

1 Microbial Species Abundance Distributions Guide 2 Human Population Size Estimation from Sewage 3 Metagenomes

4 **Fangqiong Ling^{1,2,3,4,*}, Likai Chen⁵, Lin Zhang¹, Xiaoqian Yu⁶, Claire Duvallet^{7,8}, Siavash Isazadeh^{7,8},**
5 **Chengzhen Dai⁹, Shinkyu Park⁹, Katya Frois-Moniz^{7,8}, Fabio Duarte⁹, Carlo Ratti⁹, and Eric J. Alm^{7,8,10,*}**

6 ¹Washington University in St. Louis, Department of Energy, Environmental and Chemical Engineering, St. Louis,
7 MO, USA

8 ²Washington University in St. Louis, Department of Computer Science and Engineering, St. Louis, MO, USA

9 ³Washington University in St. Louis, Division of Biological and Biomedical Sciences, St. Louis, MO, USA

10 ⁴Washington University in St. Louis, Division of Computational and Data Science, St. Louis, MO, USA

11 ⁵Washington University in St. Louis, Department of Mathematics, St. Louis, MO, USA

12 ⁶Massachusetts Institute of Technology, Department of Biology, Boston, MA, USA

13 ⁷Massachusetts Institute of Technology, Department of Biological Engineering, Boston, MA, USA

14 ⁸Massachusetts Institute of Technology, Center for Microbiome Informatics and Therapeutics, Boston, MA, USA

15 ⁹Massachusetts Institute of Technology, SENSEable City Lab, Boston, MA, USA

16 ¹⁰Eli and Edythe L. Broad Institute of MIT and Harvard, Boston, MA, USA

17 *Authors to whom correspondence should be addressed.

18 Abstract

19 The metagenome embedded in urban sewage is an attractive new data source to understand urban ecology and
20 assess human health status at scales beyond a single host. However, using census-based population size instead of
21 real-time population estimates can mislead the interpretation of data acquired from sewage, hindering assessment
22 of representativeness, inference of prevalence, or comparisons of taxa across sites. Here, we develop a new
23 method to estimate human population size in light of recent developments in species-abundance distributions of
24 microbial ecosystems. Using a population-scale human gut microbiome sample of over 1,100 people, we found that
25 taxon-abundance distributions of gut-associated multi-person microbiomes exhibited generalizable relationships in
26 response to human population size. We present a new non-parametric model, MicrobiomeCensus, for estimating
27 human population size from sewage samples. MicrobiomeCensus harnesses the inter-individual variability in
28 human gut microbiomes and performs maximum likelihood estimation based on simultaneous deviation of multiple
29 taxa's relative abundances from their population means. MicrobiomeCensus outperformed generic algorithms in
30 data-driven simulation benchmarks and detected population size differences in field data. This research provides a
31 mathematical framework for inferring population sizes in real time from sewage samples, paving the way for more
32 accurate ecological and public health studies utilizing the sewage metagenome.

33 Introduction

34 The metagenome embedded in urban sewage is an attractive new data source to understand urban ecology and assess
35 human health status at scales beyond a single host¹⁻³. Sewage microbiomes are found to share a variety of taxa with
36 human gut microbiomes, where the baseline communities are characterized by a dominance of human-associated
37 commensal organisms from the *Bacteroidetes* and *Firmicutes* phyla^{1,3,4}. Human viruses like SARS-CoV-2 and
38 polioviruses were detected in sewage samples during the pandemic and silent spreads, respectively, and found to
39 correlate to reported cases, suggesting that sewage samples could be useful for understanding the dynamics in the
40 human-associated symbionts at a population level^{5,6}. Sewage has several advantages as samples of the population's
41 collective symbionts. For instance, sewage samples are naturally aggregated, wastewater infrastructures are highly
42 accessible, and data on human symbionts can be collected without visits to clinics, thus utilizing sewage samples can
43 reduce costs and avoid biases associated with stigma and accessibility^{2,7}. Consequently, SARS-CoV-2 surveillance
44 utilizing sewage samples are underway globally and incorporated into the U.S. Centers for Disease Control and
45 Prevention surveillance framework⁸.

46 A pressing challenge in utilizing sewage for ecological and public health studies is the lack of methods to
47 directly estimate human population size from sewage. Specifically, virus monitoring at finer spatial granularity, e.g.,
48 single university dorms and nursing homes, are informative for guiding contact tracing and protecting populations
49 at higher risk, but real-time population size estimations at such fine granularity are not yet available. For a given
50 area, the census population (*de jure* population) can be larger than the number of people who contributed feces to
51 sewage at a given time (*de facto* population)⁹. Conversely, the *de jure* population can also be smaller than the *de*
52 *facto* population due to the presence of undocumented individuals¹⁰. Population proxies that are currently used for
53 monitoring at wastewater-treatment plants, such as the loading of pepper mild mottle viruses, likely have high error
54 at the neighborhood level because of their large variability in human fecal viromes (10^6 - 10^9 virions per gram of dry
55 weight fecal matter)¹¹. Consequently, it is difficult to assess the representativeness of a sewage sample, infer the
56 taxon abundance differences across time and space, or interpret errors. Lack of population size information could
57 lead to false negatives in assessing virus eradication, because an absence of biomarkers might be caused by a sewage
58 sample that under-represents the population size. Despite its importance, few studies have explicitly explored ways
59 to estimate real-time human population size from sewage samples independent from census estimates¹².

60 Macroecological theories of biodiversity may offer clues to decipher and even enumerate the sources of a sewage
61 microbiome. While we are only beginning to view sewage as samples of human symbionts beyond one person,
62 generating multi-host microbiomes resembles a fundamental random multiplicative process that can give rise to

63 many universal patterns seen in ecology. It has been suggested that the approximately lognormal shape of the
64 Species-Abundance Distribution (SAD) might result from multiplicative processes¹³. Although ecological processes
65 such as growth and stochastic interactions have a multiplicative nature and could lead to a central limiting pattern,
66 Sizling et al. showed that lognormal SADs can be generated solely from summing the abundances from multiple
67 non-overlapping sub-assemblages to form new assemblages¹⁴. Likewise, adding multiple sub-assemblages can
68 also give rise to common Species-Area Relationships¹⁴. For microbial ecosystems, Shoemaker et al. examined the
69 abilities of widely known and successful models of SADs in predicting microbial SADs and found that Poisson
70 Lognormal distributions outperform other distributions across environmental, engineered, and host-associated
71 microbial communities, highlighting the underpinning role of lognormal processes in shaping microbial diversity¹⁵.

72 In this study, we conceptualize a sewage microbiome as a multi-person microbiome, where the number of human
73 contributors can vary. We hypothesize that the species abundance distribution in the multi-person microbiome will
74 vary as a function of the human population size, which would arise from summing taxon abundances from multiple
75 hosts analogous to the Central Limit Theorem. We use human gut microbiome data comprising over a thousand
76 human subjects and machine learning algorithms to explore these relationships. Upon discovering a generalizable
77 relationship, we develop MicrobiomeCensus, a nonparametric model that utilizes relative taxon abundances in
78 the microbiome to predict the number of people contributing to a sewage sample. MicrobiomeCensus utilizes
79 a multivariate T statistic to capture the simultaneous deviation of multiple taxa's abundances from their means
80 in a human population and performs maximum likelihood estimation. We provide proof on the validity of our
81 approach. Next, we examine model performance through a simulation benchmark using human microbiome data.
82 Last, we apply our model to data derived from real-world sewage. Our nonparametric method does not assume any
83 underlying distributions of microbial abundances and can make inferences with just the computational power of a
84 laptop computer.

85 Results

86 Species abundance distributions of multi-person microbiomes vary by population size

87 Here, we present MicrobiomeCensus, a nonparametric model that utilizes relative taxon abundances in the
88 microbiome to predict the number of people contributing to a sewage sample. We establish MicrobiomeCensus
89 in four steps. First, we demonstrate the usefulness of human microbiome features in estimating population size
90 through a simulation mimicking an ideal mixing scenario in sewage. Then, we propose a T statistic to capture the
91 simultaneous deviation of multiple taxa's abundances from their means in a human population, build a maximum
92 likelihood model, and provide proof on the validity of our approach. Next, we examine model performance

93 through a simulation benchmark using human microbiome data. Last, we apply our model to real-world sewage.
94 Our nonparametric method does not assume any underlying distributions of microbial abundances and can make
95 inferences with just the computational power of a laptop computer.

96 We consider the fraction of microorganisms observed in sewage that are human-associated anaerobes as an
97 “average gut microbiome” sampled from residents of a catchment area. Hence, our task becomes to find the
98 underlying relationship between the number of contributors and the observed microbiome profiles in sewage samples.
99 We define an “ideal sewage mixture” scenario to illustrate our case, where the sewage sample consists only of
100 gut-associated microorganisms and is an even mix of n different individuals’ feces (Figure 1). We denote the gut
101 microbiome profile of an individual as $X_i = (X_{i1}, X_{i2}, \dots, X_{ip})^\top$, where each X_{ij} represents the relative abundance of
102 individual i and operational taxonomic unit (OTU) j ; hence, our ideal sewage mixture can be represented as a mean
103 from individuals $1, \dots, n$:

$$104 \quad \bar{X}_n = \sum_{i=1}^n X_i / n \quad (1)$$

105 where X_1, X_2, \dots, X_n are microbiome profiles from individuals $1, \dots, n$. Under the ideal sewage mixture scenario,
106 if we can quantitatively capture the departure of the sewage microbiome profile from the population mean of the
107 human gut microbiomes of people constituting the catchment area, we will be able to estimate the population size.

108 Using a dataset comprised of 1,100 individuals’ gut microbiome taxonomic profiles¹⁶, we created synthetic
109 mixture samples of different numbers of contributors through bootstrapping (Figure 1A). First, examined from an
110 ecological perspective, the shape of the ranked abundance curves of the gut microbiomes differed when the means
111 of multiple individuals were examined: when the number of contributors increased, dominance (Figure 1B). For
112 the single-person microbiomes, log-series and lognormal distributions explained 94% and 93% of the variations
113 in the SADs, respectively, compared with 89% for Poisson lognormal, 87% for Zipf multinomial and 80% for the
114 broken-stick model. Multi-person microbiomes were best predicted by log-series or lognormal models, but as the
115 population increased to over a hundred, the multi-person SADs were best described by only lognormal SADs (Table
116 S1). The predictive performance of the lognormal is expected to be good for the gut microbial communities across
117 different sizes because they can reflect processes of a multiplicative nature¹⁵.

118 We explored the distributions of the relative abundances of gut bacteria as a function of population size. As
119 expected, the distribution of a taxon’s relative abundance changes with population size (Figure 1C). For instance, for
120 OTU-2397, a *Bifidobacterium* taxon, the relative abundance distribution was approximately log-normal when the
121 relative abundance in single-host samples was considered, yet converged to a Normal distribution when mixtures of

122 multiple hosts were considered. Although the means of the distributions of the same taxon under different population
123 sizes were close, the variation in the data changed. A smaller variance was observed when the number of contributors
124 increased (Figure 1D). Notably, different taxa varied in the rates at which their variances decreased with population
125 size (Figure 1E), suggesting that a model that considers multiple features would be useful in predicting the number
126 of contributors.

127 **Classifiers utilizing microbial taxon abundance features alone detects single-person and multi-person**
128 **microbiomes**

129 Next, we set up a classification task using the taxon relative abundances to separate synthetic communities
130 constituting one, ten, and a hundred people. With algorithms of varying complexity, namely Logistic Regression
131 (LR), Support Vector Machine (SVM), and Random Forest (RF) classifier, classification accuracies of 29.6%,
132 97.2%, and 100% were achieved (Figure 2). Between RF and SVM, RF showed higher sensitivity and specificity in
133 classifying all population groups (Table S2). This experiment suggests the usefulness of microbiome features in
134 predicting human population counts from mixture samples.

135 **MicrobiomeCensus is a statistical model that estimates population size from microbial taxon abundances**

136 While the classification tasks described above demonstrated the usefulness of taxa's relative abundances in
137 predicting the population size, a complex model like RF provides little explanatory power. We then ask, since
138 the variance in the relative abundance of a given taxon decreases with population size, can we devise a statistic
139 that captures the simultaneous deviation of several taxa's abundances from their means, and estimate population
140 size utilizing the statistic? Further, will this new method perform well despite inter-personal variation in gut
141 microbiomes?

142 Our new method, MicrobiomeCensus, involves a T statistic to capture the simultaneous deviation of multiple
143 taxa's abundances from their means in relation to the variance of those taxa in the population (Figure 3A):

144
$$T = \|\Lambda_0^{-1}(\bar{X}_n - u)\|_2^2, \quad (2)$$

145 where $\bar{X}_n = \sum_{i=1}^n X_i/n$ denotes the observed microbiome profile in ideal sewage, u denotes the population mean
146 for the catchment area, and Λ_0 denotes the diagonal of the covariance matrix, $\Sigma_0 = (\sigma_{ij})_{1 \leq i, j \leq p}$, i.e., where
147 $\sigma_i = \sigma_{ii}^{1/2}$, $1 \leq i \leq p$.

148 In developing this new method, we utilize the variance change by population, but without an *a priori* assumption
149 about the gut bacterium species taxon abundance distributions and the covariance between species. Our analysis
150 showed that the T statistic changed monotonically with increasing population size, indicating the promise of a

151 population estimation model (Figure 3B). While our T statistic is based on Hotelling's T-squared statistic¹⁷, which is
152 often used in multivariate T-tests, we extend its application beyond the problem of the significance of the multivariate
153 means.

154 Leveraging our T statistic, we build a maximum likelihood model to estimate population size from an unseen
155 sample. Here, the parameter of interest is the population size, the test statistic is our T statistic, and a point estimate is
156 made by maximizing the likelihood of the observed T statistic in that sample. We performed training and validation
157 using 50% of the human microbiome data and held out the rest of the data for testing. Our model achieved a training
158 error as low as 0.13 (mean absolute percentage error, MAPE) when up to 250 features are included. The model's
159 training performance increased when more features were included, yet the validation error did not profoundly change
160 with an increasing number of features (Figure 3C). Upon training and validation, we chose the top 120 OTUs and
161 tested the performance of the tuned model on a test set held out during training/validation. The model's MAPE was
162 0.21 (Figure 3D and E, testing errors at each population size evaluated are provided in Table S3), indicating that our
163 model generalized well across different hosts. We then used all data and tuned hyperparameter to acquire a final
164 model. When applying the final model on the same testing data, our model achieved a testing error of 0.162 (Figure
165 3D).

166 It is worth noting that in this algorithm, for each population size, we need to calculate the sampling distribution
167 of the T statistic only once, hence it is not time-consuming, regardless of the true population size. We also note that
168 an RF regression model could not be trained in a reasonable time on the same dataset, even with high-performance
169 computing (Methods). Our model performed remarkably better than a ten-fold cross-validated RF regression model
170 utilizing a reduced dataset, which gave an MAPE of 0.320, while the training time for our model was only a fraction
171 of that of the RF regression model (Figure S1).

172 **MicrobiomeCensus detects human population size differences in sewage samples**

173 With the newly developed population model, we set out to apply our model to sewage samples. Ideally, we
174 would like to apply the model to samples generated from a fully controlled experiment with known human hosts
175 contributing at a given time, yet such an experiment presents logistic challenges beyond the field's current abilities.
176 Instead, we applied our model to sewage samples taken using one of two methods, either a snapshot (grab sample)
177 sample taken from the sewage stream over 5 minutes, or an accumulative (composite sample) taken at a constant rate
178 over 3 hours during morning peak human defecation¹⁸ (Figure S2). We hypothesized that the composite samples
179 would represent more people than snapshot samples. Taking grab samples, we sampled at 1-hr intervals at one
180 manhole (n=25); using the accumulative method, we sampled at three campus buildings (classroom, dormitory, and

181 family housing) multiple times over three months (n=76). To remove sequences possibly contributed by the water,
182 we applied a taxonomic filter to retain families associated with the gut microbiome and normalized the species
183 abundance by the retained sequencing reads (Methods, Table S4). We applied our final model to the sewage data
184 set. Our model estimated 1-9 people's waste was captured by the snapshot samples (mean=3, s.d.=3), and 3-27
185 people were represented by the composite samples (mean=9, s.d.=7), where the composite samples represented
186 significantly more people ($p < 0.0001$) (Figure 3F). The hypothesis that composite samples represent more people
187 is well supported by our model results.

188 Sub-species diversity in sewage samples reflects adding microbiomes from multiple people

189 Independent from our MicrobiomeCensus model, we found that certain human gut-associated species were
190 frequently detected in sewage samples by using shotgun metagenomics, e.g., *Bacteroides vulgatus*, *Prevotella copri*,
191 and *Eubacterium rectale*. Further, their sub-species diversity, as indicated by nucleotide diversity and the number of
192 polymorphic sites in housekeeping genes, was dramatically higher in sewage samples than in the gut microbiomes
193 of individual human subjects (Figure 4A-F and Supplementary Results).

194 To examine the effect of increasing population size on sub-species genetic variation in representative gut-
195 associated microbial species, we simulated aggregate human gut samples using a sample without replacement
196 procedure and computed the nucleotide diversity and numbers of polymorphic sites for the aggregate samples at
197 different population sizes. This resulted in SNV profiles from 64 species. Our simulation showed increases in both
198 nucleotide diversity and the number of polymorphic sites as more human gut samples were aggregated (Figure 3 G
199 and H). For instance, the nucleotide diversity and number of polymorphic sites in *Eubacterium rectale* increased
200 from 0.029 (s.d. 0.026) to 0.149 (s.d. 0.002) and 64 (s.d. 54.33) to 1274 (s.d. 18.41), respectively, when the
201 population size increased from 1 to 300. Further, the number of polymorphic sites strongly correlated with the
202 population size (Pearson correlation coefficient > 0.8) in 49 of the 64 species (Table S7), suggesting the potential that
203 the SNV profiles of a wide range of gut species could be developed into feature space for population size estimation.
204 Our simulation further shows that the number of polymorphic sites increased with population size more slowly than
205 nucleotide diversity, indicating its potential to reflect more subtle changes in population size (Figure 4G and H).
206 Despite the need for further model developments, the analysis here shows the potential of the sub-species diversity
207 of gut anaerobes as a feature space to be developed into a population size estimation model, independent from the
208 taxon abundance-based model described here.

209 Discussion

210 MicrobiomeCensus showed excellent performance in our simulation benchmark. In particular, the study subjects
211 that we utilized in the training and testing sets are random samples out of 1,110 men and women across a wide range
212 of age without any stratification, hence the model's testing performance indicates its generalizability. Our study is
213 founded on the observations that healthy gut microbiomes are resilient, with inter-individual variability outweighing
214 variability within individuals over time^{19–21}. There are caveats to our approach; potentially, diets and regional effects
215 on human microbiome composition could introduce noises to the prediction²². In applications to sewage, future
216 studies on water matrix effects should be performed to understand and further account for noises from the sewage
217 collection network. In further validating and applying the model, we recognize that both the responsible engagement
218 of citizen scientists and privacy protection are crucial for advancing sewage-based ecological and public health
219 studies.

220 Utilizing sewage to understand population-level dynamics of human symbionts presents an interesting scenario
221 of sampling meta-communities. The gut microbiomes of humans can be viewed as local communities, and gut
222 microbiomes of people living in a neighborhood could be viewed as a kind of regional meta-communities, because
223 these communities are linked by dispersal that can take place among people connected by social networks and
224 through a shared built environment. The meta-community framework is considered to provide useful new conceptual
225 tools to understand the largely unexplained inter-personal variability in gut microbiomes, with expansions of the
226 theory to consider biotic interactions suggested by Miller, Svanbäck, and Bohannan²³. In considering a sample of
227 meta-communities, Leibold and Chase asked provocatively “what is a community?” and observed that the definition
228 of a community is usually “user-defined and could be context-dependent” –“one community ecologist might explore
229 the patterns of coexistence and species interactions among species within a delimited area, the other might ask the
230 same question but define a community that encompasses more area and thus types of species, as well as different
231 degrees of movements and heterogeneity patterns”²⁴. The ambiguity between samples of meta-communities and
232 local communities is particularly challenging for samples of microbial communities, because dispersal boundaries are
233 difficult to delineate. Despite the conceptual importance, empirical methods that explicitly test whether a microbiome
234 sample is a sample of a meta-community or a local community has not been available. MicrobiomeCensus directly
235 distinguishes samples of meta-communities and local communities by enumerating the number of hosts contributing
236 to a microbiome. While MicrobiomeCensus is trained on gut microbiome data, the procedure may have wide
237 applications in other microbial ecosystems.

238 In response to the COVID-19 pandemic now affecting the human population globally, sewage-based virus

239 monitoring is underway(Bivins et al. 2020). Our analysis calls for attention to the denominator used in normalizing
 240 the biomarker measurements. While in practice, loading-based population proxies such as the copy numbers of
 241 pepper mild mottle viruses are used to normalize data generated from sewage, such proxies would likely have high
 242 error at the neighborhood level because of their variability in human fecal viromes (10^6 - 10 virions per gram of dry
 243 weight in fecal matters)¹¹, while they likely have reasonable performance when the population size is sufficiently
 244 large and the means of biomarker loadings converge under the Central Limit Theorem. Thus, the relationships
 245 between sewage measurements and true viral prevalence in small populations are hard to establish despite the
 246 need for sentinel population studies. Our model has immediate application in detecting false negatives, because it
 247 alerts us to the possibility that an absence of biomarkers might be caused by a sewage sample that under-represents
 248 a population. With further developments incorporating local training data, the model can potentially generate a
 249 denominator that can help turn biomarker measurements into estimates of prevalence and enable the application of
 250 epidemiology models at finer spatio-temporal resolutions.

251 Methods

252 **Proof.** Recall X_1, X_2, \dots, X_n are independent and identically distributed (i.i.d) random vectors in \mathbb{R}^p with mean
 253 $u \in \mathbb{R}^p$ and variance $\text{Var}(X_i) = \Sigma_0 \in \mathbb{R}^{p \times p}$. (Note $X_i = (X_{i1}, \dots, X_{ip})^\top$ and in our application, each X_{ij} represents the
 254 value for person i and bacteria j .) Denote $\Sigma_0 = (\sigma_{ij})_{1 \leq i, j \leq p}$ and $\sigma_i = \sigma_{ii}^{1/2}$, $1 \leq i \leq p$. Let $\Lambda = \text{diag}(\sigma_i, 1 \leq i \leq p)$.
 255 If both Σ_0 and u are given, then we can construct our statistic:

$$256 \quad T_n = \|\Lambda_0^{-1}(\bar{X}_n - u)\|_2^2,$$

257 where $\bar{X}_n = \sum_{i=1}^n X_i/n$. For notation's simplicity, consider $Y_i = \Lambda_0^{-1}(X_i - u)$, the normalized version of X_i . Then

$$258 \quad T_n = \|\bar{Y}_n\|_2^2,$$

259 where $\bar{Y}_n = \sum_{i=1}^n Y_i/n$. Then the covariance matrix Σ for Y_i is the correlation matrix of X_i , with expression $\Sigma =$
 260 $\Lambda^{-1}\Sigma_0\Lambda^{-1}$.

261 We need the following condition on Y_i for the main theorem.

262 **ASSUMPTION 1** *Let $\delta > 0$. Assume*

$$263 \quad K_\delta^{2+\delta} = \mathbb{E} \left| \frac{\|Y_1\|_2^2 - p}{\|\Sigma\|_F} \right|^{2+\delta} < \infty, \quad \text{and} \quad D_\delta^{2+\delta} = \mathbb{E} \left| \frac{Y_1^\top Y_2}{\|\Sigma\|_F} \right|^{2+\delta} < \infty. \quad (3)$$

264 REMARK 1 *Above conditions naturally hold if $Y_{1i}, 1 \leq i \leq p$, are independent and $\max_{1 \leq i \leq p} \|Y_{1i}\|_{2+\delta} \leq M < \infty$.*

265 *Actually under this setting, $\Sigma = I_p$ and thus $\|\Sigma\|_F = p^{1/2}$. By Lemma 1,*

266
$$\mathbb{E} \left(| \|Y_1\|_2^2 - p |^{2+\delta} \right) \leq (1+\delta)^{2+\delta} \left(\sum_{i=1}^p \|Y_{1i}^2 - 1\|_{2+\delta}^2 \right)^{(2+\delta)/2} \lesssim p^{(2+\delta)/2},$$

267 *where the constant in \lesssim only depends on δ . This justifies K_δ part in condition (3). Similarly by Lemma 1,*

268
$$\mathbb{E} \left(|Y_1^\top Y_2|^{2+\delta} \right) \leq (1+\delta)^{2+\delta} \left(\sum_{i=1}^p \|Y_{1i} Y_{2i}\|_{2+\delta}^2 \right)^{(2+\delta)/2} \lesssim p^{(2+\delta)/2}.$$

269 *And thus D_δ part in condition (3) holds.*

Theorem 1 *Assume Assumption 1 holds with some $\delta > 0$, also assume*

270
$$K_0^2/n + K_\delta^q/n^{q-1} + D_\delta^q/n^{\delta/2} \rightarrow 0, \quad (4)$$

where $q = 2 + \delta$. Then for $Z \sim N(0, \Sigma)$, we have

271
$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}(nT_n \leq t) - \mathbb{P}(\|Z\|_2^2 \leq t) \right| \rightarrow 0.$$

272 It is worth noticing that under settings in Remark 1, condition (4) holds. The proof follows from Theorem 2.2 in
273 Xu et al.²⁵.

274 Based on above theorem, we would have the following result for justification of our sub-sampling approach. Let
275 A_1, A_2, \dots, A_J be i.i.d uniformly sampled from the class $\mathcal{A}_m = \{A : A \subset \{1, 2, \dots, n\}, |A| = m\}$. Assume the sampling
276 process are independent from our data $(X_i)_i$.

277 Let

278
$$\hat{F}_m(t) = J^{-1} \sum_{j=1}^J \mathbf{1}_{m\|\Lambda_0^{-1}(\bar{X}_{A_j} - \bar{X}_n)\|_2^2 \leq t(1-m/n)},$$

279 where $\bar{X}_{A_j} = \sum_{i \in A_j} X_i / m$. Following result comes from Theorem 3.5 in Xu et al.²⁵.

280 **Theorem 2** *Assume Assumption 1 holds with some $\delta > 0$, also assume $m \rightarrow \infty$, $m = o(n)$ and (4) is satisfied with n
replaced by m . Then for $J \rightarrow \infty$, we have*

281
$$\sup_{t \in \mathbb{R}} |\hat{F}_m(t) - \mathbb{P}(\|Z\|_2^2 \leq t)| \rightarrow 0.$$

282 Therefore under conditions in Theorems 1 and 2, we have

283
$$\sup_{t \in \mathbb{R}} |\hat{F}_m(t) - \mathbb{P}(mT_m \leq t)| \rightarrow 0. \quad (5)$$

284 Note T_m is an infeasible estimator since u and Λ_0 are typically unknown. Therefore we need to estimate u and Λ_0 ,
285 using our data X_1, \dots, X_{n_0} where n_0 is the number of observations we have. Consider the estimate

286
$$\hat{u} = \bar{X}_{n_0}, \quad \text{and} \quad \hat{\Lambda}_{0,j}^2 = \sum_{i=1}^{n_0} (X_{i,j} - \bar{X}_{n_0,j})^2 / n_0, \quad 1 \leq j \leq p,$$

287 where $\Lambda_{0,j}$ is the j th entity of Λ_0 . If X_i has heavy tail, we can also consider robust m-estimator for \hat{u} and $\hat{\Sigma}_0$, see for
288 example, Catoni²⁶.

289 **LEMMA 1 (BURKHOLDER²⁷, RIO²⁸)** *Let $q > 1$, $q' = \min\{q, 2\}$. Let $D_T = \sum_{t=1}^T \xi_t$, where $\xi_t \in \mathcal{L}^q$ are martingale
differences. Then*

290
$$\|D_T\|_q^{q'} \leq K_q^{q'} \sum_{t=1}^T \|\xi_t\|_q^{q'}, \text{ where } K_q = \max \{(q-1)^{-1}, \sqrt{q-1}\}.$$

291 **Bootstrap procedure.** Below we describe the bootstrap procedure we use to approximate the distribution
292 of T for different census counts. Recall that X_1, \dots, X_m represents arrays of taxon relative abundances in the gut
293 microbiome of human subject $1, \dots, m$, and T is defined in (Eq. 2).

294 Step 1. Estimate the population mean, \hat{u} , and diagonal matrix, $\hat{\Lambda}_0$, from a sample human gut microbiome.

295 Step 2. For each census count N , generate X_1^*, \dots, X_m^* which is equivalent to drawing a simple random sample
296 with replacement from $\{X_1^*, \dots, X_m^*\}$. Compute \hat{T}_1^* on the resulting bootstrap sample.

297 Step 3. Repeat Step 2 many times, B , (herein 10,000 times) to get $\hat{T}_1^*, \dots, \hat{T}_B^*$.

298 Step 4. Estimate the distribution of \hat{T}^* at census count N , using a Gaussian kernel.

299 Step 5. Repeat Steps 2-4 for all the census counts $1, \dots, N$ considered, herein integers from 1 to 300. It should
300 be noted that per Theorem 2 we require bootstrap sample size much smaller than total sample size, thus up to
301 300-person samples were simulated here because the gut microbiome dataset we utilized consisted of a total of 1010
302 people. The range can be expanded if a larger dataset is available.

303 **Maximum Likelihood Estimation.** We use a maximum likelihood estimation (MLE) procedure to achieve
304 point estimates of the population size from a new mixture sample, X_0 . The MLE procedure first computes T_0 from
305 X_0 , and then computes the likelihoods that T_0 was drawn from population sizes from 1 to B , respectively, using the

306 sampling distributions generated from the bootstrap procedures described above. Next, the population size that
307 yields the highest likelihood is chosen. For a point estimate N , the confidence interval for the population size, N , is
308 $[1, N]$.

309 **Model training, validation, and testing.** We synthesized a mixed data set from a gut microbiome dataset of
310 1,135 healthy human hosts from the Lifelines Deep study¹⁶, which was the largest single-center study of population-
311 level human microbiome variations from a single sequencing center at the time of this study. The data set consisted of
312 661 women and 474 men. We considered OTUs defined by 99% similarity of partial ribosomal RNA gene sequences
313 (Methods of OTU clustering are described in detail in Supplementary Methods). After quality filtering, we retained
314 1,110 samples that had more than 4,000 sequencing reads/sample. We split the entire dataset approximately in half,
315 using 550 subjects to generate the training/validation set and the other 550 subjects to generate the test set. We then
316 used the aforementioned ideal sewage mixture approach to generate synthetic populations of up to 300 individuals,
317 which is the relevant range for population estimation in upstream sewage. The training error was computed using the
318 entire training data set. Five repeated holdout validations using a 50-50 split in the training set were performed to
319 tune the hyperparameter for feature selection. The training and cross-validation errors were evaluated at integers
320 from 1 to 100, using the error definition:

$$321 \quad \delta = \left| \frac{N_{predicted} - N_{actual}}{N_{actual}} \right| \times 100\%, \quad (6)$$

322 and the model's performance across all the population sizes was characterized by the mean absolute percentage error
323 (MAPE):

$$324 \quad MAPE = \frac{1}{n} \sum_{n=1}^{100} \left| \frac{N_{predicted} - N_{actual}}{N_{actual}} \right| \times 100\%. \quad (7)$$

325 After training and validation, the hyperparameter (in this case, the top k abundant OTUs) that yielded the best
326 performance in the validation step was used in the model. The tuned model was then tested on the test set. Our
327 synthetic sewage microbiome approach captured the actual microbiome variation among individual hosts and
328 demonstrated the model's generalizability.

329 **Human gut microbiome 16S rRNA amplicon data source.** The single-person and multi-person microbiome
330 data were drawn from a gut microbiome dataset of 1,135 healthy human hosts from the Lifelines Deep study¹⁶,
331 which was the largest study of population-level human microbiome variations from a single sequencing center at
332 the time of this study. The data set consisted of 661 women and 474 men. We considered operational taxonomic

333 units defined by 99% similarity of partial ribosomal RNA gene sequences. After quality filtering, we retained 1,100
334 samples that had more than 4,000 sequencing reads/sample. The rarefaction depth was chosen to balance sample
335 size and sequencing depth.

336 **16S rRNA gene amplicon sequencing data analysis.** Operational taxonomic units defined at 99% sequencing
337 similarity were generated from the combined dataset by first denoising the samples with DADA2²⁹, and then
338 clustering the outputted exact sequence variants with the q2-vsearch plugin of QIIME2³⁰. Taxonomic assignments
339 were performed using a multinomial naïve Bayes classifier against SILVA 132^{31,32}. All 16S rRNA gene amplicon
340 analyses were performed in the QIIME2 platform (QIIME 2019.10)³³.

341 **Species Abundance Distribution.** We examined the relationships between the performances of several widely
342 used SAD models and the number of contributors (population size) to a multi-person microbiome. Multi-person
343 microbiomes were generated by sampling N individuals from the quality-filtered gut microbiome 16S rRNA dataset
344 and summing the abundances of the same taxa. At each population size, 10,000 repeats were performed. The repeats
345 were chosen according to the constraints of computational efficiency. The SADs evaluated included the Lognormal,
346 Poisson Lognormal, Broken-stick, Log series and the Zipf model, which were shown to have varied successes
347 in predicting microbial SADs¹⁵. We examined the fit using a rank-by-rank approach as previously described by
348 Shoemaker et al.¹⁵. First, maximum-likelihood coefficients for each of the SADs described above were estimated
349 using the R package sads³⁴. Next, SADs were predicted using each model, and tabulated as RADs. Then, we used
350 a least-squares regression to assess the relationship between the performance of the predicted SADs against the
351 observations and recorded the coefficient of determination (R-squared). Last, R-squared values from model fits of
352 each SAD model were summarized as the means, and the models that resulted in the highest R-squared values for
353 each simulated community were recorded.

354 **Field data.** We conducted a field sampling campaign, collecting sewage samples daily at manholes near three
355 buildings (two dormitory buildings and one office building) on the campus of Massachusetts Institute of Technology.
356 Seventy-six sewage samples were collected through a continuous peristaltic pump sampler operated at the morning
357 peak (7-10 a.m. near the dormitory buildings and 8-11 a.m. near the office building) at 4 mL/min for 3 hours.
358 Wastewater was filtered through sterile 0.22-µm mixed cellulose filters to collect microbial biomass. Environmental
359 DNA was extracted with a Qiagen PowerSoil DNA extraction kit according to the manufacturer's protocol. The
360 DNA was amplified for the V4 region of the 16S rRNA gene and sequenced in a Miseq paired-end format at
361 the MIT BioMicro Center, according to a previously published protocol³⁵. Included as a comparison are a set of
362 snapshot sewage samples taken using a peristaltic pump sampler at 100 mL/min for 5 minutes over a day (10 a.m.

363 on Wednesday April 8, 2015, to 9 a.m. on Thursday April 9, 2015). The sampling methods for snapshot samples are
364 described in detail by Matus et al.⁴

365 **Application to sewage data.** The 16S rRNA gene amplicon sequencing data from the field sewage samples
366 were trimmed to the same region, 16S V4 (534-786) with the LifeLines Deep data using Cutadapt 1.12³⁶. Forward
367 reads were trimmed to 175bps, and reverse reads were first trimmed to 175bps and then further trimmed to 155bps
368 during quality screening. We created a taxonomic filter based on the composition of the gut microbiome data set,
369 which consisted of the abundant family-level taxa that accounted for 99% of the sequencing reads in the human gut
370 microbiome data set, and excluded those that might have an ecological niche in tap water (*Enterobacteriaceae* and
371 *Burkholderiaceae*). This exclusion resulted in 25 bacterial families and one archaeal family in our taxonomic filter,
372 including *Lachnospiraceae*, *Ruminococcaceae*, *Bifidobacteriaceae*, *Erysipelotrichaceae*, *Bacteroidaceae*, and others
373 (Table S4). We applied our taxonomic filter to the sewage sequencing data, which retained 73.9% of the sequencing
374 reads. This retention rate is consistent with our previous report of the human microbiome fraction in residential
375 sewage samples⁴. We then normalized the relative abundance of taxa against the remaining sequencing reads in each
376 sample. Welch's two-sample t-tests were performed to retain the OTUs whose means did not differ significantly
377 from the human microbiome data set ($p > 0.05$).

378 **Deployment of generic machine learning models.** Logistic regression, support vector machine, and random
379 forest classifiers were employed to perform the classification task for population sizes of 1, 10, and 100. Model
380 training, cross-validation, and testing were performed using the R Caret platform with the default setting³⁷. For
381 the support vector machine, the radial basis function kernel was employed. Ten-fold cross-validation and five
382 repeats were performed for all the models considered. Model performance was evaluated using accuracy, sensitivity,
383 and specificity. Based on the classifier performance, the RF regression model was used for comparison with
384 our new model's performance. Initially, we trained the model using the same training data set used in training
385 our maximum likelihood model, however, the computation was infeasible, even with a 36-thread, 3TB-memory
386 computing cluster. We then introduced gaps in the population size range, using populations from the vector
387 $(1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 150, 180, 240, 300)^T$ while maintaining the same sample size at
388 each population size (10,000 samples). The training was performed in R Caret, using 10-fold cross-validation. Ten
389 variables were randomly sampled as candidates at each split, mtry=10. The performance was evaluated using the
390 same testing set that was used to evaluate the maximum likelihood model.

391 **References**

- 392 1. Maritz, J. M., Ten Eyck, T. A., Elizabeth Alter, S. & Carlton, J. M. Patterns of protist diversity associated with
393 raw sewage in New York City. *The ISME J.* **13**, 2750–2763, [10.1038/s41396-019-0467-z](https://doi.org/10.1038/s41396-019-0467-z) (2019). Number: 11
394 Publisher: Nature Publishing Group.
- 395 2. Berchenko, Y. *et al.* Estimation of polio infection prevalence from environmental surveillance data. *Sci. Transl.
396 Medicine* **9**, [10.1126/scitranslmed.aaf6786](https://doi.org/10.1126/scitranslmed.aaf6786) (2017). Publisher: American Association for the Advancement of
397 Science Section: Reports.
- 398 3. Newton, R. J. *et al.* Sewage Reflects the Microbiomes of Human Populations. *mBio* **6**, [10.1128/mBio.02574-14](https://doi.org/10.1128/mBio.02574-14)
399 (2015).
- 400 4. Matus, M. *et al.* 24-hour multi-omics analysis of residential sewage reflects human activity and informs public
401 health. *bioRxiv* 728022, [10.1101/728022](https://doi.org/10.1101/728022) (2019). Publisher: Cold Spring Harbor Laboratory Section: New
402 Results.
- 403 5. Medema, G., Heijnen, L., Elsinga, G., Italiaander, R. & Brouwer, A. Presence of SARS-CoV-2 RNA
404 in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The
405 Netherlands. *Environ. Sci. & Technol. Lett.* [10.1021/acs.estlett.0c00357](https://doi.org/10.1021/acs.estlett.0c00357). Publisher: American Chemical Society.
- 406 6. Manor, Y. *et al.* Intensified environmental surveillance supporting the response to wild poliovirus type 1 silent
407 circulation in Israel, 2013. *Euro Surveillance: Bull. Eur. Sur Les Maladies Transm. = Eur. Commun. Dis. Bull.*
408 **19**, 20708, [10.2807/1560-7917.es2014.19.7.20708](https://doi.org/10.2807/1560-7917.es2014.19.7.20708) (2014).
- 409 7. Murakami, M., Hata, A., Honda, R. & Watanabe, T. Letter to the Editor: Wastewater-Based Epidemiology Can
410 Overcome Representativeness and Stigma Issues Related to COVID-19. *Environ. Sci. & Technol.* **54**, 5311,
411 [10.1021/acs.est.0c02172](https://doi.org/10.1021/acs.est.0c02172) (2020).
- 412 8. CDC. National Wastewater Surveillance System (2020).
- 413 9. Daughton, C. G. Real-time estimation of small-area populations with human biomarkers in sewage. *The Sci.
414 Total. Environ.* **414**, 6–21, [10.1016/j.scitotenv.2011.11.015](https://doi.org/10.1016/j.scitotenv.2011.11.015) (2012).
- 415 10. Fazel-Zarandi, M. M., Feinstein, J. S. & Kaplan, E. H. The number of undocumented immigrants in the United
416 States: Estimates based on demographic modeling with data from 1990 to 2016. *PloS One* **13**, e0201193,
417 [10.1371/journal.pone.0201193](https://doi.org/10.1371/journal.pone.0201193) (2018).

418 11. Zhang, T. *et al.* RNA Viral Community in Human Feces: Prevalence of Plant Pathogenic Viruses. *PLOS Biol.* **4**,
419 e3, [10.1371/journal.pbio.0040003](https://doi.org/10.1371/journal.pbio.0040003) (2005). Publisher: Public Library of Science.

420 12. Yang, Z., Xu, G., Reboud, J., Kasprzyk-Hordern, B. & Cooper, J. M. Monitoring Genetic Population Biomarkers
421 for Wastewater-Based Epidemiology. *Anal. Chem.* **89**, 9941–9945, [10.1021/acs.analchem.7b02257](https://doi.org/10.1021/acs.analchem.7b02257) (2017).

422 13. Putman, R. J. & Putman, R. *Community Ecology* (Springer Science & Business Media, 1994). Google-Books-ID:
423 xwjjMzGUvgwC.

424 14. Šizling, A. L., Storch, D., Šizlingová, E., Reif, J. & Gaston, K. J. Species abundance distribution results
425 from a spatial analogy of central limit theorem. *Proc. Natl. Acad. Sci. United States Am.* **106**, 6691–6695,
426 [10.1073/pnas.0810096106](https://doi.org/10.1073/pnas.0810096106) (2009).

427 15. Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. *Nat. Ecol.*
428 & Evol.

429 & Evol.

430 **1**, 1–6, [10.1038/s41559-017-0107](https://doi.org/10.1038/s41559-017-0107) (2017). Number: 5 Publisher: Nature Publishing Group.

431 16. Zhernakova, A. *et al.* Population-based metagenomics analysis reveals markers for gut microbiome composition
432 and diversity. *Science* **352**, 565, [10.1126/science.aad3369](https://doi.org/10.1126/science.aad3369) (2016). Publisher: NIH Public Access.

433 17. Hotelling, H. & Frankel, L. R. The Transformation of Statistics to Simplify their Distribution. *The Annals Math.*
434 *Stat.* **9**, 87–96 (1938). Publisher: Institute of Mathematical Statistics.

435 18. Heaton, K. W. *et al.* Defecation frequency and timing, and stool form in the general population: a prospective
436 study. *Gut* **33**, 818–824, [10.1136/gut.33.6.818](https://doi.org/10.1136/gut.33.6.818) (1992).

437 19. David, L. A. *et al.* Host lifestyle affects human microbiota on daily timescales. *Genome Biol.* **15**, R89,
438 [10.1186/gb-2014-15-7-r89](https://doi.org/10.1186/gb-2014-15-7-r89) (2014).

439 20. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience
440 of the human gut microbiota. *Nature* **489**, 220–230, [10.1038/nature11550](https://doi.org/10.1038/nature11550) (2012).

441 21. Mehta, R. S. *et al.* Stability of the human faecal microbiome in a cohort of adult men. *Nat. Microbiol.* **3**,
442 347–355, [10.1038/s41564-017-0096-0](https://doi.org/10.1038/s41564-017-0096-0) (2018).

443 22. Johnson, A. J. *et al.* Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. *Cell Host*
444 & *Microbe* **25**, 789–802.e5, [10.1016/j.chom.2019.05.005](https://doi.org/10.1016/j.chom.2019.05.005) (2019).

445 23. Miller, E. T., Svanbäck, R. & Bohannan, B. J. M. Microbiomes as Metacommunities: Understanding Host-
Associated Microbes through Metacommunity Ecology. *Trends Ecol. & Evol.* **33**, 926–935, [10.1016/j.tree.2018.09.002](https://doi.org/10.1016/j.tree.2018.09.002) (2018).

446 24. Leibold, M. A. & Chase, J. M. *Metacommunity Ecology, Volume 59* (Princeton University Press, 2017).

447 Google-Books-ID: IEkqDwAAQBAJ.

448 25. Xu, M., Zhang, D. & Wu, W. B. L2 asymptotics for high-dimensional data. *arXiv preprint arXiv:1405.7244*
449 (2014).

450 26. Catoni, O. Challenging the empirical mean and empirical variance: a deviation study. In *Annales de l'IHP*
451 *Probabilités et statistiques*, vol. 48, 1148–1185 (2012).

452 27. Burkholder, D. L. Sharp inequalities for martingales and stochastic integrals. *Astérisque* **157**, 75–94 (1988).

453 28. Rio, E. Moment inequalities for sums of dependent random variables under projective conditions. *J. Theor.*
454 *Probab.* **22**, 146–163 (2009).

455 29. Callahan, B. J. *et al.* Dada2: high-resolution sample inference from illumina amplicon data. *Nat. methods* **13**,
456 581–583 (2016).

457 30. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for
458 metagenomics. *PeerJ* **4**, e2584, [10.7717/peerj.2584](https://doi.org/10.7717/peerj.2584) (2016).

459 31. Quast, C. *et al.* The SILVA ribosomal RNA gene database project: Improved data processing and web-based
460 tools. *Nucleic Acids Res.* **41**, D590–596, [10.1093/nar/gks1219](https://doi.org/10.1093/nar/gks1219) (2013).

461 32. Bokulich, N. A. *et al.* Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's
462 q2-feature-classifier plugin. *Microbiome* **6**, 90, [10.1186/s40168-018-0470-z](https://doi.org/10.1186/s40168-018-0470-z) (2018).

463 33. Bolyen, E. *et al.* Reproducible, interactive, scalable and extensible microbiome data science using qiime 2. *Nat.*
464 *biotechnology* **37**, 852–857 (2019).

465 34. Prado, P. I., Miranda, M. D. & Chalom, A. *sads: Maximum Likelihood Models for Species Abundance*
466 *Distributions* (2018). R package version 0.4.2.

467 35. Preheim, S. P. *et al.* Computational methods for high-throughput comparative analyses of natural microbial
468 communities. *Methods Enzymol.* **531**, 353–370, [10.1016/B978-0-12-407863-5.00018-6](https://doi.org/10.1016/B978-0-12-407863-5.00018-6) (2013).

469 36. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal* **17**,
470 10–12, [10.14806/ej.17.1.200](https://doi.org/10.14806/ej.17.1.200) (2011).

471 37. Kuhn, M. Building Predictive Models in R Using the caret Package. *J. Stat. Softw.* **028** (2008). Publisher:
472 Foundation for Open Access Statistics.

473 Acknowledgements

474 We thank Cho C. Yiu, David E Hingston, and Joseph S. Monteiro from the MIT Facilities department for assistance
475 with sewage sampling. We thank Noriko Endo, Sean Gibbons, Tami Lieberman, Xiaofang Jiang and Shijie Zhao for
476 valuable discussions. We thank Mariana Matus and Newsha Ghaeli for acquisition and access of 24-hr sewage time
477 series data. The sampling and sequencing experiments were performed with funding from the Kuwait Foundation
478 for Advancement of Sciences. The computational analyses were performed with resources provided by the WUSTL
479 McKelvey School of Engineering. Fangqiong Ling was partially supported by an Alfred P. Sloan Foundation
480 Microbiology of the Built Environment Postdoctoral Fellowship. Lin Zhang was supported by a Washington
481 University Faculty Startup Fund to Fangqiong Ling.

482 Author contributions statement

483 F.L. and E.J.A. designed the study; F.L. performed simulation; L.C. performed mathematical proofs; F.L., X.Y. and
484 L.Z. performed sequence analysis; F.L., S.I., C.Dai., and S.P. performed sewage experiments; C. Duvallet, K. F-M,
485 F.D. C.R. and E.J.A. coordinated the acquisition of sequencing data; F.L., L.C., and E.J.A wrote the manuscript.

486 Competing interests

487 E.J.A has an equity stake in Biobot Analytics. C. Duvallet is employed by Biobot Analytics.

488 Code and data availability

489 Source code will be made available through <https://github.com/linglab-washu/population-model> upon publication.
490 Sewage metagenomic data will be made available at National Center for Biotechnology Information Short Read
491 Archive at BioProject PRJNA683921 upon the time of publication.

492 Figure Legends

493 **Figure 1.** An ideal sewage mixture simulation shows the potential of microbiome taxon abundance profiles as
494 population census information sources. (A) We generated an “ideal sewage mixture” consisting of gut microbiomes
495 from different numbers of people. (B) Ranked abundance curves for gut microbiomes of one person and mixtures of
496 multiple people exhibit different levels of dominance and diversity. Blue lines show the rank abundance curves in
497 stool samples (one person), red lines show 10-person mixtures, and saffron lines show 100-person mixtures. In each
498 scenario, ten examples are shown. All samples were rarefied to the same sequencing depths (4,000 seqs/sample). (C)

499 The probability density function of the relative abundance of one taxon for different population sizes. OTU-2379,
500 a *Bifidobacterium* taxon, was used as an example. Maroon dashed lines indicate the sample means. (D) Multiple
501 taxa's abundance variances in one-person samples and 100-person samples. The dominant taxa are shown (top100)
502 and are sorted by their ranks in variance. (E) The ratios of the variances of one-person samples and 100-person
503 samples across dominant gut microbial taxa.

504 **Figure 2.** Classifier performance of models utilizing gut microbiome taxon abundances.

505 **Figure 3.** MicrobiomeCensus statistic definition, model training, validation, and application. (A) Example of
506 computing the T statistic. (B) Simulation results for T with different population sizes. Grey points are simulation
507 results. Red bars are means of 10,000 repeats performed for each population size. (C) Model training and tuning.
508 We built the MicrobiomeCensus model using our T statistic and a maximum likelihood procedure. The training
509 set consisted of 10,000 samples for population sizes ranging from 1-300, and 50% of the data were used to train
510 and validate the model. Training and validation errors from different feature subsets are shown. Training errors are
511 shown as red lines, and validation errors are shown as blue lines. (D) Model performance on simulation benchmark.
512 After training and validation, the model utilized the top 120 abundance features. Model performance was tested on
513 synthetic data generated from 550 different subjects not previously seen by the model. The training set consisted of
514 10,000 samples with population sizes from 1-300, and the testing set consisted of 10,000 repeats at the evaluated
515 population sizes. The training error, testing error, and the error of the final model are shown. (E) Model performance
516 evaluated using a testing set. Black solid dots indicate the means of the predicted values, and error bars indicate
517 the standard deviations of the predicted values. (F) Application of the microbiome population model in sewage.
518 Seventy-six composite samples (blue) were taken from three manholes on the MIT campus, and each sample was
519 taken over 3 hours during the morning peak water usage hours. Twenty-five snapshot samples (grey) were taken
520 using a peristaltic pump for 5 minutes at 1-hour intervals throughout a day.

521 **Figure 4.** Sub-species diversity in gut-associated bacterial species as a potential marker for human population
522 size. (A-F) Comparison of sub-species diversity of gut-associated bacteria in human gut microbiome samples
523 (LifelinesDeep) and MIT sewage samples. Nucleotide diversity and numbers of polymorphic sites were computed
524 from ten phylogenetic marker genes. (G) and (H) Simulation results showing intra-species diversity in response to
525 increasing population size, as represented by the number of polymorphic sites (G) and nucleotide diversity (H).

Figure 1.

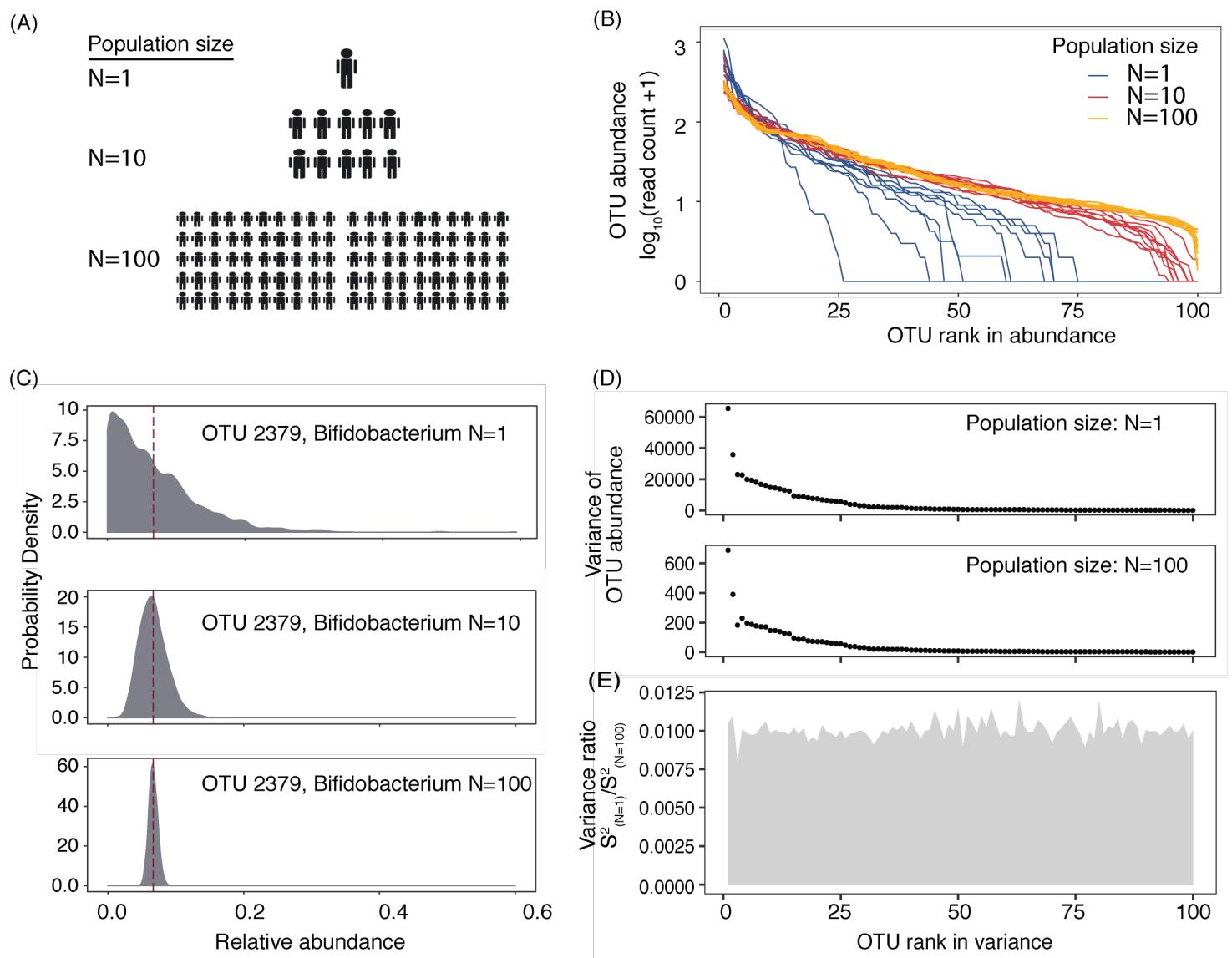


Figure 2.

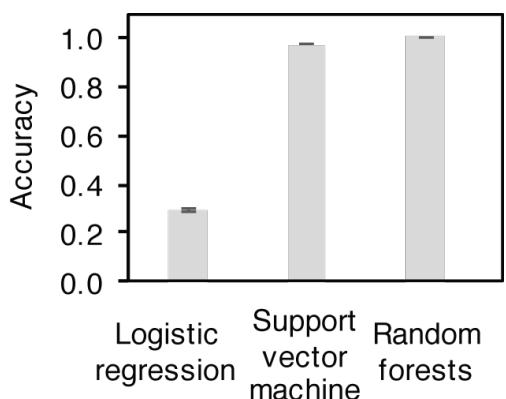
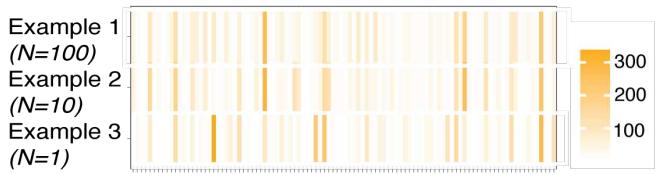


Figure 3.

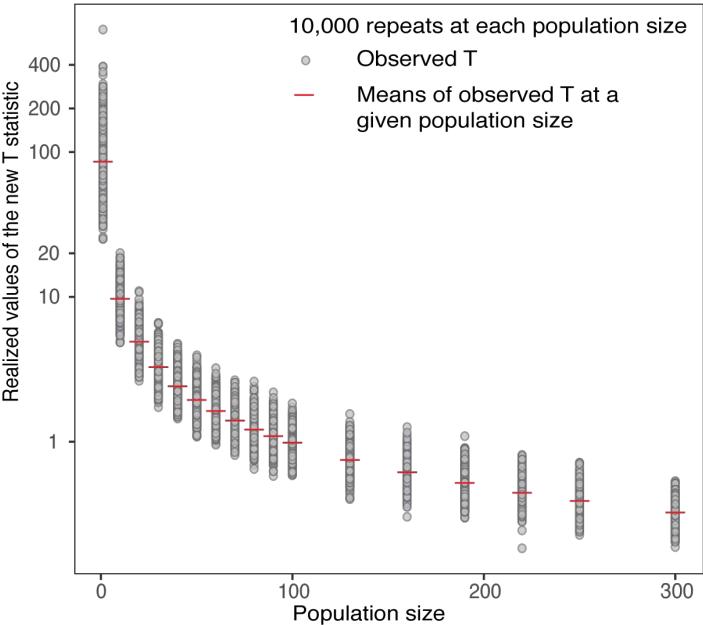
(A)

T statistic: $T = \left\| \Lambda^{-1} (\bar{X}_n - \bar{u}) \right\|_2^2$

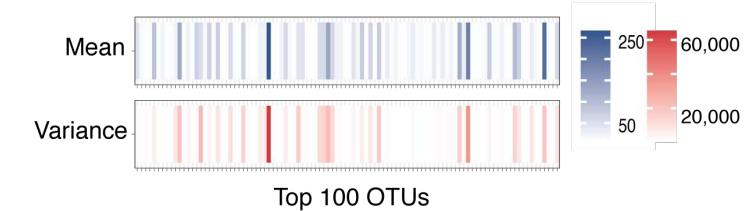
Input: taxon abundance in mixture samples



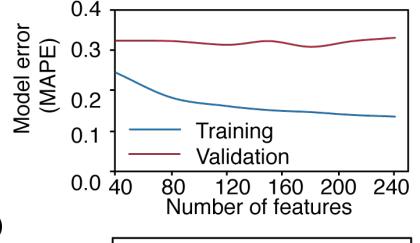
(B)



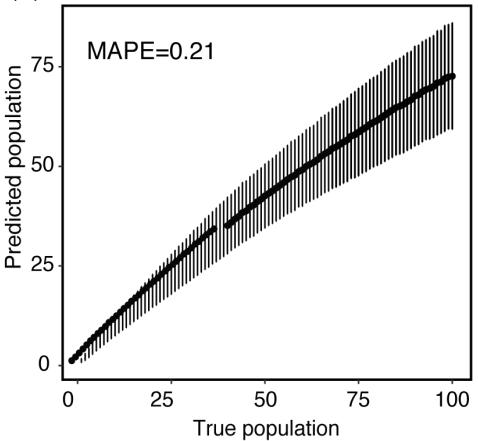
Population parameters of taxon abundance in human gut



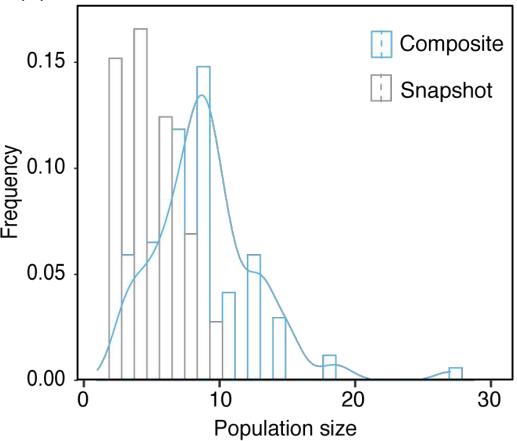
(C)



(E)



(F)



(D)

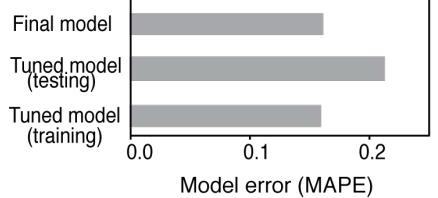


Figure 4.

