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Abstract 

Multiple recent studies have shown that motor activity greatly impacts the activity of primary              

sensory areas like V1. Yet, the role of this motor related activity in sensory processing is still                 

unclear. Here we further dissect how these behavior relevant signals are broadcast to different layers               

and areas of visual cortex. To do so, we leveraged a standardized motor behavior fidget event in                 

behavioral videos of passively viewing mice. A large two-photon Ca​2+ imaging database of neuronal              

responses uncovered four neural response types during fidgets that are surprisingly consistent in             

their proportion and response patterns across all visual areas and layers of the visual cortex. Indeed,                

the layer and area identity could not be decoded above chance level based only on neuronal                

recordings. The broad availability of standardized behavior signals could be a key component in              

how the cortex selects, learns and binds local sensory information with relevant motor outputs.  
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Introduction 

Traditionally, the sensory cortex has been modelled as a feed-forward structure where low level              

information, e.g. pixel-wise visual inputs, are integrated with global behavior signals like motor             

output downstream of the visual cortex​29​. Many principles of deep learning were inspired by this               

view and fueled the modern rise of artificial networks. Indeed, initial reports of visual response               

modulation in V1 show weak modulation by behavior in monkeys​1​. This result was experimentally              

challenged in mice with the discovery of strong running modulation in V1​2 as well as across                

multiple sensory areas​3–6​. In addition, it was demonstrated that non-visual events are not mere              

modulators but can also directly evoke neuronal activity in V1​7​. In fact, contextual and behavioral               

variables have recently been shown to largely dominate brain-wide activity​8,9​. This result brings into              

question the role of these events. If the brain broadcasts behavior relevant variables like motor               

outputs, this should allow each brain area to integrate this information into its computation​5​. As a                

result, understanding the micro-circuit computation occurring across all cortical layers and cell            

types in this context requires a detailed physiological characterization of the neuronal correlate of              

motor outputs.  

One approach to tackle this challenge is to monitor all potential behavior events and characterize all                

associated neuronal correlates​1​. This is challenging since motor outputs, contrary to sensory stimuli,             

are highly variable from trial to trial and hard to standardize and control. In addition, behavioral                

events like running are correlated with a complex symphony of sensory-motor events. A             

complementary approach is to characterize how a standardized behavior output differently affects            

all areas, layers and cell types of the cortex in order to provide foundational knowledge for                

modelling cortical computation. We followed this approach by leveraging the natural occurrence of             

fidgets in experimental mice.  
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Fidgets are stereotypical behavioral responses that are potentially part of a stressful state​10​. They              

manifest as a fast, spontaneous, startle response accompanied with stereotypical body chest            

movements. We used fidgets detected in behavioral videos to quantify and compare the neuronal              

correlates of standardized behavior events across all layers and most areas of the mouse visual               

cortex. To this end, we leveraged a large survey of neuronal responses recorded with ​in vivo ​two                 

photon calcium imaging in the mouse visual cortex​4​. While the brain wide impact of behavioral               

events is now established, our analysis revealed that neurons in three different cortical layers and               

four visual areas have homogenous post-fidget neural responses. Fidget response profiles are            

stereotypical and equally distributed among 4 response types. Future models and experiments of             

cortical computation should consider how primary sensory cortices integrate this homogeneous           

behavior signal into its local computation. 

Results 

Fidget as a standardized behavior output 

We first sought to characterize the range of behavioral events that mice displayed under              

head fixation. While we recorded neuronal activity ​in vivo using two photon imaging, mice were               

free to run on a rotating disc ​while a camera captured mouse body posture ​(Fig. 1a-c). We observed                  

a variety of behaviors such as whisking, grooming, mastication, flailing (uncoordinated movement),            

walking, running, and a startle behavior we denote as a “fidget”. Fidgets manifested as a               

combination of abdominal flexion (causing the abdomen to be raised above the rotating disk) and an                

upward force generated from the lower limbs causing lower trunk curvature and contraction ​(Fig.              

1d)​. Fidgets were qualitatively stereotyped across mice in their duration, pattern of movement, and              

motor response magnitude​. ​Following this observation, ​we sought to develop a computer vision             

model to automatically identify fidget events from hours of mice behavioral videos. Six human              
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annotators first established a training data set (20 mice, 10,000 fidgets manually annotated, see              

Methods​). We computed the Histograms of Oriented Gradients (HOGs) for each video frame and              

concatenated a feature vector from a one second section of frames (30 frames) ​(Fig. 1e) ​. HOGs are                 

transformation invariant visual features extracted using edge-detection like computation. ​HOG          

features are largely invariant to variation lighting conditions and image transformations such as             

translation, rotation, scale. This allows us to carry out robust behavioral feature detection as others               

have firmly established​28​. Another advantage of using HOG vectors is the biologically inspired             

emphasis on interpretable edge detection computations and has been found to be superior to              

Eigenfeature based face recognition models​27​. 

Using this feature, we trained a Support Vector Machine (SVM) classifier in a supervised manner               

using the human-annotated labels. Our final trained model had a recall performance of ​74% +/- 4.2                

(mean +/- std, n=7) and a precision performance of ​78% +/- 5.3 ​(mean +/- std, n=7​) for the seven                   

one-hour long experiments held out as a validation test-set. Our trained classifier was as accurate at                

identifying fidgets and other mouse behaviors as human annotators. Indeed, seven pairs of             

annotators analyzed the same videos and their annotations were compared head-to-head. Each video             

was drawn from a seven video validation test-set. Head-to-head human vs. human performance             

recall for the seven videos was ​73% +/- 5.9 (mean +/- std, n=7) and had a performance precision                  

of ​74% +/- 7.2 (mean +/- std, n=7) ​; this was within the range of the model’s performance. Having                  

established a robust computer vision model, we automatically annotated 144 one-hour experiments            

total (recall p = 0.51 , performance p = 0.26). 

To quantify the standardization of fidget events across mice, we integrated the optical flow              

magnitude of the fidget motor response (see ​Methods​) over the duration of the fidget. 80% of all                 

fidget events from 20 one-hour experiments and across 20 unique mice fell within 30% of the                

maximum magnitude; this consistency reaffirmed the stereotypy of fidget events ​(Fig. 1f)​.  
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Occurrence of fidget across mice and visual stimuli 

We next sought to establish whether the occurrence of fidgets could relate to our visual stimuli.                

Fidget behavior has been associated with stress and surprise responses in mice​10,14-15​. As described              

in a previous publication​4​, mice passively viewed a range of both artificial (drifting and static               

gratings, locally sparse noise) and natural visual stimuli (natural scenes and natural movies),             

organized into three different recording session (sessions A,B and C) ​(Fig. 2a). ​We hypothesized              

that artificial visual stimuli (e.g. drifting gratings) induce a more stressful or surprising context than               

natural stimuli that are more ethologically familiar to the mouse (e.g. natural movies). In particular,               

the moving drifting gratings, through its perceived motion, evoke an innate avoidance response​3​. In              

line with our prediction, the average normalized fidget rate was significantly higher during drifting              

gratings ​(Fig. 2a, ​p = 0.023, two tailed t-test, n = 60) than other stimuli ​(Fig. 2b)​.  

We found that fidget rate was highly variable across mice (see Supplementary Fig. 1) ​, raising the                

possibility that various mouse Cre-lines have different stress sensitivities, thus accounting for the             

fidget rate variance. The absolute fidget rate did not significantly differ between mice from different               

Cre-lines (ANOVA p-value = 0.14, n = 144). This result did not exclude that mice could be more                  

sensitive to individual stimuli. To account for variability across individual mice, we normalized the              

change in fidget rate evoked during the session with drifting gratings (session A) by the fidget rate                 

during session C ​(Fig. 2c) ​. Similarly to the absolute rate, we saw non-significant changes (ANOVA               

p-value = 0.14, n = 144).  

Previous research has shown that fidget behaviors can be learned​10​. Our passive viewing protocol              

included two weeks of habituation to our visual stimuli (see ​Methods​), suggesting we could have               

reached a more stable state. To check whether the fidget occurrence we see is learned over the                 

course of our two-photon experiments, we quantified the average fidget rate across mice as a               

function of the number of visual stimulation sessions the mouse has already seen. We found a                
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non-significant change in the fidget rate with an increased number of sessions experienced ​(Fig.              

2d)​, supporting the claim that we are operating in a stable behavioral regime and that the mice are                  

adequately habituated (ANOVA p-value = 0.21, n = 144).  

In summary, we saw no significant difference in the fidget rate between Cre-lines but different               

visual stimuli evoked different fidget rates. Importantly, there were no learning effects as mice were               

already habituated to the stimulus. These results allowed us to explore the neuronal correlates of               

fidgets across layers and areas of the visual cortex with two-photon calcium imaging. 

Neuronal correlates of fidgets 

We analyzed experiments where adult mice (90 +/- 15 days) expressed a genetically encoded              

calcium sensor (GCaMP6f) under the control of specific Cre-line drivers (Rorb, Cux2, Rbp4 and              

Scnn1a excitatory lines, see ​Methods​). Data was collected from four visual cortical areas (VISal,              

VISI, VISp, VISpm) and three different cortical layers (Layer II/III, layer IV, and layer V; 175 μm,                 

275 μm, and 375 μm depth respectively)​2​. In total, we analyzed the activity of 20,253 neurons                

imaged during 144 one-hour imaging sessions. Visual responses of neurons at the retinotopic center              

of gaze were recorded in response to drifting gratings, flashed static gratings, locally sparse noise,               

natural scenes and natural movies displayed on a screen. The analysis of these visually evoked               

responses was published previously​2​. Here we focused on the neuronal correlates associated with             

fidgets.  

Many neurons showed a robust and prolonged response after fidget onset, in line with multiple               

previous studies studying the brain wide effects of motor responses​2,8,16-17 ​(Fig. 3b) ​. We first              

checked that this large neural response was not due to motion artifacts caused by the fidget itself                 

(​See ​Supplementary Figure 3 ​)​. First, ​these calcium events were prolonged and delayed, a temporal              

dynamic incompatible with an immediate motion artifact. In addition, many fidgets evoked clear             
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global events across large portions of the field of view with minimal movements of the 2p image                 

(see ​Supplementary ​Videos​ ​1​). 

To investigate the structure of these seemingly global neural events, we looked at individual neuron               

responses across trials. Interestingly, neuronal responses fell into four distinct types based on the              

direction, magnitude and durations of the response: ​Neutral neurons did not have activity changes              

from pre-fidget to post-fidget, ​Phasic neurons displayed a transient increase of activity right after              

fidget initiation, ​Active neurons maintained this increase throughout the post-fidget period, while            

Depressed neurons displayed a decrease in activity post-fidget. These response patterns were stable             

across trials for each neuron and displayed little deviation from the trial mean. Similar response               

clusters have been identified previously​18-20​ ​(Fig. 3c).  

Neuronal fidget responses across layers and areas are uniform 

Although it is now established that behaviorally related neural events are evoked in the visual               

cortex, we wanted to evaluate if these neural response types were localized to a certain layer or area                  

of visual cortex. To quantify how these response types were distributed, we first used a time series                 

k-means clustering algorithm (see ​Methods​). Across all 144 experiments, we found a surprisingly             

large portion of neurons whose activity was impacted by fidgets. 47.2 percent of neurons were               

classified as active ​(12 %)​, phasic ​(13.9%) or depressed ​(​21.3 %​), and 52.8% as neutral​. The                

clustered activity profiles displayed high consistency within each layer and area ​(Fig. 3d) ​, ​and the               

clustering was able to generalize with high accuracy across layers and areas ​(Fig. 3e-f). ​Crucially,               

when conditioned on different layers and areas, the distribution of neural response types was              

surprisingly consistent, with around 47% of neurons on average being classified as active, phasic or               

depressed (​Fig. 3g-h ​). To verify our result was not impacted by a selection criteria on neurons to be                  

clustered, we applied several different criteria derived from previous publications​23 ​to our clustered             
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neural data as a control. As expected, the percent of neurons significantly modulated in the post                

fidget period spans from ~8% to ~25% of all neurons depending on the strictness of the threshold                 

criteria. Crucially, the distribution of neural response types remained consistent when conditioned            

on a threshold criteria for different layers and areas (See ​Supplementary Figure 4​). 

We next investigated whether layers or visual areas were differentially modulated by what could be               

a behaviorally relevant feedback input. To do so, we projected each 200-dimensional post-fidget             

neutral response (each time point being a feature) into a 2-dimensional subspace found using              

UMAP, a non-linear dimensionality reduction technique​26​. If cortical layers or areas differed in             

post-fidget response, we would expect to see distinct clusters of data points corresponding to each.               

Instead we find that when labeled by layer or area identity, the data was mixed and could not be                   

visually separated---this implies that post-fidget responses did not differ between layer or area             

(Supplementary Fig. 2) ​. To validate that area or layer identity could not be distinguished based on                

post-fidget neuronal responses with UMAP, we trained a random forest classifier based on the              

UMAP-projected dataset using either the layer (175, 275, or 375 μm) or area as labels (VISp,                

VISpm, VISal, VISl). If differences between post-fidget responses for each of these layer/area             

classes exist, the model should achieve high classification accuracy. After training (see ​Method​),             

we found instead that the classifier had low performance for both area and layer on test data, with                  

comparable performance to the classifier trained on randomly permuted labels (​Fig 3e and 3f​). 

Discussion 

Multiple recent studies have shown that motor activity greatly impacts the activity of not only the                

motor cortex but primary sensory areas like V1​2,8,30​. Using a large two-photon Ca​2+ imaging dataset               

collected in mice passively viewing a battery of standardized visual stimuli, we characterized the              

neuronal response of neurons of the visual cortex to fidgets, a single standardized motor output               
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analogous to a startle response. We found that 47% of neurons show significant co-activity with               

fidgets throughout all areas and layers we recorded from. Previous studies in behaving mice have               

shown that brain-wide activity is better accounted for by uninstructed motor outputs than task              

driven signals​9​. Our study confirms the importance of taking into account motor activity when              

analyzing neuronal data.  

We found that excitatory neurons were responding with 3 distinct temporal profiles to fidgets.              

Remarkably the proportion and responses of neurons in each class was maintained in all layers and                

brain areas we looked at, and consequently we could not predict the location of our recording using                 

the response to fidget despite a large database to train our decoder on. This result suggests that                 

behavioral information is not only broadcasted broadly, but also broadcast homogeneously           

throughout the cortical mantle. The broad availability of standardized behavior signals could be a              

key component in how the cortex selects, learns and binds local sensory information with relevant               

motor outputs. Future research quantifying the trial-by-trial variability of this signal across mice             

will further uncover the computational role it plays.  

We here propose a complementary approach to uncovering the role of motor signal in primary               

sensory areas. Many behavior tasks are associated with rich behavior outputs that can only be               

properly captured with multiple video cameras​8​. Even with appropriate monitoring, the           

dimensionality and variability of behavioral outputs make any interpretation more challenging. By            

focusing our analysis on a single standardized behavior event, we could group together a large               

number of behavioral trials, akin to visually-evoked stimulus trials.  

Similar to our results, previous work​10 has shown how fidgets could emerge to be stimulus specific.                

This was used to study learning in non-habituated passively viewing mice, demonstrating that the              

expression of visual fidgets required the activity in V1. We extend this work by looking into the                 

Page 9 of 30 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.15.422967doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422967
http://creativecommons.org/licenses/by-nd/4.0/


 

neuronal correlates of these behavior events. Future work on mixed standardized behavior and             

visual trials will uncover the dynamic interplay of fidget in shaping visual neural computation. 

The role of these spontaneous global events may be related to arousal levels and attention. Fidgeting                

could have evolved as a “wake-up” signal to facilitate learning of salient stimuli. The precise origin                

of this global signal, whether it involves neuromodulatory or thalamo-cortical pathways, will            

require additional experiments. Several theories of how cortex learns have proposed biologically            

plausible approximations to the backpropagation algorithm where non-specific or even random           

feedback signals could deliver behaviorally relevant error signals. Future work involving detailed            

behavioral paradigms, high resolution physiology, and computational models of learning, could           

help determine whether the behavior-aligned neural signals we see are involved in computing             

synaptic updates for behavioral objectives​24-25​. 

Given the rapid advance in brain-wide neuronal recording​21-22​, there has been increasing concern             

related to the importance of monitoring behavioral activity to account for spontaneous brain-wide             

neuronal activity​17​. Our study supports that fidget-like events could be accounted for by leveraging              

their homogeneity across the cortex, even in the absence of advanced monitoring​9​. However, this              

correction could vary depending on the dimensionality and variability of the behavior event. Future              

work could uncover whether our results are maintained for a broader range of behavioral events. 
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Fig. 1 | Detection of behavioral fidget during two photon imaging in freely-viewing mice. (a)               
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Computer design of our apparatus to monitor the behavior of mice during head-fixation and              

two-photon imaging. (b) ​Example two photon imaging field of view (400 μm x 400 μm)               

showcasing neurons labeled with Gcamp6f. ​(c) ​Example video frame of mouse captured by the              

body camera at 30Hz. ​(d) A pair of video frames showing the progression of a prototype fidget                 

behavior in time. ​(i) First, the mouse is stationary ​(ii) Then, during the initiation of the startle                 

response, the mouse stereotypically pushes its body up using its bottom paws while arching the               

back and contracting the abdomen. ​(e) Computational strategy for detecting fidgets automatically.            

(f) Cumulative probability sum of labelled fidget moment magnitude, showcasing the consistency of             

the stereotyped behavior across experiments and mice. Fidget magnitude is calculated as the sum of               

2D optical flow vectors throughout the fidget duration (see ​Methods​ for optical flow calculation).  
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Fig. 2 | Fidget rate is correlated with visual stimulus type, but independent of a mouse                

driver-line or session number. (a) (left) Standardized experimental design of sensory visual            

stimuli. Six blocks of different stimuli were presented to mice and were distributed into three               

separate protocols identified as Session A, Session B, and Session C (right). Normalized fidget rate               

(black dots) for all three session types across all mice. Grey bars indicate 95% mean confidence                

intervals. Color coded stimulus protocol with indicated durations (minutes) are aligned with the             

time axis for all three session types. ​(b) ​Average normalized fidget rate across all mice during the                 

presentation of drifting grating visual stimulus in comparison to all other stimuli (p-value = 0.023).               

(c) Comparison of the fidget rate ratio between different session types across cre-lines. No              

significant effect was found (ANOVA, p-value = 0.14). (d) average percent of video frames labeled               

as fidget vs. the number of experimental sessions a mouse has been exposed to, no significant                

learning effect found  (ANOVA, p-value = 0.21).  
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Fig. 3 | Neuronal fidget response types are distributed equally across visual cortical layers and               

areas. (a) Example two photon imaging field of view (Cux2, 400 μm x 400 μm) showcasing all                 

neurons recorded in one session. Four unique neuronal response types are displayed by the four               

neurons identified by colored circles. Scale bar = 100 μm. ​(b) The trial averaged z-scored activity of                 

all neurons from one experiment, aligned to the time of fidget initiation (0 seconds). ​(c) ​The activity                 

profiles of exemplary neurons showcasing the four types of neuronal responses identified using             

clustering (see ​Method​). Top-left in grey: neutral, top-right in green: active, bottom-left in red:              
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phasic, bottom-right in blue: depressed. Colored points indicate the trial averaged z-scored activity,             

shaded region indicate one standard deviation across trials for each time point. ​(d) ​All layer 2/3                

neurons from all experiments clustered into the four neuronal response types outlined by color              

coded borders (neutral: grey, depressed: blue, phasic: red, active: green). ​(e) Decoding of neural              

response type using UMAP feature vector across cortical depths (see ​Method​). Results suggest that              

the neural response types cannot be differentiated across cortical depth (black bars: F1 score based               

on neural data, orange dashed line: F1 score based on shuffled neural data) ​(f) Decoding of neural                 

response type using UMAP feature vector across cortical areas. Results suggest that the neural              

response types cannot be differentiated across cortical area (black bars: F1 score based on neural               

data, orange dashed line: F1 score based on shuffled neural data) ​(g) ​Percent ​distribution of               

neuronal response types per cortical layer for all cortical areas. ​(h) ​percent ​distribution of the               

neuronal response types per cortical area for all cortical layers.  
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METHODS 

Transgenic mice 

All animal procedures were approved by the Institutional Animal Care and Use Committee             

(IACUC) at the Allen Institute for Brain Science. Triple transgenic mice (Ai93, tTA, Cre) were               

generated by first crossing Ai93 mice with Camk2a-tTA mice, which preferentially express tTA in              

forebrain excitatory neurons. Double transgenic mice were then crossed with a Cre driver line to               

generate mice in which GCaMP6f expression is induced in the specific populations of neurons that               

express both Cre and tTA. 

Rorb-IRES2-Cre;Cam2a-tTA;Ai93 (n=10) exhibit GCaMP6f in excitatory neurons in        

cortical layer 4 (dense patches) and layers 5,6 (sparse). Cux2-CreERT2;Camk2a-tTA;Ai93 (n=16)           

expression is regulated by the tamoxifen-inducible Cux2 promoter, induction of which results in             

Cre-mediated expression of GCaMP6f predominantly in superficial cortical layers 2, 3 and 4.             

Slc17a7-IRES2-Cre;Camk2a-tTA;Ai93 (n=2) is a pan-excitatory line and shows expression         

throughout all cortical layers. Scnn1a-Tg3-Cre;Camk2a-tTA;Ai93 (n=5) exhibit GCaMP6f in         

excitatory neurons in cortical layer 4 and in restricted areas within the cortex, in particular primary                

sensory cortices. Nr5a1-Cre;Camk2a-tTA;Ai93 (n=1) exhibit GCaMP6f in excitatory neurons in          

cortical layer 4. Rbp4-Cre;Camk2a-tTA;Ai93 (n=11) exhibit GCaMP6f in excitatory neurons in           

cortical layer 5. Ntsr1-Cre_GN220;Ai148 (n=1) exhibit CaMP6f in excitatory corticothalamic          

neurons in cortical layer 6. 

Animal head-implants and cortical window implantation 

Transgenic mice expressing GCaMP6f were weaned and genotyped at ~p21, and surgery            

was performed between p37 and p63. Surgical protocols were described in previous publications             

associated with the two-photon datasets​4​. 

Intrinsic imaging and mapping of the visual cortex 
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Retinotopic mapping was used to delineate functionally defined visual area boundaries and            

enable targeting of the in vivo two-photon calcium imaging to retinotopically defined locations in              

primary and secondary visual areas. Retinotopic mapping protocols were described in previous            

publications associated with the two-photon datasets​4​. 

In vivo two-photon chronic imaging 

Calcium imaging was performed using a two-photon-imaging instrument, Nikon A1R MP+.           

The Nikon system was adapted to provide space to accommodate the behavior apparatus). Laser              

excitation was provided by a Ti:Sapphire laser (ChameleonVision – Coherent) at 910 nm.             

Pre-compensation was set at ~10,000 fs2. Movies were recorded at 30Hz using resonant scanners              

over a 400 μm field of view. 

Mice were head-fixed on top of a rotating disk and free to walk at will. The disk was                  

covered with a layer of removable foam (Super-Resilient Foam, 86375K242, McMaster) to alleviate             

motion-induced artifacts during imaging sessions.  

An experiment container consisted of three imaging sessions (60 min each) at a given field               

of view during which mice passively observed three different stimuli. The same location was              

targeted for imaging on all three recording days to allow repeat comparison of the same neurons                

across sessions. One imaging session was performed per day, for a maximum of 16 sessions for                

each mouse. 

On the first day of imaging at a new field of view, the ISI targeting map was used to select                    

spatial coordinates. A comparison of surface vasculature patterns was used to verify the appropriate              

location by imaging over a field of view of ~800 μm using epi-fluorescence and blue light                

illumination. Once a cortical region was selected, the imaging objective was shrouded from stray              

light from the stimulus screen using opaque black tape. In two-photon imaging mode, the desired               

depth of imaging was set to record from a specific cortical depth. On subsequent imaging days, we                 
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returned to the same location by matching (1) the pattern of vessels in epi-fluorescence with (2) the                 

pattern of vessels in two photon imaging and (3) the pattern of cellular labelling in two photon                 

imaging at the previously recorded location. 

Calcium imaging data was collected at the four cortical depths of 175, 275, 350 and 375                

micrometers. Throughout our analysis, data from the cortical depth of 175 micrometers were             

classified as layer 2/3, 275 and 350 micrometers as layer 4, and 375 as layer 5.  

More details on our imaging protocols are available in our previous publication​4​. 

Visual stimulation 

Visual stimuli were generated using custom scripts written in PsychoPy as described            

previously​4​.  

Visual stimuli included drifting gratings, static gratings, locally sparse noise, natural scenes            

and natural movies. These stimuli were distributed across three ~60 minutes imaging sessions.             

During session A the drifting gratings, natural movie one and natural movie three stimuli were               

presented. During session B the static gratings, natural scenes, and natural movie were presented.              

During session C the locally sparse noise, natural movie one and natural move two were presented.                

In each session, the different stimuli were presented in segments of 5-13 minutes and interleaved               

with each other. In addition, at least 5 minutes of spontaneous activity were recorded in each                

session. 

Drifting Gratings ​. The total stimulus duration was 31.5 minutes. The stimulus consisted of a              

full field drifting sinusoidal grating at a single spatial frequency (0.04 cycles/degree) and contrast              

(80%). The grating was presented at 8 different directions (separated by 45°) and at 5 temporal                

frequencies (1, 2, 4, 8, 15 Hz). Each grating was presented for 2 seconds, followed by 1 second of                   

mean luminance gray before the next grating. Each grating condition (direction & temporal             

frequency combination) was presented 15 times, in a random order. There were blank sweeps (i.e.               
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mean luminance gray instead of grating) presented approximately once every 20 gratings. This             

stimulus was used to measure the direction tuning, orientation tuning and temporal frequency tuning              

of the cells. 

Static Gratings ​. The total stimulus duration was 26 minutes. The stimulus consisted of a full               

field static sinusoidal grating at a single contrast (80%). The grating was presented at 6 different                

orientations (separated by 30°), 5 spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycles/degree),             

and 4 phases (0, 0.25, 0.5, 0.75). The grating was presented for 0.25 seconds, with no inter-grating                 

gray period. Each grating condition (orientation, spatial frequency, and phase) was presented ~50             

times in a random order. There were blank sweeps (i.e. mean luminance gray instead of grating)                

presented roughly once every 25 gratings. This stimulus was used to measure the spatial frequency               

tuning and the orientation tuning of the cells, providing a finer measurement of orientation than               

provided from the drifting grating stimulus. 

Locally Sparse Noise ​. Stimulus. The total stimulus duration was 37.5 minutes. The Locally             

Sparse Noise stimulus consisted of a 16 x 28 array of pixels, each 4.65 degrees on a side. For each                    

frame of the stimulus (which was presented for 0.25 seconds), a small number of pixels were white,                 

a small number were black, and the rest were mean gray. The white and black spots were distributed                  

such that no two spots were within 5 pixels of each other. 

Natural Scenes ​. The stimulus consisted of 118 natural images. Images 1-58 were from the              

Berkeley Segmentation Dataset, images 59-101 from the van Hateren Natural Image Dataset, and             

images 102-118 are from the McGill Calibrated Colour Image Database. The images were             

presented in grayscale and were contrast normalized and resized to 1174 x 918 pixels. The images                

were presented for 0.25 seconds each, with no inter-image gray period. Each image was presented               

~50 times, in random order, and there were blank sweeps (i.e. mean luminance gray instead of an                 

image) roughly once every 100 images.  
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Natural Movie. ​Three different clips were used from the opening scene of the movie Touch               

of Evil (Welles, 1958). Natural Movie 1 and Natural Movie 2 were both 30 second clips while                 

Natural Movie 3 was a 120 second clip. All clips had been contrast-normalized and were presented                

in grayscale at 30 fps. Each movie was presented 10 times in a row with no inter-trial gray period. 

Behavioral monitoring 

During calcium imaging experiments, eye movements and animal posture were recorded.           

The left side of each mouse was imaged with the stimulation screen in the background to provide a                  

detailed record of the animal response to all stimuli. The eye facing the stimulus monitor (right eye)                 

was recorded using a custom IR imaging system. No pupillary reflex was evoked by any of these                 

illumination LEDs. 

Eye tracking video hardware includes a camera (Allied Vision, Mako G-032B with GigE             

interface) acquiring at a rate of 30 fps, with a 33ms exposure time and gain between 10-20. These                  

videos were illuminated using an LED (Engin Inc, LZ1-10R602) at a wavelength of 850 nm with a                 

fixed lens in front (Thorlabs, LB-1092-B-ML).  

Animal behavior monitoring hardware includes a camera (Allied Vision Mako G-032B with            

GigE interface) with a 785 nm short pass filter (Semrock, BSP01-785R-25), and lens (Thorlabs              

MVL8M23, 8mm EFL, f/1.4). The camera acquires at a rate of 30 fps, with a 33ms exposure time                  

and a set gain of 10. The short-pass filter is affixed to the camera to suppress any light from the eye                     

tracking LED. Illumination for the behavior monitoring camera comes from a 740 nm LED (LED               

Engine Inc, LZ4, 40R308-000). A bandpass filter (747 +/- 33nm, Thorlabs, LB1092-B-ML) is             

affixed in front of the illumination LED to prevent visible portion of the LED spectrum from                

reaching the mouse eye.  

Two-photon movies (512x512 pixels, 30Hz), eye tracking (30 Hz), and a side-view full             

body camera (30 Hz) were recorded and continuously monitored. 
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Processing of two-photon calcium imaging movies 

For each two-photon imaging session, the image processing pipeline performed: (1) spatial            

or temporal calibration, (2) motion correction, (3) image normalization to minimize confounding            

random variations between sessions, (4) segmentation of connected shapes and (5) classification of             

soma-like shapes from remaining clutter. 

The motion correction algorithm relied on phase correlation and only corrected for rigid             

translational errors. Each movie was partitioned into 400 consecutive frame blocks, representing            

13.3 s of video. Each block was registered iteratively to its own average three times. A second                

stage of registration integrated the periodic average frames themselves into a single global average              

frame through six additional iterations. The global average frame served as the reference image for               

the final resampling of every raw frame in the video. 

Fluorescence movies were processed using a segmentation algorithm to identify somatic           

regions of interest (ROIs) that was described previously​2​. Segmented ROIs were matched across             

imaging sessions. For each ROI, events were detected from ∆F/F by using an L0-regularized              

algorithm. For each neuron, we z-score ∆F/F trial activity and compute the mean z-scored response               

of each neuron aligned to the time of fidget onset (0 seconds).  
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To determine the significance of neural activity modulation post-fidget, we apply several threshold             

criteria to clustered neuronal activity. The threshold criteria were used in previous calcium imaging              

literature, and here we present two that gave very different results: One criteria where the mean                

∆F/F is larger than 6%, and one criteria where the maximum ∆F/F during the post-fidget period is                 

greater than 5%.  

Behavioral Analysis  

We use histogram of oriented gradients (HOG) descriptors as our model features due to their               

invariance to position, rotation, scale, and changes to lighting between mice. Additionally, HOG             

vectors have been shown to perform well in dynamic behavioral classification across different             

individuals​4​. 

Side-view full-body camera (30 Hz) videos were converted to grayscale, normalized using           

power law compression before processing, and manually cropped to exclude background elements            

including the screen and rotation disk. Cropping was done by a manual selection tool that               

constructed a rectangle from four clicked points. Pixels outside this rectangle were cropped out. The               

four points were systematically chosen in this order: upper-left as the eye of the mouse, lower-left                

as the closest point on the running disk forming a line to the first chosen point that is parallel to the                     

vertical axis, lower-right as the point forming a line to the second point that is parallel to the surface                   

of the running disk, and finally upper-right as the closest point intersecting the head-stage forming a                

line to the third point that is parallel to the vertical axis. Histograms of Oriented Gradients (HOGs)                 

were then computed for each frame using the following parameters: 8 histogram orientation bins,              

using square cells with a height of 32 pixels and 1 cell per block, and then dimensionality reduced                  

using principal component analysis (50 dimensions). The features were then concatenated in one             

second blocks and fed into the model.  
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The training set of ~ 100,000 video frame labels was collected from six human annotators               

who used a custom XML based tool. A radial basis function support vector machine (SVM) was                

trained on the training set with a cross-entropy loss function (C and gamma parameters of the SVM                 

found using a grid search). 

The normalized fidget rate was computed by subtracting the baseline fidget rate during             

inter-stimulus grey stimulus presentation and dividing by the standard deviation of the fidget rate.  

To estimate fidget magnitude, an optical flow measure was computed for each grayscale             

cropped frame using python’s OpenCV Optical flow function. We used the Gunner’s ​Farneback             

algorithm using Two-Frame Motion Estimation Based on Polynomial Expansion with a 30 pixels             

kernel size. For each example, the optical flow measure was integrated over the duration of all                

continuous frames labeled as fidget. 

Fidget neuronal response analysis 

Neural responses were aligned to the onset of the fidget behavior and cropped to keep 100 frames (~                  

3 seconds) preceding the initiation of the fidget and 200 frames (~ 6 seconds) post fidget initiation.                 

Neural activity was normalized on a trial-by-trial basis by subtracting the mean activity of the 100                

frames (~3 seconds) of baseline neural activity preceding the initiation of the fidget response and               

dividing by the standard deviation of activity. Across trial z-scored neural activity was then              

averaged to get the mean z-scored activity for each neuron.  

Clustering of fidget neuronal responses 

Page 23 of 30 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.15.422967doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422967
http://creativecommons.org/licenses/by-nd/4.0/


 

The mean z-scored activity for all neurons post-fidget was passed into the k-means++ clustering              

algorithm with clustering evaluated using the gap statistic. The optimal number of clusters was              

found to be four.  

UMAP and Random Forest Classification 

To search for any differences between fidget neural responses across different cortical layers and              

visual areas we took 200 frames (~ 6 seconds) of each neuron’s normalized average post fidget                

activity and passed them into a nonlinear dimensionality reduction method, UMAP. In Python, we              

used the umap package (umap 0.4.0rc3, hyperparameters min_dist = 0.0 and n_neighbors = 200) to               

project the dataset into a 2-dimensional embedding to elicit any differences in the data. The               

embedded data points were then passed into a random forest classifier. An 85-15 train-test split was                

used along with 5-fold cross-validation with XGBoost (xgboost 1.2.0) and Scikit-Learn (sklearn            

0.23.2). A grid hyperparameter search was used to optimize the classifier. To counter             

class-imbalance in the training and test sets, each class was randomly subsampled down to the count                

of the least prevalent class in the set. After training, F1-scores ( ; TP, FP, and           1F = T P
T P +0.5 (F P +F N )*

    

FN are true positives, false positives, and false negatives respectively) were estimated for each              

class.  

Statistical tests 

Multiple comparisons were corrected using the Benjamini–Hochberg false discovery rate          

framework (​q < 0.05), and all statistical tests in the study were ​two-tailed, two-sample              

Kolmogorov–Smirnov tests.  

Data availability 

Page 24 of 30 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.15.422967doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422967
http://creativecommons.org/licenses/by-nd/4.0/


 

The behavioral data that support the findings of this study are available from the corresponding               

authors upon request.  
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