which significantly improved subsequent dimensionality
20 estimation. Critically, we found that all algorithms failed when the dimensionality was high
21 (above 20) or when the amount of data used for estimation was low. Based on the challenges
22 we observed, we formulated a pipeline for estimating the dimensionality of experimental neural
23 data.

Author Summary

24 The number of neurons that we can record from has increased exponentially for decades; today
25 we can simultaneously record from thousands of neurons. However, the individual firing rates
26 are highly redundant. One approach to identifying important features from redundant data is to
27 estimate the dimensionality of the neural recordings, which represents the number of degrees of
28 freedom required to describe the data without significant information loss. Better understanding
29 of dimensionality may also uncover the mechanisms of computation within a neural circuit.
30 Circuits carrying out complex computations might be higher-dimensional than those carrying out
31 simpler computations. Typically, studies have quantified neural dimensionality using one of
32 several available methods despite a lack of consensus on which method would be most
33 appropriate for neural data. In this work, we used several methods to investigate the accuracy of
34 simulated neural data with properties mimicking those of actual neural recordings. Based on
35 these results, we devised an analysis pipeline to estimate the dimensionality of neural
36 recordings. Our work will allow scientists to extract informative features from a large number of
37 highly redundant neurons, as well as quantify the complexity of information encoded by these
38 neurons.

Introduction

39 Studies that simultaneously record the activity of many neurons have shown that cortical neural
40 activity is highly redundant [1]. In primary motor cortex (M1), redundancy arises as tens of
41 millions of neurons control tens or at most hundreds of muscles. This redundancy implies
42 significant covariation in the activity of many neurons, which confines the population neural
43 activity to a low-dimensional manifold embedded in the neural space of all possible patterns of
44 neural population activity [2-9]. Low-dimensional manifolds have also been observed in a variety
45 of other cortical regions [10-18]. Reliable algorithms for identifying these manifolds and
46 characterizing their dimensionality are increasingly important as our ability to record from large
47 populations of neurons increases [19]. The dimensionality of the manifold describing the
48 coordinated firing of a set of neurons quantifies the number of degrees of freedom needed to
49 describe population activity without significant information loss [20, 21]. Projecting the observed
50 firing patterns onto the manifold yields a low-dimensional set of latent signals that can simplify
51 the interpretation of population neural activity [2, 9, 22]. Low-dimensional latent signals can
52 facilitate the manipulation or the extraction of signals for brain-computer interfaces, a
53 rehabilitative technology that converts neural signals into control commands to restore
54 movement to paralyzed patients [23, 24].

55 Unfortunately, it is surprisingly difficult to estimate the dimensionality of neural manifolds,
56 particularly in the realistic condition of a noisy, nonlinear embedding. There is evidence of a
57 nonlinear mapping between the recorded neural activity and the associated low-dimensional
58 latent signals [10, 25-27]. Noise propagates from the level of sensory transduction and
59 amplification, the opening and closing of voltage-gated ion channels, and builds up at the level
60 of synapses, causing neural firing to be a stochastic process [28]. The two effects, nonlinearity
61 and noise, combine to pose significant challenges to existing dimensionality estimation
62 algorithms. The accuracy of the estimators also depends on the amount of available data [29],

63 30], which is limited in most experimental paradigms. If we wish to identify the manifolds
64 associated with experimentally measured neural activity, we need methods that are robust in
65 the presence of these challenges.

66 The methods that have been proposed for estimating the dimensionality of neural manifolds can
67 be broadly categorized into linear or nonlinear algorithms, based on assumptions about the
68 nature of the mapping between the low-dimensional representation of the latent signals and the
69 high-dimensional space of neural activity. The most commonly used linear method for
70 dimensionality reduction is Principal Component Analysis (PCA), based on identifying mutually
71 orthogonal directions in the empirical neural space of recorded activity; these directions are
72 monotonically associated with the largest data variance. PCA provides a hierarchical description
73 in which the data projected onto the manifold subtended by the principal components become
74 closer and closer to the recorded data as the dimensionality of the linear manifold is increased
75 towards the dimensionality of the empirical neural space. Although PCA provides a useful and
76 systematic tool for variance-based dimensionality reduction, it does not specify how to uniquely
77 identify the dimensionality of the manifold: the typical implementation requires the choice of an
78 arbitrary variance threshold. Other PCA-based algorithms such as Participation Ratio (PR) [5,
79 18] and Parallel Analysis (PA) [31, 32] provide more principled prescriptions for linear
80 dimensionality estimation, by incorporating criteria for determining an optimal number of leading
81 principal components to use when constructing the low-dimensional manifold.

82 Linear dimensionality estimation algorithms may work well for linear datasets, but are likely to
83 overestimate the dimensionality of a manifold arising from a nonlinear mapping between the
84 low-and high-dimensional spaces [20, 21, 33, 34]. In contrast, nonlinear methods (e.g.,
85 Correlation Dimension [35-37], Levina-Bickel Maximum Likelihood Estimation [38], Two Nearest

86 Neighbors [39], and Fisher Separability Analysis [40] may provide accurate dimensionality
87 estimates for both linearly and nonlinearly embedded data.

88 Most dimensionality estimation methods have been tested in the absence of noise even though
89 it is known that linear and nonlinear methods overestimate dimensionality when the data is
90 noisy [20]. The robustness of dimensionality estimation algorithms to noise remains to be
91 characterized.

92 The objective of this study was to characterize the accuracy of several dimensionality estimation
93 algorithms when applied to high-dimensional recordings of neural activity. We evaluated
94 previously proposed algorithms on synthetic datasets of known dimensionality to identify
95 conditions under which each method succeeded and/or failed. Specifically, we evaluated how
96 the algorithms handled the nature of the embedding (linear or nonlinear), the amount of noise
97 added to the simulated neural data, and the amount of data available. We found increasing
98 levels of noise to be a challenge for all tested algorithms. We therefore also evaluated different
99 approaches for reducing noise prior to performing dimensionality estimation, including the “Joint
100 Autoencoder”, a method we developed based on deep learning techniques. Together, our
101 results allowed us to propose a methodological pipeline for estimating the intrinsic
102 dimensionality of high-dimensional datasets of recorded neural activity.

Methods

103 **Simulation of neural signals**

104 We generated the synthetic data used to evaluate dimensionality estimation algorithms as
105 follows. First, we created d signals by randomly sampling from an empirical distribution of firing
106 rates that we obtained from multi-electrode array recordings of neural activity in the macaque
107 primary motor cortex (M1) made while the subject was performing a center-out reaching task
108 [41]. We verified that these randomly selected signals were uncorrelated. These signals
109 provided a d -dimensional set used to construct synthetic high-dimensional data sets (**Fig 1**). We
110 allowed d to vary from 3 to 40. These signals were multiplied by a $d \times 96$ mixing matrix W with
111 entries that were randomly selected from a zero-mean Gaussian distribution with unit variance.
112 This resulted in a 96-dimensional data set X . The activity in each of the $N=96$ simulated
113 channels was scaled to the range from zero to one to compensate for variability in firing rates
114 across neurons and across time. A nonlinear embedding was implemented by processing each
115 simulated channel X with an exponential activation function:

$$116 \quad f(X) = \frac{e^{\alpha X} - 1}{e^{\alpha} - 1} \quad (\text{Equation 1})$$

117 We chose this exponential activating function to control the degree of nonlinearity by varying the
118 parameter α , and to ensure that the range of the nonlinearly embedded synthetic data remained
119 between zero and one. Finally, we added independent Gaussian noise to each of the channels
120 in X , to generate signals with known signal-to-noise ratio. This procedure generated datasets of
121 known dimensionality, embedding type (linear/nonlinear), and signal-to-noise ratio.

122 **Fig 1: Generation of simulated datasets.** First, representative neural signals were obtained by
123 randomly sampling the firing rates of primary motor cortical recordings. The number of sampled
124 signals determined the intrinsic dimensionality of the dataset. Then, the dimensionality of the

125 sampled signals was increased through linear combinations by multiplying the signals with a weight
126 matrix W . The entries of W were sampled from a zero-mean Gaussian distribution with unit
127 variance. Then, the signals were then scaled to the $[0,1]$ range by dividing them by their maximum
128 value. This procedure yielded noise-free, linear datasets. In nonlinear simulations only, the signals
129 were then activated nonlinearly through the exponential function in Equation 1 (red box in
130 diagram). In noisy simulations, zero-mean Gaussian noise with variance specified by the
131 predetermined signal-to-noise ratio was added to the signals. This procedure yielded linear or
132 nonlinear, noisy datasets with known signal-to-noise ratio.

133 **Dimensionality estimation algorithms**

134 We evaluated two classes of dimensionality estimation algorithms, those that assumed a linear
135 embedding and those that also allowed for a nonlinear embedding.

136 **Linear algorithms.** Linear algorithms map high-dimensional data to a lower dimensional,
137 linear subspace. Principal Component Analysis (PCA) is often used for linear dimensionality
138 estimation in neuroscience [2, 4, 7, 41-43]. All the linear algorithms that we tested (summarized
139 below) are based on PCA but use different criteria for dimensionality estimation.

140 **Principal Component Analysis with a variance cutoff.** PCA creates a low-dimensional
141 representation of the data by sequentially finding orthogonal directions that explain the most
142 remaining variance. Unit vectors that identify those directions, the PCA eigenvectors $\{v_i\}$,
143 provide an orthonormal basis for the N -dimensional data space. The eigenvectors are labeled in
144 decreasing order of the variance associated with each direction, the eigenvalues $\{\lambda_i\}$. The
145 simplest way to use PCA for dimensionality estimation is to find the number of principal
146 components required to reach a predetermined threshold of cumulative variance. The selection
147 of a variance threshold can be rather arbitrary, and a range of thresholds have been used in the

148 literature. In this study, we used a threshold of 90%, which yielded accurate estimates of
149 dimensionality for the noise-free linear datasets.

150 **Participation Ratio (PR).** This approach provides a principled way of finding a variance
151 threshold when the ground truth is not known [5, 18]. PR uses a simple formula based on the
152 eigenvalues:

$$153 \quad PR = \frac{(\sum_{i=1}^N \lambda_i)^2}{\sum_{i=1}^N (\lambda_i)^2} \quad (\text{Equation 2})$$

154 If the leading eigenvalue carries all the variance ($\lambda_i \neq 0$ for $i = 1$ and $\lambda_i = 0$ for all $i \geq 2$), then PR
155 = 1. At the other extreme, if all eigenvalues are equal, the variance is spread evenly across all
156 the dimensions, and PR=N. The actual value of PR interpolates between these two extreme
157 conditions to estimate the intrinsic dimensionality, and thus the number of principal components
158 to be kept [5].

159 **Parallel Analysis (PA).** Much like the Participation Ratio, Parallel Analysis is a principled
160 approach to finding a variance threshold [31, 32]. Parallel Analysis generates null distributions
161 for the eigenvalues by repeatedly shuffling each dimension of the data separately. The shuffling
162 step ensures that the correlations remaining across the different dimensions of the data are due
163 to chance. The eigenvalues that exceed the 95th percentile of the null distribution are identified
164 as significant, and their number is the number of dimensions to be kept. Although this method
165 has not been directly applied to neural data, similar approaches based on finding null
166 distributions of eigenvalues have been used for neural dimensionality estimation [44].

167 **Nonlinear algorithms.** Nonlinear algorithms can in principle estimate the dimensionality of
168 either linearly or nonlinearly embedded data. Unlike the linear algorithms we tested, the

169 nonlinear algorithms need not rely on a global model for the probability distribution from which
170 the data are assumed to be drawn (in the case of PCA, the model is a multivariate Gaussian
171 distribution). Instead, many nonlinear algorithms estimate intrinsic dimensionality directly from
172 local geometric properties of the data. Common local properties include distance and
173 separability of each data point relative to its neighbors. Although nonlinear algorithms are not
174 yet commonly used in neuroscience, they have been used to estimate dimensionality in several
175 other fields that produce high-dimensional datasets [45].

176 **Correlation Dimension (CD).** Correlation Dimension estimates dimensionality by calculating
177 how the number of data samples that fall within a hypersphere change as a function of its
178 radius. This method, originally developed in 1983 [35], has benefitted from recent efforts to
179 improve computational speed and accuracy [36, 37]. Although there are only a few applications
180 of Correlation Dimension analysis to neural data [46, 47], it is widely used in other disciplines
181 [36].

182 **Levina-Bickel Maximum Likelihood Estimation (LBMLE).** The Levina-Bickel Maximum
183 Likelihood Estimation method [38] is an extension of Correlation Dimension that uses a
184 maximum likelihood approach to estimate distances between data points. This method has
185 been successfully applied to some of the benchmark datasets used in machine learning, such
186 as the Faces [33] and Hands datasets [48].

187 **Two Nearest Neighbors (TNN).** The Two Nearest Neighbors method also uses the distance
188 between data points to estimate dimensionality [39]. However, unlike Levina-Bickel Maximum
189 Likelihood Estimation, it considers only the first and second neighbors of each point. The ratio of
190 the cumulative distribution of second-neighbor to first-neighbor distances is a function of data
191 dimensionality. By focusing on shorter distances, the method avoids unwanted effects resulting

192 from density changes across the manifold. This method has been successfully applied to
193 synthetic datasets of hyperspheres with known dimensionality [39], and to real-world datasets
194 including molecular simulations [49] and images of hand-written digits [33].

195 **Fisher Separability Analysis (FSA).** High-dimensional datasets exhibit simple geometric
196 properties such as the likely orthogonality of two randomly picked directions. These properties
197 have recently been characterized as the *blessings of dimensionality* [50], in contrast to the well-
198 known concept of the *curse of dimensionality*. A useful example is the increasing ease with
199 which a hyperplane can separate any given sample in a dataset from all other samples as the
200 dimensionality of the dataset increases. Fisher separability is a computationally efficient,
201 simple, and robust method to assess such separability [51, 52]. Dimensionality can be
202 estimated in terms of the probability that a point in the dataset is Fisher separable from the
203 remaining points [40]. The probability distribution of Fisher separability allows the dimensionality
204 of both linear and nonlinear manifolds to be estimated. This method has been applied to study
205 the mutation profiles of the genes resulting in tumors as a means to evaluate therapeutic
206 approaches [53].

207 **Denoising algorithms**

208 Noise that is uncorrelated across channels will lead to dimensionality estimates that approach
209 the number of channels as the level of noise increases. To mitigate this overestimation problem,
210 we implemented two approaches to denoise neural data. Both rely on an initial estimate of an
211 upper bound dimensionality D , for which we used Parallel Analysis. To quantify the performance
212 of the denoising algorithms, we reported variance accounted for (VAF) between the denoised
213 signals and the noise-free signals.

214 **PCA denoising.** The linear approach to denoising was based on PCA. Once the value of D
215 was determined, we used the D leading principal components to reconstruct the original data,
216 under the assumption that most of the noise was relegated to the discarded, low-variance
217 principal components.

218 **Joint Autoencoder denoising.** We also used a neural network for denoising (**Fig 2**). We
219 divided the 96-dimensional simulated dataset X into two 48-dimensional partitions: X_1 and X_2 .
220 These partitions were each mapped by the compressive half of an autoencoder to compressed
221 subspaces Z_1 and Z_2 respectively, each of dimension $D < 48$. These compressed subspaces
222 were used to obtain reconstructed versions of X_1 and X_2 , denoted \hat{X}_1 and \hat{X}_2 , using the
223 expansive halves of the corresponding autoencoders. The cost function C for the Joint
224 Autoencoder network not only minimized the reconstruction error for X_1 and X_2 , but also the
225 difference between Z_1 and Z_2 :

226
$$C = MSE(X_1, \hat{X}_1) + MSE(X_2, \hat{X}_2) + MSE(Z_1, Z_2) \quad (\text{Equation 3})$$

227 **Fig 2. Architecture of the Joint Autoencoder.** Channels of the 96-dimensional simulated
228 datasets were randomly partitioned into two sets of signals (blue and yellow). Each 48-dimensional
229 set was reconstructed through a D -dimensional subspace (green). The reconstructed outputs of
230 the networks were the denoised channels.

231 This design assumes that each of the partitions X_1 and X_2 contains the information necessary to
232 robustly identify the underlying D -dimensional signals Z_1 and Z_2 , but not the independent noise
233 components that will differ between the two partitions. We trained the Joint Autoencoder using
234 the ADAM optimizer with a learning rate $\eta = 0.001$ and dropout regularization on the input layer
235 with $p = 0.05$. The use of Rectified Linear Unit activation functions in all layers ensured that the

236 autoencoder network would both operate on and output non-negative signals while allowing for
237 nonlinear embeddings.

238 **Ethics statement**

239 All surgical and experimental procedures that yielded the multi-electrode array recordings from
240 non-human primates [41], which formed the basis of our simulated neural signals, were
241 approved by Institutional Animal Care and Use Committee (IACUC) of Northwestern University.
242 The subject was monitored daily. The subject's diet consisted of standard laboratory animal diet,
243 fresh fruits, and vegetables, and was provided with access to various types of enrichment.

244 **Statistical analyses**

245 We used Monte Carlo simulations to generate up to 10 replications of synthetic data sets, each
246 corresponding to microelectrode array recording data from an experimental session. We noted
247 the number of replications (n) in the figure captions where applicable. Our choice of the number
248 of replications is reasonable compared to the number of experimental sessions that we would
249 expect to see in experiments with monkeys [41, 54, 55]. The simulations differed by their
250 random number generator seed, which dictated the pseudorandom sampling procedures
251 required for generating the signals. There were three sampling steps in our simulations (**Fig 1**).
252 First was the creation of the low-dimensional basis signals, which were sampled from an
253 empirical firing rate distribution. The second was the entries of the mixing matrix W , which were
254 sampled from a zero-mean Gaussian distribution with unit variance. The third was the additive
255 noise, sampled from a zero-mean Gaussian distribution with variance determined by the signal-
256 to-noise ratio. We used bootstrapping with 10,000 iterations to compute the statistic of interest
257 and computed its confidence interval using $\alpha = 0.05$. We used Bonferroni correction for multiple
258 comparisons.

Results

259 Despite the large number of available algorithms for dimensionality estimation, there has been
260 no systematic study of how well-suited they are for the analysis of neural data. Here we test
261 several representative algorithms on synthetic datasets for which the intrinsic dimensionality is
262 known, to assess their ability to estimate the true dimensionality of the data across a range of
263 simulated conditions relevant to neuroscience. These assessments resulted in a recommended
264 procedural pipeline for estimating the intrinsic dimensionality of a set of neural recordings.

265 **Dimensionality of noise-free datasets**

266 We first considered the simplest case: how accurately can we determine the dimensionality of
267 linearly embedded, noise-free datasets? To answer this question, we applied the six selected
268 algorithms to datasets with dimensionality $d=6$. We focused on $d=6$ as this was the
269 dimensionality estimate of actual multi-electrode array recordings found when using the
270 methods investigated here. In this scenario, all tested linear and nonlinear algorithms estimated
271 the true dimensionality accurately (**Fig 3**). Under noise-free conditions, the nonlinear algorithms
272 were as accurate as the linear ones on linearly embedded datasets.

273 **Fig 3. Dimensionality of noise free datasets.** A) We applied PCA with 90% variance cutoff
274 (PCA90, gray), Participation Ratio (PR, brown), Parallel Analysis (PA, blue), Levina-Bickel
275 Maximum Likelihood Estimation (LBMLE, green), Two Nearest Neighbors (TNN, purple), and
276 Fisher Separability Analysis (FSA, orange) to linearly embedded, $d=6$ datasets (n=10). B) Same
277 as in A, but for nonlinearly embedded datasets. Circles indicate the mean and error bars indicate
278 the standard deviation of the dimensionality estimates. Asterisks indicate significant difference of
279 the mean from the true dimensionality of 6 at (bootstrapped confidence intervals do not overlap 6
280 at the significance level of $\alpha=0.05$.

281 Next, we evaluated all algorithms on nonlinearly embedded noise-free datasets, also for $d = 6$.

282 Nonlinearities were introduced as in Equation 1, using $\alpha = 16$. In this case, the three linear

283 algorithms dramatically overestimated the true dimensionality, with errors reaching more than

284 400% of the true value (**Fig 3B**). In contrast, the nonlinear algorithms performed well; the

285 Levina-Bickel Maximum Likelihood Estimation and the Two Nearest Neighbors methods were

286 more accurate than Fisher Separability Analysis, which slightly underestimated the true

287 dimensionality.

288 Because of the superior accuracy of Levina-Bickel Maximum Likelihood Estimation and Two

289 Nearest Neighbors, we focused on these two methods for the remainder of the nonlinear

290 analyses. We also retained Parallel Analysis as a benchmark for some of the analyses, as it

291 was the most accurate linear method for estimating the dimensionality of nonlinearly embedded

292 data.

293 **Effect of true dimensionality on algorithm accuracy**

294 We next evaluated how the true intrinsic dimensionality of the noise-free data influenced

295 algorithm accuracy. Can any intrinsic dimensionality be reliably estimated? We found that the

296 answer is no: the accuracy of all algorithms suffered when the intrinsic dimensionality of the

297 synthetic data was too high. Parallel Analysis was accurate on linear datasets with $d < 20$, but

298 inaccurate on nonlinear datasets of all dimensions, as expected (**Fig 4**). Below about $d = 6$,

299 Levina-Bickel Maximum Likelihood Estimation and Two-Nearest Neighbors were accurate on

300 both linear and nonlinear datasets. However, Levina-Bickel Maximum Likelihood Estimation

301 began to underestimate the dimensionality of both linearly embedded (**Fig 4A**) and nonlinearly

302 embedded (**Fig 4B**) datasets for $d > 6$. This underestimation increased with increasing d . For

303 nonlinear datasets, the estimate saturated at $d = 13$, where underestimation began to get much

304 worse. These results revealed that the intrinsic dimensionality of nonlinearly embedded datasets
305 is hard to estimate reliably when it is large.

306 **Fig 4. Effect of increasing true dimensionality on dimensionality estimates.** A) The
307 dimensionality of noise free, linear datasets ($n=3$) was assessed using Parallel Analysis (PA),
308 Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two Nearest Neighbors (TNN).
309 Dashed line indicates the identity line. B) Same as A, but for nonlinear datasets. The curve for TNN
310 precisely overlays that of LBMLE, causing it to be obscured.

311 **Effect of the level of nonlinearity**

312 We next evaluated how the degree of nonlinearity influenced the accuracy of the dimensionality
313 estimation algorithms. We controlled the degree of nonlinearity by varying the parameter α in
314 Equation 1; this parameter controls the slope of the exponential activation function used to
315 generate the nonlinearly embedded datasets. We found that both Levina-Bickel Maximum
316 Likelihood Estimation and Two Nearest Neighbors provided accurate dimensionality estimates
317 for all tested levels of nonlinearity (**Fig 5**). Surprisingly, even Parallel Analysis was accurate at
318 levels of nonlinearity around $\alpha \approx 8$, where it started to overestimate the intrinsic dimensionality.
319 These results revealed that Levina-Bickel Maximum Likelihood Estimation and Two Nearest
320 Neighbors provide accurate dimensionality estimates for wide levels of nonlinearity, whereas
321 Parallel Analysis is accurate only for low levels of nonlinearity.

322 **Fig 5. Effect of changing the degree of nonlinearity.** Dimensionality of nonlinear datasets
323 ($n=10$) with varying levels of nonlinearity, controlled by the α parameter (See Methods), was
324 assessed using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE),
325 and Two Nearest Neighbors (TNN). Circles indicate the mean and error bars indicate the standard
326 deviation of the dimensionality estimates. Asterisks indicate significant difference between mean

327 values (bootstrapped confidence intervals do not overlap 0 at the significance level of $\alpha=0.05/3$,
328 Bonferroni corrected for multiple comparisons).

329 **Amount of data required for estimating dimensionality**

330 Ideally, algorithms would require only small amounts of data, so that the intrinsic dimensionality
331 could be estimated even during transient behaviors and for a small number of recording
332 channels. We thus evaluated the amount of data required to estimate dimensionality of datasets
333 with $d=6$, by varying both the duration of the recordings and the number of recording channels.

334 On linear datasets, the accuracy of Parallel Analysis depended only on the number of channels:
335 the algorithm was accurate if 20 or more channels were available (**Fig 6A**). In contrast, the
336 accuracy of both Levina-Bickel Maximum Likelihood Estimation and Two Nearest Neighbors
337 also depended on the duration of the data (**Fig 6B and C**). Around 30 seconds of data was
338 sufficient for accurate estimates of intrinsic dimensionality using either of these two nonlinear
339 methods.

340 **Fig 6. Amount of data required by dimensionality estimators.** Amount of data required by A)
341 Parallel Analysis (PA), B) Levina-Bickel Maximum Likelihood Estimation (LBMLE), and C) Two
342 Nearest Neighbors (TNN) on linear datasets. Data length is logarithmically scaled between 5
343 seconds and 600 seconds. Correct dimensionality $d=6$ is shown in gray. Warm colors indicate
344 overestimation and cold colors indicate underestimation of dimensionality. D, E, and F) Same as A,
345 B, and C, respectively, but for nonlinear datasets.

346 As expected for highly nonlinear datasets ($\alpha = 16$, $d=6$), Parallel Analysis was not accurate
347 (**Fig 6D**) regardless of the amount of data. Both Levina-Bickel Maximum Likelihood Estimation
348 and Two Nearest Neighbors were accurate provided that data from more than 50 channels were

349 available (**Fig 6E and F**). Furthermore, while Levina-Bickel Maximum Likelihood estimation
350 required around 30 seconds of data for accurate dimensionality estimates, Two Nearest
351 Neighbors required more than one minute. These results would also depend on the actual
352 dimensionality d of the tested signals; here we focused on $d=6$.

353 **Evaluating and reducing the effects of noise**

354 Any experiment will include some amount of noise in the recorded signals. As expected, all
355 tested algorithms overestimated intrinsic dimensionality in the presence of noise (**Fig 7**). For
356 any given noise level, estimation errors for the linear datasets (**Fig 7A**) were a bit smaller than
357 those for the nonlinear datasets (**Fig 7B**). Adding noise with a power of only 1% of that of the
358 signal (SNR = 20 dB) caused Levina-Bickel Maximum Likelihood Estimation and Two Nearest
359 Neighbors to overestimate the dimensionality of the nonlinear data by ~200% (**Fig 7B**). PA
360 yielded consistent overestimation errors across all nonzero levels of noise for both linear and
361 nonlinear data.

362 **Fig 7. Effect of noise on dimensionality estimates.** Estimated dimensionality of linear (A) and
363 nonlinear (B) datasets ($n=10$) with 20 dB, 10 dB, and 7 dB signal-to-noise ratio was assessed using
364 Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two Nearest
365 Neighbors (TNN). Circles indicate the mean and error bars indicate the standard deviation of the
366 dimensionality estimates. Asterisks indicate significant difference between mean values
367 (bootstrapped confidence intervals do not overlap 0 at the significance level of $\alpha=0.05/3$,
368 Bonferroni corrected for multiple comparisons).

369 We evaluated two algorithms for mitigating the effects of noise prior to estimating
370 dimensionality: a PCA-based linear method and a Joint Autoencoder nonlinear neural network
371 (see Methods). Both methods were quite effective for denoising the linear datasets (**Fig 8A**),

372 with the PCA-based approach slightly better than the Joint Autoencoder at the higher noise
373 levels. For linear datasets, dimensionality estimates following PCA-based denoising were highly
374 accurate, yielding correct estimates of the true intrinsic dimension even for high-noise signals
375 (**Fig 8B**). The Joint Autoencoder was significantly more effective for denoising the nonlinear
376 datasets (**Fig 8C**). Joint Autoencoder denoising on nonlinear datasets resulted in dimensionality
377 estimates that still increasingly overestimated with increasing noise, but at a much slower rate
378 than without denoising (**Fig 8D**). The highest noise level we tested (20%; SNR = 7 dB) caused
379 the dimensionality to be overestimated by about 100%.

380 **Fig 8. Performance of PCA and Joint Autoencoder (JAE) denoising algorithms.** A) PCA and
381 JAE denoising applied to linear datasets (n=10) with varying signal-to-noise ratio. Symbols indicate
382 the mean and error bars indicate the standard deviation of the Variance accounted for between
383 noise-free and denoised signals. Asterisks indicate significant difference between mean values
384 (bootstrapped confidence intervals do not overlap 0 at the significance level of $\alpha=0.05$). B)
385 Dimensionality estimation on linear datasets after PCA denoising. Dimensionality was estimated
386 using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two
387 Nearest Neighbors (TNN). Symbols indicate the mean and error bars indicate the standard
388 deviation of the dimensionality estimates. Asterisks indicate significant difference between mean
389 values (bootstrapped confidence intervals do not overlap 0 at the significance level of $\alpha=0.05/3$,
390 Bonferroni corrected for multiple comparisons). C) Same as in A, but for nonlinear datasets. D)
391 Same as in B, but for nonlinear datasets after JAE denoising.

Discussion

392 This study evaluated techniques for estimating the intrinsic dimensionality of high-dimensional
393 neural recordings. We considered representative linear and nonlinear algorithms, testing their
394 performance on synthetic datasets that captured properties of neural recordings likely to affect
395 dimensionality estimation. The tested datasets had known intrinsic dimensionality, known levels
396 of noise, and embeddings that were either linear or nonlinear. Our results demonstrated that
397 none of the tested algorithms work for all possible scenarios, but they yielded important insights
398 for when estimates of intrinsic dimensionality are likely to be valid and when they are not. As
399 expected, we found that linear estimation methods are generally not as accurate as nonlinear
400 methods when the mapping between the low-dimensional latent space and the high-
401 dimensional space of neural recordings is nonlinear. Surprisingly, the linear method Parallel
402 Analysis estimated the dimensionality of mildly nonlinear datasets well though it failed for more
403 highly nonlinear embeddings. In contrast, the nonlinear methods worked well on both linear and
404 highly nonlinear datasets but failed once the intrinsic dimensionality of the data became too
405 high.

406 Noise was a challenge for all methods, causing dimensionality to be overestimated even for
407 signal-to-noise ratios as low as 20 dB (1% noise variance). We presented two approaches for
408 denoising the data so as to improve the accuracy of the dimensionality estimation. These were
409 a linear PCA-based approach and a novel nonlinear, deep learning approach that we call the
410 Joint Autoencoder. Both denoising approaches attempted to remove signal components that
411 were not shared across the data channels. To achieve this, the PCA-based approach simply
412 removed Principal Components with low variance, whereas the Joint Autoencoder identified an
413 underlying manifold that was common to two randomly sampled sets of channels. Both
414 approaches relied on a linear, upper-bound estimate of the intrinsic dimensionality. Denoising
415 by either method substantially improved subsequent dimensionality estimation, but the Joint

416 Autoencoder was substantially more effective in denoising nonlinear datasets. In the linear
417 case, dimensionality estimates using Parallel Analysis, Levina-Bickel Maximum Likelihood
418 Estimation, and Two Nearest Neighbors were accurate after PCA-denoising. In the nonlinear
419 case, dimensionality estimates using the same three methods were similarly accurate after JAE-
420 denoising.

421 **Implications for evaluation of experimental recordings**

422 Due to its computational efficiency and ease of interpretation, most studies have used PCA with
423 an arbitrary variance cutoff to estimate the dimensionality of M1 neural recordings [4, 17, 41-43].
424 While we have shown that some of the linear methods can be quite effective, simply eliminating
425 non leading PCs based on a cumulative variance cutoff was the least accurate of the algorithms
426 that we tested. Parallel Analysis, the most accurate linear method, performed as well or even
427 better than some of the more advanced and computationally demanding nonlinear methods.
428 Therefore, PA should suffice as a quick and effective approach to estimating dimensionality,
429 even for mildly noisy and nonlinear datasets.

430 Despite the simplicity of linear algorithms, estimating dimensionality of nonlinear manifolds
431 requires nonlinear algorithms. There is some evidence that neural manifolds may be nonlinear.
432 Recent studies have shown that nonlinear methods for “decoding” behavioral parameters from
433 M1 neural manifolds are superior to linear methods [56-59]. This suggests that the underlying
434 neural manifold representing motor intent may be nonlinear, and that linear dimensionality
435 estimation methods may be inadequate when estimating the intrinsic dimensionality of primary
436 motor cortical recordings. Studies that investigated the dimensionality of M1 using linear
437 methods most likely overestimated its true intrinsic dimensionality.

438 Nonlinear algorithms were more accurate than linear methods for nonlinear datasets of
439 dimensionality below 10. However, nonlinear methods underestimated dimensionalities above
440 10. This is a critical concern for experimental recordings, since a low dimensionality estimate
441 from a nonlinear method might be inaccurate if the true dimensionality were large. Multiple
442 studies using linear methods have reported an estimated dimensionality of M1 of around 10 for
443 simple, well-practiced behaviors [5, 43, 55]. Our results show that linear methods provide an
444 upper bound to the estimate of intrinsic dimensionality as long as the true dimensionality of the
445 data is below 20. If the intrinsic dimensionality of M1 is substantially higher for more dexterous
446 use of arm and hand than for the scenarios that have typically been studied, the nonlinear
447 methods investigated here may underestimate it.

448 One method for addressing this concern would be to use nonlinear methods to reduce the
449 dimensionality of a dataset to that of its nonlinear dimensionality estimate, and then to assess
450 the amount of variance that the nonlinear low-dimensional representation captures. If the
451 resulting variance accounted for (VAF) is high, the data may be truly nonlinearly low
452 dimensional. If, on the other hand, the VAF is low, the true intrinsic dimensionality could be
453 higher than estimated. For the latter case, a practical approach would be to report only the
454 linear dimensionality estimate and emphasize that it only provides an upper bound to the true
455 dimensionality.

456 We currently lack techniques for reliably assessing datasets with high intrinsic dimensionality, at
457 least when considering practical situations with limited data. There have been some theoretical
458 studies of the amount of data needed for accurate estimation of dimensionality [60, 61].
459 Correlation Dimension, the method on which many nonlinear algorithms are based, requires that
460 the number of data samples be on the order of $10^{d/2}$ [29]. The amount of data can be increased
461 by either recording from more channels or for a longer duration. One study that investigated the

462 dimensionality of the primary visual cortex (V1) found the eigenvalue spectrum of the neural
463 signals obtained from approximately thousand neurons to decay as a power law [62]. Their
464 finding would not have been possible had they recorded from fewer neurons, which would have
465 prevented them from observing the long tail of the eigenvalue distribution. One interpretation of
466 this finding is that the linear dimensionality is arbitrarily large. However, an alternative
467 interpretation is the existence of an extremely nonlinear manifold embedded within the neural
468 space investigated in that study.

469 The stochastic nature of neural firing and the noise associated with experimental measurements
470 will also cause the intrinsic dimensionality to be overestimated. The two denoising approaches
471 that we presented are simple and effective. Depending on the assumptions about the underlying
472 structure of firing patterns, alternative denoising approaches may be useful. For example, if the
473 temporal relationship between the firing patterns of the population neural activity is of interest,
474 one could use denoising methods that explicitly attempt to model these dynamics, such as
475 Latent Factor Analysis through Dynamical Systems (LFADS), prior to estimating the
476 dimensionality [57].

477 **Limitations of the study**

478 While we tried to replicate essential features of experimental data, there are certain
479 characteristics that we did not try to model in our simulations. For example, we only considered
480 additive Gaussian isotropic noise, for simplicity. Experimental recordings might include non-
481 additive, non-isotropic, or non-Gaussian noise. In such cases, PCA may not be an appropriate
482 approach to denoising, even for linearly embedded data. Methods such as factor analysis or
483 extensions such as Gaussian-Process Factor Analysis [63], and preprocessing steps such as
484 square-root transforms or pre-whitening could be used instead.

485 We scaled the firing rates of each channel to be in the $[0,1]$ range. This procedure does not
486 reflect experimental neural firing data, since the range of neural firing can differ significantly
487 even across neurons of the same type. The arbitrary scaling of firing rates provided a simple
488 means for the nonlinear datasets to have the same range as their linear counterparts, as the
489 activation function that we used mapped the $[0,1]$ range onto itself.

490 **Recommended analysis pipeline**

491 Based on our results, we recommend the following approach for estimating the dimensionality of
492 neural recordings. First, obtain an upper-bound estimate D of the intrinsic dimensionality of the
493 data. We found that Parallel Analysis works well for this purpose, being both computationally
494 efficient and the most accurate linear method in our tests. Next, the signals should be denoised.
495 Our denoising approach worked by projecting the neural signals into a subspace of
496 dimensionality D equal to the upper-bound dimensionality estimate, and then reconstructing
497 them based on these projections. A PCA based reconstruction is easy to implement and
498 interpret and may be preferable if computational efficiency is important. A nonlinear denoising
499 algorithm, such as the Joint Autoencoder we proposed, should also be used to assess the
500 nonlinearity of the manifold. The usefulness of the denoising step was quantified through the
501 variance accounted for (VAF) between the reconstructed signals, assumed to be denoised, and
502 the noise-free synthetic signals before noise was added to them. Our results showed that for
503 nonlinear datasets this VAF was higher for the Joint Autoencoder than it was for PCA. However,
504 this VAF cannot be computed for experimental data, for which we do not have access to the
505 noise-free signals. In this scenario, the reconstruction VAF between noisy inputs and the
506 denoised reconstructed outputs may be useful for detecting nonlinear manifolds: a higher
507 reconstruction VAF for Joint Autoencoder denoising than for PCA denoising would signal a
508 nonlinear manifold. If the reconstruction VAF results prefer the Joint Autoencoder, this denoising
509 method yields better denoised signals. Once the signals are denoised, and the linearity of the

510 manifold is established, either a linear or nonlinear dimensionality estimation method should be
511 used depending on the expected linearity of the manifold as determined by the comparative
512 performance of the denoising algorithms. The most accurate linear method we tested was
513 Parallel Analysis. Of the nonlinear methods, Levina-Bickel Maximum Likelihood Estimation and
514 Two Nearest Neighbors were the most accurate; Levina-Bickel Maximum Likelihood Estimation
515 required fewer samples.

516 **Conclusions**

517 Estimating the dimensionality of neural data is challenging. In this study, we tested several
518 available algorithms, and determined the conditions under which estimating dimensionality may
519 be particularly difficult or even impractical. Noise is a confounding factor and must be eliminated
520 prior to dimensionality estimation. Most existing studies have estimated intrinsic dimensionality
521 using linear methods, as they are computationally efficient and easy to interpret. We showed
522 that linear methods provide an upper-bound to the intrinsic dimensionality, and in cases of high
523 noise, may even work better than nonlinear methods, although neither linear nor nonlinear
524 methods will yield accurate estimates in this scenario. Nonlinear algorithms were more accurate
525 for nonlinear datasets when noise was adequately removed. Finally, algorithms failed when the
526 intrinsic dimensionality was high. It may be impractical or impossible to estimate the
527 dimensionality of neural data when it is above ~20. However, estimation of the dimensionality of
528 neural activity in the primary motor cortex may be possible, as many studies have reported its
529 linear dimensionality to be within the practical limits for accurate estimation by the methods we
530 tested.

Acknowledgments

531 The authors would like to thank Juan Á. Gallego for collecting the experimental data which
532 served as the basis for our simulations.

References

533 1. Saxena S, Cunningham JP. Towards the neural population doctrine. *Current Opinion in*
534 *Neurobiology*. 2019;55:103-11. doi: 10.1016/j.conb.2019.02.002.

535 2. Cunningham JP, Yu BM. Dimensionality reduction for large-scale neural recordings.
536 *Nature Neuroscience*. 2014;17(11):1500-9. doi: 10.1038/nn.3776.

537 3. Elsayed GF, Cunningham JP. Structure in neural population recordings: an expected
538 byproduct of simpler phenomena? *Nature Neuroscience*. 2017;20(9):1310-8. doi:
539 10.1038/nn.4617.

540 4. Gao P, Ganguli S. On Simplicity and Complexity in the Brave New World of Large-Scale
541 Neuroscience. *Current Opinion in Neurobiology*. 2015.

542 5. Gao P, Trautmann E, Yu B, Santhanam G, Ryu S, Shenoy K, et al. A theory of
543 multineuronal dimensionality, dynamics and measurement. *bioRxiv*. 2017. doi: 10.1101/214262.

544 6. Trautmann EM, Stavisky SD, Lahiri S, Ames KC, Kaufman MT, O'Shea DJ, et al.
545 Accurate Estimation of Neural Population Dynamics without Spike Sorting. *Neuron*.
546 2019;103(2):292-308.e4. Epub 2019/06/07. doi: 10.1016/j.neuron.2019.05.003. PubMed PMID:
547 31171448; PubMed Central PMCID: PMCPMC7002296.

548 7. Williams AH, Kim TH, Wang F, Vyas S, Ryu SI, Shenoy KV, et al. Unsupervised
549 Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through
550 Tensor Component Analysis. *Neuron*. 2018;98(6):1099-115.e8. doi:
551 10.1016/j.neuron.2018.05.015.

552 8. Williamson RC, Doiron B, Smith MA, Yu BM. Bridging large-scale neuronal recordings
553 and large-scale network models using dimensionality reduction. *Current Opinion in*
554 *Neurobiology*. 2019;55:40-7. doi: 10.1016/j.conb.2018.12.009.

555 9. Gallego JA, Perich MG, Miller LE, Solla SA. Neural Manifolds for the Control of
556 Movement. *Neuron*. 2017;94(5):978-84. Epub 2017/06/09. doi: 10.1016/j.neuron.2017.05.025.
557 PubMed PMID: 28595054; PubMed Central PMCID: PMCPMC6122849.

558 10. Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, et al. The importance of
559 mixed selectivity in complex cognitive tasks. *Nature*. 2013;497(7451):585-90. doi:
560 10.1038/nature12160.

561 11. Mazor O, Laurent G. Transient Dynamics versus Fixed Points in Odor Representations
562 by Locust Antennal Lobe Projection Neurons. *Neuron*. 2005;48(4):661-73. doi:
563 <https://doi.org/10.1016/j.neuron.2005.09.032>.

564 12. Mante V, Sussillo D, Shenoy KV, Newsome WT. Context-dependent computation by
565 recurrent dynamics in prefrontal cortex. *Nature*. 2013;503(7474):78-84. Epub 2013/11/10. doi:
566 10.1038/nature12742. PubMed PMID: 24201281; PubMed Central PMCID: PMCPMC4121670.

567 13. Churchland MM, Abbott LF. Two layers of neural variability. *Nature Neuroscience*.
568 2012;15(11):1472-4. doi: 10.1038/nn.3247.

569 14. Harvey CD, Coen P, Tank DW. Choice-specific sequences in parietal cortex during a
570 virtual-navigation decision task. *Nature*. 2012;484(7392):62-8. doi: 10.1038/nature10918.

571 15. Warnberg E, Kumar A. Perturbing low dimensional activity manifolds in spiking neuronal
572 networks. *PLoS Comput Biol*. 2019;15(5):e1007074. Epub 2019/06/01. doi:
573 10.1371/journal.pcbi.1007074. PubMed PMID: 31150376; PubMed Central PMCID:
574 PMCPMC6586365.

575 16. Gallego JA, Perich MG, Chowdhury RH, Solla SA, Miller LE. Long-term stability of
576 cortical population dynamics underlying consistent behavior. *Nat Neurosci*. 2020;23(2):260-70.
577 Epub 2020/01/08. doi: 10.1038/s41593-019-0555-4. PubMed PMID: 31907438; PubMed Central
578 PMCID: PMCPMC7007364.

579 17. Williamson RC, Cowley BR, Litwin-Kumar A, Doiron B, Kohn A, Smith MA, et al. Scaling
580 Properties of Dimensionality Reduction for Neural Populations and Network Models. *PLoS*

581 Comput Biol. 2016;12(12):e1005141. Epub 2016/12/08. doi: 10.1371/journal.pcbi.1005141.
582 PubMed PMID: 27926936; PubMed Central PMCID: PMCPMC5142778.
583 18. Mazzucato L, Fontanini A, La Camera G. Stimuli Reduce the Dimensionality of Cortical
584 Activity. *Front Syst Neurosci.* 2016;10:11-. doi: 10.3389/fnsys.2016.00011. PubMed PMID:
585 26924968.
586 19. Stevenson IH, Kording KP. How advances in neural recording affect data analysis.
587 *Nature Neuroscience.* 2011;14(2):139-42. doi: 10.1038/nn.2731.
588 20. Camastra F, Staiano A. Intrinsic dimension estimation: Advances and open problems.
589 *Information Sciences.* 2016;328:26-41. doi: 10.1016/j.ins.2015.08.029.
590 21. Lee JA, Verleysen M. *Nonlinear Dimensionality Reduction.* 1 ed. New York: Springer;
591 2007. XVII, 309 p.
592 22. Pang R, Lansdell BJ, Fairhall AL. Dimensionality reduction in neuroscience. *Current
593 Biology.* 2016;26(14):R656-R60. doi: 10.1016/j.cub.2016.05.029.
594 23. Pandarinath C, Nuyujukian P, Blabe CH, Sorice BL, Saab J, Willett FR, et al. High
595 performance communication by people with paralysis using an intracortical brain-computer
596 interface. *Elife.* 2017;6. Epub 2017/02/22. doi: 10.7554/elife.18554. PubMed PMID: 28220753;
597 PubMed Central PMCID: PMCPMC5319839.
598 24. Degenhart AD, Bishop WE, Oby ER, Tyler-Kabara EC, Chase SM, Batista AP, et al.
599 Stabilization of a brain-computer interface via the alignment of low-dimensional spaces of neural
600 activity. *Nat Biomed Eng.* 2020;4(7):672-85. Epub 2020/04/22. doi: 10.1038/s41551-020-0542-
601 9. PubMed PMID: 32313100.
602 25. Gao Y, Archer E, Paninski L, Cunningham J. Linear dynamical neural population models
603 through nonlinear embeddings. *Advances in Neural Information Processing Systems;*
604 Spain2016. p. 163-71.
605 26. Wu A, Roy N, Keeley S, Pillow J. Gaussian process based nonlinear latent structure
606 discovery in multivariate spike train data. *Advances in Neural Information Processing Systems;*
607 California2017. p. 3496-505.
608 27. Batty E, Merel J, Brackbill N, Heitman A, Sher A, Litke A, et al. Multilayer recurrent
609 network models of primate retinal ganglion cell responses. *ICLR.* 2017.
610 28. Faisal AA, Selen LP, Wolpert DM. Noise in the nervous system. *Nat Rev Neurosci.*
611 2008;9(4):292-303. Epub 2008/03/06. doi: 10.1038/nrn2258. PubMed PMID: 18319728;
612 PubMed Central PMCID: PMCPMC2631351.
613 29. Camastra F, Vinciarelli A. Estimating the intrinsic dimension of data with a fractal-based
614 method. *IEEE Transactions on Pattern Analysis and Machine Intelligence.* 2002;24(10):1404-7.
615 doi: 10.1109/tpami.2002.1039212.
616 30. Camastra F. Data dimensionality estimation methods: a survey. *Pattern Recognition.*
617 2003;36(12):2945-54. doi: 10.1016/s0031-3203(03)00176-6.
618 31. Horn JL. A rationale and test for the number of factors in factor analysis. *Psychometrika.*
619 1965;30(2):179-85. doi: 10.1007/BF02289447.
620 32. Andreas Buja NE. Remarks on Parallel Analysis. *MULTIVARIATE BEHAVIORAL
621 RESEARCH.* 1992;27:509-40.
622 33. Tenenbaum JB, Silva Vd, Langford JC. A Global Geometric Framework for Nonlinear
623 Dimensionality Reduction. *Science.* 2000;290(5500):2319-23. doi:
624 10.1126/science.290.5500.2319.
625 34. Hinton GE, Salakhutdinov RR. Reducing the Dimensionality of Data with Neural
626 Networks. *Science.* 2006;313.
627 35. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. *Physica D:
628 Nonlinear Phenomena.* 1983;9(1):189-208. doi: [https://doi.org/10.1016/0167-2789\(83\)90298-1](https://doi.org/10.1016/0167-2789(83)90298-1).
629 36. Kalantana Z, Einbeck J. On the computation of the correlation integral for fractal
630 dimension estimation. *International Conference on Statistics in Science, Business and
631 Engineering (ICSSBE).* 2012.

632 37. Einbeck J, Kalantana Z. Intrinsic Dimensionality Estimation for High-dimensional Data
633 Sets: New Approaches for the Computation of Correlation Dimension. *Journal of Emerging*
634 *Technologies in Web Intelligence*. 2013;5(2). doi: 10.4304/jetwi.5.2.91-97.

635 38. Levina E, Bickel PJ. Maximum Likelihood Estimation of Intrinsic Dimension. *Advances in*
636 *Neural Information Processing Systems*. 2004.

637 39. Facco E, d'Errico M, Rodriguez A, Laio A. Estimating the intrinsic dimension of datasets
638 by a minimal neighborhood information. *Scientific Reports*. 2017;7(1). doi: 10.1038/s41598-017-
639 11873-y.

640 40. Zinovyev LAJBA. Estimating the effective dimension of large biological datasets using
641 Fisher separability analysis. *International Joint Conference on Neural Networks (IJCNN)*. 2019.

642 41. Gallego JA, Perich MG, Naufel SN, Ethier C, Solla SA, Miller LE. Cortical population
643 activity within a preserved neural manifold underlies multiple motor behaviors. *Nat Commun*.
644 2018;9(1):4233. Epub 2018/10/14. doi: 10.1038/s41467-018-06560-z. PubMed PMID:
645 30315158; PubMed Central PMCID: PMCPMC6185944.

646 42. Kaufman MT, Churchland MM, Ryu SI, Shenoy KV. Cortical activity in the null space:
647 permitting preparation without movement. *Nat Neurosci*. 2014;17(3):440-8. Epub 2014/02/04.
648 doi: 10.1038/nn.3643. PubMed PMID: 24487233; PubMed Central PMCID: PMCPMC3955357.

649 43. Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, Tyler-Kabara EC, et al. Neural
650 constraints on learning. *Nature*. 2014;512(7515):423-6. doi: 10.1038/nature13665.

651 44. Machens CK, Romo R, Brody CD. Functional, but not anatomical, separation of "what"
652 and "when" in prefrontal cortex. *J Neurosci*. 2010;30(1):350-60. Epub 2010/01/08. doi:
653 10.1523/JNEUROSCI.3276-09.2010. PubMed PMID: 20053916; PubMed Central PMCID:
654 PMCPMC2947945.

655 45. Campadelli P, Casiraghi E, Ceruti C, Rozza A. Intrinsic Dimension Estimation: Relevant
656 Techniques and a Benchmark Framework. *Mathematical Problems in Engineering*.
657 2015;2015:759567. doi: 10.1155/2015/759567.

658 46. Kobayashi T, Misaki K, Nakagawa H, Madokoro S, Ota T, Ihara H, et al. Correlation
659 dimension of the human sleep electroencephalogram. *Psychiatry Clin Neurosci*. 2000;54(1):11-
660 6. Epub 2004/11/24. doi: 10.1046/j.1440-1819.2000.00629.x. PubMed PMID: 15558873.

661 47. Boon MY, Henry BI, Suttle CM, Dain SJ. The correlation dimension: A useful objective
662 measure of the transient visual evoked potential? *Journal of Vision*. 2008;8(1):6-. doi:
663 10.1167/8.1.6.

664 48. Kégl B. Intrinsic Dimension Estimation Using Packing Numbers. In: Becker S, Thrun S,
665 Obermayer K, editors. *Advances in Neural Information Processing Systems 15*: MIT Press;
666 2003. p. 697-704.

667 49. Pinamonti G, Zhao J, Condon DE, Paul F, Noè F, Turner DH, et al. Predicting the
668 Kinetics of RNA Oligonucleotides Using Markov State Models. *Journal of Chemical Theory and*
669 *Computation*. 2017;13(2):926-34. doi: 10.1021/acs.jctc.6b00982.

670 50. Gorban AN, Makarov VA, Tyukin IY. High-Dimensional Brain in a High-Dimensional
671 World: Blessing of Dimensionality. *Entropy*. 2020;22(1). doi: 10.3390/e22010082.

672 51. Fisher RA. The use of multiple measurements in taxonomic problems. *Annals of*
673 *Eugenics*. 1936;7(2):179-88. doi: 10.1111/j.1469-1809.1936.tb02137.x.

674 52. Gorban AN, Golubkov A, Grechuk B, Mirkes EM, Tyukin IY. Correction of AI systems by
675 linear discriminants: Probabilistic foundations. *Information Sciences*. 2018;466:303-22. doi:
676 10.1016/j.ins.2018.07.040.

677 53. Le Morvan M, Zinovyev A, Vert J-P. NetNorM: Capturing cancer-relevant information in
678 somatic exome mutation data with gene networks for cancer stratification and prognosis. *PLOS*
679 *Computational Biology*. 2017;13(6):e1005573. doi: 10.1371/journal.pcbi.1005573.

680 54. Russo AA, Bittner SR, Perkins SM, Seely JS, London BM, Lara AH, et al. Motor Cortex
681 Embeds Muscle-like Commands in an Untangled Population Response. *Neuron*.
682 2018;97(4):953-66.e8. doi: 10.1016/j.neuron.2018.01.004.

683 55. Perich MG, Gallego JA, Miller LE. A Neural Population Mechanism for Rapid Learning.
684 *Neuron*. 2018;100(4):964-76.e7. doi: 10.1016/j.neuron.2018.09.030.

685 56. Sussillo D, Stavisky SD, Kao JC, Ryu SI, Shenoy KV. Making brain-machine interfaces
686 robust to future neural variability. *Nat Commun*. 2016;7:13749. Epub 2016/12/14. doi:
687 10.1038/ncomms13749. PubMed PMID: 27958268; PubMed Central PMCID:
688 PMC5159828.

689 57. Pandarinath C, O'Shea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, et al. Inferring
690 single-trial neural population dynamics using sequential auto-encoders. *Nature Methods*.
691 2018;15(10):805-15. doi: 10.1038/s41592-018-0109-9.

692 58. Pandarinath C, Ames KC, Russo AA, Farshchian A, Miller LE, Dyer EL, et al. Latent
693 Factors and Dynamics in Motor Cortex and Their Application to Brain–Machine Interfaces. *The
694 Journal of Neuroscience*. 2018;38(44):9390-401. doi: 10.1523/jneurosci.1669-18.2018.

695 59. Farshchian A, Gallego JA, Miller LE, Solla SA, Cohen JP, Bengio Y. Adversarial Domain
696 Adaptation For Stable Brain-Machine Interfaces. *ICLR*. 2019.

697 60. Smith LA. Intrinsic limits on dimension calculations. *Physics Letters A*. 1988;133(6):283-
698 8. doi: [https://doi.org/10.1016/0375-9601\(88\)90445-8](https://doi.org/10.1016/0375-9601(88)90445-8).

699 61. Eckmann JP, Ruelle D. Fundamental limitations for estimating dimensions and
700 Lyapunov exponents in dynamical systems. *Physica D: Nonlinear Phenomena*. 1992;56(2):185-
701 7. doi: [https://doi.org/10.1016/0167-2789\(92\)90023-G](https://doi.org/10.1016/0167-2789(92)90023-G).

702 62. Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris KD. High-dimensional
703 geometry of population responses in visual cortex. *Nature*. 2019;571(7765):361-5. doi:
704 10.1038/s41586-019-1346-5.

705 63. Yu BM, Cunningham JP, Santhanam G, Ryu SI, Shenoy KV, Sahani M. Gaussian-
706 Process Factor Analysis for Low-Dimensional Single-Trial Analysis of Neural Population Activity.
707 *Journal of Neurophysiology*. 2009;102(1):614-35. doi: 10.1152/jn.90941.2008. PubMed PMID:
708 19357332.

709

Fig1

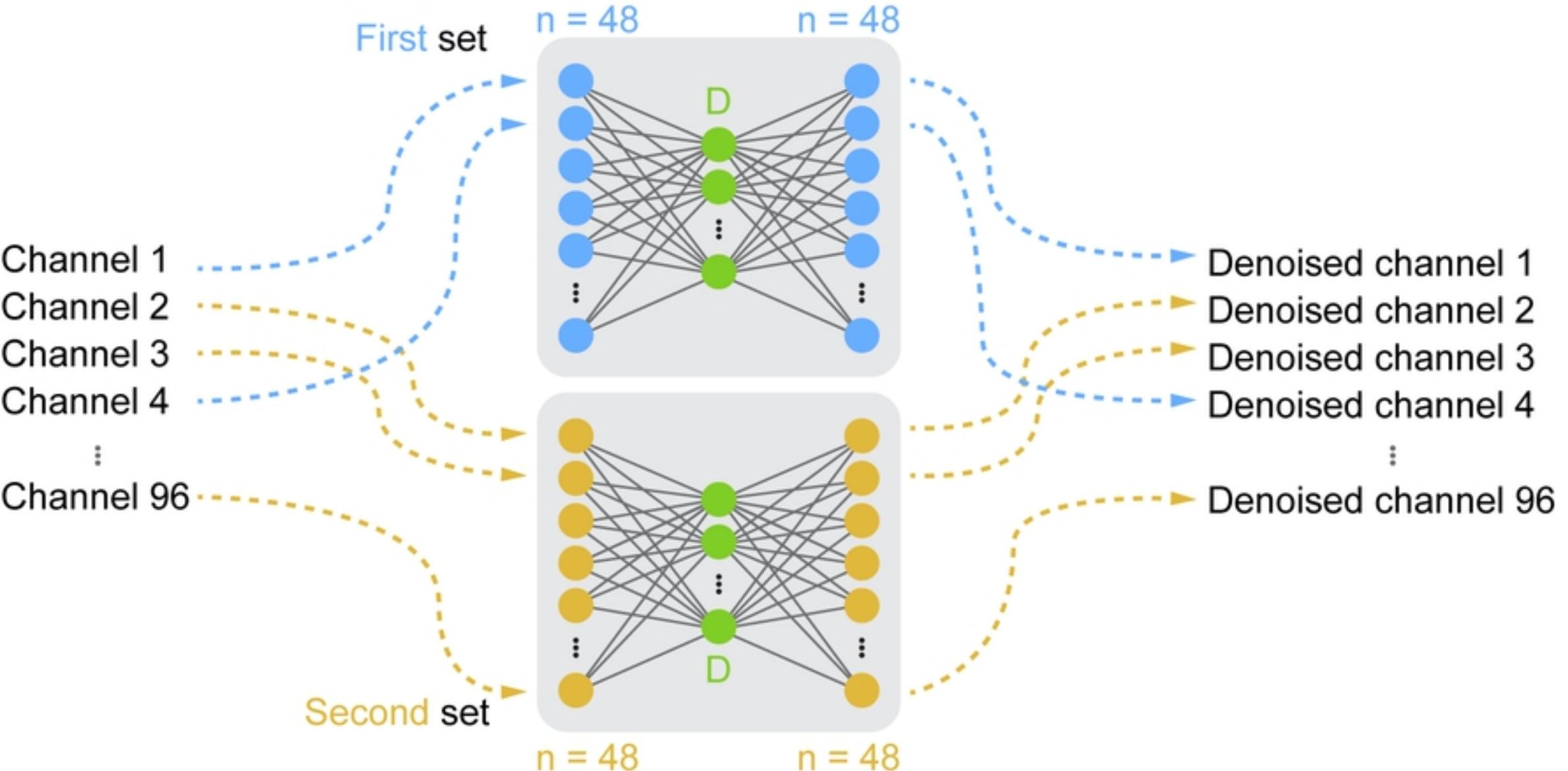
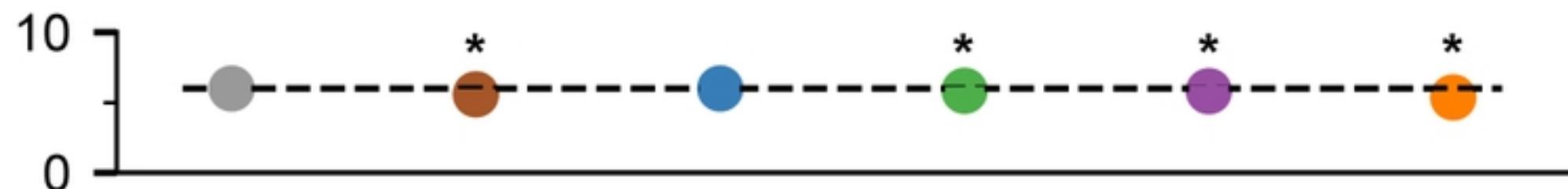


Fig2

A

Linear datasets

**B**

Nonlinear datasets

--- True dimensionality

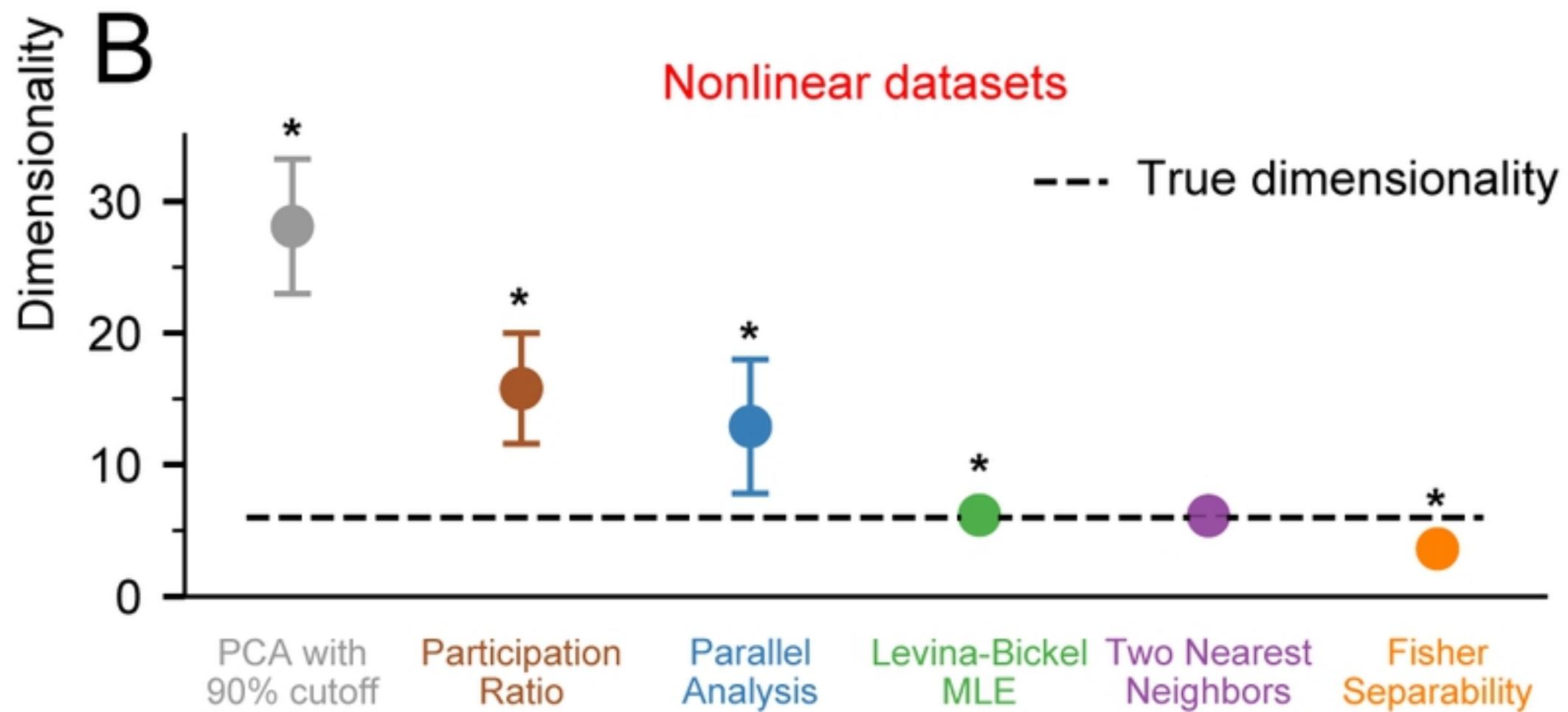
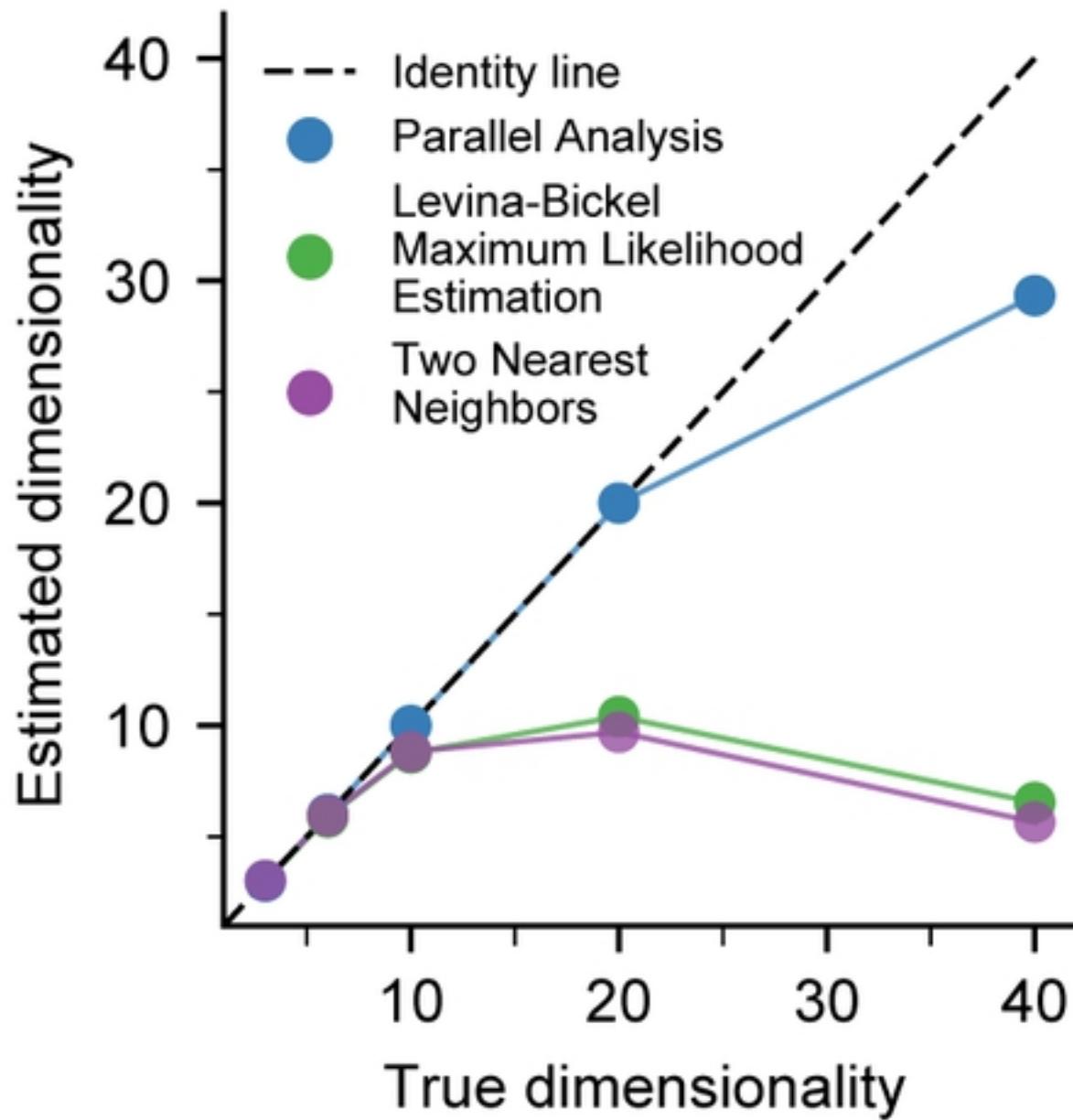


Fig3

A

Linear datasets

**B**

Nonlinear datasets

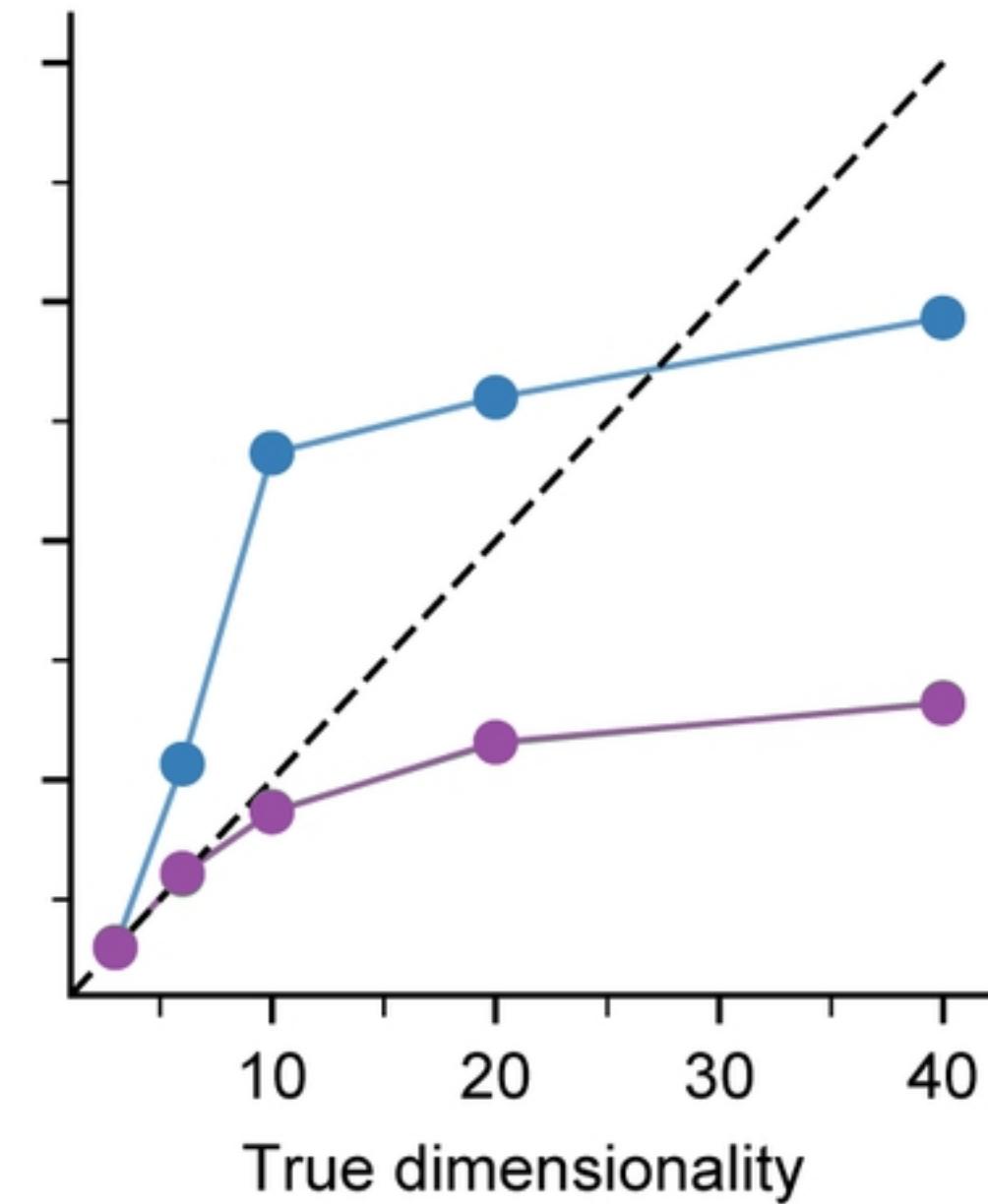
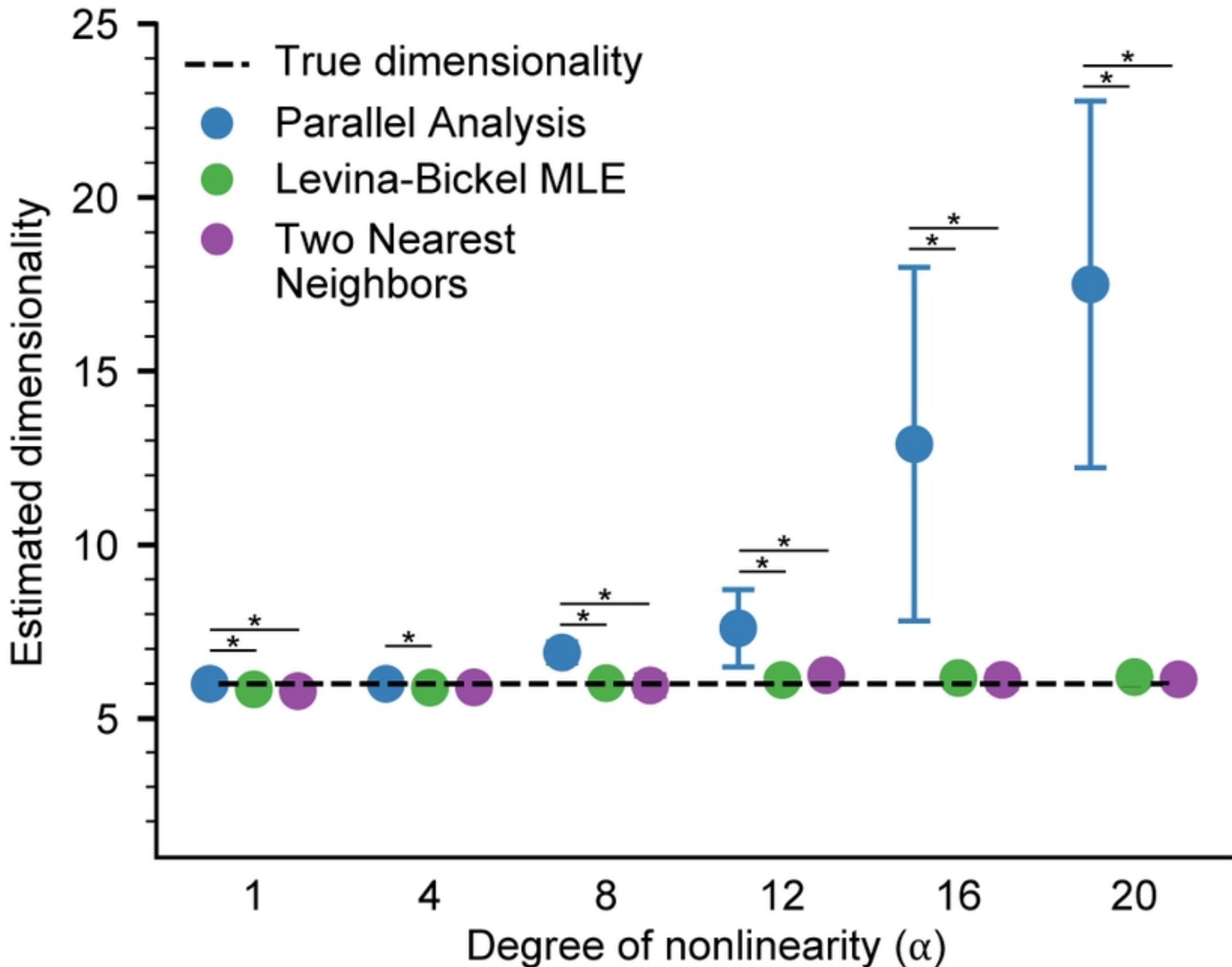


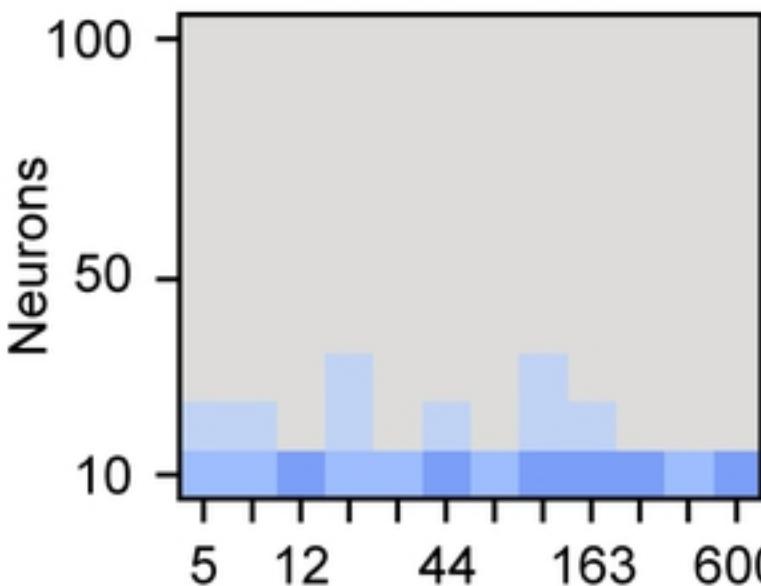
Fig4



Linear datasets

A

Parallel Analysis

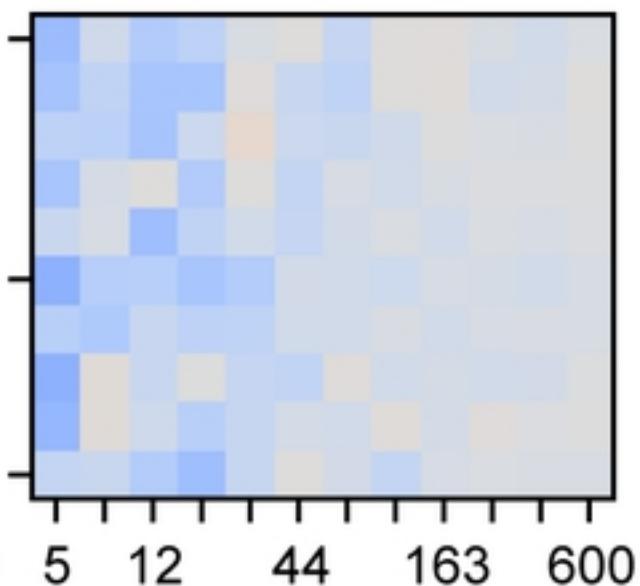


B

Levina-Bickel MLE

C

Two Nearest Neighbors



20

15

10

6

3

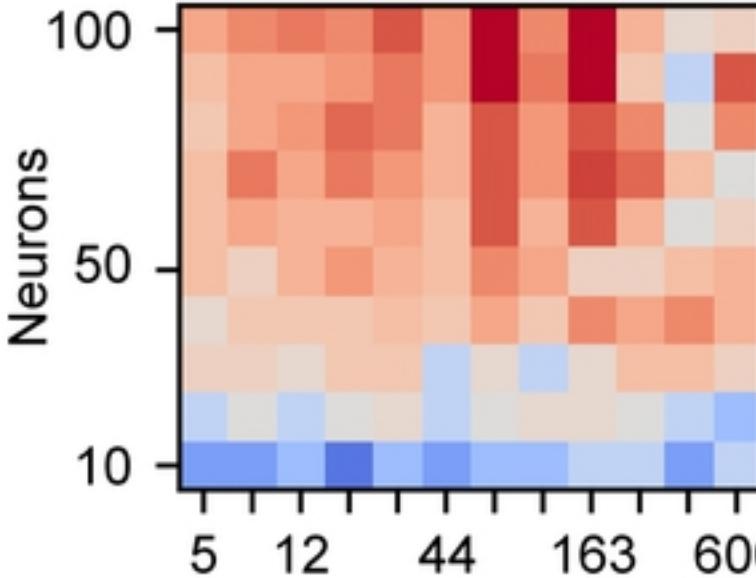
1

Estimated dimensionality

Nonlinear datasets

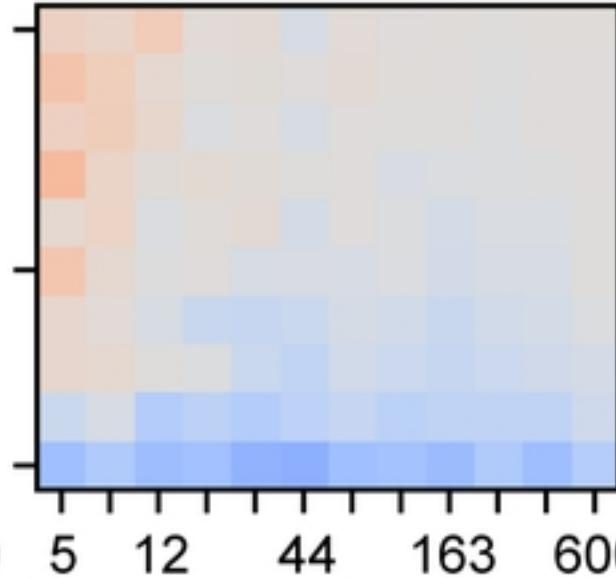
D

Parallel Analysis



E

Levina-Bickel MLE



F

Two Nearest Neighbors

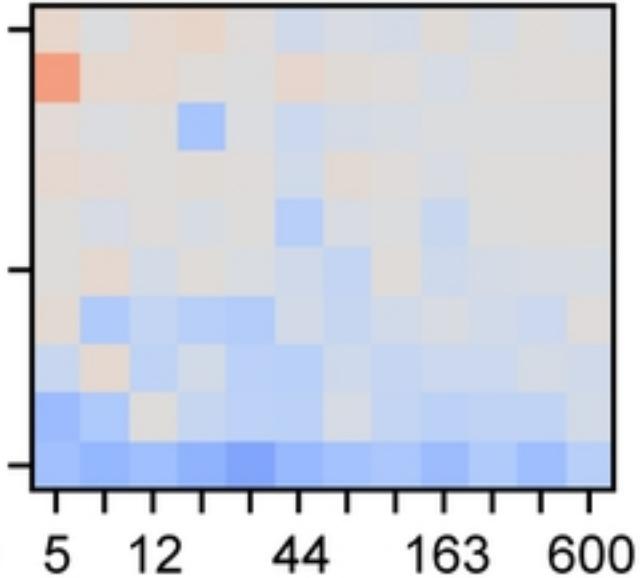


Fig6

Data length (seconds)

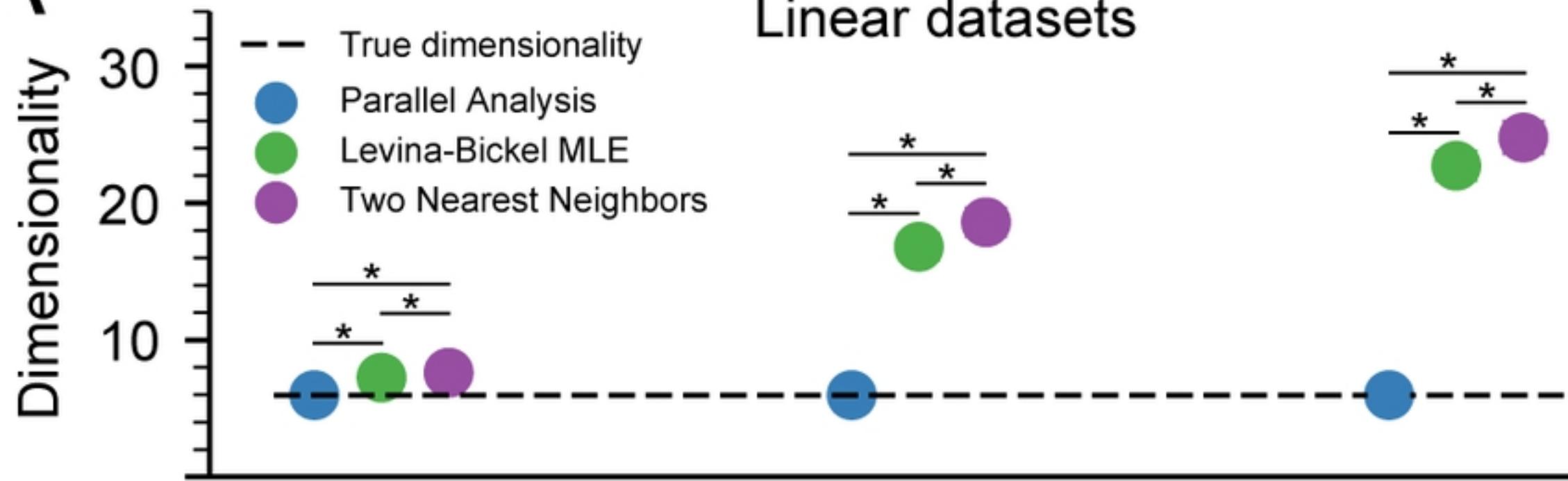
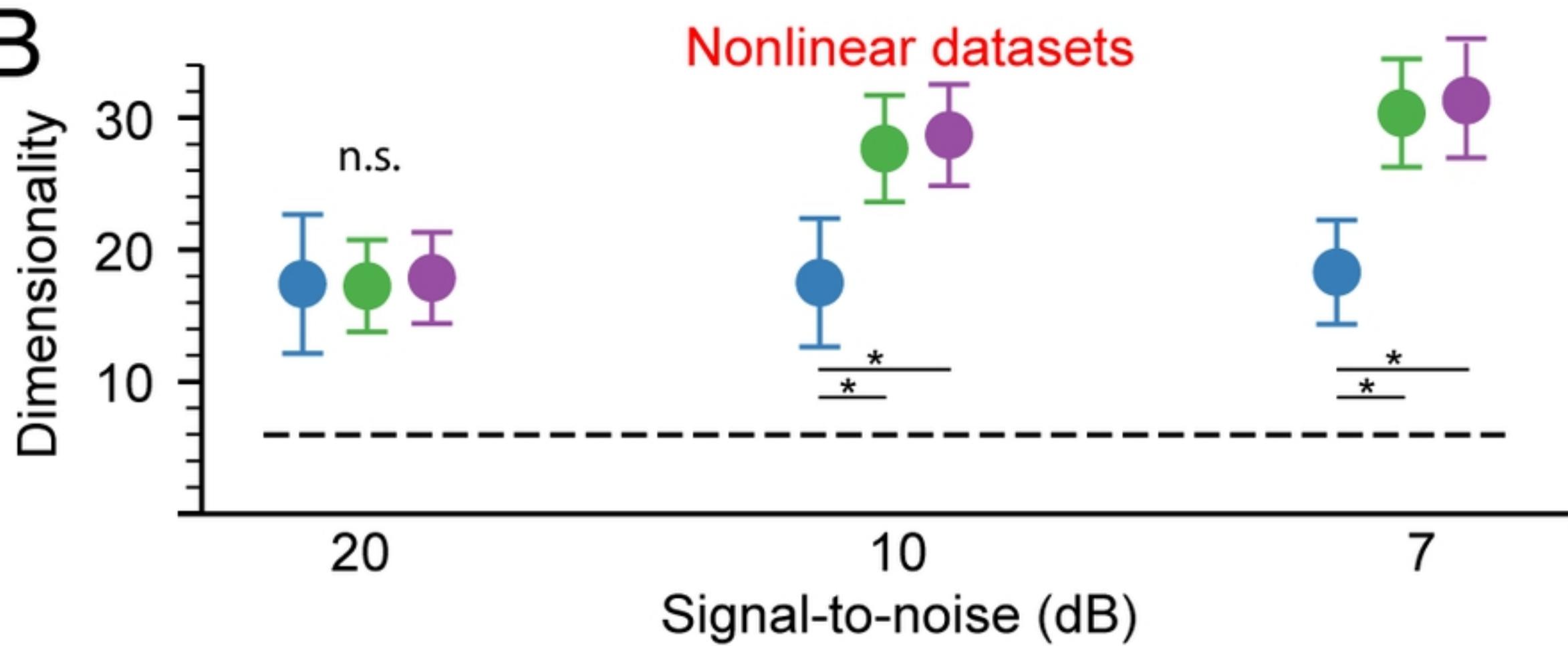
A**B**

Fig7

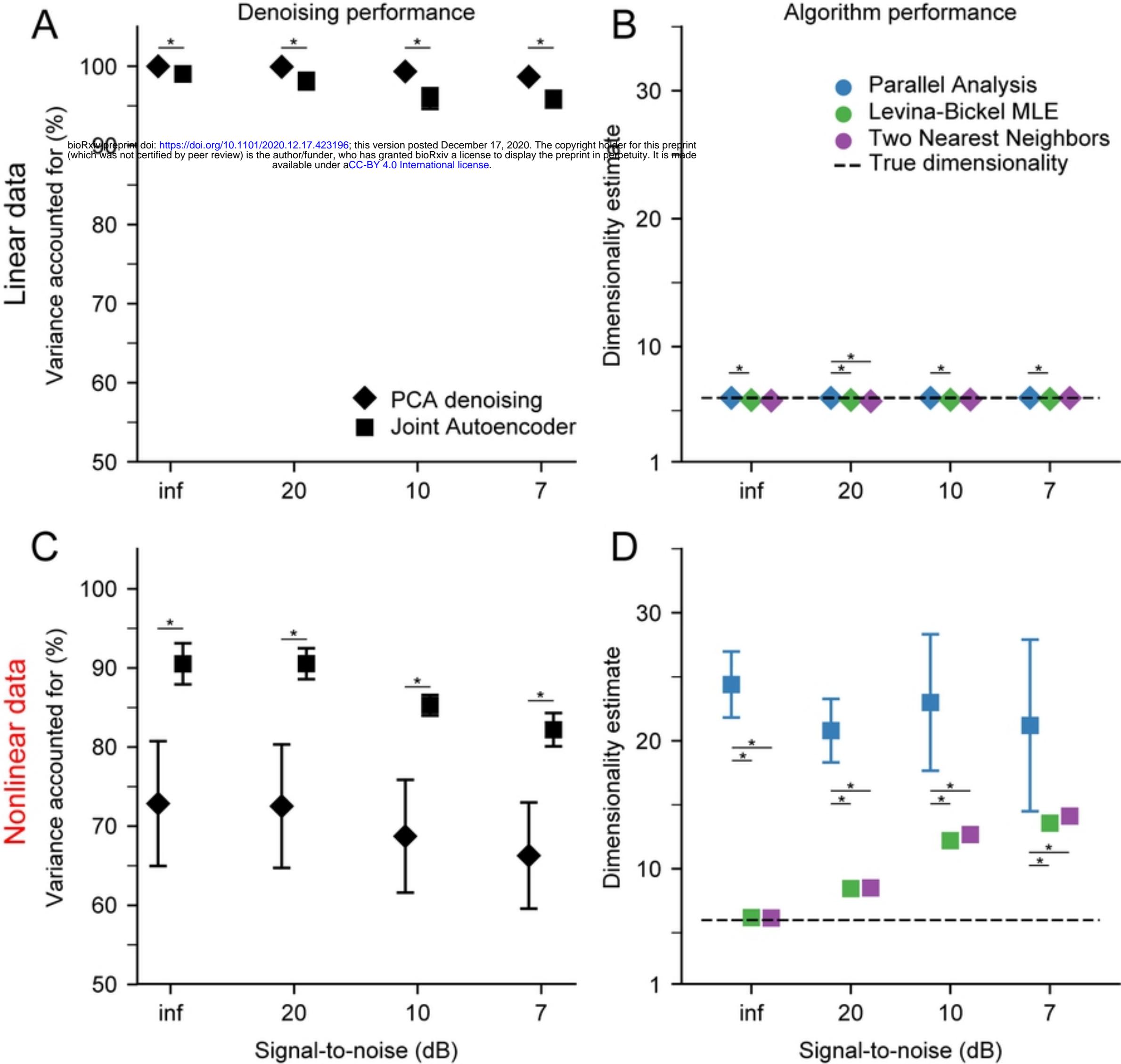


Fig8