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Abstract

The metagenome embedded in urban sewage is an attractive new data source to understand urban ecology and
assess human health status at scales beyond a single host. However, using census-based population size instead of
real-time population estimates can mislead the interpretation of data acquired from sewage, hindering assessment
of representativeness, inference of prevalence, or comparisons of taxa across sites. Here, we develop a new
method to estimate human population size in light of recent developments in species-abundance distributions of
microbial ecosystems. Using a population-scale human gut microbiome sample of over 1,100 people, we found that
taxon-abundance distributions of gut-associated multi-person microbiomes exhibited generalizable relationships in
response to human population size. We present a new non-parametric model, MicrobiomeCensus, for estimating
human population size from sewage samples. MicrobiomeCensus harnesses the inter-individual variability in
human gut microbiomes and performs maximum likelihood estimation based on simultaneous deviation of multiple
taxa’s relative abundances from their population means. MicrobiomeCensus outperformed generic algorithms in
data-driven simulation benchmarks and detected population size differences in field data. This research provides a
mathematical framework for inferring population sizes in real time from sewage samples, paving the way for more

accurate ecological and public health studies utilizing the sewage metagenome.
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Introduction

The metagenome embedded in urban sewage is an attractive new data source to understand urban ecology and assess
human health status at scales beyond a single host' . Sewage microbiomes are found to share a variety of taxa with
human gut microbiomes, where the baseline communities are characterized by a dominance of human-associated
commensal organisms from the Bacteroidetes and Firmicutes phyla'->*. Human viruses like SARS-CoV-2 and
polioviruses were detected in sewage samples during the pandemic and silent spreads, respectively, and found to
correlate to reported cases, suggesting that sewage samples could be useful for understanding the dynamics in the
human-associated symbionts at a population level%. Sewage has several advantages as samples of the population’s
collective symbionts. For instance, sewage samples are naturally aggregated, wastewater infrastructures are highly
accessible, and data on human symbionts can be collected without visits to clinics, thus utilizing sewage samples can
reduce costs and avoid biases associated with stigma and accessibility>’. Consequently, SARS-CoV-2 surveillance
utilizing sewage samples are underway globally and incorporated into the U.S. Centers for Disease Control and

Prevention surveillance framework®.

A pressing challenge in utilizing sewage for ecological and public health studies is the lack of methods to
directly estimate human population size from sewage. Specifically, virus monitoring at finer spatial granularity, e.g.,
single university dorms and nursing homes, are informative for guiding contact tracing and protecting populations
at higher risk, but real-time population size estimations at such fine granularity arenot yet available. For a given
area, the census population (de jure population) can be larger than the number of people who contributed feces to
sewage at a given time (de facto population)’. Conversely, the de jure population can also be smaller than the de
facto population due to the presence of undocumented individuals'®. Population proxies that are currently used for
monitoring at wastewater-treatment plants, such as the loading of pepper mild mottle viruses, likely have high error
at the neighborhood level because of their large variability in human fecal viromes (10°-10° virions per gram of dry
weight fecal matter)'!. Consequently, it is difficult to assess the representativeness of a sewage sample, infer the
taxon abundance differences across time and space, or interpret errors. Lack of population size information could
lead to false negatives in assessing virus eradication, because an absence of biomarkers might be caused by a sewage
sample that under-represents the population size. Despite its importance, few studies have explicitly explored ways

to estimate real-time human population size from sewage samples independent from census estimates'>.

Macroecological theories of biodiversity may offer clues to decipher and even enumerate the sources of a sewage
microbiome. While we are only beginning to view sewage as samples of human symbionts beyond one person,

generating multi-host microbiomes resembles a fundamental random multiplicative process that can give rise to
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many universal patterns seen in ecology. It has been suggested that the approximately lognormal shape of the
Species-Abundance Distribution (SAD) might result from multiplicative processes'?. Although ecological processes
such as growth and stochastic interactions have a multiplicative nature and could lead to a central limiting pattern,
Sizling et al. showed that lognormal SADs can be generated solely from summing the abundances from multiple
non-overlapping sub-assemblages to form new assemblages'*. Likewise, adding multiple sub-assemblages can
also give rise to common Species-Area Relationships'#. For microbial ecosystems, Shoemaker et al. examined the
abilities of widely known and successful models of SADs in predicting microbial SADs and found that Poisson
Lognormal distributions outperform other distributions across environmental, engineered, and host-associated
microbial communities, highlighting the underpinning role of lognormal processes in shaping microbial diversity'.

In this study, we conceptualize a sewage microbiome as a multi-person microbiome, where the number of human
contributors can vary. We hypothesize that the species abundance distribution in the multi-person microbiome will
vary as a function of the human population size, which would arise from summing taxon abundances from multiple
hosts analogous to the Central Limit Theorem. We use human gut microbiome data comprising over a thousand
human subjects and machine learning algorithms to explore these relationships. Upon discovering a generalizable
relationship, we develop MicrobiomeCensus, a nonparametric model that utilizes relative taxon abundances in
the microbiome to predict the number of people contributing to a sewage sample. MicrobiomeCensus utilizes
a multivariate T statistic to capture the simultaneous deviation of multiple taxa’s abundances from their means
in a human population and performs maximum likelihood estimation. We provide proof on the validity of our
approach. Next, we examine model performance through a simulation benchmark using human microbiome data.
Last, we apply our model to data derived from real-world sewage. Our nonparametric method does not assume any
underlying distributions of microbial abundances and can make inferences with just the computational power of a

laptop computer.

Results

Species abundance distributions of multi-person microbiomes vary by population size

Here, we present MicrobiomeCensus, a nonparametric model that utilizes relative taxon abundances in the
microbiome to predict the number of people contributing to a sewage sample. We establish MicrobiomeCensus
in four steps. First, we demonstrate the usefulness of human microbiome features in estimating population size
through a simulation mimicking an ideal mixing scenario in sewage. Then, we propose a T statistic to capture the
simultaneous deviation of multiple taxa’s abundances from their means in a human population, build a maximum

likelihood model, and provide proof on the validity of our approach. Next, we examine model performance
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through a simulation benchmark using human microbiome data. Last, we apply our model to real-world sewage.
Our nonparametric method does not assume any underlying distributions of microbial abundances and can make
inferences with just the computational power of a laptop computer.

We consider the fraction of microorganisms observed in sewage that are human-associated anaerobes as an
“average gut microbiome” sampled from residents of a catchment area. Hence, our task becomes to find the
underlying relationship between the number of contributors and the observed microbiome profiles in sewage samples.
We define an “ideal sewage mixture” scenario to illustrate our case, where the sewage sample consists only of
gut-associated microorganisms and is an even mix of n different individuals’ feces (Figure 1). We denote the gut

microbiome profile of an individual as X; = (X;,, X;,, ... ,X,-I,)T, where each X;; represents the relative abundance of

individual i and operational taxonomic unit (OTU) j; hence, our ideal sewage mixture can be represented as a mean

from individuals 1,. .., n:
_ n
X, =) Xi/n (1)
i=1
where X1,X>, .. .,X, are microbiome profiles from individuals 1,...,n. Under the ideal sewage mixture scenario,

if we can quantitatively capture the departure of the sewage microbiome profile from the population mean of the
human gut microbiomes of people constituting the catchment area, we will be able to estimate the population size.

Using a dataset comprised of 1,100 individuals’ gut microbiome taxonomic profiles'®, we created synthetic
mixture samples of different numbers of contributors through bootstrapping (Figure 1A). First, examined from an
ecological perspective, the shape of the ranked abundance curves of the gut microbiomes differed when the means
of multiple individuals were examined: when the number of contributors increased, dominance (Figure 1B). For
the single-person microbiomes, log-series and lognormal distributions explained 94% and 93% of the variations
in the SADs, respectively, compared with 89% for Poisson lognormal, 87% for Zipf multinomial and 80% for the
broken-stick model. Multi-person microbiomes were best predicted by log-series or lognormal models, but as the
population increased to over a hundred, the multi-person SADs were best described by only lognormal SADs (Table
S1). The predictive performance of the lognormal is expected to be good for the gut microbial communities across
different sizes because they can reflect processes of a multiplicative nature”.

We explored the distributions of the relative abundances of gut bacteria as a function of population size. As
expected, the distribution of a taxon’s relative abundance changes with population size (Figure 1C). For instance, for
OTU-2397, a Bifidobacterium taxon, the relative abundance distribution was approximately log-normal when the

relative abundance in single-host samples was considered, yet converged to a Normal distribution when mixtures of
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multiple hosts were considered. Although the means of the distributions of the same taxon under different population
sizes were close, the variation in the data changed. A smaller variance was observed when the number of contributors
increased (Figure 1D). Notably, different taxa varied in the rates at which their variances decreased with population
size (Figure 1E), suggesting that a model that considers multiple features would be useful in predicting the number
of contributors.

Classifiers utilizing microbial taxon abundance features alone detects single-person and multi-person
microbiomes

Next, we set up a classification task using the taxon relative abundances to separate synthetic communities
constituting one, ten, and a hundred people. With algorithms of varying complexity, namely Logistic Regression
(LR), Support Vector Machine (SVM), and Random Forest (RF) classifier, classification accuracies of 29.6%,
97.2%, and 100% were achieved (Figure 2). Between RF and SVM, RF showed higher sensitivity and specificity in
classifying all population groups (Table S2). This experiment suggests the usefulness of microbiome features in
predicting human population counts from mixture samples.

MicrobiomeCensus is a statistical model that estimates population size from microbial taxon abundances

While the classification tasks described above demonstrated the usefulness of taxa’s relative abundances in
predicting the population size, a complex model like RF provides little explanatory power. We then ask, since
the variance in the relative abundance of a given taxon decreases with population size, can we devise a statistic
that captures the simultaneous deviation of several taxa’s abundances from their means, and estimate population
size utilizing the statistic? Further, will this new method perform well despite inter-personal variation in gut
microbiomes?

Our new method, MicrobiomeCensus, involves a T statistic to capture the simultaneous deviation of multiple

taxa’s abundances from their means in relation to the variance of those taxa in the population (Figure 3A):

T =|Ag' (a3, )

where X, = Y, X;/n denotes the observed microbiome profile in ideal sewage, u denotes the population mean
for the catchment area, and A, denotes the diagonal of the covariance matrix, Lo = (0jj)1<i j<p , i.€., Where
o,=0)*1<i<p.

In developing this new method, we utilize the variance change by population, but without an a priori assumption

about the gut bacterium species taxon abundance distributions and the covariance between species. Our analysis

showed that the 7 statistic changed monotonically with increasing population size, indicating the promise of a
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population estimation model (Figure 3B). While our T statistic is based on Hotelling’s T-squared statistic'’, which is
often used in multivariate T-tests, we extend its application beyond the problem of the significance of the multivariate

means.

Leveraging our T statistic, we build a maximum likelihood model to estimate population size from an unseen
sample. Here, the parameter of interest is the population size, the test statistic is our 7 statistic, and a point estimate is
made by maximizing the likelihood of the observed T statistic in that sample. We performed training and validation
using 50% of the human microbiome data and held out the rest of the data for testing. Our model achieved a training
error as low as 0.13 (mean absolute percentage error, MAPE) when up to 250 features are included. The model’s
training performance increased when more features were included, yet the validation error did not profoundly change
with an increasing number of features (Figure 3C). Upon training and validation, we chose the top 120 OTUs and
tested the performance of the tuned model on a test set held out during training/validation. The model’s MAPE was
0.21 (Figure 3D and E, testing errors at each population size evaluated are provided in Table S3), indicating that our
model generalized well across different hosts. We then used all data and tuned hyperparameter to acquire a final
model. When applying the final model on the same testing data, our model achieved a testing error of 0.162 (Figure

3D).

It is worth noting that in this algorithm, for each population size, we need to calculate the sampling distribution
of the T statistic only once, hence it is not time-consuming, regardless of the true population size. We also note that
an RF regression model could not be trained in a reasonable time on the same dataset, even with high-performance
computing (Methods). Our model performed remarkably better than a ten-fold cross-validated RF regression model
utilizing a reduced dataset, which gave an MAPE of 0.320, while the training time for our model was only a fraction

of that of the RF regression model (Figure S1).
MicrobiomeCensus detects human population size differences in sewage samples

With the newly developed population model, we set out to apply our model to sewage samples. Ideally, we
would like to apply the model to samples generated from a fully controlled experiment with known human hosts
contributing at a given time, yet such an experiment presents logistic challenges beyond the field’s current abilities.
Instead, we applied our model to sewage samples taken using one of two methods, either a snapshot (grab sample)
sample taken from the sewage stream over 5 minutes, or an accumulative (composite sample) taken at a constant rate
over 3 hours during morning peak human defecation'® (Figure S2). We hypothesized that the composite samples
would represent more people than snapshot samples. Taking grab samples, we sampled at 1-hr intervals at one

manhole (n=25); using the accumulative method, we sampled at three campus buildings (classroom, dormitory, and
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family housing) multiple times over three months (n=76). To remove sequences possibly contributed by the water,
we applied a taxonomic filter to retain families associated with the gut microbiome and normalized the species
abundance by the retained sequencing reads (Methods, Table S4). We applied our final model to the sewage data
set. Our model estimated 1-9 people’s waste was captured by the snapshot samples (mean=3, s.d.=3), and 3-27
people were represented by the composite samples (mean=9, s.d.=7), where the composite samples represented
significantly more people (p < 0.0001) (Figure 3F). The hypothesis that composite samples represent more people

is well supported by our model results.
Sub-species diversity in sewage samples reflects adding microbiomes from multiple people

Independent from our MicrobiomeCensus model, we found that certain human gut-associated species were
frequently detected in sewage samples by using shotgun metagenomics, e.g., Bacteroides vulgatus, Provotella copri,
and Eubacterium rectale. Further, their sub-species diversity, as indicated by nucleotide diversity and the number of
polymorphic sites in housekeeping genes, was dramatically higher in sewage samples than in the gut microbiomes

of individual human subjects (Figure 4A-F and Supplementary Results).

To examine the effect of increasing population size on sub-species genetic variation in representative gut-
associated microbial species, we simulated aggregate human gut samples using a sample without replacement
procedure and computed the nucleotide diversity and numbers of polymorphic sites for the aggregate samples at
different population sizes. This resulted in SNV profiles from 64 species. Our simulation showed increases in both
nucleotide diversity and the number of polymorphic sites as more human gut samples were aggregated (Figure 3 G
and H). For instance, the nucleotide diversity and number of polymorphic sites in Eubacterium rectale increased
from 0.029 (s.d. 0.026) to 0.149 (s.d. 0.002) and 64 (s.d. 54.33) to 1274 (s.d. 18.41), respectively, when the
population size increased from 1 to 300. Further, the number of polymorphic sites strongly correlated with the
population size (Pearson correlation coefficient > 0.8) in 49 of the 64 species (Table S7), suggesting the potential that
the SNV profiles of a wide range of gut species could be developed into feature space for population size estimation.
Our simulation further shows that the number of polymorphic sites increased with population size more slowly than
nucleotide diversity, indicating its potential to reflect more subtle changes in population size (Figure 4G and H).
Despite the need for further model developments, the analysis here shows the potential of the sub-species diversity
of gut anaerobes as a feature space to be developed into a population size estimation model, independent from the

taxon abundance-based model described here.
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Discussion

MicrobiomeCensus showed excellent performance in our simulation benchmark. In particular, the study subjects
that we utilized in the training and testing sets are random samples out of 1,110 men and women across a wide range
of age without any stratification, hence the model’s testing performance indicates its generalizability. Our study is
founded on the observations that healthy gut microbiomes are resilient, with inter-individual variability outweighing

variability within individuals over time'®~2!

. There are caveats to our approach; potentially, diets and regional effects
on human microbiome composition could introduce noises to the prediction®%2. In applications to sewage, future
studies on water matrix effects should be performed to understand and further account for noises from the sewage
collection network. In further validating and applying the model, we recognize that both the responsible engagement

of citizen scientists and privacy protection are crucial for advancing sewage-based ecological and public health

studies.

Utilizing sewage to understand population-level dynamics of human symbionts presents an interesting scenario
of sampling meta-communities. The gut microbiomes of humans can be viewed as local communities, and gut
microbiomes of people living in a neighborhood could be viewed as a kind of regional meta-communities, because
these communities are linked by dispersal that can take place among people connected by social networks and
through a shared built environment. The meta-community framework is considered to provide useful new conceptual
tools to understand the largely unexplained inter-personal variability in gut microbiomes, with expansions of the
theory to consider biotic interactions suggested by Miller, Svanbiick, and Bohannan?? In considering a sample of
meta-communities, Leibold and Chase asked provocatively “what is a community?” and observed that the definition
of a community is usually “user-defined and could be context-dependent” —“one community ecologist might explore
the patterns of coexistence and species interactions among species within a delimited area, the other might ask the
same question but define a community that encompasses more area and thus types of species, as well as different
degrees of movements and heterogeneity patterns”>*. The ambiguity between samples of meta-communities and
local communities is particularly challenging for samples of microbial communities, because dispersal boundaries are
difficult to delineate. Despite the conceptual importance, empirical methods that explicitly test whether a microbiome
sample is a sample of a meta-community or a local community has not been available. MicrobiomeCensus directly
distinguishes samples of meta-communities and local communities by enumerating the number of hosts contributing
to a microbiome. While MicrobiomeCensus is trained on gut microbiome data, the procedure may have wide

applications in other microbial ecosystems.

In response to the COVID-19 pandemic now affecting the human population globally, sewage-based virus
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monitoring is underway(Bivins et al. 2020). Our analysis calls for attention to the denominator used in normalizing
the biomarker measurements. While in practice, loading-based population proxies such as the copy numbers of
pepper mild mottle viruses are used to normalize data generated from sewage, such proxies would likely have high
error at the neighborhood level because of their variability in human fecal viromes (10°-10 virions per gram of dry
weight in fecal matters)!!, while they likely have reasonable performance when the population size is sufficiently
large and the means of biomarker loadings converge under the Central Limit Theorem. Thus, the relationships
between sewage measurements and true viral prevalence in small populations are hard to establish despite the
need for sentinel population studies. Our model has immediate application in detecting false negatives, because it
alerts us to the possibility that an absence of biomarkers might be caused by a sewage sample that under-represents
a population. With further developments incorporating local training data, the model can potentially generate a
denominator that can help turn biomarker measurements into estimates of prevalence and enable the application of

epidemiology models at finer spatio-temporal resolutions.

Methods

Proof. Recall X;,X5,...,X, are independent and identically distributed (i.i.d) random vectors in R? with mean
u € R? and variance Var(X;) = Xy € R?*?. (Note X; = (X;1,. .. ,Xl-p)T and in our application, each X;; represents the
1/2

value for person i and bacteria j.) Denote Xy = (0;;)1<i,j<p and 0; = 0;;' ",

1 <i<p. Let A=diag(c;,1 <i<p).

If both Xy and u are given, then we can construct our statistic:

To = |Ag ! (X —u)ll3,

where X,, = Y.i1 Xi/n. For notation’s simplicity, consider ¥; = A, ! (X; — u), the normalized version of X;. Then

512
T = Yz,
where Y, = " 1 Yi/n. Then the covariance matrix X for ¥; is the correlation matrix of X;, with expression ¥ =
AIEoA L

We need the following condition on ¥; for the main theorem.

ASSUMPTION 1 Let 6 > 0. Assume

246 246

Y, 1
12l

Yi]l3 —p

K2+5 =
o 12l

< oo, and D?S =K

3
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REMARK 1 Above conditions naturally hold if Y1;,1 < i < p, are independent and max <<, ||Yii|2156 <M < oo.

Actually under this setting, ™. = I, and thus ||Z||r = p'/>. By Lemma I,

E(!||Y1H§—P|2+6) < (1+6)2+5< < p2+9)/2,

1

(2+8)/2
12— 113,5)

p
=1

where the constant in < only depends on 8. This justifies Kg part in condition (3). Similarly by Lemma 1,

E<’Y1TY2‘2+5) <(1 +5)2+5<'

1

(249)/2
”Yliyli”%+5) S p(2+5)/2.

p
=1
And thus Dg part in condition (3) holds.

Theorem 1 Assume Assumption 1 holds with some & > 0, also assume
K3 /n+KE/n™" + D% /n®* -0, 4)
where g =2+ 6. Then for Z ~ N(0,X), we have

sup |P(nT, <t)—P(||Z|3 <1)| — 0.
teR

It is worth noticing that under settings in Remark 1, condition (4) holds. The proof follows from Theorem 2.2 in
Xu et al.?,

Based on above theorem, we would have the following result for justification of our sub-sampling approach. Let
Aj,Ay,..., Ay be iiduniformly sampled from the class <7, = {A: A C {1,2,...,n},|A| =m}. Assume the sampling
process are independent from our data (X;);.

Let

A

J
—1
Fm(t) =J Zl1m\|A61()?Aj—)?,,)H%gt(l—m/n)’
j=

where )_(Aj = Liea; Xi /m. Following result comes from Theorem 3.5 in Xu et al.>.

Theorem 2 Assume Assumption 1 holds with some & > 0, also assume m — oo, m = o(n) and (4) is satisfied with n

replaced by m. Then for J — oo, we have

sup £, (1) —P(||Z]|3 < 1) — 0.
teR
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Therefore under conditions in Theorems 1 and 2, we have

sup | B, (t) — P(mT;, < t)] — 0. (%)
teR

Note 7, is an infeasible estimator since u and A are typically unknown. Therefore we need to estimate u and Ay,

using our data X1, ..., X,, where ng is the number of observations we have. Consider the estimate

g
i=2Xy, and Aj;=Y (X,;—Xu;)?/no, 1<j<p,
i=1

where Ay ; is the jth entity of Ag. If X; has heavy tail, we can also consider robust m-estimator for 7 and %, see for

example, Catoni®.

LEMMA 1 (BURKHOLDER?’, R10?®) Let ¢ > 1, ¢ = min{q,2}. Let Dy = Y[, &, where & € £ are martingale

differences. Then

T
D7) <KE Y N& S, where Ky =max {(¢— 1), /g —1}.
t=1

Bootstrap procedure. Below we describe the bootstrap procedure we use to approximate the distribution
of T for different census counts. Recall that X, ..., X, represents arrays of taxon relative abundances in the gut
microbiome of human subject 1,...,m, and T is defined in (Eq. 2).

Step 1. Estimate the population mean, , and diagonal matrix, A, from a sample human gut microbiome.

Step 2. For each census count N, generate X, ..., X, which is equivalent to drawing a simple random sample
with replacement from {X;,...,X}. Compute T} “ on the resulting bootstrap sample.

Step 3. Repeat Step 2 many times, B, (herein 10,000 times) to get fl* e, fB*

Step 4. Estimate the distribution of 7* at census count N, using a Gaussian kernel.

Step 5. Repeat Steps 2-4 for all the census counts 1,. .., N considered, herein integers from 1 to 300. It should
be noted that per Theorem 2 we require bootstrap sample size much smaller than total sample size, thus up to
300-person samples were simulated here because the gut microbiome dataset we utilized consisted of a total of 1010
people. The range can be expanded if a larger dataset is available.

Maximum Likelihood Estimation. We use a maximum likelihood estimation (MLE) procedure to achieve
point estimates of the population size from a new mixture sample, Xo. The MLE procedure first computes 7y from

Xo, and then computes the likelihoods that 7 was drawn from population sizes from 1 to B, respectively, using the
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sampling distributions generated from the bootstrap procedures described above. Next, the population size that
yields the highest likelihood is chosen. For a point estimate N, the confidence interval for the population size, N, is

[1,N].

Model training, validation, and testing. We synthesized a mixed data set from a gut microbiome dataset of
1,135 healthy human hosts from the Lifelines Deep study'®, which was the largest single-center study of population-
level human microbiome variations from a single sequencing center at the time of this study. The data set consisted of
661 women and 474 men. We considered OTUs defined by 99% similarity of partial ribosomal RNA gene sequences
(Methods of OTU clustering are described in detail in Supplementary Methods). After quality filtering, we retained
1,110 samples that had more than 4,000 sequencing reads/sample. We split the entire dataset approximately in half,
using 550 subjects to generate the training/validation set and the other 550 subjects to generate the test set. We then
used the aforementioned ideal sewage mixture approach to generate synthetic populations of up to 300 individuals,
which is the relevant range for population estimation in upstream sewage. The training error was computed using the
entire training data set. Five repeated holdout validations using a 50-50 split in the training set were performed to
tune the hyperparameter for feature selection. The training and cross-validation errors were evaluated at integers
from 1 to 100, using the error definition:

§ = | Nprediced Nacwwal | 1007, "’

N, actual

and the model’s performance across all the population sizes was characterized by the mean absolute percentage error
(MAPE):

100

Nyredicteda — N,
MAPE — Z | predicted actual | % 100%. (7)
n=1

1
n Nactual

After training and validation, the hyperparameter (in this case, the top k abundant OTUs) that yielded the best
performance in the validation step was used in the model. The tuned model was then tested on the test set. Our

synthetic sewage microbiome approach captured the actual microbiome variation among individual hosts and

demonstrated the model’s generalizability.

Human gut microbiome 16S rRNA amplicon data source. The single-person and multi-person microbiome
data were drawn from a gut microbiome dataset of 1,135 healthy human hosts from the Lifelines Deep study'®,
which was the largest study of population-level human microbiome variations from a single sequencing center at

the time of this study. The data set consisted of 661 women and 474 men. We considered operational taxonomic
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units defined by 99% similarity of partial ribosomal RNA gene sequences. After quality filtering, we retained 1,100
samples that had more than 4,000 sequencing reads/sample. The rarefaction depth was chosen to balance sample

size and sequencing depth.

16S rRNA gene amplicon sequencing data analysis. Operational taxonomic units defined at 99% sequencing
similarity were generated from the combined dataset by first denoising the samples with DADA2?°, and then

clustering the outputted exact sequence variants with the q2-vsearch plugin of QIIME2°

. Taxonomic assignments
were performed using a multinomial naive Bayes classifier against SILVA 132332 All 16S rRNA gene amplicon

analyses were performed in the QIIME2 platform (QIIME 2019.10)%3.

Species Abundance Distribution. We examined the relationships between the performances of several widely
used SAD models and the number of contributors (population size) to a multi-person microbiome. Multi-person
microbiomes were generated by sampling N individuals from the quality-filtered gut microbiome 16S rRNA dataset
and summing the abundances of the same taxa. At each population size, 10,000 repeats were performed. The repeats
were chosen according to the constraints of computational efficiency. The SADs evaluated included the Lognormal,
Poisson Lognormal, Broken-stick, Log series and the Zipf model, which were shown to have varied successes
in predicting microbial SADs!>. We examined the fit using a rank-by-rank approach as previously described by
Shoemaker et al.'>. First, maximum-likelihood coefficients for each of the SADs described above were estimated
using the R package sads®*. Next, SADs were predicted using each model, and tabulated as RADs. Then, we used
a least-squares regression to assess the relationship between the performance of the predicted SADs against the
observations and recorded the coefficient of determination (R-squared). Last, R-squared values from model fits of
each SAD model were summarized as the means, and the models that resulted in the highest R-squared values for

each simulated community were recorded.

Field data. We conducted a field sampling campaign, collecting sewage samples daily at manholes near three
buildings (two dormitory buildings and one office building) on the campus of Massachusetts Institute of Technology.
Seventy-six sewage samples were collected through a continuous peristaltic pump sampler operated at the morning
peak (7-10 a.m. near the dormitory buildings and 8-11 a.m. near the office building) at 4 mL/min for 3 hours.
Wastewater was filtered through sterile 0.22-pm mixed cellulose filters to collect microbial biomass. Environmental
DNA was extracted with a Qiagen PowerSoil DNA extraction kit according to the manufacturer’s protocol. The
DNA was amplified for the V4 region of the 16S rRNA gene and sequenced in a Miseq paired-end format at
the MIT BioMicro Center, according to a previously published protocol®. Included as a comparison are a set of

snapshot sewage samples taken using a peristaltic pump sampler at 100 mL/min for 5 minutes over a day (10 a.m.
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on Wednesday April 8, 2015, to 9 a.m. on Thursday April 9, 2015). The sampling methods for snapshot samples are

described in detail by Matus et al.*

Application to sewage data. 1he 16S rRNA gene amplicon sequencing data from the field sewage samples
were trimmed to the same region, 16S V4 (534-786) with the LifeLines Deep data using Cutadapt 1.12%¢. Forward
reads were trimmed to 175bps, and reverse reads were first trimmed to 175bps and then further trimmed to 155bps
during quality screening. We created a taxonomic filter based on the composition of the gut microbiome data set,
which consisted of the abundant family-level taxa that accounted for 99% of the sequencing reads in the human gut
microbiome data set, and excluded those that might have an ecological niche in tap water (Enterobacteriaceae and
Burkholderiaceae). This exclusion resulted in 25 bacterial families and one archaeal family in our taxonomic filter,
including Lachnospiraceae, Ruminococcaceae, Bifidobacteriaceae, Erysipelotrichaceae, Bacteroidaceae, and others
(Table S4). We applied our taxonomic filter to the sewage sequencing data, which retained 73.9% of the sequencing
reads. This retention rate is consistent with our previous report of the human microbiome fraction in residential
sewage samples*. We then normalized the relative abundance of taxa against the remaining sequencing reads in each
sample. Welch’s two-sample t-tests were performed to retain the OTUs whose means did not differ significantly

from the human microbiome data set (p > 0.05).

Deployment of generic machine learning models. Logistic regression, support vector machine, and random
forest classifiers were employed to perform the classification task for population sizes of 1, 10, and 100. Model
training, cross-validation, and testing were performed using the R Caret platform with the default setting?’. For
the support vector machine, the radial basis function kernel was employed. Ten-fold cross-validation and five
repeats were performed for all the models considered. Model performance was evaluated using accuracy, sensitivity,
and specificity. Based on the classifier performance, the RF regression model was used for comparison with
our new model’s performance. Initially, we trained the model using the same training data set used in training
our maximum likelihood model, however, the computation was infeasible, even with a 36-thread, 3TB-memory
computing cluster. We then introduced gaps in the population size range, using populations from the vector
(1,5,10,20,30,40,50,60,70,80,90, 100, 110,120, 150, 180,240,300)” while maintaining the same sample size at
each population size (10,000 samples). The training was performed in R Caret, using 10-fold cross-validation. Ten
variables were randomly sampled as candidates at each split, mtry=10. The performance was evaluated using the

same testing set that was used to evaluate the maximum likelihood model.
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Figure Legends

Figure 1. An ideal sewage mixture simulation shows the potential of microbiome taxon abundance profiles as
population census information sources. (A) We generated an “ideal sewage mixture” consisting of gut microbiomes
from different numbers of people. (B) Ranked abundance curves for gut microbiomes of one person and mixtures of
multiple people exhibit different levels of dominance and diversity. Blue lines show the rank abundance curves in
stool samples (one person), red lines show 10-person mixtures, and saffron lines show 100-person mixtures. In each

scenario, ten examples are shown. All samples were rarefied to the same sequencing depths (4,000 seqs/sample). (C)
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The probability density function of the relative abundance of one taxon for different population sizes. OTU-2379,
a Bifidobacterium taxon, was used as an example. Maroon dashed lines indicate the sample means. (D) Multiple
taxa’s abundance variances in one-person samples and 100-person samples. The dominant taxa are shown (top100)
and are sorted by their ranks in variance. (E) The ratios of the variances of one-person samples and 100-person
samples across dominant gut microbial taxa.

Figure 2. Classifier performance of models utilizing gut microbiome taxon abundances.

Figure 3. MicrobiomeCensus statistic definition, model training, validation, and application. (A) Example of
computing the T statistic. (B) Simulation results for 7" with different population sizes. Grey points are simulation
results. Red bars are means of 10,000 repeats performed for each population size. (C) Model training and tuning.
We built the MicrobiomeCensus model using our 7 statistic and a maximum likelihood procedure. The training
set consisted of 10,000 samples for population sizes ranging from 1-300, and 50% of the data were used to train
and validate the model. Training and validation errors from different feature subsets are shown. Training errors are
shown as red lines, and validation errors are shown as blue lines. (D) Model performance on simulation benchmark.
After training and validation, the model utilized the top 120 abundance features. Model performance was tested on
synthetic data generated from 550 different subjects not previously seen by the model. The training set consisted of
10,000 samples with population sizes from 1-300, and the testing set consisted of 10,000 repeats at the evaluated
population sizes. The training error, testing error, and the error of the final model are shown. (E) Model performance
evaluated using a testing set. Black solid dots indicate the means of the predicted values, and error bars indicate
the standard deviations of the predicted values. (F) Application of the microbiome population model in sewage.
Seventy-six composite samples (blue) were taken from three manholes on the MIT campus, and each sample was
taken over 3 hours during the morning peak water usage hours. Twenty-five snapshot samples (grey) were taken
using a peristaltic pump for 5 minutes at 1-hour intervals throughout a day.

Figure 4. Sub-species diversity in gut-associated bacterial species as a potential marker for human population
size. (A-F) Comparison of sub-species diversity of gut-associated bacteria in human gut microbiome samples
(LifelinesDeep) and MIT sewage samples. Nucleotide diversity and numbers of polymorphic sites were computed
from ten phylogenetic marker genes. (G) and (H) Simulation results showing intra-species diversity in response to

increasing population size, as represented by the number of polymorphic sites (G) and nucleotide diversity (H).
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Population parmaeters of taxon abundance in human gut
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