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Abstract

It is generally accepted that the number of neurons in a given brain area far exceeds the
information that area encodes. For example, motor areas of the human brain contain tens of
millions of neurons that control the activation of tens or at most hundreds of muscles. This
massive redundancy implies the covariation of many neurons, which constrains the population
activity to a low-dimensional manifold within the space of all possible patterns of neural activity.
To gain a conceptual understanding of the complexity of the neural activity within a manifold, it
is useful to estimate its dimensionality, which quantifies the number of degrees of freedom
required to describe the observed population activity without significant information loss. While
there are many algorithms for dimensionality estimation, we do not know which are well suited
for analyzing neural activity. The objective of this study was to evaluate the efficacy of several
representative algorithms for estimating linearly and nonlinearly embedded data. We generated
synthetic neural recordings with known intrinsic dimensionality and used them to test the
algorithms’ accuracy and robustness. We emulated some of the important challenges
associated with experimental data by adding noise, altering the nature of the embedding from
the low-dimensional manifold to the high-dimensional recordings, varying the dimensionality of
the manifold, and limiting the amount of available data. We demonstrated that linear algorithms
overestimate the dimensionality of nonlinear, noise-free data. In cases of high noise, most
algorithms overestimated dimensionality. We thus developed a denoising algorithm based on
deep learning, the “Joint Autoencoder”, which significantly improved subsequent dimensionality
estimation. Critically, we found that all algorithms failed when the dimensionality was high
(above 20) or when the amount of data used for estimation was low. Based on the challenges
we observed, we formulated a pipeline for estimating the dimensionality of experimental neural

data.
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Author Summary

The number of neurons that we can record from has increased exponentially for decades; today
we can simultaneously record from thousands of neurons. However, the individual firing rates
are highly redundant. One approach to identifying important features from redundant data is to
estimate the dimensionality of the neural recordings, which represents the number of degrees of
freedom required to describe the data without significant information loss. Better understanding
of dimensionality may also uncover the mechanisms of computation within a neural circuit.
Circuits carrying out complex computations might be higher-dimensional than those carrying out
simpler computations. Typically, studies have quantified neural dimensionality using one of
several available methods despite a lack of consensus on which method would be most
appropriate for neural data. In this work, we used several methods to investigate the accuracy of
simulated neural data with properties mimicking those of actual neural recordings. Based on
these results, we devised an analysis pipeline to estimate the dimensionality of neural
recordings. Our work will allow scientists to extract informative features from a large number of
highly redundant neurons, as well as quantify the complexity of information encoded by these

neurons.
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Introduction

Studies that simultaneously record the activity of many neurons have shown that cortical neural
activity is highly redundant [1]. In primary motor cortex (M1), redundancy arises as tens of
millions of neurons control tens or at most hundreds of muscles. This redundancy implies
significant covariation in the activity of many neurons, which confines the population neural
activity to a low-dimensional manifold embedded in the neural space of all possible patterns of
neural population activity [2-9]. Low-dimensional manifolds have also been observed in a variety
of other cortical regions [10-18]. Reliable algorithms for identifying these manifolds and
characterizing their dimensionality are increasingly important as our ability to record from large
populations of neurons increases [19]. The dimensionality of the manifold describing the
coordinated firing of a set of neurons quantifies the number of degrees of freedom needed to
describe population activity without significant information loss [20, 21]. Projecting the observed
firing patterns onto the manifold yields a low-dimensional set of latent signals that can simplify
the interpretation of population neural activity [2, 9, 22]. Low-dimensional latent signals can
facilitate the manipulation or the extraction of signals for brain-computer interfaces, a
rehabilitative technology that converts neural signals into control commands to restore

movement to paralyzed patients [23, 24].

Unfortunately, it is surprisingly difficult to estimate the dimensionality of neural manifolds,
particularly in the realistic condition of a noisy, nonlinear embedding. There is evidence of a
nonlinear mapping between the recorded neural activity and the associated low-dimensional
latent signals [10, 25-27]. Noise propagates from the level of sensory transduction and
amplification, the opening and closing of voltage-gated ion channels, and builds up at the level
of synapses, causing neural firing to be a stochastic process [28]. The two effects, nonlinearity
and noise, combine to pose significant challenges to existing dimensionality estimation
algorithms. The accuracy of the estimators also depends on the amount of available data [29,
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30], which is limited in most experimental paradigms. If we wish to identify the manifolds
associated with experimentally measured neural activity, we need methods that are robust in

the presence of these challenges.

The methods that have been proposed for estimating the dimensionality of neural manifolds can
be broadly categorized into linear or nonlinear algorithms, based on assumptions about the
nature of the mapping between the low-dimensional representation of the latent signals and the
high-dimensional space of neural activity. The most commonly used linear method for
dimensionality reduction is Principal Component Analysis (PCA), based on identifying mutually
orthogonal directions in the empirical neural space of recorded activity; these directions are
monotonically associated with the largest data variance. PCA provides a hierarchical description
in which the data projected onto the manifold subtended by the principal components become
closer and closer to the recorded data as the dimensionality of the linear manifold is increased
towards the dimensionality of the empirical neural space. Although PCA provides a useful and
systematic tool for variance-based dimensionality reduction, it does not specify how to uniquely
identify the dimensionality of the manifold: the typical implementation requires the choice of an
arbitrary variance threshold. Other PCA-based algorithms such as Participation Ratio (PR) [5,
18] and Parallel Analysis (PA) [31, 32] provide more principled prescriptions for linear
dimensionality estimation, by incorporating criteria for determining an optimal number of leading

principal components to use when constructing the low-dimensional manifold.

Linear dimensionality estimation algorithms may work well for linear datasets, but are likely to
overestimate the dimensionality of a manifold arising from a nonlinear mapping between the
low-and high-dimensional spaces [20, 21, 33, 34]. In contrast, nonlinear methods (e.g.,

Correlation Dimension [35-37], Levina-Bickel Maximum Likelihood Estimation [38], Two Nearest


https://doi.org/10.1101/2020.12.17.423196
http://creativecommons.org/licenses/by/4.0/

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423196; this version posted December 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Neighbors [39], and Fisher Separability Analysis [40] may provide accurate dimensionality

estimates for both linearly and nonlinearly embedded data.

Most dimensionality estimation methods have been tested in the absence of noise even though
it is known that linear and nonlinear methods overestimate dimensionality when the data is
noisy [20]. The robustness of dimensionality estimation algorithms to noise remains to be

characterized.

The objective of this study was to characterize the accuracy of several dimensionality estimation
algorithms when applied to high-dimensional recordings of neural activity. We evaluated
previously proposed algorithms on synthetic datasets of known dimensionality to identify
conditions under which each method succeeded and/or failed. Specifically, we evaluated how
the algorithms handled the nature of the embedding (linear or nonlinear), the amount of noise
added to the simulated neural data, and the amount of data available. We found increasing
levels of noise to be a challenge for all tested algorithms. We therefore also evaluated different
approaches for reducing noise prior to performing dimensionality estimation, including the “Joint
Autoencoder”, a method we developed based on deep learning techniques. Together, our
results allowed us to propose a methodological pipeline for estimating the intrinsic

dimensionality of high-dimensional datasets of recorded neural activity.
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Methods

103  Simulation of neural signals

104  We generated the synthetic data used to evaluate dimensionality estimation algorithms as

105 follows. First, we created d signals by randomly sampling from an empirical distribution of firing
106 rates that we obtained from multi-electrode array recordings of neural activity in the macaque
107  primary motor cortex (M1) made while the subject was performing a center-out reaching task
108  [41]. We verified that these randomly selected signals were uncorrelated. These signals

109 provided a d-dimensional set used to construct synthetic high-dimensional data sets (Fig 1). We
110  allowed dto vary from 3 to 40. These signals were multiplied by a dx 96 mixing matrix Wwith
111 entries that were randomly selected from a zero-mean Gaussian distribution with unit variance.
112 This resulted in a 96-dimensional data set X. The activity in each of the /=96 simulated

113  channels was scaled to the range from zero to one to compensate for variability in firing rates
114  across neurons and across time. A nonlinear embedding was implemented by processing each

115  simulated channel Xwith an exponential activation function:

e 1
ea

—1

116 fx) = (Equation 1)

117  We chose this exponential activating function to control the degree of nonlinearity by varying the
118  parameter «, and to ensure that the range of the nonlinearly embedded synthetic data remained
119  between zero and one. Finally, we added independent Gaussian noise to each of the channels

120 in X, to generate signals with known signal-to-noise ratio. This procedure generated datasets of

121 known dimensionality, embedding type (linear/nonlinear), and signal-to-noise ratio.

122 Fig 1: Generation of simulated datasets. First, representative neural signals were obtained by
123 randomly sampling the firing rates of primary motor cortical recordings. The number of sampled
124 signals determined the intrinsic dimensionality of the dataset. Then, the dimensionality of the
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125 sampled signals was increased through linear combinations by multiplying the signals with a weight
126 matrix . The entries of W were sampled from a zero-mean Gaussian distribution with unit

127 variance. Then, the signals were then scaled to the [0,1] range by dividing them by their maximum
128 value. This procedure yielded noise-free, linear datasets. In nonlinear simulations only, the signals
129 were then activated nonlinearly through the exponential function in Equation 1 (red box in

130 diagram). In noisy simulations, zero-mean Gaussian noise with variance specified by the

131 predetermined signal-to-noise ratio was added to the signals. This procedure yielded linear or

132 nonlinear, noisy datasets with known signal-to-noise ratio.

133 Dimensionality estimation algorithms

134  We evaluated two classes of dimensionality estimation algorithms, those that assumed a linear

135 embedding and those that also allowed for a nonlinear embedding.

136 Linear algorithms. Linear algorithms map high-dimensional data to a lower dimensional,
137 linear subspace. Principal Component Analysis (PCA) is often used for linear dimensionality
138  estimation in neuroscience [2, 4, 7, 41-43]. All the linear algorithms that we tested (summarized

139  below) are based on PCA but use different criteria for dimensionality estimation.

140 Principal Component Analysis with a variance cutoff. PCA creates a low-dimensional
141 representation of the data by sequentially finding orthogonal directions that explain the most
142  remaining variance. Unit vectors that identify those directions, the PCA eigenvectors {v;},

143  provide an orthonormal basis for the A-dimensional data space. The eigenvectors are labeled in
144  decreasing order of the variance associated with each direction, the eigenvalues {1;}. The

145  simplest way to use PCA for dimensionality estimation is to find the number of principal

146  components required to reach a predetermined threshold of cumulative variance. The selection

147  of a variance threshold can be rather arbitrary, and a range of thresholds have been used in the

8
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148 literature. In this study, we used a threshold of 90%, which yielded accurate estimates of

149  dimensionality for the noise-free linear datasets.

150 Participation Ratio (PR). This approach provides a principled way of finding a variance

151  threshold when the ground truth is not known [5, 18]. PR uses a simple formula based on the

152  eigenvalues:

(EM,1)°

153 PR= oy

(Equation 2)
154  If the leading eigenvalue carries all the variance (47 # 0 for /= 7and A/= 0 for all /= 2), then PR
155 = 1. At the other extreme, if all eigenvalues are equal, the variance is spread evenly across all
156 the dimensions, and PR=/N. The actual value of PR interpolates between these two extreme
157  conditions to estimate the intrinsic dimensionality, and thus the number of principal components

158  to be kept [5].

159  Parallel Analysis (PA). Much like the Participation Ratio, Parallel Analysis is a principled
160  approach to finding a variance threshold [31, 32]. Parallel Analysis generates null distributions
161  for the eigenvalues by repeatedly shuffling each dimension of the data separately. The shuffling
162  step ensures that the correlations remaining across the different dimensions of the data are due
163  to chance. The eigenvalues that exceed the 95" percentile of the null distribution are identified
164  as significant, and their number is the number of dimensions to be kept. Although this method
165 has not been directly applied to neural data, similar approaches based on finding null

166  distributions of eigenvalues have been used for neural dimensionality estimation [44].

167  Nonlinear algorithms. Nonlinear algorithms can in principle estimate the dimensionality of

168  either linearly or nonlinearly embedded data. Unlike the linear algorithms we tested, the
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169  nonlinear algorithms need not rely on a global model for the probability distribution from which
170  the data are assumed to be drawn (in the case of PCA, the model is a multivariate Gaussian
171 distribution). Instead, many nonlinear algorithms estimate intrinsic dimensionality directly from
172  local geometric properties of the data. Common local properties include distance and

173  separability of each data point relative to its neighbors. Although nonlinear algorithms are not
174  yet commonly used in neuroscience, they have been used to estimate dimensionality in several

175  other fields that produce high-dimensional datasets [45].

176  Correlation Dimension (CD). Correlation Dimension estimates dimensionality by calculating
177  how the number of data samples that fall within a hypersphere change as a function of its

178  radius. This method, originally developed in 1983 [35], has benefitted from recent efforts to

179  improve computational speed and accuracy [36, 37]. Although there are only a few applications
180  of Correlation Dimension analysis to neural data [46, 47], it is widely used in other disciplines

181  [36].

182 Levina-Bickel Maximum Likelihood Estimation (LBMLE). The Levina-Bickel Maximum
183  Likelihood Estimation method [38] is an extension of Correlation Dimension that uses a

184  maximum likelihood approach to estimate distances between data points. This method has
185  been successfully applied to some of the benchmark datasets used in machine learning, such

186 as the Faces [33] and Hands datasets [48].

187 Two Nearest Neighbors (TNN). The Two Nearest Neighbors method also uses the distance
188  between data points to estimate dimensionality [39]. However, unlike Levina-Bickel Maximum
189  Likelihood Estimation, it considers only the first and second neighbors of each point. The ratio of
190 the cumulative distribution of second-neighbor to first-neighbor distances is a function of data

191 dimensionality. By focusing on shorter distances, the method avoids unwanted effects resulting

10
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from density changes across the manifold. This method has been successfully applied to
synthetic datasets of hyperspheres with known dimensionality [39], and to real-world datasets

including molecular simulations [49] and images of hand-written digits [33].

Fisher Separability Analysis (FSA). High-dimensional datasets exhibit simple geometric
properties such as the likely orthogonality of two randomly picked directions. These properties
have recently been characterized as the blessings of dimensionality [50], in contrast to the well-
known concept of the curse of dimensionality. A useful example is the increasing ease with
which a hyperplane can separate any given sample in a dataset from all other samples as the
dimensionality of the dataset increases. Fisher separability is a computationally efficient,
simple, and robust method to assess such separability [51, 52]. Dimensionality can be
estimated in terms of the probability that a point in the dataset is Fisher separable from the
remaining points [40]. The probability distribution of Fisher separability allows the dimensionality
of both linear and nonlinear manifolds to be estimated. This method has been applied to study
the mutation profiles of the genes resulting in tumors as a means to evaluate therapeutic

approaches [53].

Denoising algorithms

Noise that is uncorrelated across channels will lead to dimensionality estimates that approach
the number of channels as the level of noise increases. To mitigate this overestimation problem,
we implemented two approaches to denoise neural data. Both rely on an initial estimate of an
upper bound dimensionality D, for which we used Parallel Analysis. To quantify the performance
of the denoising algorithms, we reported variance accounted for (VAF) between the denoised

signals and the noise-free signals.

11
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214  PCA denoising. The linear approach to denoising was based on PCA. Once the value of D
215 was determined, we used the D leading principal components to reconstruct the original data,
216  under the assumption that most of the noise was relegated to the discarded, low-variance

217  principal components.

218 Joint Autoencoder denoising. We also used a neural network for denoising (Fig 2). We
219  divided the 96-dimensional simulated dataset Xinto two 48-dimensional partitions: X; and X..
220 These partitions were each mapped by the compressive half of an autoencoder to compressed
221 subspaces Z; and Z respectively, each of dimension D < 48. These compressed subspaces
222  were used to obtain reconstructed versions of X; and X5, denoted )A(1 and 5(2 , using the

223  expansive halves of the corresponding autoencoders. The cost function ¢ for the Joint

224  Autoencoder network not only minimized the reconstruction error for X; and X5, but also the

225  difference between Z; and Z:

226 C = MSE (X1, X1) + MSE (X2, X,) + MSE (Z1, Z;) (Equation 3)
227 Fig 2. Architecture of the Joint Autoencoder. Channels of the 96-dimensional simulated

228 datasets were randomly partitioned into two sets of signals (blue and yellow). Each 48-dimensional

229 set was reconstructed through a D-dimensional subspace (green). The reconstructed outputs of

230 the networks were the denoised channels.

231 This design assumes that each of the partitions X; and X, contains the information necessary to
232  robustly identify the underlying D-dimensional signals Z; and 4, but not the independent noise
233  components that will differ between the two partitions. We trained the Joint Autoencoder using
234  the ADAM optimizer with a learning rate n = 0.001 and dropout regularization on the input layer

235 with p = 0.05. The use of Rectified Linear Unit activation functions in all layers ensured that the

12
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236  autoencoder network would both operate on and output non-negative signals while allowing for

237  nonlinear embeddings.

238 Ethics statement

239  All surgical and experimental procedures that yielded the multi-electrode array recordings from
240 non-human primates [41], which formed the basis of our simulated neural signals, were

241  approved by Institutional Animal Care and Use Committee (IACUC) of Northwestern University.
242  The subject was monitored daily. The subject’s diet consisted of standard laboratory animal diet,

243  fresh fruits, and vegetables, and was provided with access to various types of enrichment.

244  Statistical analyses

245  We used Monte Carlo simulations to generate up to 10 replications of synthetic data sets, each
246  corresponding to microelectrode array recording data from an experimental session. We noted
247  the number of replications (n) in the figure captions where applicable. Our choice of the number
248  of replications is reasonable compared to the number of experimental sessions that we would
249  expect to see in experiments with monkeys [41, 54, 55]. The simulations differed by their

250 random number generator seed, which dictated the pseudorandom sampling procedures

251  required for generating the signals. There were three sampling steps in our simulations (Fig 1).
252  First was the creation of the low-dimensional basis signals, which were sampled from an

253  empirical firing rate distribution. The second was the entries of the mixing matrix W, which were
254  sampled from a zero-mean Gaussian distribution with unit variance. The third was the additive
255 noise, sampled from a zero-mean Gaussian distribution with variance determined by the signal-
256  to-noise ratio. We used bootstrapping with 10,000 iterations to compute the statistic of interest
257  and computed its confidence interval using a = 0.05. We used Bonferroni correction for multiple

258  comparisons.

13
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Results

259  Despite the large number of available algorithms for dimensionality estimation, there has been
260 no systematic study of how well-suited they are for the analysis of neural data. Here we test
261  several representative algorithms on synthetic datasets for which the intrinsic dimensionality is
262  known, to assess their ability to estimate the true dimensionality of the data across a range of
263  simulated conditions relevant to neuroscience. These assessments resulted in a recommended

264  procedural pipeline for estimating the intrinsic dimensionality of a set of neural recordings.

265 Dimensionality of noise-free datasets

266  We first considered the simplest case: how accurately can we determine the dimensionality of
267 linearly embedded, noise-free datasets? To answer this question, we applied the six selected
268  algorithms to datasets with dimensionality d= 6. We focused on d= 6 as this was the

269 dimensionality estimate of actual multi-electrode array recordings found when using the

270  methods investigated here. In this scenario, all tested linear and nonlinear algorithms estimated
271  the true dimensionality accurately (Fig 3). Under noise-free conditions, the nonlinear algorithms

272  were as accurate as the linear ones on linearly embedded datasets.

273 Fig 3. Dimensionality of noise free datasets. A) We applied PCA with 90% variance cutoff
274 (PCAQ0, gray), Participation Ratio (PR, brown), Parallel Analysis (PA, blue), Levina-Bickel

275 Maximum Likelihood Estimation (LBMLE, green), Two Nearest Neighbors (TNN, purple), and
276 Fisher Separability Analysis (FSA, orange) to linearly embedded, d= 6 datasets (n=10). B) Same
277 as in A, but for nonlinearly embedded datasets. Circles indicate the mean and error bars indicate
278 the standard deviation of the dimensionality estimates. Asterisks indicate significant difference of
279 the mean from the true dimensionality of 6 at (bootstrapped confidence intervals do not overlap 6
280 at the significance level of a=0.05.

14
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281 Next, we evaluated all algorithms on nonlinearly embedded noise-free datasets, also for d= 6.
282  Nonlinearities were introduced as in Equation 1, using a = 16. In this case, the three linear
283  algorithms dramatically overestimated the true dimensionality, with errors reaching more than
284  400% of the true value (Fig 3B). In contrast, the nonlinear algorithms performed well; the

285 Levina-Bickel Maximum Likelihood Estimation and the Two Nearest Neighbors methods were
286  more accurate than Fisher Separability Analysis, which slightly underestimated the true

287  dimensionality.

288  Because of the superior accuracy of Levina-Bickel Maximum Likelihood Estimation and Two
289  Nearest Neighbors, we focused on these two methods for the remainder of the nonlinear

290 analyses. We also retained Parallel Analysis as a benchmark for some of the analyses, as it
291  was the most accurate linear method for estimating the dimensionality of nonlinearly embedded

292 data.

293 Effect of true dimensionality on algorithm accuracy

294  We next evaluated how the true intrinsic dimensionality of the noise-free data influenced

295  algorithm accuracy. Can any intrinsic dimensionality be reliably estimated? We found that the
296 answer is no: the accuracy of all algorithms suffered when the intrinsic dimensionality of the
297  synthetic data was too high. Parallel Analysis was accurate on linear datasets with d < 20, but
298 inaccurate on nonlinear datasets of all dimensions, as expected (Fig 4). Below about d= 6,
299  Levina-Bickel Maximum Likelihood Estimation and Two-Nearest Neighbors were accurate on
300  both linear and nonlinear datasets. However, Levina-Bickel Maximum Likelihood Estimation
301  began to underestimate the dimensionality of both linearly embedded (Fig 4A) and nonlinearly
302 embedded (Fig 4B) datasets for 4 > 6. This underestimation increased with increasing d. For

303 nonlinear datasets, the estimate saturated at 4= 13, where underestimation began to get much
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304  worse. These results revealed that the intrinsic dimensionality of nonlinearly embedded datasets

305 s hard to estimate reliably when it is large.

306 Fig 4. Effect of increasing true dimensionality on dimensionality estimates. A) The

307 dimensionality of noise free, linear datasets (n=3) was assessed using Parallel Analysis (PA),

308 Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two Nearest Neighbors (TNN).

309 Dashed line indicates the identity line. B) Same as A, but for nonlinear datasets. The curve for TNN
310 precisely overlays that of LBMLE, causing it to be obscured.

311 Effect of the level of nonlinearity

312  We next evaluated how the degree of nonlinearity influenced the accuracy of the dimensionality
313  estimation algorithms. We controlled the degree of nonlinearity by varying the parameter « in
314  Equation 1; this parameter controls the slope of the exponential activation function used to

315  generate the nonlinearly embedded datasets. We found that both Levina-Bickel Maximum

316  Likelihood Estimation and Two Nearest Neighbors provided accurate dimensionality estimates
317  for all tested levels of nonlinearity (Fig 5). Surprisingly, even Parallel Analysis was accurate at
318  levels of nonlinearity around a = 8, where it started to overestimate the intrinsic dimensionality.
319  These results revealed that Levina-Bickel Maximum Likelihood Estimation and Two Nearest
320 Neighbors provide accurate dimensionality estimates for wide levels of nonlinearity, whereas

321 Parallel Analysis is accurate only for low levels of nonlinearity.

322 Fig 5. Effect of changing the degree of nonlinearity. Dimensionality of nonlinear datasets

323 (n=10) with varying levels of nonlinearity, controlled by the a parameter (See Methods), was

324 assessed using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE),
325 and Two Nearest Neighbors (TNN). Circles indicate the mean and error bars indicate the standard
326 deviation of the dimensionality estimates. Asterisks indicate significant difference between mean
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327 values (bootstrapped confidence intervals do not overlap 0 at the significance level of a=0.05/3,

328 Bonferroni corrected for multiple comparisons).

329 Amount of data required for estimating dimensionality

330 Ideally, algorithms would require only small amounts of data, so that the intrinsic dimensionality
331  could be estimated even during transient behaviors and for a small number of recording
332 channels. We thus evaluated the amount of data required to estimate dimensionality of datasets

333  with d= 6, by varying both the duration of the recordings and the number of recording channels.

334  On linear datasets, the accuracy of Parallel Analysis depended only on the number of channels:
335 the algorithm was accurate if 20 or more channels were available (Fig 6A). In contrast, the

336  accuracy of both Levina-Bickel Maximum Likelihood Estimation and Two Nearest Neighbors
337 also depended on the duration of the data (Fig 6B and C). Around 30 seconds of data was

338  sufficient for accurate estimates of intrinsic dimensionality using either of these two nonlinear

339 methods.

340 Fig 6. Amount of data required by dimensionality estimators. Amount of data required by A)
341 Parallel Analysis (PA), B) Levina-Bickel Maximum Likelihood Estimation (LBMLE), and C) Two
342 Nearest Neighbors (TNN) on linear datasets. Data length is logarithmically scaled between 5

343 seconds and 600 seconds. Correct dimensionality @= 6 is shown in gray. Warm colors indicate
344 overestimation and cold colors indicate underestimation of dimensionality. D, E, and F) Same as A,
345 B, and C, respectively, but for nonlinear datasets.

346  As expected for highly nonlinear datasets (¢ = 16, d = 6), Parallel Analysis was not accurate
347  (Fig 6D) regardless of the amount of data. Both Levina-Bickel Maximum Likelihood Estimation

348 and Two Nearest Neighbors were accurate provided that data from more than 50 channels were
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349 available (Fig 6E and F). Furthermore, while Levina-Bickel Maximum Likelihood estimation
350 required around 30 seconds of data for accurate dimensionality estimates, Two Nearest
351 Neighbors required more than one minute. These results would also depend on the actual

352  dimensionality d of the tested signals; here we focused on d =6.

353 Evaluating and reducing the effects of noise

354  Any experiment will include some amount of noise in the recorded signals. As expected, all
355  tested algorithms overestimated intrinsic dimensionality in the presence of noise (Fig 7). For
356  any given noise level, estimation errors for the linear datasets (Fig 7A) were a bit smaller than
357  those for the nonlinear datasets (Fig 7B). Adding noise with a power of only 1% of that of the
358  signal (SNR = 20 dB) caused Levina-Bickel Maximum Likelihood Estimation and Two Nearest
359  Neighbors to overestimate the dimensionality of the nonlinear data by ~200% (Fig 7B). PA
360 yielded consistent overestimation errors across all nonzero levels of noise for both linear and

361 nonlinear data.

362 Fig 7. Effect of noise on dimensionality estimates. Estimated dimensionality of linear (A) and
363 nonlinear (B) datasets (n=10) with 20 dB, 10 dB, and 7 dB signal-to-noise ratio was assessed using
364 Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two Nearest
365 Neighbors (TNN). Circles indicate the mean and error bars indicate the standard deviation of the
366 dimensionality estimates. Asterisks indicate significant difference between mean values

367 (bootstrapped confidence intervals do not overlap 0 at the significance level of a=0.05/3,

368 Bonferroni corrected for multiple comparisons).

369  We evaluated two algorithms for mitigating the effects of noise prior to estimating
370 dimensionality: a PCA-based linear method and a Joint Autoencoder nonlinear neural network

371  (see Methods). Both methods were quite effective for denoising the linear datasets (Fig 8A),

18


https://doi.org/10.1101/2020.12.17.423196
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423196; this version posted December 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

372  with the PCA-based approach slightly better than the Joint Autoencoder at the higher noise

373 levels. For linear datasets, dimensionality estimates following PCA-based denoising were highly
374  accurate, yielding correct estimates of the true intrinsic dimension even for high-noise signals
375 (Fig 8B). The Joint Autoencoder was significantly more effective for denoising the nonlinear
376  datasets (Fig 8C). Joint Autoencoder denoising on nonlinear datasets resulted in dimensionality
377  estimates that still increasingly overestimated with increasing noise, but at a much slower rate
378  than without denoising (Fig 8D). The highest noise level we tested (20%; SNR = 7 dB) caused

379 the dimensionality to be overestimated by about 100%.

380 Fig 8. Performance of PCA and Joint Autoencoder (JAE) denoising algorithms. A) PCA and
381 JAE denoising applied to linear datasets (n=10) with varying signal-to-noise ratio. Symbols indicate
382 the mean and error bars indicate the standard deviation of the Variance accounted for between
383 noise-free and denoised signals. Asterisks indicate significant difference between mean values
384 (bootstrapped confidence intervals do not overlap 0 at the significance level of «=0.05). B)

385 Dimensionality estimation on linear datasets after PCA denoising. Dimensionality was estimated
386 using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two
387 Nearest Neighbors (TNN). Symbols indicate the mean and error bars indicate the standard

388 deviation of the dimensionality estimates. Asterisks indicate significant difference between mean
389 values (bootstrapped confidence intervals do not overlap 0 at the significance level of a=0.05/3,
390 Bonferroni corrected for multiple comparisons). C) Same as in A, but for nonlinear datasets. D)
391 Same as in B, but for nonlinear datasets after JAE denoising.
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Discussion

This study evaluated techniques for estimating the intrinsic dimensionality of high-dimensional
neural recordings. We considered representative linear and nonlinear algorithms, testing their
performance on synthetic datasets that captured properties of neural recordings likely to affect
dimensionality estimation. The tested datasets had known intrinsic dimensionality, known levels
of noise, and embeddings that were either linear or nonlinear. Our results demonstrated that
none of the tested algorithms work for all possible scenarios, but they yielded important insights
for when estimates of intrinsic dimensionality are likely to be valid and when they are not. As
expected, we found that linear estimation methods are generally not as accurate as nonlinear
methods when the mapping between the low-dimensional latent space and the high-
dimensional space of neural recordings is nonlinear. Surprisingly, the linear method Parallel
Analysis estimated the dimensionality of mildly nonlinear datasets well though it failed for more
highly nonlinear embeddings. In contrast, the nonlinear methods worked well on both linear and
highly nonlinear datasets but failed once the intrinsic dimensionality of the data became too

high.

Noise was a challenge for all methods, causing dimensionality to be overestimated even for
signal-to-noise ratios as low as 20 dB (1% noise variance). We presented two approaches for
denoising the data so as to improve the accuracy of the dimensionality estimation. These were
a linear PCA-based approach and a novel nonlinear, deep learning approach that we call the
Joint Autoencoder. Both denoising approaches attempted to remove signal components that
were not shared across the data channels. To achieve this, the PCA-based approach simply
removed Principal Components with low variance, whereas the Joint Autoencoder identified an
underlying manifold that was common to two randomly sampled sets of channels. Both
approaches relied on a linear, upper-bound estimate of the intrinsic dimensionality. Denoising
by either method substantially improved subsequent dimensionality estimation, but the Joint
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416  Autoencoder was substantially more effective in denoising nonlinear datasets. In the linear

417  case, dimensionality estimates using Parallel Analysis, Levina-Bickel Maximum Likelihood

418  Estimation, and Two Nearest Neighbors were accurate after PCA-denoising. In the nonlinear
419 case, dimensionality estimates using the same three methods were similarly accurate after JAE-

420  denoising.

421  Implications for evaluation of experimental recordings

422  Due to its computational efficiency and ease of interpretation, most studies have used PCA with
423  an arbitrary variance cutoff to estimate the dimensionality of M1 neural recordings [4, 17, 41-43].
424  While we have shown that some of the linear methods can be quite effective, simply eliminating
425 non leading PCs based on a cumulative variance cutoff was the least accurate of the algorithms
426  that we tested. Parallel Analysis, the most accurate linear method, performed as well or even
427  better than some of the more advanced and computationally demanding nonlinear methods.
428 Therefore, PA should suffice as a quick and effective approach to estimating dimensionality,

429  even for mildly noisy and nonlinear datasets.

430 Despite the simplicity of linear algorithms, estimating dimensionality of nonlinear manifolds

431  requires nonlinear algorithms. There is some evidence that neural manifolds may be nonlinear.
432  Recent studies have shown that nonlinear methods for “decoding” behavioral parameters from
433 M1 neural manifolds are superior to linear methods [56-59]. This suggests that the underlying
434  neural manifold representing motor intent may be nonlinear, and that linear dimensionality

435  estimation methods may be inadequate when estimating the intrinsic dimensionality of primary
436  motor cortical recordings. Studies that investigated the dimensionality of M1 using linear

437  methods most likely overestimated its true intrinsic dimensionality.
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438  Nonlinear algorithms were more accurate than linear methods for nonlinear datasets of

439 dimensionality below 10. However, nonlinear methods underestimated dimensionalities above
440 10. This is a critical concern for experimental recordings, since a low dimensionality estimate
441  from a nonlinear method might be inaccurate if the true dimensionality were large. Multiple

442  studies using linear methods have reported an estimated dimensionality of M1 of around 10 for
443  simple, well-practiced behaviors [5, 43, 55]. Our results show that linear methods provide an
444  upper bound to the estimate of intrinsic dimensionality as long as the true dimensionality of the
445  data is below 20. If the intrinsic dimensionality of M1 is substantially higher for more dexterous
446  use of arm and hand than for the scenarios that have typically been studied, the nonlinear

447  methods investigated here may underestimate it.

448  One method for addressing this concern would be to use nonlinear methods to reduce the
449 dimensionality of a dataset to that of its nonlinear dimensionality estimate, and then to assess
450 the amount of variance that the nonlinear low-dimensional representation captures. If the

451  resulting variance accounted for (VAF) is high, the data may be truly nonlinearly low

452 dimensional. If, on the other hand, the VAF is low, the true intrinsic dimensionality could be
453  higher than estimated. For the latter case, a practical approach would be to report only the
454  linear dimensionality estimate and emphasize that it only provides an upper bound to the true

455  dimensionality.

456  We currently lack techniques for reliably assessing datasets with high intrinsic dimensionality, at
457  least when considering practical situations with limited data. There have been some theoretical
458  studies of the amount of data needed for accurate estimation of dimensionality [60, 61].

459  Correlation Dimension, the method on which many nonlinear algorithms are based, requires that
460 the number of data samples be on the order of 109/2 [29]. The amount of data can be increased

461 by either recording from more channels or for a longer duration. One study that investigated the
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462 dimensionality of the primary visual cortex (V1) found the eigenvalue spectrum of the neural
463  signals obtained from approximately thousand neurons to decay as a power law [62]. Their
464  finding would not have been possible had they recorded from fewer neurons, which would have
465  prevented them from observing the long tail of the eigenvalue distribution. One interpretation of
466 this finding is that the linear dimensionality is arbitrarily large. However, an alternative

467  interpretation is the existence of an extremely nonlinear manifold embedded within the neural

468  space investigated in that study.

469 The stochastic nature of neural firing and the noise associated with experimental measurements
470  will also cause the intrinsic dimensionality to be overestimated. The two denoising approaches
471  that we presented are simple and effective. Depending on the assumptions about the underlying
472  structure of firing patterns, alternative denoising approaches may be useful. For example, if the
473  temporal relationship between the firing patterns of the population neural activity is of interest,
474  one could use denoising methods that explicitly attempt to model these dynamics, such as

475  Latent Factor Analysis through Dynamical Systems (LFADS), prior to estimating the

476  dimensionality [57].

477 Limitations of the study

478  While we tried to replicate essential features of experimental data, there are certain

479  characteristics that we did not try to model in our simulations. For example, we only considered
480 additive Gaussian isotropic noise, for simplicity. Experimental recordings might include non-
481 additive, non-isotropic, or non-Gaussian noise. In such cases, PCA may not be an appropriate
482  approach to denoising, even for linearly embedded data. Methods such as factor analysis or
483  extensions such as Gaussian-Process Factor Analysis [63], and preprocessing steps such as

484  square-root transforms or pre-whitening could be used instead.
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485  We scaled the firing rates of each channel to be in the [0,1] range. This procedure does not
486 reflect experimental neural firing data, since the range of neural firing can differ significantly
487  even across neurons of the same type. The arbitrary scaling of firing rates provided a simple
488 means for the nonlinear datasets to have the same range as their linear counterparts, as the

489  activation function that we used mapped the [0,1] range onto itself.

490 Recommended analysis pipeline

491 Based on our results, we recommend the following approach for estimating the dimensionality of
492  neural recordings. First, obtain an upper-bound estimate D of the intrinsic dimensionality of the
493 data. We found that Parallel Analysis works well for this purpose, being both computationally
494 efficient and the most accurate linear method in our tests. Next, the signals should be denoised.
495  Our denoising approach worked by projecting the neural signals into a subspace of

496 dimensionality D equal to the upper-bound dimensionality estimate, and then reconstructing

497  them based on these projections. A PCA based reconstruction is easy to implement and

498 interpret and may be preferable if computational efficiency is important. A nonlinear denoising
499  algorithm, such as the Joint Autoencoder we proposed, should also be used to assess the

500 nonlinearity of the manifold. The usefulness of the denoising step was quantified through the
501  variance accounted for (VAF) between the reconstructed signals, assumed to be denoised, and
502 the noise-free synthetic signals before noise was added to them. Our results showed that for
503 nonlinear datasets this VAF was higher for the Joint Autoencoder than it was for PCA. However,
504 this VAF cannot be computed for experimental data, for which we do not have access to the
505 noise-free signals. In this scenario, the reconstruction VAF between noisy inputs and the

506 denoised reconstructed outputs may be useful for detecting nonlinear manifolds: a higher

507  reconstruction VAF for Joint Autoencoder denoising than for PCA denoising would signal a

508 nonlinear manifold. If the reconstruction VAF results prefer the Joint Autoencoder, this denoising
509 method yields better denoised signals. Once the signals are denoised, and the linearity of the
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510 manifold is established, either a linear or nonlinear dimensionality estimation method should be
511  used depending on the expected linearity of the manifold as determined by the comparative
512  performance of the denoising algorithms. The most accurate linear method we tested was

513  Parallel Analysis. Of the nonlinear methods, Levina-Bickel Maximum Likelihood Estimation and
514  Two Nearest Neighbors were the most accurate; Levina-Bickel Maximum Likelihood Estimation

515  required fewer samples.

516 Conclusions

517  Estimating the dimensionality of neural data is challenging. In this study, we tested several

518 available algorithms, and determined the conditions under which estimating dimensionality may
519  be particularly difficult or even impractical. Noise is a confounding factor and must be eliminated
520 prior to dimensionality estimation. Most existing studies have estimated intrinsic dimensionality
521 using linear methods, as they are computationally efficient and easy to interpret. We showed
522  that linear methods provide an upper-bound to the intrinsic dimensionality, and in cases of high
523 noise, may even work better than nonlinear methods, although neither linear nor nonlinear

524  methods will yield accurate estimates in this scenario. Nonlinear algorithms were more accurate
525  for nonlinear datasets when noise was adequately removed. Finally, algorithms failed when the
526 intrinsic dimensionality was high. It may be impractical or impossible to estimate the

527  dimensionality of neural data when it is above ~20. However, estimation of the dimensionality of
528 neural activity in the primary motor cortex may be possible, as many studies have reported its
529 linear dimensionality to be within the practical limits for accurate estimation by the methods we

530 tested.
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