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Abstract

Multiple recent studies have shown that motor activity greatly impacts the activity of primary
sensory areas like V1. Yet, the role of this motor related activity in sensory processing is still
unclear. Here we further dissect how these behavior relevant signals are broadcast to different layers
and areas of visual cortex. To do so, we leveraged a standardized motor behavior fidget event in
behavioral videos of passively viewing mice. A large two-photon Ca** imaging database of neuronal
responses uncovered four neural response types during fidgets that are surprisingly consistent in
their proportion and response patterns across all visual areas and layers of the visual cortex. Indeed,
the layer and area identity could not be decoded above chance level based only on neuronal
recordings. The broad availability of standardized behavior signals could be a key component in

how the cortex selects, learns and binds local sensory information with relevant motor outputs.
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Introduction

Traditionally, the sensory cortex has been modelled as a feed-forward structure where low level
information, e.g. pixel-wise visual inputs, are integrated with global behavior signals like motor
output downstream of the visual cortex*. Many principles of deep learning were inspired by this
view and fueled the modern rise of artificial networks. Indeed, initial reports of visual response
modulation in V1 show weak modulation by behavior in monkeys'. This result was experimentally
challenged in mice with the discovery of strong running modulation in V1* as well as across
multiple sensory areas®®. In addition, it was demonstrated that non-visual events are not mere
modulators but can also directly evoke neuronal activity in V17. In fact, contextual and behavioral
variables have recently been shown to largely dominate brain-wide activity®®. This result brings into
question the role of these events. If the brain broadcasts behavior relevant variables like motor
outputs, this should allow each brain area to integrate this information into its computation®. As a
result, understanding the micro-circuit computation occurring across all cortical layers and cell
types in this context requires a detailed physiological characterization of the neuronal correlate of
motor outputs.

One approach to tackle this challenge is to monitor all potential behavior events and characterize all
associated neuronal correlates'. This is challenging since motor outputs, contrary to sensory stimuli,
are highly variable from trial to trial and hard to standardize and control. In addition, behavioral
events like running are correlated with a complex symphony of sensory-motor events. A
complementary approach is to characterize how a standardized behavior output differently affects
all areas, layers and cell types of the cortex in order to provide foundational knowledge for
modelling cortical computation. We followed this approach by leveraging the natural occurrence of

fidgets in experimental mice.
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Fidgets are stereotypical behavioral responses that are potentially part of a stressful state'®. They
manifest as a fast, spontaneous, startle response accompanied with stercotypical body chest
movements. We used fidgets detected in behavioral videos to quantify and compare the neuronal
correlates of standardized behavior events across all layers and most areas of the mouse visual
cortex. To this end, we leveraged a large survey of neuronal responses recorded with in vivo two
photon calcium imaging in the mouse visual cortex*. While the brain wide impact of behavioral
events is now established, our analysis revealed that neurons in three different cortical layers and
four visual areas have homogenous post-fidget neural responses. Fidget response profiles are
stereotypical and equally distributed among 4 response types. Future models and experiments of
cortical computation should consider how primary sensory cortices integrate this homogeneous

behavior signal into its local computation.

Results

Fidget as a standardized behavior output

We first sought to characterize the range of behavioral events that mice displayed under
head fixation. While we recorded neuronal activity in vivo using two photon imaging, mice were
free to run on a rotating disc while a camera captured mouse body posture (Fig. 1a-c). We observed
a variety of behaviors such as whisking, grooming, mastication, flailing (uncoordinated movement),
walking, running, and a startle behavior we denote as a “fidget”. Fidgets manifested as a
combination of abdominal flexion (causing the abdomen to be raised above the rotating disk) and an
upward force generated from the lower limbs causing lower trunk curvature and contraction (Fig.
1d). Fidgets were qualitatively stereotyped across mice in their duration, pattern of movement, and
motor response magnitude. Following this observation, we sought to develop a computer vision

model to automatically identify fidget events from hours of mice behavioral videos. Six human
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annotators first established a training data set (20 mice, 10,000 fidgets manually annotated, see
Methods). We computed the Histograms of Oriented Gradients (HOGs) for each video frame and
concatenated a feature vector from a one second section of frames (30 frames) (Fig. 1e). HOGs are
transformation invariant visual features extracted using edge-detection like computation. HOG
features are largely invariant to variation lighting conditions and image transformations such as
translation, rotation, scale. This allows us to carry out robust behavioral feature detection as others
have firmly established®®. Another advantage of using HOG vectors is the biologically inspired

emphasis on interpretable edge detection computations and has been found to be superior to

Eigenfeature based face recognition models®.

Using this feature, we trained a Support Vector Machine (SVM) classifier in a supervised manner
using the human-annotated labels. Our final trained model had a recall performance of 74% +/- 4.2
(mean +/- std, n=7) and a precision performance of 78% +/- 5.3 (mean +/- std, n=7) for the seven
one-hour long experiments held out as a validation test-set. Our trained classifier was as accurate at
identifying fidgets and other mouse behaviors as human annotators. Indeed, seven pairs of
annotators analyzed the same videos and their annotations were compared head-to-head. Each video
was drawn from a seven video validation test-set. Head-to-head human vs. human performance
recall for the seven videos was 73% +/- 5.9 (mean +/- std, n=7) and had a performance precision
of 74% +/- 7.2 (mean +/- std, n=7); this was within the range of the model’s performance. Having
established a robust computer vision model, we automatically annotated 144 one-hour experiments
total (recall p = 0.51 , performance p = 0.26).

To quantify the standardization of fidget events across mice, we integrated the optical flow
magnitude of the fidget motor response (see Methods) over the duration of the fidget. 80% of all
fidget events from 20 one-hour experiments and across 20 unique mice fell within 30% of the

maximum magnitude; this consistency reaffirmed the stereotypy of fidget events (Fig. 1f).
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Occurrence of fidget across mice and visual stimuli
We next sought to establish whether the occurrence of fidgets could relate to our visual stimuli.
Fidget behavior has been associated with stress and surprise responses in mice'™'*!, As described
in a previous publication*, mice passively viewed a range of both artificial (drifting and static
gratings, locally sparse noise) and natural visual stimuli (natural scenes and natural movies),
organized into three different recording session (sessions A,B and C) (Fig. 2a). We hypothesized
that artificial visual stimuli (e.g. drifting gratings) induce a more stressful or surprising context than
natural stimuli that are more ethologically familiar to the mouse (e.g. natural movies). In particular,
the moving drifting gratings, through its perceived motion, evoke an innate avoidance response’. In
line with our prediction, the average normalized fidget rate was significantly higher during drifting
gratings (Fig. 2a, p = 0.023, two tailed t-test, n = 60) than other stimuli (Fig. 2b).
We found that fidget rate was highly variable across mice (see Supplementary Fig. 1), raising the
possibility that various mouse Cre-lines have different stress sensitivities, thus accounting for the
fidget rate variance. The absolute fidget rate did not significantly differ between mice from different
Cre-lines (ANOVA p-value = 0.14, n = 144). This result did not exclude that mice could be more
sensitive to individual stimuli. To account for variability across individual mice, we normalized the
change in fidget rate evoked during the session with drifting gratings (session A) by the fidget rate
during session C (Fig. 2¢). Similarly to the absolute rate, we saw non-significant changes (ANOVA
p-value = 0.14, n = 144).
Previous research has shown that fidget behaviors can be learned'’. Our passive viewing protocol
included two weeks of habituation to our visual stimuli (see Methods), suggesting we could have
reached a more stable state. To check whether the fidget occurrence we see is learned over the
course of our two-photon experiments, we quantified the average fidget rate across mice as a

function of the number of visual stimulation sessions the mouse has already seen. We found a
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non-significant change in the fidget rate with an increased number of sessions experienced (Fig.
2d), supporting the claim that we are operating in a stable behavioral regime and that the mice are
adequately habituated (ANOVA p-value = 0.21, n = 144).
In summary, we saw no significant difference in the fidget rate between Cre-lines but different
visual stimuli evoked different fidget rates. Importantly, there were no learning effects as mice were
already habituated to the stimulus. These results allowed us to explore the neuronal correlates of
fidgets across layers and areas of the visual cortex with two-photon calcium imaging.
Neuronal correlates of fidgets
We analyzed experiments where adult mice (90 +/- 15 days) expressed a genetically encoded
calcium sensor (GCaMP6f) under the control of specific Cre-line drivers (Rorb, Cux2, Rbp4 and
Scnnla excitatory lines, see Methods). Data was collected from four visual cortical areas (VISal,
VISI, VISp, VISpm) and three different cortical layers (Layer II/III, layer IV, and layer V; 175 pum,
275 pm, and 375 um depth respectively)®. In total, we analyzed the activity of 20,253 neurons
imaged during 144 one-hour imaging sessions. Visual responses of neurons at the retinotopic center
of gaze were recorded in response to drifting gratings, flashed static gratings, locally sparse noise,
natural scenes and natural movies displayed on a screen. The analysis of these visually evoked
responses was published previously’. Here we focused on the neuronal correlates associated with
fidgets.
Many neurons showed a robust and prolonged response after fidget onset, in line with multiple
previous studies studying the brain wide effects of motor responses™®'®!” (Fig. 3b). We first
checked that this large neural response was not due to motion artifacts caused by the fidget itself
(See Supplementary Figure 3). First, these calcium events were prolonged and delayed, a temporal

dynamic incompatible with an immediate motion artifact. In addition, many fidgets evoked clear
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global events across large portions of the field of view with minimal movements of the 2p image

(see Supplementary Videos 1).

To investigate the structure of these seemingly global neural events, we looked at individual neuron
responses across trials. Interestingly, neuronal responses fell into four distinct types based on the
direction, magnitude and durations of the response: Neutral neurons did not have activity changes
from pre-fidget to post-fidget, Phasic neurons displayed a transient increase of activity right after
fidget initiation, Active neurons maintained this increase throughout the post-fidget period, while
Depressed neurons displayed a decrease in activity post-fidget. These response patterns were stable
across trials for each neuron and displayed little deviation from the trial mean. Similar response

clusters have been identified previously'® (Fig. 3¢).

Neuronal fidget responses across layers and areas are uniform

Although it is now established that behaviorally related neural events are evoked in the visual
cortex, we wanted to evaluate if these neural response types were localized to a certain layer or area
of visual cortex. To quantify how these response types were distributed, we first used a time series
k-means clustering algorithm (see Methods). Across all 144 experiments, we found a surprisingly
large portion of neurons whose activity was impacted by fidgets. 47.2 percent of neurons were
classified as active (12 %), phasic (13.9%) or depressed (21.3 %), and 52.8% as neutral. The
clustered activity profiles displayed high consistency within each layer and area (Fig. 3d), and the
clustering was able to generalize with high accuracy across layers and areas (Fig. 3e-f). Crucially,
when conditioned on different layers and areas, the distribution of neural response types was
surprisingly consistent, with around 47% of neurons on average being classified as active, phasic or
depressed (Fig. 3g-h). To verify our result was not impacted by a selection criteria on neurons to be

clustered, we applied several different criteria derived from previous publications® to our clustered
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neural data as a control. As expected, the percent of neurons significantly modulated in the post
fidget period spans from ~8% to ~25% of all neurons depending on the strictness of the threshold
criteria. Crucially, the distribution of neural response types remained consistent when conditioned
on a threshold criteria for different layers and areas (See Supplementary Figure 4).

We next investigated whether layers or visual areas were differentially modulated by what could be
a behaviorally relevant feedback input. To do so, we projected each 200-dimensional post-fidget
neutral response (each time point being a feature) into a 2-dimensional subspace found using
UMAP, a non-linear dimensionality reduction technique®. If cortical layers or areas differed in
post-fidget response, we would expect to see distinct clusters of data points corresponding to each.
Instead we find that when labeled by layer or area identity, the data was mixed and could not be
visually separated---this implies that post-fidget responses did not differ between layer or area
(Supplementary Fig. 2). To validate that area or layer identity could not be distinguished based on
post-fidget neuronal responses with UMAP, we trained a random forest classifier based on the
UMAP-projected dataset using either the layer (175, 275, or 375 um) or area as labels (VISp,
VISpm, VISal, VISI). If differences between post-fidget responses for each of these layer/area
classes exist, the model should achieve high classification accuracy. After training (see Method),
we found instead that the classifier had low performance for both area and layer on test data, with

comparable performance to the classifier trained on randomly permuted labels (Fig 3e and 3f).

Discussion

Multiple recent studies have shown that motor activity greatly impacts the activity of not only the
motor cortex but primary sensory areas like V1**%, Using a large two-photon Ca’" imaging dataset
collected in mice passively viewing a battery of standardized visual stimuli, we characterized the

neuronal response of neurons of the visual cortex to fidgets, a single standardized motor output
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analogous to a startle response. We found that 47% of neurons show significant co-activity with
fidgets throughout all areas and layers we recorded from. Previous studies in behaving mice have
shown that brain-wide activity is better accounted for by uninstructed motor outputs than task

driven signals’. Our study confirms the importance of taking into account motor activity when

analyzing neuronal data.

We found that excitatory neurons were responding with 3 distinct temporal profiles to fidgets.
Remarkably the proportion and responses of neurons in each class was maintained in all layers and
brain areas we looked at, and consequently we could not predict the location of our recording using
the response to fidget despite a large database to train our decoder on. This result suggests that
behavioral information is not only broadcasted broadly, but also broadcast homogeneously
throughout the cortical mantle. The broad availability of standardized behavior signals could be a
key component in how the cortex selects, learns and binds local sensory information with relevant
motor outputs. Future research quantifying the trial-by-trial variability of this signal across mice

will further uncover the computational role it plays.

We here propose a complementary approach to uncovering the role of motor signal in primary
sensory areas. Many behavior tasks are associated with rich behavior outputs that can only be
properly captured with multiple video cameras®. Even with appropriate monitoring, the
dimensionality and variability of behavioral outputs make any interpretation more challenging. By
focusing our analysis on a single standardized behavior event, we could group together a large

number of behavioral trials, akin to visually-evoked stimulus trials.

Similar to our results, previous work'® has shown how fidgets could emerge to be stimulus specific.
This was used to study learning in non-habituated passively viewing mice, demonstrating that the

expression of visual fidgets required the activity in V1. We extend this work by looking into the
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neuronal correlates of these behavior events. Future work on mixed standardized behavior and

visual trials will uncover the dynamic interplay of fidget in shaping visual neural computation.

The role of these spontaneous global events may be related to arousal levels and attention. Fidgeting
could have evolved as a “wake-up” signal to facilitate learning of salient stimuli. The precise origin
of this global signal, whether it involves neuromodulatory or thalamo-cortical pathways, will
require additional experiments. Several theories of how cortex learns have proposed biologically
plausible approximations to the backpropagation algorithm where non-specific or even random
feedback signals could deliver behaviorally relevant error signals. Future work involving detailed
behavioral paradigms, high resolution physiology, and computational models of learning, could
help determine whether the behavior-aligned neural signals we see are involved in computing

synaptic updates for behavioral objectives** .

Given the rapid advance in brain-wide neuronal recording?' %, there has been increasing concern
related to the importance of monitoring behavioral activity to account for spontaneous brain-wide
neuronal activity'’. Our study supports that fidget-like events could be accounted for by leveraging
their homogeneity across the cortex, even in the absence of advanced monitoring®. However, this
correction could vary depending on the dimensionality and variability of the behavior event. Future

work could uncover whether our results are maintained for a broader range of behavioral events.
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Fig. 1 | Detection of behavioral fidget during two photon imaging in freely-viewing mice. (a)
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Computer design of our apparatus to monitor the behavior of mice during head-fixation and
two-photon imaging. (b) Example two photon imaging field of view (400 um x 400 pm)
showcasing neurons labeled with Gcamp6f. (¢) Example video frame of mouse captured by the
body camera at 30Hz. (d) A pair of video frames showing the progression of a prototype fidget
behavior in time. (i) First, the mouse is stationary (ii) Then, during the initiation of the startle
response, the mouse stereotypically pushes its body up using its bottom paws while arching the
back and contracting the abdomen. (e¢) Computational strategy for detecting fidgets automatically.
(f) Cumulative probability sum of labelled fidget moment magnitude, showcasing the consistency of
the stereotyped behavior across experiments and mice. Fidget magnitude is calculated as the sum of

2D optical flow vectors throughout the fidget duration (see Methods for optical flow calculation).
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Fig. 2 | Fidget rate is correlated with visual stimulus type, but independent of a mouse
driver-line or session number. (a) (left) Standardized experimental design of sensory visual
stimuli. Six blocks of different stimuli were presented to mice and were distributed into three
separate protocols identified as Session A, Session B, and Session C (right). Normalized fidget rate
(black dots) for all three session types across all mice. Grey bars indicate 95% mean confidence
intervals. Color coded stimulus protocol with indicated durations (minutes) are aligned with the
time axis for all three session types. (b) Average normalized fidget rate across all mice during the
presentation of drifting grating visual stimulus in comparison to all other stimuli (p-value = 0.023).
(¢) Comparison of the fidget rate ratio between different session types across cre-lines. No
significant effect was found (ANOVA, p-value = 0.14). (d) average percent of video frames labeled
as fidget vs. the number of experimental sessions a mouse has been exposed to, no significant

learning effect found (ANOVA, p-value =0.21).
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Fig. 3 | Neuronal fidget response types are distributed equally across visual cortical layers and
areas. (a) Example two photon imaging field of view (Cux2, 400 pm x 400 um) showcasing all
neurons recorded in one session. Four unique neuronal response types are displayed by the four
neurons identified by colored circles. Scale bar = 100 um. (b) The trial averaged z-scored activity of
all neurons from one experiment, aligned to the time of fidget initiation (0 seconds). (¢) The activity
profiles of exemplary neurons showcasing the four types of neuronal responses identified using

clustering (see Method). Top-left in grey: neutral, top-right in green: active, bottom-left in red:
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phasic, bottom-right in blue: depressed. Colored points indicate the trial averaged z-scored activity,
shaded region indicate one standard deviation across trials for each time point. (d) All layer 2/3
neurons from all experiments clustered into the four neuronal response types outlined by color
coded borders (neutral: grey, depressed: blue, phasic: red, active: green). (¢) Decoding of neural
response type using UMAP feature vector across cortical depths (see Method). Results suggest that
the neural response types cannot be differentiated across cortical depth (black bars: F1 score based
on neural data, orange dashed line: F1 score based on shuffled neural data) (f) Decoding of neural
response type using UMAP feature vector across cortical areas. Results suggest that the neural
response types cannot be differentiated across cortical area (black bars: F1 score based on neural
data, orange dashed line: F1 score based on shuffled neural data) (g) Percent distribution of

neuronal response types per cortical layer for all cortical areas. (h) percent distribution of the

neuronal response types per cortical area for all cortical layers.
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METHODS
Transgenic mice

All animal procedures were approved by the Institutional Animal Care and Use Committee
(IACUC) at the Allen Institute for Brain Science. Triple transgenic mice (Ai93, tTA, Cre) were
generated by first crossing Ai93 mice with Camk2a-tTA mice, which preferentially express tTA in
forebrain excitatory neurons. Double transgenic mice were then crossed with a Cre driver line to
generate mice in which GCaMP6f expression is induced in the specific populations of neurons that
express both Cre and tTA.

Rorb-IRES2-Cre;Cam2a-tTA;Ai193 (n=10) exhibit GCaMP6f in excitatory neurons in
cortical layer 4 (dense patches) and layers 5,6 (sparse). Cux2-CreERT2;Camk2a-tTA;A193 (n=16)
expression is regulated by the tamoxifen-inducible Cux2 promoter, induction of which results in
Cre-mediated expression of GCaMP6f predominantly in superficial cortical layers 2, 3 and 4.
Slc17a7-IRES2-Cre;Camk2a-tTA;Ai93 (n=2) is a pan-excitatory line and shows expression
throughout all cortical layers. Scnnla-Tg3-Cre;Camk2a-tTA;A193 (n=5) exhibit GCaMP6f in
excitatory neurons in cortical layer 4 and in restricted areas within the cortex, in particular primary
sensory cortices. Nr5al-Cre;Camk2a-tTA;Ai193 (n=1) exhibit GCaMP6f in excitatory neurons in
cortical layer 4. Rbp4-Cre;Camk2a-tTA;Ai193 (n=11) exhibit GCaMP6f in excitatory neurons in
cortical layer 5. Ntsrl-Cre GN220;Ai148 (n=1) exhibit CaMP6f in excitatory corticothalamic
neurons in cortical layer 6.

Animal head-implants and cortical window implantation

Transgenic mice expressing GCaMP6f were weaned and genotyped at ~p21, and surgery
was performed between p37 and p63. Surgical protocols were described in previous publications
associated with the two-photon datasets®.

Intrinsic imaging and mapping of the visual cortex
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Retinotopic mapping was used to delineate functionally defined visual area boundaries and
enable targeting of the in vivo two-photon calcium imaging to retinotopically defined locations in
primary and secondary visual areas. Retinotopic mapping protocols were described in previous
publications associated with the two-photon datasets*.

In vivo two-photon chronic imaging

Calcium imaging was performed using a two-photon-imaging instrument, Nikon A1R MP+.
The Nikon system was adapted to provide space to accommodate the behavior apparatus). Laser
excitation was provided by a Ti:Sapphire laser (ChameleonVision — Coherent) at 910 nm.
Pre-compensation was set at ~10,000 fs2. Movies were recorded at 30Hz using resonant scanners
over a 400 pum field of view.

Mice were head-fixed on top of a rotating disk and free to walk at will. The disk was
covered with a layer of removable foam (Super-Resilient Foam, 86375K242, McMaster) to alleviate
motion-induced artifacts during imaging sessions.

An experiment container consisted of three imaging sessions (60 min each) at a given field
of view during which mice passively observed three different stimuli. The same location was
targeted for imaging on all three recording days to allow repeat comparison of the same neurons
across sessions. One imaging session was performed per day, for a maximum of 16 sessions for
each mouse.

On the first day of imaging at a new field of view, the ISI targeting map was used to select
spatial coordinates. A comparison of surface vasculature patterns was used to verify the appropriate
location by imaging over a field of view of ~800 pum using epi-fluorescence and blue light
illumination. Once a cortical region was selected, the imaging objective was shrouded from stray
light from the stimulus screen using opaque black tape. In two-photon imaging mode, the desired

depth of imaging was set to record from a specific cortical depth. On subsequent imaging days, we
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returned to the same location by matching (1) the pattern of vessels in epi-fluorescence with (2) the
pattern of vessels in two photon imaging and (3) the pattern of cellular labelling in two photon
imaging at the previously recorded location.

Calcium imaging data was collected at the four cortical depths of 175, 275, 350 and 375
micrometers. Throughout our analysis, data from the cortical depth of 175 micrometers were
classified as layer 2/3, 275 and 350 micrometers as layer 4, and 375 as layer 5.

More details on our imaging protocols are available in our previous publication®.

Visual stimulation

Visual stimuli were generated using custom scripts written in PsychoPy as described
previously”.

Visual stimuli included drifting gratings, static gratings, locally sparse noise, natural scenes
and natural movies. These stimuli were distributed across three ~60 minutes imaging sessions.
During session A the drifting gratings, natural movie one and natural movie three stimuli were
presented. During session B the static gratings, natural scenes, and natural movie were presented.
During session C the locally sparse noise, natural movie one and natural move two were presented.
In each session, the different stimuli were presented in segments of 5-13 minutes and interleaved
with each other. In addition, at least 5 minutes of spontaneous activity were recorded in each
session.

Drifting Gratings. The total stimulus duration was 31.5 minutes. The stimulus consisted of a
full field drifting sinusoidal grating at a single spatial frequency (0.04 cycles/degree) and contrast
(80%). The grating was presented at 8 different directions (separated by 45°) and at 5 temporal
frequencies (1, 2, 4, 8, 15 Hz). Each grating was presented for 2 seconds, followed by 1 second of
mean luminance gray before the next grating. Each grating condition (direction & temporal

frequency combination) was presented 15 times, in a random order. There were blank sweeps (i.e.
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mean luminance gray instead of grating) presented approximately once every 20 gratings. This
stimulus was used to measure the direction tuning, orientation tuning and temporal frequency tuning
of the cells.

Static Gratings. The total stimulus duration was 26 minutes. The stimulus consisted of a full
field static sinusoidal grating at a single contrast (80%). The grating was presented at 6 different
orientations (separated by 30°), 5 spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycles/degree),
and 4 phases (0, 0.25, 0.5, 0.75). The grating was presented for 0.25 seconds, with no inter-grating
gray period. Each grating condition (orientation, spatial frequency, and phase) was presented ~50
times in a random order. There were blank sweeps (i.e. mean luminance gray instead of grating)
presented roughly once every 25 gratings. This stimulus was used to measure the spatial frequency
tuning and the orientation tuning of the cells, providing a finer measurement of orientation than
provided from the drifting grating stimulus.

Locally Sparse Noise. Stimulus. The total stimulus duration was 37.5 minutes. The Locally
Sparse Noise stimulus consisted of a 16 x 28 array of pixels, each 4.65 degrees on a side. For each
frame of the stimulus (which was presented for 0.25 seconds), a small number of pixels were white,
a small number were black, and the rest were mean gray. The white and black spots were distributed
such that no two spots were within 5 pixels of each other.

Natural Scenes. The stimulus consisted of 118 natural images. Images 1-58 were from the
Berkeley Segmentation Dataset, images 59-101 from the van Hateren Natural Image Dataset, and
images 102-118 are from the McGill Calibrated Colour Image Database. The images were
presented in grayscale and were contrast normalized and resized to 1174 x 918 pixels. The images
were presented for 0.25 seconds each, with no inter-image gray period. Each image was presented
~50 times, in random order, and there were blank sweeps (i.e. mean luminance gray instead of an

image) roughly once every 100 images.

Page 19 of 30


https://doi.org/10.1101/2020.12.15.422967
http://creativecommons.org/licenses/by-nd/4.0/

e D s
available under aCC-BY-ND 4.0 International license.

Natural Movie. Three different clips were used from the opening scene of the movie Touch
of Evil (Welles, 1958). Natural Movie 1 and Natural Movie 2 were both 30 second clips while
Natural Movie 3 was a 120 second clip. All clips had been contrast-normalized and were presented
in grayscale at 30 fps. Each movie was presented 10 times in a row with no inter-trial gray period.
Behavioral monitoring

During calcium imaging experiments, eye movements and animal posture were recorded.
The left side of each mouse was imaged with the stimulation screen in the background to provide a
detailed record of the animal response to all stimuli. The eye facing the stimulus monitor (right eye)
was recorded using a custom IR imaging system. No pupillary reflex was evoked by any of these
illumination LEDs.

Eye tracking video hardware includes a camera (Allied Vision, Mako G-032B with GigE
interface) acquiring at a rate of 30 fps, with a 33ms exposure time and gain between 10-20. These
videos were illuminated using an LED (Engin Inc, LZ1-10R602) at a wavelength of 850 nm with a
fixed lens in front (Thorlabs, LB-1092-B-ML).

Animal behavior monitoring hardware includes a camera (Allied Vision Mako G-032B with
GigE interface) with a 785 nm short pass filter (Semrock, BSPO1-785R-25), and lens (Thorlabs
MVL8M23, 8mm EFL, f/1.4). The camera acquires at a rate of 30 fps, with a 33ms exposure time
and a set gain of 10. The short-pass filter is affixed to the camera to suppress any light from the eye
tracking LED. Illumination for the behavior monitoring camera comes from a 740 nm LED (LED
Engine Inc, LZ4, 40R308-000). A bandpass filter (747 +/- 33nm, Thorlabs, LB1092-B-ML) is
affixed in front of the illumination LED to prevent visible portion of the LED spectrum from
reaching the mouse eye.

Two-photon movies (512x512 pixels, 30Hz), eye tracking (30 Hz), and a side-view full

body camera (30 Hz) were recorded and continuously monitored.

Page 20 of 30


https://doi.org/10.1101/2020.12.15.422967
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.15.422967; this version posted December 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.
Processing of two-photon calcium imaging movies

For each two-photon imaging session, the image processing pipeline performed: (1) spatial
or temporal calibration, (2) motion correction, (3) image normalization to minimize confounding
random variations between sessions, (4) segmentation of connected shapes and (5) classification of
soma-like shapes from remaining clutter.

The motion correction algorithm relied on phase correlation and only corrected for rigid
translational errors. Each movie was partitioned into 400 consecutive frame blocks, representing
13.3 s of video. Each block was registered iteratively to its own average three times. A second
stage of registration integrated the periodic average frames themselves into a single global average
frame through six additional iterations. The global average frame served as the reference image for
the final resampling of every raw frame in the video.

Fluorescence movies were processed using a segmentation algorithm to identify somatic
regions of interest (ROIs) that was described previously’. Segmented ROIs were matched across
imaging sessions. For each ROI, events were detected from AF/F by using an LO-regularized

algorithm. For each neuron, we z-score AF/F trial activity and compute the mean z-scored response

of each neuron aligned to the time of fidget onset (0 seconds).
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To determine the significance of neural activity modulation post-fidget, we apply several threshold
criteria to clustered neuronal activity. The threshold criteria were used in previous calcium imaging
literature, and here we present two that gave very different results: One criteria where the mean

AF/F is larger than 6%, and one criteria where the maximum AF/F during the post-fidget period is

greater than 5%.

Behavioral Analysis

We use histogram of oriented gradients (HOG) descriptors as our model features due to their
invariance to position, rotation, scale, and changes to lighting between mice. Additionally, HOG
vectors have been shown to perform well in dynamic behavioral classification across different

individuals®.

Side-view full-body camera (30 Hz) videos were converted to grayscale, normalized using
power law compression before processing, and manually cropped to exclude background elements
including the screen and rotation disk. Cropping was done by a manual selection tool that
constructed a rectangle from four clicked points. Pixels outside this rectangle were cropped out. The
four points were systematically chosen in this order: upper-left as the eye of the mouse, lower-left
as the closest point on the running disk forming a line to the first chosen point that is parallel to the
vertical axis, lower-right as the point forming a line to the second point that is parallel to the surface
of the running disk, and finally upper-right as the closest point intersecting the head-stage forming a
line to the third point that is parallel to the vertical axis. Histograms of Oriented Gradients (HOGs)
were then computed for each frame using the following parameters: 8 histogram orientation bins,
using square cells with a height of 32 pixels and 1 cell per block, and then dimensionality reduced
using principal component analysis (50 dimensions). The features were then concatenated in one

second blocks and fed into the model.
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The training set of ~ 100,000 video frame labels was collected from six human annotators
who used a custom XML based tool. A radial basis function support vector machine (SVM) was

trained on the training set with a cross-entropy loss function (C and gamma parameters of the SVM

found using a grid search).

The normalized fidget rate was computed by subtracting the baseline fidget rate during

inter-stimulus grey stimulus presentation and dividing by the standard deviation of the fidget rate.

To estimate fidget magnitude, an optical flow measure was computed for each grayscale
cropped frame using python’s OpenCV Optical flow function. We used the Gunner’s Farneback
algorithm using Two-Frame Motion Estimation Based on Polynomial Expansion with a 30 pixels
kernel size. For each example, the optical flow measure was integrated over the duration of all

continuous frames labeled as fidget.

Fidget neuronal response analysis

Neural responses were aligned to the onset of the fidget behavior and cropped to keep 100 frames (~
3 seconds) preceding the initiation of the fidget and 200 frames (~ 6 seconds) post fidget initiation.
Neural activity was normalized on a trial-by-trial basis by subtracting the mean activity of the 100
frames (~3 seconds) of baseline neural activity preceding the initiation of the fidget response and
dividing by the standard deviation of activity. Across trial z-scored neural activity was then

averaged to get the mean z-scored activity for each neuron.

Clustering of fidget neuronal responses

Page 23 of 30


https://doi.org/10.1101/2020.12.15.422967
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.15.422967; this version posted December 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.
The mean z-scored activity for all neurons post-fidget was passed into the k-means++ clustering

algorithm with clustering evaluated using the gap statistic. The optimal number of clusters was

found to be four.
UMAP and Random Forest Classification

To search for any differences between fidget neural responses across different cortical layers and
visual areas we took 200 frames (~ 6 seconds) of each neuron’s normalized average post fidget
activity and passed them into a nonlinear dimensionality reduction method, UMAP. In Python, we
used the umap package (umap 0.4.0rc3, hyperparameters min_dist = 0.0 and n_neighbors = 200) to
project the dataset into a 2-dimensional embedding to elicit any differences in the data. The
embedded data points were then passed into a random forest classifier. An 85-15 train-test split was
used along with 5-fold cross-validation with XGBoost (xgboost 1.2.0) and Scikit-Learn (sklearn
0.23.2). A grid hyperparameter search was used to optimize the classifier. To counter
class-imbalance in the training and test sets, each class was randomly subsampled down to the count

of the least prevalent class in the set. After training, F1-scores (F 1 = 7p5557p77y 3 TP, FP, and

FN are true positives, false positives, and false negatives respectively) were estimated for each

class.
Statistical tests

Multiple comparisons were corrected using the Benjamini-Hochberg false discovery rate
framework (g < 0.05), and all statistical tests in the study were two-tailed, two-sample

Kolmogorov—Smirnov tests.

Data availability
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The behavioral data that support the findings of this study are available from the corresponding

authors upon request.
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