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Abstract

Summary

Genome-wide association studies (GWAS) have revealed thousands of genetic loci for common
diseases. One of the main challenges in the post-GWAS era is to understand the causality of
the genetic variants. Expression quantitative trait locus (eQTL) analysis has been proven to be
an effective way to address this question by examining the relationship between gene
expression and genetic variation in a sufficiently powered cohort. However, it is often tricky to
determine the sample size at which a variant with a specific allele frequency will be detected to
associate with gene expression with sufficient power. This is particularly demanding with single-
cell RNAseq studies. Therefore, a user-friendly tool to perform power analysis for eQTL at both
bulk tissue and single-cell level will be critical. Here, we presented an R package called
powerEQTL with flexible functions to calculate power, minimal sample size, or detectable minor
allele frequency in both bulk tissue and single-cell eQTL analysis. A user-friendly, program-free
web application is also provided, allowing customers to calculate and visualize the parameters
interactively.

Availability and implementation

The powerEQTL R package source code and online tutorial are freely available at CRAN:
https://cran.r-project.org/web/packages/powerEQTL/. The R shiny application is publicly hosted
at https://bwhbioinfo.shinyapps.io/powerEQTL/.
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Introduction

Genome-wide association studies (GWAS) have revealed genetic risk loci for thousands of traits
or diseases (MacArthur et al., 2017; Buniello et al., 2019). Nearly 90% of the GWAS loci are
located in non-coding regions (Edwards et al., 2013), suggesting that they may play a role by
influencing gene expression. One of the main challenges in the post-GWAS era is
understanding how these genetic variants cause the phenotype, for example, by regulating the
expression of disease-associated or tissue-specific genes. Expression quantitative trait locus
(eQTL) analysis has provided such a framework to test the effect of genetic variation on gene
expression (Nica and Dermitzakis, 2013). For instance, the Genotype-Tissue Expression
(GTEX) project has performed eQTL analysis between genetic variation and genome-wide gene
expression in 54 non-diseased tissue sites across nearly 1000 individuals, providing a
comprehensive public resource to understand the effect of genetic variants in a wide spectrum
of tissue bank samples (GTEx Consortium, 2013, 2015). Enhancing GTEx (eGTEXx) further
extended this effort to include more intermediate molecular phenotypes other than gene
expression (eGTEx Project, 2017). Recent increases in single-cell genomics will allow mapping
eQTLs across different cell types, in dynamic processes, and in 3D spaces, many of which are
obscured when using bulk methods (van der Wijst et al., 2018, 2020). One of the critical steps
common to all eQTL experiments is to determine the minimum sample size with enough power
to detect variants with a low frequency (e.g., minor allele frequency less than 5%) but a
substantial effect on gene expression. However, there is no such tool available for sample size
and power calculation for eQTL analysis.

Here we developed equation-based statistical models to calculate sample size and
power for an eQTL analysis in both bulk tissue and single-cell settings. The tool, called
powerEQTL, was implemented in both an R package and an interactive online application.

Materials and methods

Bulk tissue eQTL

Bulk tissue eQTL is to identify the downstream effects of disease-associated genetic variants on
the gene expression measured at the bulk tissue level. Because of the affordable price
(compared to a single-cell experiment) and the convenience to get enough volume of RNAs
from bulk tissue, bulk RNA-sequencing is still the most widely used technique to profile the
transcriptome of a tissue nowadays. Gene expression values were quantified on tissue
homogenates, usually one sample per subject, for a number of subjects. Normalized gene
expressions were then compared among groups of subjects with different genotypes. Since the
effect sizes of eQTL are usually small and the large number of gene-SNP pairs leads to a
multiple-testing issue (Huang et al., 2018), a proper power analysis including sample size and
power calculation is needed before performing experiments.

We implemented the power analysis of bulk tissue eQTL based on two different models,
one-way unbalanced ANOVA and simple linear regression (see Online Supplementary
Document). They both test for the potential association between genotype and gene expression.
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The difference lies in that ANOVA test treats the genotype as a categorical data (e.g., AA, AB,
and BB) and tests the potential non-linear association, while simple linear regression treats
genotype as continuous variable using additive coding (e.g., 0 for AA, 1 for AB, and 2 for BB,
where B is the minor allele) and tests the linear association. GTEXx project used the one-way
unbalanced ANOVA model in their analysis (GTEx Consortium, 2013). We implemented the two
models in functions of powerEQTL.ANOVA and powerEQTL.SLR in our R package,
respectively. Note that if we know the association is linear, powerEQTL.SLR would be more
powerful than powerEQTL.ANOVA. This is because categorizing a continuous-type variable to a
set of nominal-type variables would lose information.

Since type | error rate (a), type Il error rate (B or 1-power), effect size, and sample size
are interrelated in power analysis, we could calculate any one of them if we know the rest three.
So, we also implemented the functions like that, e.g., calculating one of the 4 parameters
(power, sample size, slope, and minimum allowable MAF) by setting the corresponding
parameter as NULL and providing values for the other three parameters in powerEQTL.SLR.

Single-cell eQTL

Unlike bulk tissue RNAseq, single-cell RNAseq usually profiles thousands of cells per sample,
which provides a better representation for the gene expression distribution of a tissue than a
single value from bulk RNAseq. However, the gene expressions among cells within a sample
are not independent, e.g., cells from one tissue sample are assumed more correlated than cells
between samples. The structured data requires a different model for power analysis. We
implemented the single-cell eQTL by modeling the single-cell RNA expression and genotype in
a linear mixed effects model: y; =Boi + B1*Xi + €;j, where y; is the gene expression level for the i
cell of the i subject, x; is the genotype for the i subject using additive coding (e.g., 0, 1, and 2.
See Online Supplementary Document for details). The power to test if the slope B;is equal to
zero is implemented in the function powerEQTL.scRNAseq with parameters of subject size (n),
number of cells per subject (m), slope (8:), standard deviation of the gene expression (gy), MAF,
intra-subject correlation (i.e., correlation between y; and yy for the i™ and k™ cells of the i"
subject, p), and number of SNP-gene pairs (nTest). Similarly, the function can be used to
calculate one of the 4 parameters (power, sample size, minimum detectable slope, and
minimum allowable MAF) by setting the corresponding parameter as NULL and providing values
for the other 3 parameters.

Result

The powerEQTL R package is available in CRAN and has been downloaded over 10,000 times
since its first deployment (see Figure 1). We also implemented the functions for power and
sample size calculation in an online, interactive, program-free web application using R Shiny.
Power curves of different MAFs for multiple sample sizes are visualized and downloadable for
both bulk tissue and single-cell eQTL. The calculator pages allow users to freely play with the
parameters for tissue and single-cell eQTL power analysis.
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Figure 1. (A) eQTL schema. (B) The main models and functions in the powerEQTL package. (C) Downloads
summary of powerEQTL since its original repository on CRAN (data generated by cranlog R package). (D)
Screenshot of powerEQTL R shiny application.

Discussion

While several R or Bioconductor packages are available for omics sample size and power
calculation, such as sizepower (equation-based, 2006), RNASeqgPower (equation-based, 2013),
PROPER (simulation-based, 2015), powsimR (simulation-based, 2017), RnaSeqSampleSize
(2018), ssizeRNA  (equation-based, 2019), PowerSampleSize, pwrEWAS, and
powerGWASinteraction, none are for eQTL analysis yet that we are aware of. To apply
powerEQTL to RNAseq data, appropriate data transformation, such as voom (Law et al., 2014)
and countTransformers (Zhang et al., 2019), is needed to convert counts to continuous data. In
addition to scRNAseq, other structured data, such as scATACseq, single-cell methylation,
grouped cell lines etc. can also be applied to this eQTL model.
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