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Abstract

Root hydraulic properties play a central role in the global water cycle, agricultural systems
productivity, and ecosystem survival as they impact the global canopy water supply.
However, the available experimental methods to quantify root hydraulic conductivities, such
as the root pressure probing, are particularly challenging and their applicability on thin roots
and small root segments is limited. There is a gap in methods enabling easy estimations of
root hydraulic conductivities across a diversity of root types and at high resolution along root

axes.

In this case study, we analysed Zea mays (maize) plants of the var. B73 that were grown in
pots for 14 days. Root cross-section data were used to extract anatomical measurements.
We used the Generator of Root Anatomy in R (GRANAR) model to generate root anatomical
networks from anatomical features. Then we used the Model of Explicit Cross-section

Hydraulic Anatomy (MECHA) to compute an estimation of the root axial and radial hydraulic
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conductivities (k, and k,, respectively), based on the generated anatomical networks and cell

hydraulic properties from the literature.

The root hydraulic conductivity maps obtained from the root cross-sections suggest
significant functional variations along and between different root types. Predicted variations
of k. along the root axis were strongly dependent on the maturation stage of hydrophobic
barriers. The same was also true for the maturation rates of the metaxylem. The different
anatomical features, as well as their evolution along the root type add significant variation to

the k. estimation in between root type and along the root axe.

Under the prism of root types, anatomy, and hydrophobic barriers, our results highlight the
diversity of root radial and axial hydraulic conductivities, which may be veiled under
low-resolution measurements of the root system hydraulic conductivity. While predictions of
our root hydraulic maps match the range and trend of measurements reported in the
literature, future studies could focus on the quantitative validation of hydraulic maps. From
now on, a novel method, which turns root cross-section images into hydraulic maps will offer
an inexpensive and easily applicable investigation tool for root hydraulics, in parallel to root

pressure probing experiments.

Keywords

Root anatomy, hydraulic conductivity, hydrophobic barriers, GRANAR, MECHA

Short title:

Mapping root hydraulic conductivity using cross-section images and modelling tools.
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One-Sentence summary:

The use of cross-section images and modelling tools to generate a map the axial and radial

hydraulic conductivity along different root types for the maize cultivar B73.

Abbreviation

K,qe: contribution of aquaporins to the plasma membrane hydraulic conductivity
k., : plasma membrane intrinsic hydraulic conductivity

K,p: conductance of plasmodesmata per unit membrane surface

k.: radial hydraulic conductivity

K., root system hydraulic conductance

k. : specific axial hydraulic conductance

L,.: protoplast permeability

tip: root apex

Introduction

Root hydraulics properties are one of the major functional plant properties influencing the
root water uptake dynamics. Indeed, the radial hydraulic conductivity (k,) is a key component
of the water absorption and the axial hydraulic conductance (k,) defines the water transport
along the root (Leitner et al., 2014). Changes in the local root hydraulic properties, at the cell
and organ scale, are known to have global repercussions on the root hydraulic behavior
(Tardieu et al., 2018; Meunier et al., 2020) and are considered as important breeding targets
to create drought resilient varieties (Maurel and Nacry, 2020). The quantification of root
hydraulic conductivity along the roots is therefore needed to have a quantitative

understanding of the root water uptake dynamics.
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The root radial conductivity is influenced by different factors. For instance, root anatomical
features define the baseline for radial water flow (Steudle, 2000; Heymans et al., 2019). The
modulation of aquaporin can modulate that baseline value by affecting the cell membrane
permeability on the short term (Parent et al., 2009). On the long term, the development of
hydrophobic barriers (Enstone et al., 2002) and the conductivity of plasmodesmata
(Couvreur et al., 2018) have also a crucial impact. On the other hand, the axial root
conductance is a function of the xylem vessel area, maturation and number (Martre et al.,

2001).

The quantification of radial hydraulic properties is challenging due to the complexity of the
experimental procedures. It is even more complicated to assess it at different locations along
the root axis and on different root types. The most direct way to estimate root radial
conductivity is with roots which grow in soil-less environments using a root pressure probe
(Frensch and Steudle, 1989). Other experimental techniques employed a pressure chamber
to measure water flow that were successively cut into smaller parts (Zwieniecki et al., 2002),
or employed the high pressure flow meter device (Tyree et al., 1994). Recently, virtual
quantification of radial hydraulic properties was enabled with models such as the Model of
Explicit Cross-section Hydraulic Anatomy (MECHA) (Couvreur et al., 2018). An intermediate
technique uses inverse modeling method with the root architecture model of Doussan et al.
(1998) and high resolution images of root water uptake (Zarebanadkouki et al., 2016). The
estimation of axial hydraulic properties is easier than the radial ones since it can be
calculated from Hagen-Poiseuille's equation with only a root cross-section image (Frensch

and Steudle, 1989).
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Since 1998, when Doussan et al. (1998) made a modelling approach to map the root
hydraulic conductance on two Zea mays (maize) root types, little effort, to our knowledge,
has been made to reproduce or to improve the spatial distribution of radial root hydraulic
conductivity and axial root hydraulic conductance in maize. . However many studies that
used functional-structural root model to simulate water uptake use the hydraulic conductivity
that have been estimated by Doussan et al. (1998), such as in R-SWMS (Javaux et al.,
2008), OpenSimRoot (Postma et al., 2017) or MARSHAL (Meunier et al., 2020). Although
those estimations were groundbreaking for the community at the time, we now need to be
able to quantify root hydraulic conductivities that directly match the data that we want to
assess. Therefore including the effect of root anatomical changes and taking into account
cell hydraulic properties would improve the accuracy and prediction of root water uptake

models.

Here, we present a procedure to generate a high resolution hydraulic conductivity map from
experimental data using recent modeling tools. With free hand cross sections and
fluorescent microscopy, we were able to extract easily anatomical features that can be used
to run the Generator of Root Anatomy in R (GRANAR) (Heymans et al., 2019). Then, using
the generated anatomical networks with MECHA (Couvreur et al., 2018), we estimated the
k.and k, along the root axis of each maize root type. This model's coupling creates a way to
generate a root hydraulic conductivity map that takes into account the impact of the anatomy
and the cell hydraulic properties. The method that we developed here does not rely on
expensive equipment. It can be easily reproduced for other genotypes and different

environmental constraints.
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Material and methods

Five Zea mays (maize cultivar B73) plants were grown in pots for 14 days. The pot
dimensions were 12 cm diameter, 25 cm deep and filled with sieved potting soil. The soil
was at field capacity when the germinated seeds were planted and never re-watered
afterwards. The germination of the seed occurred in a petri dish maintained vertically in dark
condition between two wet filter papers. From the fifteen seeds that were put under
germination, five were selected based on the length of the tap root (0.5 to 1 cm long) in order
to have an homogenous germination rate. Each seed was planted in a different pot. All
plants grew in a greenhouse with the environmental settings of the greenhouse set to 60 %

for the relative humidity and a temperature of 25°C (+- 3°C).

The root systems were excavated and washed at the end of the experiment (after 14 days).
The root systems were scanned and selected root samples were conserved in a
Formaldehyde Alcohol Acetic Acid solution (Ruzin and Others, 1999). The roots were
stained with berberine for one hour and post stained with aniline blue for 30 minutes before
making free-hand cross-sections (Brundrett et al., 1988). Three or more roots per type were
cut at every 5 cm or less to map anatomical features along the root segments. Cross section
images were acquired with fluorescent microscope SM-LUX and the pictures were taken
using a Leica dfc320. The images were analysed with the ImageJ software. The anatomical

features that we measured are listed in the table 1.

Table 1: List of the measured anatomical features acquired on the root cross section images that

have been used to get the GRANAR parameters.

Measured anatomical features GRANAR parameters
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epidermis cell width [um]

epidermis cell_diameter

exodermis cell width [um]

exodermis cell_diameter

cortex width [um]

cortex cell_diameter

number of cortex cell layer [-]

cortex n_layers

endodermis cell width [um]

endodermis cell_diameter

pericycle cell width [um]

pericycle cell_diameter

stele diameter [um]

stele layer_diameter

stele cell diameter [um]

stele cell _diameter

metaxylem cell area [um?]

xylem max_size

number of metaxylem vessels

xylem n_files

number of protoxylem vessels

xylem ratio

To identify the type of hydrophobic barriers that were encountered on the cross-section
130 images, we used the berberine-aniline blue fluorescent staining procedure for suberin, lignin,
and callose in plant tissue (Brundrett et al., 1988). This procedure for visualizing exo - and
132 endodermal Casparian strips works also to identify the lignification of the xylem cell walls.

Xylem vessels with fully lignified cell walls were considered as mature xylem elements.

134 The root type selected for this analysis are the tap root, the basal root (embryonic root), the
shoot born root on the first node and two types of lateral roots, the short ones (short ones)
136 and long ones (longer than 5 cm with second order lateral roots on it) (Passot et al., 2018).
The choice of two classes of lateral root instead of three is due to experimental constraints.
138 We had to base the classification on root length instead of root growth rate. The threshold
that we set is evaluating the difference between the long later root classified as type A in the
140 Passot et al. (2018) study and the other two lateral types (B and C) that have a slowing

growth rate.
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142 We modelled the evolution of anatomical features along the root axis and for different root
types using linear models. The models were used to estimate the different GRANAR input

144 parameters along the root axes. However, if the explanatory variable showed a p-value >
0.05, the average value of the anatomical features along the root axis was taken instead of

146 the value predicted by the linear model. The generated anatomies were then used to
estimate the kr and kx on each point along the selected spatial resolution for each root type

148 using MECHA.

The statistical analysis was conducted using R (R Core Team, 2018). The R package that

150 was used for the data analysis was “tidyverse” (Wickham et al., 2019).

Description of MECHA Hydraulic Parameters

152 The simulation framework MECHA (Couvreur et al., 2018) can estimate root radial
conductivities from the root anatomy generated with GRANAR and from the subcellular

154 scale hydraulic properties of walls, membranes, and plasmodesmata. The cell wall hydraulic
conductivity was set to 2.8 10™° m?s"MPa™", as measured by Zhu and Steudle (1991) in

156 maize. Lignified and suberized wall segments in the endodermis and exodermis were
considered hydrophobic and attributed null hydraulic conductivities. The protoplast

158 permeability (L_, 7.7 107" m s"MPa™") measured by Ehlert et al. (2009) was partitioned into

pc?
its three components: the plasma membrane intrinsic hydraulic conductivity (k,), the

160 contribution of aquaporins to the plasma membrane hydraulic conductivity (k,,,), and the
conductance of plasmodesmata per unit membrane surface (K,,). The latter parameter was

162 estimated as 2.4 107 m s"MPa™" (Couvreur et al., 2018), based on plasmodesmata

frequency data from Ma and Peterson (2001), and the plasmodesmata conductance

164 estimated by Bret-Harte and Silk (1994). By blocking aquaporins with an acid-load treatment,
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Ehlert et al. (2009) measured a k,,, of 5.0 107" m s'MPa™". The remaining value of km after
166 subtraction of k,,, and K., from L,  was 0.3 107" m s"MPa™". Each value of km, k,q,, K,
and L, was set uniform across tissue types. For details on the computation of k, see

168 Couvreur et al. (2018).
The root axial hydraulic conductance was estimated using the Hagen-Poiseuille equations.
170 ki =A2/8mhp (eq. 1)

N
ke = (kayli)h (eq. 2)

i

172 Where A is the cell area of one xylem vessel, h is the cell length and y is the viscosity of the
xylem sap. Xylem sap being essentially water, the viscosity constant was assumed to be

174 equal to the one of the water.

As the root hydraulic conductivities obtained in this study are compared, among other
176 studies, with the ones estimated in Doussan et al. (1998), we added an assumption to the
data provided from that study. This hypothesis is that the lateral roots have an average

178 growing rate of one centimeter per day (Passot et al., 2018).

The details about the GRANAR-MECHA coupling is available in an online Jupyter NoteBook

180 (https://mybinder.org/v2/gh/HeymansAdrien/GranarMecha/main). The complete procedure

can be run online or locally after downloading the related gitHub repository

182 (hitps://qgithub.com/HeymansAdrien/GranarMecha doi: 10.5281/zenodo.4316762). This

complementary open-source ressources helps the users to change anatomical features and

184 change cell hydraulic properties to personalise the exercise at will. The outputs of each
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generated root cross-section can be visualized through different figures that show the

186 proportion of the water fluxes in each compartiment (apoplastic and symplastic fluxes).

The whole script that was used to compute the root hydraulic maps from the root anatomical
188 measurement is presented as a Rmarkdown script stored in a GitHub repository

(https://github.com/granar/B73_HydraulicMap doi: 10.5281/zenodo0.4320861). In the same

190 repository are stored all input and output data of this study.

192
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Results

To create hydraulic conductivity maps along the different maize root types taking into
account the evolution of the anatomical features, we needed to capture anatomical
descriptors that are ready-to-use for downstream computational models. Anatomical features
change along the root axis, as the root is narrower and less mature at the tip than at its basal
position. Across root types, anatomies may also differ. With the gathered root cross section
images, we were able to extract the root anatomical features and place those features along
the root axes. Most of the root anatomical features that we computed follow a linear

regression when they are plotted against the distance to the tip (Figure 1, Suppl. Fig 1).

The stele of the root axes (tap-, basal-, and shoot born- root) narrows close to the tip. As
the stele area shrinks, the number of xylem vessels are also reduced. The correlation
between the stele and xylem areas is strong (0.899) but it is not suitable to do a linear
regression. However when we look at the Napierian logarithm of those areas (Yang et al.,
2019), the linearity of this relationship is strong (R?: 0.9913, fig. 2). Thanks to the strong
relationship between those anatomical features, we used it into the model parametrization
procedure instead of using directly the xylem size data of the anatomical features previously

measured.
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212 Figure 1: Evolution of the stele diameter (A) and the cortex width (B) along the root axe for the

different root types. ** : P <0.001; * : P<0.01; “: P> 0.05
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Figure 2: Allometric relationship between the

p 3 0 metaxylem area and the stele area. Both

Ln (stele area) area are expressed in mm?

For each of the GRANAR model parameters we have a simple function that depends on
216 the root type and the distance from its apex (Supplemental Table 1). With that information,
we were able to build average root cross sections along each root type, at any longitudinal

218 position (fig. 3).

In addition to the overview of the root cross section of the root system, we added the

220 localisation of hydrophobic barriers and meta-xylem maturation zone based on staining
signals (fig. 4). The berberine-aniline blue fluorescent staining procedure for suberin, lignin,

222 and callose allowed us to estimate where the different maturation zones occur (fig. 5). On
the main root axes, the tap-, the basal-, and the shoot born- root have a fully suberised

224 endodermis before the maturation of the metaxylem. In addition, the lignification of the
metaxylem vessels, usually occurred shortly after the complete suberisation of the

226 endodermis. On the opposite, for lateral roots, the metaxylem vessels are lignified before the
complet suberization of the endodermis. Moreover short lateral roots have a lignified

228 metaxylem vessels before the suberin lamellae start to deposit on the cell walls of the
endodermis. For long lateral roots, the lignified metaxylem vessels were found where some

230 suberin lamellae start to deposit on the cell walls of the endodermis.
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L, ."". 1
Short lateral root

Basal root Shoot born root

Long lateral root

l

Tap root 20um
232 Figure 3: Schematic representation of a maize root system with five root types. Along each root type,
the generated average root cross sections are placed accordingly. The number along the roots
234 describe the distance from the tip of the root, the scale is free in between. The bar = 200um is for root
cross section representation. The filled metaxylem vessels represent the immature ones. The dashed
236  red circles stand for the Casparian strip on le local root tissue. The continuous red circles stand for

the fully suberize cell wall of the local root tissue.
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238

Figure 4: Basal root cross sections. A. 3 cm from apex, the arrow point at the endodermal Casparian
240 strip (“ecs"); B. 5 cm from apex; C. 8 cm from apex, the arrow point at the suberin lamellae that

formed on the endodermis (“sl”); D. 10 cm from apex; E. 15 cm from apex, the “mmx” arrow point at
242 the lignify cell wall of the mature metaxylem vessels, the “excs” arrow point at the exodermal

Casparian strip; F. 20 cm from apex; G. 25 cm from apex. H. 30 cm from apex. bar = 50 ym
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Figure 5: Evolution of the maturation for hydrophobic barriers (A) and for the metaxylem vessels (B)

246 along the root axe for the different root types. Half values were applied when the transition between

two maturations was observed. The lines are a discretization of the local weighted regressions of the

248 scatter plots. (A) “na” = no hydrophobic barriers; “ecs” = endodermal Casparian strip; “sl” = fully

suberized endodermis; “excs” = suberized endodermis and exodermal Casparian strip. (B) “unmx” =

250 only the protoxylem vessels are lignified; “mmx” = All xylem vessels are lignified. The arrows point out

where the endodermis is fully suberized for the specific root type.
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252 Hydraulic conductivity map

The next step of the process to make high resolution maps for the root hydraulic conductivity
254 is to estimate the radial and axial conductivities of all the generated cross sections. To

estimate the radial conductivity of the generated root cross section, we used the MECHA

256 model (Couvreur et al., 2018) (fig. 6).
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258 Figure 6: Hydraulic conductivity map for the different root types. A) Estimation of the radial
hydraulic conductivity for each generated root cross section along the different root. The side graphic

260 shows the two Doussan et al., 1998 estimations for k, and our estimations in comparison. B)
Estimation of the axial hydraulic conductance for each generated root cross section along the different

262 root. The side graphic shows the two Doussan et al., 1998 estimations for k, and our estimations in

comparison.
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We adjusted the maturation scenario in MECHA to fit our experimental data of the
maturation zone for the hydrophobic barriers and metaxylem lignification. The cell hydraulic
parameters were kept the same for all cross sections. For the axial conductivity, we used the

Hagen-Poiseuille laws as explained in the Material and Methods section (equation 1 and 2).

Discussion

In comparison to the hydraulic conductivity function of Doussan et al. (1998), our data, for
the different root types, show a drop in radial conductivity closer to the tip. This is closer to
the scenario of Zarebanadkouki et al. (2016), who estimated that the first drop occurred after
four centimeters within the stepwise function with three transition zones. This early drop is
due to the deposition of suberin lamellae in endodermal cell walls, which has been shown to
be sensitive to environmental conditions (Tylova et al., 2017). The proportionally smaller
second drop due to the addition of the exodermal Casparian strip is compensated further
away by the expansion of the stele and the larger number of xylem vessels. Those
anatomical effects on the radial conductivity follow the same trends as in Heymans et al.
(2019). The radial conductivity estimations of our study are within range with the values of
Doussan et al. (1998), and in a slightly higher range relative than the estimations by

Zarebanadkouki et al. (2016) and Meunier et al. (2018).

The use of the Hagen-Poiseuille equations to estimate the k, is straightforward when the
area of each xylem element is known. Our predicted range and trends both match direct
measurements by Meunier et al. (2018) and estimations from Doussan et al. (1998).
Uncertainties related to the application of the Hagen-Poiseuille law have been discussed in
the literature. Frensch and Steudle (1989) have shown that it may overestimate experimental

k, values by a factor of two to five. This could be due to the presence of perforation plates
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(Shane et al., 2000; Brodersen et al., 2018) or persistent xylem cross-walls (Sanderson et
al., 1988). In this study we did not divide the estimated axial conductivity by a coefficient.
The uncertainty of identification of mature xylem vessels by the used staining procedure
could shift the transition zone shootward. We also assume that xylem sap has the same
viscosity as water. This hypothesis could be discussed in relation to xylem sap temperature

or solute concentration (Bruno and Sparapano, 2007).

The hydraulic conductivity map that we computed for this genotype in this precise
environmental condition (Zea mays var. B73 in pots) is an example case. Our methodology
allows the inclusion of the effect of root anatomical changes and takes into account the
selected cell hydraulic properties summarised in the material and methods section. The
hydraulic conductivity map with five root types allows a better tuning for root water uptake
models. This root hydraulic conductivity map can be used with other modelling tools to
estimate other variables such as the root system conductance, or the standard sink fraction,
as envisioned by Passot et al. (2019). Future inverse modelling studies could reuse the
anatomical networks that we build on their root system architecture. Then, change in the
modelling framework the cell hydraulic properties to match the macro hydraulic that would

have been measured.

We developed a protocol that could be repeated in further studies (e.g. with different
species, genotypes or environment). It is quicker than root pressure probing to estimate
radial water flow. GRANAR takes around one to twenty seconds to generate root cross
sections that are presented in this study. MECHA takes around one to five min per root cross
sections to estimate the k.. On the opposite, one estimation for the k, from the root pressure

probe takes at least three to five hours as steady root pressure has to be established after
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the connection between the root and the device (Liu et al., 2009). In both cases, making

free-hand root cross-section takes around 10 to 20 minutes.

Meunier et al. (2020) showed that modifying hydraulic properties changes the root system
hydraulic architecture and thus affects the whole root system conductance (K,). Tuning root
hydraulic conductivity functions to match experimental data or test new hypotheses through
simulation studies could therefore show the local impact of root anatomy or cell hydraulic
properties on the whole root conductance. A better understanding of the effect of local root
traits on the global hydraulic behaviour of the root system could enhance the breeding efforts

towards more drought tolerant cultivars.

Conclusion

In this study, we showed how to use stained root cross section images and computational
tools (organ scale models: GRANAR and MECHA) to create high resolution hydraulic maps
of a maize root system (var. B73 in our example). Our hydraulic map includes hydraulic
information (radial and axial properties) and anatomical data along 5 root types (tap, basal,

shoot born, long laterals and short laterals).

Anatomical differences along the root axes and between root types seems to have an impact
on the radial and axial water flow through the roots. The values and trends shown in this

study are in the same range as the estimations that can be found in the literature.

Side by side with measures from root pressure probing, our method has the advantages of
being quick and output high resolution results. We expect our methodology to be of great
use for further root hydraulic studies. It will help match the hydraulic conductivities of root

systems and experimental data, or test new hypotheses through simulation studies. These
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332 local root conductivities can be used in functional-structural root models to estimate macro
hydraulic properties. It launches synthetic ways to test or benchmark the local impact of local

334 root traits on the global hydraulic behaviour of a root system.
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