
Placeholder for

OUP logo oup.pdf

Placeholder for

journal logo

gigascience-

logo.pdf

GigaScience, 2017, 1–16

doi: xx.xxxx/xxxx

Manuscript in Preparation

Paper

PA P E R

Scalable Analysis of Multi-Modal Biomedical Data

Jaclyn Smith1, Yao Shi1, Michael Benedikt1 and Milos Nikolic2

1University of Oxford and 2University of Edinburgh

*jaclyn.smith@cs.ox.ac.uk

Targeted diagnosis and treatment options are dependent on insights drawn from multi-modal analysis of large-scale biomedical datasets. Advances in genomics

sequencing, image processing, and medical data management have supported data collection and management within medical institutions. These efforts have

produced large-scale datasets and have enabled integrative analyses that provide a more thorough look of the impact of a disease on the underlying system. The

integration of large-scale biomedical data commonly involves several complex data transformation steps, such as combining datasets to build feature vectors for

learning analysis. Thus, scalable data integration solutions play a key role in the future of targeted medicine. Though large-scale data processing frameworks

have shown promising performance for many domains, they fail to support scalable processing of complex datatypes. To address these issues and achieve scalable

processing of multi-modal biomedical data, we present TraNCE, a framework that automates the difficulties of designing distributed analyses with complex

biomedical data types. We outline research and clinical applications for the platform, including data integration support for building feature sets for classification.

We show that the system is capable of outperforming the common alternative, based on “flattening” complex data structures, and runs efficiently when alternative

approaches are unable to perform at all.

Key words: Nested data; Distributed processing; Spark; Query compilation; Multi-omics analysis; Multi-modal data integration;

Background

The affordability of genomic sequencing, the advancement of image process-

ing, and the improvement of medical data management have made the biomed-

ical field an interesting application domain for integrative analyses of complex

datasets. Targeted medicine is a response to these advances, aiming to tailor

a medical treatment to an individual based on their genetic, lifestyle, and en-

vironmental risk factors [21]. The reliability of such targeted treatments is

dependent on large-scale, multi-modal cohort-based analyses. This has moti-

vated improved data management and data collection within medical institu-

tions, and has also spurred consortium dataset collection and biobanking ef-

forts [10], which consolidate data sources from hundreds-of-thousands of pa-

tients and counting. Examples include 1000 Genomes [3], International Cancer

Genome Consortium (ICGC) [24], The Cancer Genome Atlas (TCGA) [55],

and UK BioBank [48]. Scalable data integration and aggregation solutions that

support joint inference on such large-scale datasets will play a key role in ad-

vancing biomedical analysis.

Modern biomedical analyses are pipelines of data access mechanisms and ana-

lytical components that operate on and produce datasets in a variety of complex,

domain-specific formats. Integrative analyses of complex datasets are difficult

to program, especially for large-scale data processing environments. To under-

stand these issues, we now overview multi-omics analysis, distributed process-

ing systems, and the challenges that arise when these two worlds collide.

Multi-omics analysis. Analyses that combine molecular measurements from

multi-omics data provide a more thorough look at the disease at hand, and the

relative impacts on the underlying system. For instance, cancer progression can

be determined by the accumulation of mutations and other genomic aberrations

within a sample [9].

Consider an integrative, multi-omics analysis that aims to identify driver genes

in cancer based on mutational effects and the abundance of gene copies in a

sample [60]. This analysis combines single-point, somatic mutations and gene-

level copy number information to calculate a likelihood score that a candidate

gene is a driver within each sample, known as a hybrid score. Candidate genes

are assigned to mutations based on the proximity of a mutation to a gene. In

a naive assignment, candidacy is established if the mutation lies directly on

a gene; however, mutations have been shown to form long-range functional

connections with genes [42], so candidacy can best be assigned based on a

larger flanking region of the genome.

To understand the complexities of such an integrative analysis, first consider the

data sources involved. The Genomic Data Commons (GDC) [17] provides pub-

lic access to clinical information (Samples), somatic mutation occurrences

(Occurrences), and copy number variation (CopyNumber). Assume ac-

cess to each of these data sources returns a collection of objects in JSON

(JavaScript Object Notation), a popular format for nested data, where [] de-

notes a collection type and { } denotes an object type [38].

The Samples data source returns metadata associated with cancer samples.

A simplified version of the schema contains a sample identifier (sid) and a

single attribute tumorsite that specifies the site of tumor origin; the type of

Samples is

[{ sid : string, tumorsite : string }]. (1)

The copy number variation (CNV) data source returns by-gene copy number

information for each sid; this is the number of copies of a particular gene

measured in a sample. The type of copy number information is:

[{ sid : string, gene : string, cnum : int }]. (2)

The Occurrences data source returns somatic mutations and associated an-

notation information for each sample. An occurrence represents a single, anno-

tated mutation belonging to a single sample. The type of Occurrences is:

1

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2017, Vol. 00, No. 0

Key Points

• Modern biomedical analyses are integrated pipelines of data access mechanisms and analysis components that operate on and produce datasets in a variety

of complex, domain specific formats.

• Scalable data integration and aggregation solutions that support joint inference on such large-scale datasets play a key role advancing biomedical analysis.

• Query compilation techniques that optimize nested data processing are essential for scaling multi-modal, biomedical analysis.

[{ sid : string, contig : string, start : int, end : int,

reference : string, alternate : string, mutationId : string,

candidates : [{ gene : string, impact : string,

sift : real, poly : real,

consequences : [{ conseq : string }] }] }]. (3)

The attribute candidates identifies a collection of objects that contain at-

tributes corresponding to the predicted effects a mutation has on a gene; i.e.

variant annotations sourced from the Variant Effect Predictor (VEP) [33]. The

impact attribute is a value from 0 to 1 denoting the estimated consequence a

mutation has to a gene based on sequence conservation. The sift and poly

attributes provide additional impact scores determined from the Sift [52] and

PolyPhen [1] prediction software. These scores estimate the influence a mu-

tation has on functional changes to proteins based on amino acid substitution.

The consequences for each candidate gene contain categorical assignments

of mutation impact based on sequence ontology (SO) terms [13].

VEP provides a distance flag that specifies the upstream and downstream range

used to identify gene-based annotations (i.e. the flanking region). This distance

flag specifies the size of candidates, since more genes are assigned as can-

didates with a larger flanking regions. A larger value can be used to determine

long-range functional connections.

The Samples and CopyNumber data source types map perfectly into a re-

lational scenario, such as a table in SQL (Structured Query Language) or a

DataFrame in Pandas [51]. With all attributes of scalar type (integer, string,

etc.), these data sources are considered flat. The Occurrences data source

has a nested collection candidates on the first level and another nested col-

lection consequences on the second level. When a collection has attributes

of collection type, it is referred to as a complex value or a nested collection.

The hybrid score calculation operates on both flat and nested inputs, associat-

ing sample specific copy number values with the impact measurements nested

within Occurrences based on gene and sid. After some preprocessing,

such an association can be performed with a join in SQL, or a merge in Pan-

das. The results are then summed to return a collection of candidate genes

with corresponding hybrid-scores for each sample. We denote this analysis as

SGHybridScores with a nested output type:

[{ sid : string, scores : [{ gene : string, score : real }] }]. (4)

Hybrid scores can be used as risk scores for genes, or these values could be fur-

ther integrated with additional datasets, such as the interaction of genes in net-

work. The scores can also be further grouped by tumor site, returning sample

groups associated to each tumor site. The tumor-grouped hybrid score analysis,

denoted as TGHybridScores, returns a two-level, nested output with type:

[{ tumorsite : string, samples : [{ sid : string, scores :

[{ gene : string, score : real }] }] }] (5)

An integrative analysis with nested input and output types, such as the hybrid

score analysis, is not straightforward to implement in popular programming

languages. Further, this task is exacerbated when the data is large.

Distributed processing frameworks. Large-scale, distributed data process-

ing platforms such as Apache Spark [59], Apache Flink [4], and Apache

Hadoop [12] have become indispensable tools for modern data analysis. The

wide adoption of these platforms stems from powerful functional-style APIs

Compiled on: Monday 14th December, 2020.

Draft manuscript prepared by the author.

COORDINATOR

Occurrences
[{”s1”, 1, 100, 101, A, C, rs123,

[{”gene1”, .82, .75, .64,

[{“upstream”}]},

{”gene2”, .67, .45, .81,

[{“downstream”}]},

{”gene3”, .68, .74, .62,

[{“5_prime_utr”}]}

]},

…]

Occurrences

[{”s2”, 2, 200, 202, T, G, rs345,

[{”gene1”, .28, .65, .31,

[{“upstream”}]}

],

}…]

Occurrences

[{”s3”, 3, 300, 303, C, T, rs678,

[]}, …]

Copy

Number

. . .

WORKER 1

Copy

Number
Copy

Number

WORKER 2 WORKER N

User

App

Figure 1. Set up of a Spark cluster with distributed representation of Occurrences and CopyNumber cached in memory across N worker nodes. User applications are submitted to the coordinator,

which delegates tasks to the worker nodes to support distributed execution. Figure 2 is an example of a user application.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

Smith et al. | 3

1 case class FlatOccurrence(sid: String, gene: String,

impact: Double)

2

3 Occurrences.flatMap(o =>

4 o.candidates.map(t =>

5 FlatOccurrence(o.sid, t.gene, t.impact))

6).join(CopyNumber, Seq("sid", "gene"))

7 .groupByKey(s => s.sid)

Figure 2. Example Spark application that groups somatic mutations and copy number information

by sample.

(Application Programming Interface) that allow programmers to express com-

plex analytical tasks while abstracting distributed resources and data paral-

lelism. These systems use an underlying complex data model that allows for

data to be described as a collection whose values may themselves contain col-

lections. Despite natively supporting nested data, distribution strategies often

fail to process nested collections at scale, especially for a small amount of top-

level tuples or large inner collections. Further, data scientists who work on lo-

cal analysis pipelines often have difficulties translating analyses into distributed

settings. To better understand these issues, we now provide an overview of a

distributed processing framework using Spark as the representative system.

Distributed processing frameworks work on top of a cluster of machines where

one is designated as the central, or coordinator node, and the other nodes are

workers. Figure 1 shows the setup of a Spark cluster; an application is sub-

mitted to the coordinator node, which then delegates tasks to worker nodes

in a highly distributed, parallel fashion. A user never communicates with a

worker node directly. A distributed processing API communicates high-level

analytical tasks to the coordinator while abstracting data distribution and task

delegation from the user.

Spark uses a specialized data structure for representing distributed data, known

as a Resilient Distributed Dataset (RDD) [58]. An RDD is a collection of dis-

tributed objects, where a partition is the smallest unit of distribution. When a

flat data source, such as Samples and CopyNumber, is imported into Spark

each item of the collection is allocated in round-robin fashion to each partition.

The same import strategy is followed for a nested dataset, with the nested at-

tributes persisting in the same partition as their parent. Figure 1 displays how

Occurrences would be stored in memory across worker nodes, distributing

top-level objects with candidates and consequences nested within the

same location. Such a top-level distribution strategy ensures all nested values

are found within the same partition as their top-level parent.

Spark provides an API for performing batch operations over distributed col-

lections. Figure 2 presents a Scala program that uses the Spark API to asso-

ciate CopyNumber to the relevant gene and samples in Occurrences, then

groups the result by sample.

The program starts by defining a case class, i.e. a Scala object, denoted

FlatOccurrences with type [{ sid : string, gene : string, impact :

real }]. The flatMap operation (lines 3-5) works locally at each parti-

tion, iterating over top-level objects in Occurrences and navigating into

candidates to create instances of FlatOccurrence objects. The join

operator (line 6) merges tuples from the result of flatMap and CopyNumber

based on the equality of (sid, gene) values; these are the keys of a key-based

partitioning guarantee that sends all matching values to the same partition. The

process of moving data to preserve a partitioning guarantee is known as shuf-

fling. The final groupByKey operation (line 7) groups the joined result based

on unique sid values; this is a key-based operation that sends all tuples with

matching sid values to the same partition, producing a final output type of:

[{ sid : string, [{ gene : string, impact : real, cnum : int }] }].

Challenges of distributed, multi-omics analyses. Several issues arise when

writing programs over distributed, nested collections. First, few top-level val-

ues hinder distribution strategies. For example, grouping TCGA-based hybrid

scores by the 63 represented tumor sites represented will distribute objects

across no more than 63 partitions. This is poor resource utilization for a cluster

that supports more partitions. Second, large inner collections, such as candidate

genes based on a large flanking region, can overwhelm the physical storage of

a partition. This leads to time-consuming processes of moving values in and

out of memory. Both of these issues can lead to skew related bottlenecks that

make certain tasks run considerably longer than others.

Further complications arise when joining on a nested attribute, such as the

join between Occurrences and CopyNumber in the hybrid-score analysis.

Since Occurrences is distributed, the gene join keys are nested within each

partition, and thus are not directly accessible without iterating inside the nested

collections. Even an iteration inside candidates cannot directly perform

the conditional join filter on CopyNumber because it is itself distributed. An

attempt to reference a distributed resource within a transformation of another

distributed resource will result in error because a single partition is not aware

of the other distributed resources and has no power to delegate tasks to work-

ers. The solution is to replicate CopyNumber to each worker node, which

can be too expensive, or rewrite to flatten Occurrences and bring gene at-

tributes to the top-level. Flattening can yield incorrect results; for example, the

flatMap in Figure 2 will lose all occurrences that have empty candidates

collections. In general, manual implementations of flattening procedures that

ensure correctness are non-trivial [15].

Related work. A wide range of tools are available to assist biological analy-

ses. Workflow engines ease the process of connecting many external software

systems while producing repeatable analyses; examples include Galaxy [2],

Cromwell [53], Arvados [11], and Taverna [37]. Corresponding workflow lan-

guages describe imperative pipelines requiring manual optimizations to each

individual pipeline component. In contrast, high-level, declarative languages

better insulate pipeline writers from platform details, while also providing the

ability to leverage database-style query compilation and query optimization

techniques. Many genomic-specific languages have been developed that target

distributed processing platforms, such as GenoMetric [31], Hail [20], Adam

[32, 36], and Glow [18]. These provide advantages for a particular class of

transformations, but would not suffice for pipelines that integrate a variety of

relational and nested data types.

Proposed solution. To address these issues and achieve scalable, distributed

processing of multi-modal biomedical data, we propose TraNCE (Transform-

ing Nested Collections Efficiently). TraNCE is a compilation framework

that automates the difficulties of designing distributed analyses with complex,

biomedical data types and provide specific optimizations to ease the difficulty

of handling nested collections. The system uses query compilation and op-

timization techniques and is designed for arbitrary, multi-modal analyses of

complex data types.

The paper proceeds as follows. The Methods section outlines the components

of the TraNCE platform, describing the major components by means of exam-

ple. We overview several omics-based use cases that have been trialed with our

framework, including performance metrics in the Results section. Finally, we

conclude with a summary of contributions and future work.

Methods

TraNCE platform

TraNCE is a compilation framework that transforms declarative programs

over nested collections into distributed execution plans. This section discusses

several key aspects of the platform, including program compilation, program

and data shredding, and skew-resilience. Program compilation leverages a

high-level, declarative source language that allows users to describe programs

over nested collections. The framework insulates the user from the difficulties

of handling nested collections in distributed environments.

Two compilation routes are provided, standard and shredded, that apply opti-

mizations while transforming input programs into executable code. Standard

compilation uses unnesting [15] techniques to apply optimal flattening methods

in order to compute on nested values. This compilation route automatically han-

dles introducing NULL values and unique identifiers that preserve correctness.

Shredded compilation optimizes the standard route with shredding techniques

that transform a program operating on nested collections into a collection of

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

4 | GigaScience, 2017, Vol. 00, No. 0

programs that operate over flat collections [7, 56], thus enabling parallelism

beyond top-level records.

The result of each compilation route is an Apache Spark program that is suited

for distributed execution. We apply dynamic optimizations at runtime that over-

come skew-related bottlenecks. Skew-resilience prevents the overloading of a

partition at anytime during the analysis to avoid such bottlenecks in execution,

and maintain better overall distribution of the data.

Figure 3 provides a schematic of the framework, including interaction with a

Spark cluster for the shredded compilation method. The Spark cluster setup for

the standard compilation method is the classic setup depicted in Figure 1.

The next subsections overview each of the framework components, drawing

specific attention to multi-omics analysis. We begin with an introduction to the

TraNCE language in the High-level language subsection. The next subsec-

tions, Standard compilation and Shredded compilation, review the compilation

routes. This section concludes with a note on Skew-resilient processing and

Code generation, in there respective subsections.

High-level Language

For describing biomedical analyses as high-level collection programs,

TraNCE provides a language that is a variant of nested relational calculus

(NRC) [6, 56]. Here we provide a walk-through of the language using several

example programs over the Occurrences, CopyNumber, and Samples

data sources. The full syntax of the TraNCE language is provided in [44].

TraNCE programs operate on collections of objects. Objects are tuples of

values for a fixed set of attributes, with all objects of one collection having the

same type. Attributes can be of basic scalar type (integer, string, etc.) or of

collection type, thus providing support for nested data. We denote collection

types with [] and object types with { } to follow JSON syntax. For example,

the type of Occurrences at (3) is a collection that itself contains collections,

with candidates and consequences corresponding to collection types

and all other attributes as scalars.

The main advantage of the TraNCE language is the ability to manipulate

nested collections and return results with nested output type, while abstract-

ing out the complications of nested data distribution from the user. Consider

the following program, assigned to OccurrProj via the ⇐ operator, that

requests only specific attributes from the Occurrences data source:

1 OccurrProj ⇐

2 for o in Occurrences union

3 [{mutationId := o.mutationId, candidates :=

4 for t in o.candidates union

5 [{gene := t.gene, impact := t.impact}]}]

The OccurrProj program iterates over the top-level of Occurrences, pre-

serves the mutationId attribute, and creates a nested candidates collec-

tion by iterating over the candidates collection and preserving the gene

and impact attributes.

The language allows one to specify associations between data sources on nested

attributes without explicitly defining a flattening operation. For example, the

OccurCNV program associates copy number information based on both a top-

level attribute and a nested attribute of Occurrences.

1 OccurCNV ⇐

2 for o in Occurrences union

3 [{mutationId := o.mutationId, candidates :=

4 for t in o.candidates union

5 for c in CopyNumber union

6 if o.sid == c.sid && t.gene == c.gene then

7 [{gene := t.gene, impact := t.impact, cnum := c.cnum}]}]

The OccurCNV program iterates over Occurrences following a structure

similar to the previous program. The iteration over CopyNumber is specified

in the second level, providing immediate access to the nested gene attribute

and allowing the user to define an association between sid and gene. The

result returns the original structure of the first two levels of Occurrences,

annotating each of the candidate genes for every mutation with the relevant

copy number information.

Standard arithmetic operations and built-in support for aggregation are pro-

vided in the language. The sumByvalue
key (e) function can be used for counting

and summing based on a unique key. The key and value parameters can ref-

erence any number of attributes from the input expression e. sumBy can be

applied at a specific level as long as the input e has no nesting. For exam-

ple, the OccurAgg program sums the product of copy number variation and

mutational impact for every mutation in occurrences.

1 OccurAgg ⇐

2 for o in Occurrences union

3 [{mutationId := o.mutationId, candidates :=

4 sumBy
score
gene (

5 for t in o.candidates union

6 for c in CopyNumber union

7 if o.sid == c.sid && t.gene == c.gene then

8 [{gene := t.gene, score := t.impact ∗ c.cnum}])}]

The OccurAgg program extends the previous programs, returning the sum of

the product of copy number and variant information based on the unique genes

in candidates. The sumBy is applied to the first level of Occurrences

with gene as key and score as value. With all attributes of scalar type, the

input corresponding to e has a flat type [{ gene : string, score : real }].

All programs so far have followed the structure of the Occurrences data

source, grouping the genes associated to each mutation and each sample. If the

goal is to create candidate gene collections per sample, then we can addition-

ally group by sample using the groupBykey(e) function. The next program

SGHybridScores will create hybrid-scores for each sample, summing the

combination of annotation information and copy number information across all

candidate genes for all mutations associated to the top-level sample.

1 SGHybridScores ⇐

2 groupBy
gene,score
sid

(

3 sumBy
score
sid,gene(

4 for o in Occurrences union

5 for t in o.candidates union

6 for c in CopyNumber union

7 if o.sid == c.sid && t.gene == c.gene then

8 [{sid := o.sid, gene := t.gene,

9 score := t.impact ∗ (c.cnum + 0.01) ∗ t.sift ∗ t.poly}]))

The expression inside of sumBy captures the navigation into candidates,

associating each candidate gene at this level with CopyNumber on the gene

and sid attribute. The product of all these measurements produces the interme-

diate score for each of the candidate genes within the candidates collection

for each mutation. The final hybrid-scores are calculated by aggregating all in-

termediate scores across all mutations within a sample, returning a hybrid-score

associated to each unique gene for each sample using sumBy. The result of

this aggregation is further grouped with groupBy to return the hybrid scores

associated to every sample, producing output type:

[{ sid : string, scores : [{ gene : string, score : real }] }].

The Samples table is used to group the sample-grouped hybrid score results

further by tumor site to produce TGHybridScores:

1 TumorSites ⇐

2 dedup(for s in Samples union

3 [{tumorsite := s.tumorsite}])

4

5 TGHybridScores ⇐

6 for t in TumorSites union

7 [{tumorsite := t.tumorsite, samples :=

8 for s in Samples union

9 if t.tumorsite == s.tumorsite then

10 [{sid := s.sid, scores := sumBy
score
gene (

11 for o in Occurrences union

12 if s.sid == o.sid then

13 for a in o.candidates union

14 for c in CopyNumber union

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

Smith et al. | 5

Occurrences_top
[{”s1”, 1, 100, 101, A, C, rs123, 1}, …]

Shredding

Code Generation Skew Resilience

Standard Compilation Shredded Compilation

TraNCE

Query

Occurrences_candidates
[{1, ”gene1”, .82, .75, .64, 1},
{1, ”gene2”, .67, .45, .81, 2},

{1, ”gene3”, .68, .74, .62, 3}, …]

Occurrences_candidates_

consequences
[{1, “upstream”}, {2, “downstream”},

{3, “5_prime_utr”}, …]

Copy

Number

Samples

Spark Workers

Spark Coordinator

Spark Code

Figure 3. System architecture of TraNCE, presenting two compilation routes that result in executable code. The Spark cluster provides a schematic representation of the shredded compilation route,

where the shredded inputs of Occurrences are cached in memory across worker nodes.

15 if o.sid == c.sid && a.gene == c.gene then

16 [{gene := t.gene, score :=

17 t.impact ∗ (c.cnum + 0.01) ∗ t.sift ∗ t.poly}])}]}]

The tumor-grouped hybrid score program first iterates over the Samples data

source to create a unique set of tumor sites with dedup. dedup is a func-

tion that returns a collection with all duplicates removed. The second part

of the program TGHybridScores iterates over these unique groups to cre-

ate top-level groupings based on tumorsite. The program enters the first

level at samples where it proceeds to iterate over Samples creating first-

level groupings based on sid. The second level begins at scores which

performs the sumBy aggregation described in the previous program. The re-

sult of the TGHybridScores program is every sample-based hybrid score

further grouped by tumor site with the output type:

[{ tumorsite : string, samples : [{ sid : string, scores :

[{ gene : string, score : real }] }] }].

The TraNCE programs described in this section highlight the advantages of

using a variation of NRC to describe analyses over nested collections. Each

analysis is similar to pseudo-code where the user describes actions on nested

collections, without considering implementation details that are specific to a

distributed environment.

Standard compilation

The standard compilation route translates TraNCE programs into executable

Spark applications, while handling the difficulties of flattening procedures. Fig-

ure 3 provides a high-level schematic of the standard pipeline. This compilation

is based on unnesting techniques that automate the flattening process by auto-

matically inserting NULL and unique identifiers (ID) to preserve correctness

[15]. The unnesting process starts from the outermost level of a program, re-

cursively defining a Spark execution strategy. A new nesting level is entered

when an object contains an expression of collection type. Before entering the

new nesting level, a unique ID is assigned to each object at that level. At each

level, the process maintains a set of attributes, including the unique IDs, to use

as the prefix for the key in grouping and sumBy operations.

Consider running the standard compilation for the TGHybridScores anal-

ysis. The Spark application generated for this program starts by iterat-

ing over Occurrences values, flattening each of the nested items inside

candidates with flatMap. Prior to this, Occurrences is indexed to

ensure tracking of top-level objects. If candidates is an empty collec-

tion, lower level attributes exist as null values. The result of flattening has

gene attributes that are accessible at top level. The flattened result is joined

with CopyNumber based on sid and gene attributes, and the product as-

sociated to score is calculated. This result is further joined with Samples

and grouped by sample using the groupByKey operation. A final call to

groupByKey groups again by tumorsite to produce the final result.

Projections are pushed throughout the execution strategy, ensuring that only

used fields are persisted. The framework can also introduce intermediate ag-

gregations, such as combining impact, sift, and poly in Occurrences

prior to joining with CopyNumber. The standard route is the basis for our

shredded variant and skew-resilient processing module.

Shredded compilation

The shredded compilation route takes the same high-level TraNCE program

as in the standard route, extending compilation to support a more succinct data

representation. Analytics pipelines, regardless of final output type, produce in-

termediate nested collections that can be important in themselves: either for use

in multiple followup transformations, or because the pipeline is expanded and

modified as data is explored. The shredded pipeline ensures scalability through-

out the duration of the pipeline, removing the need to introduce intermediate

grouping operations with the help of this succinct representation.

The shredded compilation employs the shredding transformation, which trans-

forms programs that operate on nested data into a set of programs that operate

on flat data; the resulting set of programs is the shredded program. Nested

inputs are therefore required to be encoded as a set of flat relations; this is

the shredded input. The shredded input and shredded program are provided

as a succinct representation, where any attribute corresponding to a nested col-

lection is referenced in the flat program using an identifier, known as a label.

Labels encode necessary information to reassociate the levels of the shredded

input. Reassociation is required when a specific level of the shredded program

navigates over multiple levels of the shredded input, or when the output is re-

turned as a nested type.

Figure 3 provides a high-level overview of the shredded compilation route,

which produces a Spark application that defines the shredded program. The

shredding transformation is hidden from the user and a user never interacts

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

6 | GigaScience, 2017, Vol. 00, No. 0

Sum genotypes for

all variants on

gene per sample

Sum impact for all

mutations in

pathway per

sample

Genes

Gene Burden

(GMB)

Classification

Pandas DataFrame

TrANCE Framework External Libraries

Chi-Square

Feature

Selection

One-vs-rest

Train (70 %)

Test (30 %)

Binary

Train (30%)

Test (70 %)

Multi-class

neural network

Merge
Occurrences

candidates

consequences

&

&

Pathways

genes

&

Pathway Burden

(PMB)

Variants

genotypes

&

Associate genes to variants

genotypes

&

Group by gene

sample

burden

&

Pathways

genes associated

to mutations

&

Group by pathway

sample

burden

&

Pathways

tumor site

burden

&

Predictor Labels

Figure 4. Workflow diagram representing the burden-based analyses for both genes and pathways, and downstream classification problem. The results of the pathway burden analysis feed into a

classification analysis using multi-class and one-vs-rest methods to predict tumor of origin.

with shredded representations directly. Further details of the shredding trans-

formation are described in [44].

Given the transformation to flat representation, the shredded compilation route

supports distribution beyond top-level attributes. The succinct representation

supports a more light-weight execution that replaces upper and lower-level at-

tributes with labels; this results in reduced data transfer by means of shuffling

and provides support for localized operations, which are operations that can be

directly applied to the level specified in the input program. Shredding can be

necessary for scaling for a small number of top-level objects and large/skewed

inner collections [44]. Further performance benefits are presented in the Re-

sults section. We now continue with an explanation of shredding by example.

The shredded representation of Occurrences consists of three data sources:

• a top-level source of Occurrences, denoted Occurrences_top that

returns data with a flat type

[{ sid : string, contig : string, start : int, end : int,

reference : string, alternate : string,

mutationId : string, candidates : Label }],

• the first-level source, denoted Occurrences_candidates, which has

a flat datatype extending the type of candidates with a label attribute

of Label type

[{ label : Label, gene : string, impact : real,

sift : real, poly : real, consequences : Label }],

• and the second-level source which extends the type of

consequences with a label attribute of Label type, denoted

Occurrences_candidates_consequences

[{ label : Label, conseq : string }].

The relationships between the shredded representations can be conceptual-

ized as a database schema, with labels representing foreign-key dependencies.

The candidates attribute in Occurrences_top is then a foreign key

that references the primary key of Occurrences_candidates at label.

Therefore, the reconstruction of nested output, known as unshredding, can be

achieved by reassociating the shredded sources based on these relationships.

TraNCE then translates the nested program into a series of programs that op-

erate on these flat inputs; i.e. constructs the shredded program. We now review

the shredding transformation on the TGHybridScores example.

Recall that the tumor-grouped hybrid score analysis starts with the dedup op-

eration that returns a collection of distinct tumor sites that will later be used

for grouping. The first program returned from the shredding transformation

is the shredded program TumorSites_top. The expression assigned to

TumorSites operates over a flat input and returns flat output, so the shred-

ding transformation essentially returns the identity:

1 TumorSites_top ⇐

2 dedup(for s in Samples_top union

3 [{tumorsite := s.tumorsite}])

The shredding transformation continues on the expression assigned to

TGHybridScores, returning a series of three programs; collectively, the

shredded TGHybridScores program. The first program represents the top-

level collection, TGHybridScores_top with the samples attribute con-

taining only a label reference.

1 TGHybridScores_top ⇐

2 for t in TumorSites_top union

3 [{tumorsite := t.tumorsite,

4 samples := NewLabel({tumorsite := t.tumorsite})}]

The type of TGHybridScores_top is: [{ tumorsite : string,

samples : Label }]. There are no nested collection attributes, so this is

indeed a flat collection. Further, the label of the samples attributes encodes

only the necessary information to reconstruct the nested output, which in this

case is the binding of tumorsite.

The program TGHybridScores_samples defines the succinct representa-

tion of the first-level expression, represented by the following program:

1 for s in Samples_top union

2 [{label : NewLabel({tumorsite := s.tumorsite}),

3 tumorsite := t.tumorsite, sid := s.sid,

4 scores := NewLabel({sid := s.sid})}])

The type of TGHybridScores_samples is: [{ label : Label, sid :

string, scores : Label }].

The label expression defines a label that encodes the same information as

the samples field in TGHybridScores_top. This is the same database-

style representation seen with the shredded inputs. The label attribute is

the primary key of TGHybridScores_samples and TGHybridScores

_top references this with a foreign key at samples. The scores attribute

encodes only the sid information that is needed in the next-level expression.

The program TGHybridScores_samples_scores defines the succinct

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

Smith et al. | 7

representation of the lower-level expression, represented by the final program:

1 sumBy
score
sid,gene(

2 for o in Occurrences_top union

3 for t in Occurrences_candidates union

4 if o.candidates == t.label then

5 for c in CopyNumber_top union

6 if o.sid == c.sid && t.gene == c.gene then

7 [{sid := NewLabel({sid := o.sid}), gene := t.gene,

8 score := t.impact ∗ (c.cnum + 0.01) ∗ t.sift ∗ t.poly}])

The type of TGHybridScores_samples_scores is: [{ label : Label,

gene : string, score : real }].

The TGHybridScores_samples_scores program navigates the top and

first level of the shredded representation, using a conditional to reassociate

these two shredded representations based on their label attributes. The shred-

ded representation allows nested operations to work directly on the level as-

signed in the input program. This is an example of a localized operation that

results in light-weight execution of nested data, removing the need to carry

around redundant data.

The three programs associated to TGHybridScores are important for main-

taining distribution of the nested values during program evaluation. The first

program defines a collection of tumor site information; this avoids distributing

the data based on a small number of top-level tuples. The second program de-

fines a collection of sample information, further ensuring the distribution of the

lowest level of nesting. The final program defines the bulk of the analysis, iso-

lating the aggregation to the level where it is specified in the input program, and

enabling execution of the aggregate without carrying around extra information

from the parent.

Skew-Resilient Processing

Analytical pipelines often contain processes that group items based on a shared

attribute, such as the grouping by tumor site in tumor-grouped analysis. The

execution of lines 6-7 of TGHybridScores will move all data belonging

to a specific tumor site to the same node. A TCGA-based Occurrences

data source will contain significantly more samples for certain tumor sites than

others; for example, there are 1100 patients associated to the breast cancer

dataset (BRCA) and 51 patients associated to the lymphoma dataset (DLBC).

The grouping operation will move all mutations associated to the 1100 BRCA

patients to the same node and the whole of DLBC to another node. This will

result in extreme imbalances of data across nodes leading to two main issues.

First, the movement of a large amount of data to the same location could com-

pletely overwhelm the resources on that node - which is likely the case for

breast cancer data. Second, any downstream computation of these groups will

lead to significant bottlenecks in execution time; a simple count operation over

the 444000 BRCA occurrences takes 32x that of the 8115 somatic occurrences

of DLBC. Regardless of the specific operation, these distribution issues are a

consequence of skew. Skew-related issues can easily burden an analysis and

can be hard for high-level programmers to diagnose.

Skew is a consequence of key-based partitioning, sending all values with the

same key to the same partition. The framework uses a sampling procedure to

identify skew-related bottlenecks and automatically handles the distribution of

those values at runtime. Given that the shredded representation ensures dis-

tribution of inner-collections, the shredded compilation method better handles

skew-related issues that arise due to large nested collections and/or top-level

distribution. Both pipelines leverage skew-handling methods that maintain

proper distribution of values associated to heavy keys. The skew-handling pro-

cedure, in general, is beyond the scope of this paper. Further details on the

skew-handling methods can be found in [44].

Code generation

The code generation stage translates a TraNCE program into a parallel data

flow described in the Spark collection API, such as the application in Figure 2.

Input and output collections are modeled as Spark Datasets, which are strongly-

typed, special instances of the RDDs. Datasets are used because the alternative

encoding – using RDDs of case classes – incurs much higher memory and

processing overheads [43]. Datasets map to relational schemas and also allow

users to explicitly state which attributes are used in each operation, providing

valuable meta-information to the Spark optimizer.

Since nested inputs are represented as a collection of flat relations in the shred-

ded pipeline, the shredded representation of data sources is merely a collection

of Spark Datasets. The tables representing the nested levels contain a label col-

umn (label) as key; these collections have a label-based partitioning guaran-

tee, which is a key-based partitioning guarantee where all values associated to

the same label reside on the same partition. Top-level collections that have not

been altered by an operator have no partitioning guarantee and are distributed

by the default, round-robin strategy.

The code generator can produce both Spark applications and Apache Zeppelin

notebooks. Spark applications generate a single application file that can be exe-

cuted via command-line. Notebooks can be imported into the Apache Zeppelin

web-interface where users are able to further interact with the outputs of the

generated code. Notebook generation was designed to provide initial support

for users to interface with external libraries, such as pyspark [39], scikit-learn

[40], and keras [27]. The notebooks rely on Zeppelin to translate Scala Datasets

into Pandas DataFrames for easier interaction with machine learning and other

advanced statistical packages. This is merely a first step towards integrating

more advanced analytics in the system.

Results

This section presents a collection of TraNCE programs, coupled with perfor-

mance metrics, that illustrate the different features of the platform. The first

use case is a single-omics analysis that builds mutational burden-based feature

sets for use in external learning frameworks. The second use case is a multi-

omics analysis pipeline that identifies driver genes in cancer, using nested input

and constructing nested intermediate results to return flat output. The first two

use cases focus on research applications. The third use case focuses on clinical

applications and is designed to mimic requests a clinician could make from a

user-interface that supported multi-omics data integration.

The following sections provide details for each use case on the TraNCE plat-

form. We present the performance of each use case using the standard and

shredded compilation routes, where standard compilation is used as a repre-

sentative of flattening methods. Previous results have shown that the standard

compilation of TraNCE out performs several external competitors, including

SparkSQL [43]. To reflect the reality of compute resources, the first use case is

executed with a smaller, single-node environment and the second two use cases

on a larger, mutli-node cluster. We now provide an overview of the additional

data sources leveraged in these use cases, and proceed with use case descrip-

tion and runtime performance. The final section presents an overview of how

the shredded representation can leverage sharing.

Input data sources

At this point we have presented three data sources used in biomedical analy-

ses: Occurrences, CopyNumber, and Samples. Here, we describe the

additional inputs for each use case and their data types.

Variants. The Variants data source is based the VariantContext [22] ob-

ject, used to represent variants from a Variant Call Format (VCF) file. This

data structure represents one line, i.e. one variant, from a VCF file. Variants

are identified by chromosome, position, reference and alternate alleles, and

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

8 | GigaScience, 2017, Vol. 00, No. 0

associated genotype information for every sample. We use an integer-based

categorical assignment to genotype calls to support analyses; 0 is homozygous

reference with no mutated alleles, 1 is heterozygous with 1 mutated allele, and

2 is homozygous alternate with 2 mutated alleles. The type of Variants is:

[{ contig : string, start : int, reference : string, alternate : string,

genotypes : [{ sid : string, call : int }] }].

Somatic mutations. Somatic mutations are stored in the GDC in Mutation

Annotation Format (MAF), which is a flat datadump that includes a line for

every mutation across all samples. The type of Mutations is:

[{ sid : string, contig : string, start : int, end : int,

reference : string, alternate : string, mutationId : string }]

Variant Annotations. The variant annotations come from the VEP software,

which takes as input mutation information either in VCF or MAF format and

returns top-level mutation information augmented with two additional levels

of gene and mutational impact information. The overall structure is similar

to the Occurrences data source (3), except VEP returns a unique set of

variant annotations that are not associated to a specific sample. The type of the

Annotations data source is:

[{ contig : string, start : int, end : int,

reference : string, alternate : string, mutationId : string,

candidates : [{ gene : string, impact : string,

sift : real, poly : real,

consequences : [{ conseq : string }] }] }].

Protein-protein interaction network. This Network input is derived from

the STRING [50] database, which provides a likelihood score of two proteins

interacting in a system. The network is represented with a top-level node object

and a nested bag of edges. Each edge object contains an edge protein and a set

of node-edge relationship measurements. The type of Network is:

[{ nodeProtein : string, edges :

[{ edgeProtein : string, distance : int }] }].

Gene expression. Gene expression measurements are derived by comparing

transcript counts in an aliquot to a reference count. The expression measure-

ment is a normalized count, Fragments Per Kilobase of transcript per Million

mapped read (FPKM). The type of GeneExpression is:

[{ aliquot : string, gene : string, fpkm : real }].

Pathway. Pathways are represented as a set of genes. Pathway information

is downloaded as a list of curated gene sets from The Molecular Signatures

Database (MSigDB) [34, 47]. The type of Pathway is:

[{ pathway : string, genes : [{ gene : string }] }].

Sample Metadata. The Samples input maps samples to their aliquots; for

the sake of these use cases sidmaps to a patient and aliquot associates each

biological sample taken from the patient. Note that this is an extend version of

Samples introduced at (1). The type of Samples is:

[{ sid : string, aliquot : string, tumorsite : string }].

Sequence Ontology. The SOImpact input is a table derived from the se-

quence ontology [13] that maps a qualitative consequence to a quantitative

consequence score (conseq). This is a continuous measurement from 0 to

1, with larger values representing more detrimental consequences. The type of

SOImpact is:

[{ conseq : string, value : real }].

Biomart Gene Map. The Biomart gene map input is exported from [41].

It is a map from gene identifiers to protein identifiers. This map is required

to associate genes from Occurrences and CopyNumber to proteins that

make up Network. The type Biomart is:

[{ gene : string, protein : string }].

Positional Gene Map. Gene mapping files provide the positional location of

a gene on a genome, which is a combination of chromosome, start, and end

position provided from a General Transfer Format (GTF) file. Each line of the

0

5000

10000

15000

20000

10k 200k 400k 600k 800k 1100k

R
u

n
ti

m
e

 (
se

c
o

n
d

s)

Number of Variants

Standard (Gene) Shred (Gene)

Standard (Pathway) Shred (Pathway)

Figure 5. Performance comparison between the standard and shredded pipeline on gene and path-

way burden analysis 1000 Genomes dataset.

GTF file maps a gene with its positional information [5]. The GTF file can be

represented as a flat collection, Genes, with type:

[{ gene : string, description : string, contig : string,

gid : string, start : int, end : int, name : string }].

The above data sources are referenced throughout the use cases in the subsec-

tions that follow.

Application 1: Mutational Burden

High mutational burden can be used as a confidence biomarker for cancer ther-

apy [14, 8]. One key measure is tumor mutational burden (TMB), the total

number of somatic mutations present in a tumor sample. Here we focus on two

subcalculations of TMB: gene mutational burden (GMB) and pathway muta-

tional burden (PMB). GMB is the total number of somatic mutations present in

a given gene per tumor sample. PMB is the total number of somatic mutations

present in a given pathway per tumor sample. These burden-based analyses

provide a basic measurement of how impacted a given gene or pathway is with

somatic mutations. Mutational burden can be used directly as a likelihood mea-

surement for immunotherapy response [14], or can be used as features for a

classification problem.

The progression of some cancers could make it impossible for a clinician to

identify the tumor of origin [25]. The ability to classify tumor of origin from

a cohort of cancer types can be clinically actionable, providing insights into

the diagnosis and type of treatment the patient should receive. For the burden-

based use case, we aim to predict tumor of origin from a pancancer dataset.

Figure 4 summarizes the burden-based analyses that calculate GMB and

PMB and then perform downstream classification to predict tumor of origin.

Each analysis starts by assigning the mutations of each sample, from either

Variants or Occurrences, to the respective gene or pathway. Once as-

signed, the results are aggregated to return total mutation counts for each gene

or pathway producing GMB or PMB values for each sample. The result of

the PMB analysis is annotated with tumor site predictor labels from Samples,

and converted to a Pandas DataFrame to perform two multi-classification meth-

ods to predict tumor of origin from a pancancer dataset. We now present the

TraNCE programs for these analyses, describe the downstream learning appli-

cation and discuss performance.

Given that a pathway is represented as a set of genes, GMB is a partial aggre-

gate of pathway burden; i.e. PMB is the sum of all the gene burdens for each

gene in a pathway. We thus show the gene burden program using mutations

from Variants and the pathway burden program using somatic mutations

from Occurrences.

Gene burden. The gene burden program performs a VCF-based analysis using

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

Smith et al. | 9

Figure 6. The accuracy and loss of the multi-class neural network for tumor tissue site.

the Variants data source. The program first iterates Genes creating a top-

level gene group, and then performs a sum-aggregate of the genotype calls for

each sample corresponding to that gene. Variants are associated to a gene if it

lies within the mapped position on the genome.

1 GMB ⇐

2 for g in Genes union

3 [{gene := g.gene, burdens :=

4 sumBy
burden
sid (

5 for v in Variants union

6 if v.contig == g.contig && v.start == g.start

7 && v.end == g.end then

8 for m in v.genotypes union

9 [{sid := m.sid, burden := m.call}])}]

The output type is:

[{ gene : string, burdens : [{ sid : string, burden : real }] }].

The GMB program could be altered to include a larger flanking region by chang-

ing the equalities on start and end to use a range.

Pathway burden. The PMB program uses the annotations within the

Occurrences data source to determine gene association. These burden

scores are measured within a wider scope than the GMB program. When a candi-

date gene set is created based on a large flanking region, the pathway burdens

could be dramatically over-estimated. To account for this, the program uses

impact information instead of the number of alleles to measure the mutational

burden of a pathway.

1 PMB ⇐

2 for p in Pathway union

3 [{pathway := p.pathway, burdens :=

4 sumBy
score
sid (

5 for o in Occurrences union

6 for t in o.candidates union

7 for g in p.genes union

8 if g.gene == t.gene then

9 [{sid := s.sid, burden := t.impact}])}]

The output type is:

[{ pathway : string, burdens : [{ sid : string, burden : real }] }].

A simple version of the PMB program could use raw counts, which we will

use for downstream classification analysis. A more complex version could

combine multiple impact attributes, such as impact, poly, and sift, to

provide a better estimate of burden.

Classification with burden-based features. We now consider how the burden-

based programs can be employed to create feature vectors for a learning classi-

fier. Classification of tumor origin has been previously explored with various

cancer biomarkers [30, 62, 54, 26]. The goal of our classification problem is to

identify tissue of origin from the whole TCGA dataset using pathway burden

features based on raw mutation count.

The classification process starts by preparing the PMB output for classification,

labeling each pathway burden feature with the associated label:

1 for p in PMB union

2 [{pathway := p.pathway, burdens :=

3 for b in p.burdens union

4 for s in Samples union

5 if b.sid == s.sid then

6 [{tumorsite := s.tumorsite, burden := b.burden}]}]

In order to interface with external machine learning libraries, the burden-based

programs are compiled into Zeppelin notebooks where the output is available

once the program is executed. Learning procedures can then be applied directly

in Spark/Scala, or the ZeppelinContext can be used to read a Spark DataFrame

as a Pandas DataFrame. For this example, we focus on the Pandas represen-

tation to highlight how a user can interact with TraNCE outputs using their

external library of choice.

Once represented as a Pandas DataFrame, the data is split for training and test-

ing using scikit-learn and neural networks are constructed with keras. For the

whole of the TCGA dataset, we use a minimum cut-off of 200 representative

samples. This leaves 9 different tumor tissue sites available for classification:

breast, central nervous system, colon, endometrial, head and neck, kidney, lung,

ovary, and stomach.

We first train a fully-connected, feed-forward multi-class neural network for

tumor tissue site, using 1600 pathways selected by the Chi-squared test as the

features. The neural network uses LeakyReLu [57] with alpha = 0.05 as the

activation function, and we utilize dropout layers [46] with dropout_rate = 0.3

after each fully connected layer (dense layer) before the output. This model

is trained using the categorical cross-entropy loss function and the Adam opti-

mizer [29]. The network has a Softmax output, which can be interpreted as a

probability distribution over 9 different tumor tissue sites. The data is randomly

split into two folds, 70% for training and 30% for testing.

Next, we extend the previous method via the “one-vs-rest” method [61], which

decomposes a multi-classification problem into multiple binary classification

problems and each binary classifier is trained independently. For every sample,

only the most “confident” model is selected to make the prediction.

Each binary classifier is a fully connected, feed-forward neural network, using

all 2230 pathways as the features. These are set up the same as the multi-class

networks, except with dropout layer dropout_rate = 0.15 and a binary cross-

entropy loss function. The binary networks have Sigmoid output, which can be

interpreted as a probability of a certain type of tumor tissue site corresponding

to this model. For each model, the data is randomly split into two folds as with

the tumor-site network.

We train 9 independent binary classifiers for each type of tumor tissue site.

These binary models predict the likelihood that the given pathway burden mea-

surements of a patient are associated with the tumor site represented by that

model. After training each binary model, predictions are made using the en-

tire dataset, and the computed results are merged. The probabilities from all

models are compared for each patient from the testing dataset, classifying the

patient according to the highest likelihood. For example, suppose we have two

models, a breast model that predicts a breast-site likelihood of 0.8 and a lung

model that predicts a lung-site likelihood of 0.6 for the same patient. The sys-

tem compares these two probabilities and classifies tumor of origin as breast.

Difference in sampling procedures aside, the multi-classifier and the binary

models in the one-vs-rest method have one key difference. When using path-

way burden features, pathways that are highly correlated with a specific tumor

site could be overpowered by pathways that show strong signal for cancer in

general. The multi-classifier could compromise features specific to tumor of

origin in an attempt to achieve best performance overall. This can lead to par-

ticularly inaccurate results when the data distribution is uneven. The binary

models are eager to select the best feature weights for the representative tumor

of origin, providing more opportunities for tumor-specific features to stand out.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

10 | GigaScience, 2017, Vol. 00, No. 0

Runtime performance. We perform the burden-based analyses using Spark

2.4.2, Scala 2.12, and Hadoop 2.7 on a machine with one worker, 10 execu-

tors, 2 cores and 20 Gigabyte (GB) memory per executor, and 16GB of driver

memory. Due to resource limitations of this cluster, we use the publicly avail-

able chromosome 22 from phase 3 of the 1000 Genomes Project [3, 49]; this

is a 11.2GB dataset representing 2504 samples. The runtime of a program is

measured by first caching all inputs in memory.

Figure 5 displays the runtimes of the standard (STANDARD) and shredded

(SHRED) compilation for the gene burden and pathway burden analysis for an

increasing number of variants from the VCF-based Variants data source.

The results show that flattening methods of STANDARD are quickly over-

whelmed as the number of variants increase; whereas, SHRED increases at a

much slower rate. In addition, after 600-thousand variants STANDARD path-

way burden increases at a greater rate than the corresponding gene burden run.

The shredded method exhibits two main advantages. First, the succinct repre-

sentation avoids carrying around extra data, such as the genotypes information

when Variants are joined with Genes. Second, the result of flattening

Variants will have a large amount of items. The whole file contains roughly

1103600 variants and more than 2500 samples, which produces a result with

over 2.7 billion items. These results highlight the advantage of the shredded

representation even for the shallow nesting of the VariantContext structure.

Multi-classification results. Figure 6 shows the accuracy and loss of the multi-

class neural network for tumor tissue site for 30 epochs. The overall accuracy

is 42.32%, calculated from the confusion matrix adding all 444 correctly pre-

dicted labels together and dividing by the 1049 testing samples. Most misclas-

sifications were predicted to be breast cancer, likely attributed to the data imbal-

ance problem of the training dataset. An imbalanced data distribution forces

a model to learn features corresponding to highly populated labels, reducing

training loss while skewing overall prediction performance.

Different types of cancer may not contain enough dominant features for a sim-

ple multi-class model to distinguish differences among tumor origin site. Even

pathways that play a key role in any cancer, such as pathways specific to disrup-

tion in cell-cycle, could not be providing enough signal to act as a determinant

for cancer types. This could be because other pathways are washing out the sig-

nal of more important pathways, or it could simply mean that pathway burden

alone is not providing the whole story. Thus, future multi-class problems in this

domain should consider integrating other features, such as additional genomic

measurements, or filter pathways based on prior knowledge of the cancer types

in question.

One-vs-rest classification results. Figure 7 displays the accuracy and loss of

three binary networks for 10 epochs. We present the three worst-performing

classes from the multi-class network: stomach, head and neck, and central

nervous system, which all resulted in testing accuracies above 90% in the one-

vs-rest method. The accuracy and loss of the other binary models are provided

in the supplementary material. The combined accuracy of all binary models

is 78.44%, calculated as the correctly predicted labels (2744) divided by total

samples (3498). Overall performance of the one-vs-rest method is far better

than the multi-classifier performance.

Further exploration into pathway signal profiles of each tumor site could be con-

sidered for future work. Gene burden performance could be compared to that

of pathway burden in order to identify genes that are the main drivers for path-

way signal. The identification of predominant pathways and genes for certain

tumor sites could provide insight into specific cancer profiles and determine

overall confidence of using burden-based features for tumor site classification.

The burden-based use case exemplifies how TraNCE can handle data integra-

tion tasks, and more specifically, integration tasks that produce feature vectors

for classification problems. In addition, this use case shows how users can in-

teract with popular learning packages within a notebook environment without

the overhead associated with manually integrating data sources.

(a) Stomach

(b) Central nervous system

(c) Head and neck

Figure 7. Accuracy and loss for the tumor tissue site based binary network, includes results for the

three worst-performing classes from the multi-class network.

Application 2: Multi-omics cancer driver gene analysis

Mutations that play a driving role in cancer often occur at low frequency

[19], making cohort analysis across many samples important in their identi-

fication. Further, a cancer profile is more than just a consequence of a sin-

gle mutation on a single gene. Gene interactions, the number of such genes,

and their expression levels can provide a more thorough look at cancer pro-

gression [9]. This use case focuses on such a multi-omics analysis, which de-

fines a set of programs that integrate annotated somatic mutation information

(Occurrences), copy number variation (CopyNumber), protein-protein

network (Network), and gene expression (GeneExpression) data to iden-

tify driver genes in cancer [60]. This analysis provides an integrated look at the

impact cancer has on the underlying biological system and takes into account

the effects a mutation has on a gene, the accumulation of genes with respect to

both copy number and expression, and the interaction of genes within the sys-

tem. The programs of the driver gene analysis work in pipeline fashion, where

the materialized output from one program is used as input to another later on

in the pipeline.

Figure 8 provides an overview of the cancer driver gene analysis. The pipeline

starts with the integration of mutation and copy number variation to produce

a set of hybrid scores for each sample. The hybrid scores are then combined

with protein-protein network interactions to determine effect scores. The effect

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

Smith et al. | 11

Copy Number

HYBRID SCORES

Aggregate mutation

impact and copy number

for gene per sample

EFFECT SCORES

Aggregate network distance

and hybrid score for gene

per sample

Gene Expression

CONNECTIVITY

Sum aggregate score

across all samples

per gene

DRIVER GENES

Genes with highest

connectivity scores

CONNECTION SCORES

Aggregate effect score

and FPKM for gene

per sample

Protein3protein

interactions

Occurrences

candidates

consequences

&

&

Figure 8. Summary of the cancer driver gene analysis. The pipeline starts by integrating somatic mutations and copy number variation, further integrates network information, and gene expression data.

The genes with the highest connectivity scores are taken to be drivers.

scores are further combined with gene expression information to determine the

connection scores for each sample. The analysis concludes by combining the

connection scores across all samples, returning connectivity scores for each

gene. The genes with the highest connectivity scores are considered drivers.

We now detail each of the steps and conclude with some performance metrics

using the two compilation routes.

Hybrid scores. The hybrid score program HybridScores is the first step

in the pipeline, and is an advanced version of the SGHybridScores. The

program below describes the process of creating hybrid scores based on the

Occurrences input. Here, Samples provides a map between sid and

aliquot used to join CopyNumber, and the hybrid scores are then deter-

mined for every aliquot. In addition, conditionals are used to assign qual-

itative scores based on the human-interpretable level of impact (impact).

The SOImpact information is used to integrate values from the nested

consequences collection into the hybrid score.

1 HybridScores ⇐

2 for s in Samples union

3 [{sid := s.sid, aliquot := s.aliquot, scores :=

4 sumBy
score
gene (

5 for o in Occurrences union

6 if o.sid == b.sid then

7 for t in o.transcripts union

8 for n in CopyNumber union

9 if s.aliquot == n.aliquot &&

10 n.gene == t.gene then

11 for c in t.consequences union

12 for v in SOImpact union

13 if c.conseq == v.conseq then

14 [{gene := t.gene, . . . score := . . .

15 let impact :=

16 if t.impact == "HIGH" then 0.8

17 else if t.impact == "MODERATE" then 0.5

18 else if t.impact == "LOW" then 0.3

19 else if t.impact == "MODIFIER" then 0.15

20 else 0.01

21 in impact ∗ v.value ∗ (n.cnum + .01) ∗ sift ∗ poly}]

22)}]

The output type of HybridScores is:

[{ sid : string, aliquot : string, scores : [{

gene : string, score : real }] }].

The HybridScores program must persist the aliquot attribute in order

to associate more genomic measurements related to that aliquot later in the

pipeline. These hybrid scores now provide a likelihood score of a gene being

a driver within a specific aliquot based on both accumulated impact of somatic

mutations and copy number variation. The analysis continues to integrate fur-

ther information to increase the confidence of driver gene scores.

By Sample Network. The second step in the pipeline HybridNetworks

builds individual aggregated networks for each (sid, aliquot) pair in the

materialized output of HybridScores. For each sample, we take the product

of the score and edge protein distance for each edge in the network; genes

are associated to proteins based on the mapping provided in the Biomart

gene map table. The sum aggregate of these values is then taken for each node

protein in Network, while maintaining top-level sample groups.

1 HybridNetworks ⇐

2 for h in HybridScores union

3 [{sid := h.sid, aliquot := h.aliquot, nodes :=

4 sumBy
score
gene (

5 for g in h.scores union

6 for b in Biomart union

7 if g.gene == b.gene then

8 for n in Network union

9 for e in n.edges union

10 if e.edgeProtein == b.protein then

11 [{nodeProtein := n.nodeProtein,

12 score := e.distance ∗ h.hscore}])}]

The output type of this query is:

[{ sid : string, aliquot : string, nodes : [{

nodeProtein : string, score : real }] }].

The HybridNetworks program produces an intermediate score for each pro-

tein in the network by weighting the hybrid scores of nearby proteins in the net-

work (edges) based on their distance scores; thus, this is a partial aggregation

of the network data with the hybrid scores using only the edges in the network.

Effect scores. To complete the integration of network data with the hybrid

scores, the next step is to integrate the nodes in the Network to produce effect

scores. Effect scores are produced by combining the accumulated edge-based

hybrid scores from HybridNetworks with the hybrid score for each pro-

tein node for each sample in the materialized output of HybridScores. As

in HybridNetworks, genes are associated to proteins using the Biomart

mapping table.

1 EffectScores ⇐

2 for h in HybridScores union

3 [{sid := h.sid, aliquot := h.aliquot, scores :=

4 for s in HybridNetworks union

5 if h.sid == s.sid && h.aliquot == s.aliquot then

6 for n in s.nodes union

7 for b in Biomart union

8 if n.nodeProtein == b.protein then

9 for y in h.scores union

10 if y.gene == b.gene then

11 [{gene := y.gene, score := n.score ∗ h.score}]}]

The output type of this query is:

[{ sid : string, aliquot : string, scores : [{

gene : string, score : real }] }].

At this point, the effect score is another likelihood measurement for a gene

being a driver gene for cancer. The analysis now continues to add confidence

to the effect score by further integrating gene-based measurements.

Connection scores. The ConnectScores program calculates the connec-

tion scores. A connection score is the product of the effect score and the FPKM

value from the GeneExpression table. Gene expression data is combined

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

12 | GigaScience, 2017, Vol. 00, No. 0

0 100 200 300 400 500 600 700 800 900 1000

Shred

Standard

Shred

Standard

P
a

n
c
a
n

ce
r

B
re

a
st

 C
a

n
c
e

r

Runtime (seconds)

Hybrid Scores Hybrid Networks Effect Scores Connection Scores Connectivity

FAIL

Figure 9. Runtimes for each of the stages of the driver gene analysis. The standard compilation

fails at the HybridNetworks program.

with the materialized output of EffectScores to determine the connection

scores for each gene within every sample.

1 ConnectScores ⇐

2 for s in EffectScores union

3 [{sid := e.sid, aliquot := e.aliquot, scores :=

4 sumBy
score
gene (

5 for e in s.scores union

6 for g in GeneExpression union

7 if e.gene == g.gene then

8 [{gene := e.gene, score := e.score ∗ g.fpkm}])}]

The output type of this query is:

[{ sid : string, aliquot : string, scores : [{

gene : string, score : real }] }].

Given the pipeline nature of these queries, the connection scores for each gene

are the accumulated somatic mutation, copy number, protein-protein network,

and gene expression data for each sample. The connect score can be used to

determine the likelihood of a gene being a driver in a specific sample. In theory,

this likelihood measurement should have more confidence than the hybrid or

effect scores.

Gene connectivity. At this point in the analysis, all the genomic measure-

ments have been integrated to produce high-confidence likelihood connec-

tion scores for each gene within each sample. The final step is to combine

across all samples to identify the highest scoring genes over all samples; this

is the gene connectivity. Gene connectivity uses the materialized output of

ConnectScores, summing up the connection scores for each gene across all

samples. The genes with the highest connection scores are taken to be drivers.

1 Connectivity ⇐

2 sumBy
score
gene (

3 for s in ConnectScores union

4 for c in s.scores union

5 [{gene := c.gene, score := s.score}])

The output type is:

[{ gene : string, score : real }]

Collectively, these five programs make up the cancer driver gene analysis. The

final output of of Connectivity is sorted and the top genes are investigated

as likely driver genes for cancer. Further confidence can be gained by fine-

mapping techniques [28].

Runtime performance. The driver gene analysis was executed on a Spark

2.4.2 cluster, Scala 2.12, Hadoop 2.7 on a machine with five workers, each

with 20 cores and 320GB memory. We allocate 25 executors per node, 4

cores and 64GB memory per executor, 32GB memory allocated to the driver,

and 1000 partitions used for shuffling data. The full TCGA [55] dataset (Pan-

cancer) and the TCGA breast cancer dataset (BRCA) are used. The pancancer

dataset uses 280GB of Occurrences [24, 33], 4GB of Network [50], 23G

of GeneExpression, and 34GB of CopyNumber (34GB). The breast can-

cer dataset uses the same network information, 6GB of Occurrences, 2GB

of GeneExpression, and 4GB of CopyNumber. The runtime of a program

is measured by first caching all inputs in memory.

Figure 9 shows the runtimes for the standard (STANDARD) and shredded

(SHRED) compilation for the breast and pancancer datasets. SHRED exhibits

many benefits over STANDARD. SHRED can process the whole of the pipeline

on the breast cancer dataset in less than two minutes, a 7x performance gain

over STANDARD. For the pancancer dataset, SHRED was able to run to com-

pletion for all stages, even when STANDARD is unable to complete at all. The

most expensive stage of the analysis is HybridNetworks, which is the com-

bination of the hybrid scores with the network information. This is a nested

join that leads to an explosion in the amount of shuffled data. The flattening

methods of STANDARD produces an intermediate join result with 16 billion tu-

ples and shuffles up to 2.1TB before crashing. SHRED reduces the size to 10

billion tuples and shuffle to 470GB. These results highlight the benefits of the

shredded representation. The shredded representation is essential for scaling

up the number samples.

Here we have followed the workflow of [60], where the analysis terminates

with an identification of driver genes. The three top driver genes reported from

our analysis were TP53, FLNA, and CSDE1. All these genes have previously

been reported as important for their role in cancer. Future work should explore

the pancancer results of this analysis, potentially comparing tumor-site specific

driver genes to the identified pancancer driver genes. Naturally, we could also

use some of the intermediate scores as features for learning algorithms, as with

the previous case study.

Application 3: Clinical exploratory queries

The identification of personalized diagnosis and treatment options is depen-

dent on insights drawn from large-scale, multi-modal analysis of biomedical

datasets. Practical clinical application of such targeted analyses require inter-

facing with electronic health record (EHR) systems, to provide a data process-

ing environment that supports ease of integrating genomic, clinical, and other

biomedical data linked to patients. For example, the Informatics for Integrating

Biology and Beside (i2b2) [23] framework facilitates web-based cohort explo-

ration, supporting selection and report generation on clinical attributes. Several

proposed solutions for integrating genomic data into i2b2 have been proposed

[16, 35, 45]. In these systems, genomic and clinical data are stored in separate

databases and then combined in a backend plugin using the i2b2 API.

Figure 10 presents a schematic of an i2b2 instance that supports aggregate

analysis with clinical and genomics data sources, i.e. Occurrences and

CopyNumber. The programs of this use case are inspired by such a situation.

A user makes a request from a clinical interface. This request represents an

analysis that is sent to the backend. The backend application communicates

to each of the external data sources to retrieve the necessary data and import

them into a Spark processing environment. The application sends the computed

results back to the user interface for viewing.

Each of the programs below compromise an analysis that would be performed

by the backend application using TraNCE. A major difference from the prior

use cases is that here we are not computing just flat aggregates. We are return-

ing nested that will be explored interactively at the web interface. The output

will reflect situations where the majority of data fields are returned for explo-

ration by the user,. We now review three such applications, which perform a

combination of restructuring, integration, and aggregation of Occurrences,

CopyNumber, and Samples.

Group occurrences by sample. The OccurGrouped program groups the so-

matic mutation occurrences in Occurrences by sample based on Samples,

producing a collection of nested mutation information for each sample. The

program also associates a quantitative value to the consequences at the lowest

level in the process, as seen previously in the HybridScores program from

the driver gene analysis.

1 OccurGrouped ⇐

2 for s in Samples union

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

Smith et al. | 13

3 [{sid := s.sid, mutations :=

4 for o in Occurrences union

5 if s.sid == o.sid then

6 [{mutationId := o.mutationId, . . . , candidates :=

7 for t in o.candidates union

8 [{gene := t.gene, . . . , consequences :=

9 for c in t.consequences union

10 for i in SOImpact union

11 if c.conseq == i.conseq then

12 [{conseq := i.conseq, score := i.value}]}]}]}]

The ellipses represent all the additional fields from Occurrences. The out-

put type of OccurGrouped is:

[{ sid : string, mutations : [{ contig : string, start : int, end : int,

reference : string, alternate : string, mutationId : string, . . . ,

candidates : [{ gene : string, impact : string,

sift : real, poly : real, . . . , consequences :

[{ conseq : string, score : real }] }] }] }].

The OccurGrouped program groups a mutation data source, like

Occurrences, based on sample. All information associated to a mutation

is returned, with most of the fields of Occurrences persisted in the output.

The result of this program could feed into a web-interface that provided a de-

tailed view of annotated mutations across a cohort of patients.

Integrate copy number and occurrences, group by sample. The next

program extends OccurGrouped by associating copy number information

(CopyNumber) to each of the genes in the candidates collection for each

mutation in Occurrences. The results are returned group by sample, and

the majority of the fields from Occurrences are persisted in the output.

1 OccurCNVJoin ⇐

2 for s in Samples union

3 [{sid := s.sid, mutations :=

4 for o in Occurrences union

5 if s.sid == o.sid then

6 [{mutationId := o.mutationId, . . . , candidates :=

7 for t in o.candidates union

8 for g in CopyNumber union

9 if g.gene == t.gene && g.sid == o.sid then

10 [{gene := t.gene, cnum := g.cnum, . . . ,

11 consequences :=

12 for c in t.consequences union

13 for i in SOImpact union

14 if c.conseq == i.conseq then

15 [{conseq := i.conseq, score := i.value}]}]}]}]

The output type of OccurCNVJoin is:

[{ sid : string, mutations : [{ contig : string, start : int, end : int,

reference : string, alternate : string, mutationId : string, . . . ,

candidates : [{ gene : string, impact : string,

sift : real, poly : real, cnum : int, . . . , consequences :

[{ conseq : string, score : real }] }] }] }].

This program exhibits the integration of copy number data on a nested attribute,

without any aggregation. The OccurCNVJoin program addresses the situa-

tion where additional biomedical datasets are integrated for exploration in a

consolidated view.

Aggregate copy number and occurrences, group by sample. The final clin-

ical program combines all aspects of the first two programs and adds an ad-

ditional aggregation. As in OccurCNVJoin, mutations are associated to

copy number data to create an aggregate value with mutational impact from

the nested consequences collection of Occurrences. The scores are re-

turned for each candidate gene within each mutation, and the final output is

grouped by sample.

1 OccurCNVAgg ⇐

2 for s in Samples union

3 [{sid := s.sid, mutations :=

4 for o in Occurrences union

5 if s.sid == o.sid then

Clinical Web InterfaceNavigate Terms

ICD-10-CM

Neoplasms

Breast

Lung

Stomach

Malignant

Query Tool

Patient Set:

Clinical concepts:

Genomic concepts:

Report type:

Mutations per sample

TCGA

Breast

Somatic mutations: impact

Copy number variation: value

Queries

Occurrences

candidates

consequences

Copy Number

Clinical

Attributes

External Data Sources

Backend

Application

Figure 10. Mock-up of a clinical interface (i2b2) that enables integrative querying of clinical and

genomic attributes.

6 [{mutationId := o.mutationId, . . . , candidates :=

7 sumBy
score
gene (

8 for t in o.candidates union

9 for g in CopyNumber union

10 if g.gene == t.gene && g.sid == o.sid then

11 for c in t.consequences union

12 for i in SOImpact union

13 if c.conseq == i.conseq then

14 [{gene := t.gene,

15 score := t.impact ∗ g.cnum ∗ i.value}])}]}]

The output type of OccurCNVAgg is:

[{ sid : string, mutations : [{ contig : string, start : int, end : int,

reference : string, alternate : string, mutationId : string,

candidates : [{ gene : string, score : real }] }] }].

Note that the clinical programs of this use case mimic scenarios that arise from

web-based data integration in a clinical setting. Each program adds on a level

of complexity - exploring the effects of grouping, joining, and aggregating

nested data in a setting that is more exploratory than a research-based analy-

sis. The ability to manipulate these biomedical datasets within a web-based

environment that supports frontend clinical exploration presents an interesting

application area for the manipulation of nested collections.

Runtime performance. We execute the clinical programs on a Spark 2.4.2

cluster, Scala 2.12, Hadoop 2.7 on a machine with five workers, each with 20

cores and 320GB memory. We allocate 25 executors per node, 4 cores and

64GB memory per executor, 32GB memory allocated to the driver, and 1000

partitions used for shuffling data. We use the full TCGA [55] dataset (Pan-

cancer) and the TCGA breast cancer dataset (BRCA). The pancancer dataset

uses 42GB of Occurrences with a 10000 base flanking region, and 34GB of

CopyNumber (34GB). The breast cancer dataset is 168 Megabytes (MB) of

Occurrences with 10000 base flanking region and 4GB of CopyNumber.

The runtime of a program is measured by first caching all inputs in memory.

Figure 11 shows the runtimes for each clinical program, using the standard

(STANDARD) and shredded (SHRED) compilation routes. We also include the

results for unshredding (UNSHRED), i.e. the cost of reconstructing the nested

output when using the shredded representation. The smaller breast cancer

dataset shows performance benefits of the shredded representation (SHRED)

over flattening methods (STANDARD). The restructuring in OccurGrouped

is 80x faster for SHRED in comparison to STANDARD, and still 12x as perfor-

mant when the nested output type is returned. As operations are added with

OccurCNVJoin and OccurCNVAgg, SHRED exhibits up to 9x performance

benefits of STANDARD. These results show that the shredded compilation

method can bring major advantages, even for small-scale datasets.

For the larger sample set, the results show that STANDARD is unable to scale,

overloading the available memory on the system during each program exe-

cution. The results of SHRED highlight benefits to the shredded representa-

tion. The pancancer OccurGrouped is very cheap, but becomes more ex-

pensive when the nested output is reconstructed (UNSHRED); this suggests

that the succinct representation used in shredding is essential for scaling. On

the other hand, more work is done during the execution of the shredded

OccurCNVAgg program (SHRED), which reduces the cost of unshredding to

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

14 | GigaScience, 2017, Vol. 00, No. 0

3x that of OccurGrouped. These results highlight how aggregation in shred-

ded programs can bring further benefits to an analysis even when the output is

returned in nested form.

Sharing in the shredded representation

All the use cases in this section use an Occurrences input that is based

on the occurrences endpoint of the ICGC data data portal [24], which returns

JSON-formatted data following the structure of (3). In this representation, an-

notations will be repeated within the nested candidates collection for mu-

tations that are shared across samples. We can exploit this sharing to create an

even more succinct shredded representation of the Occurrences data source.

With all somatic mutations are in the Mutations data source and all unique

annotations in the Annotations data source, we can write the following

program to construct the data returned from the occurrences endpoint:

1 BuildOccur ⇐

2 for m in Mutations union

3 for v in Annotations union

4 if m.contig == v.contig && m.start == v.start

5 && m.alternate == v.alternate then

6 [{sid := m.sid, mutationId := v.mutationId, . . . ,

7 candidates := v.candidates}]}]

The output type of the BuildOccur program matches that of

Occurrences, presented at (3). The ellipses in the BuildOccur program

include the additional top-level fields from Mutations and Annotations.

This program describes the construction of the Occurrences data source.

Sharing experiment. To explore the benefits of sharing, we execute the above

program using the standard (STANDARD) and shredded (SHRED) compilation

routes. We use one somatic mutation (MAF) file from the breast cancer dataset

(Mutations) containing 120988 tuples, and the associated unique set of

58121 VEP annotations (Annotations).

The association in the BuildOccur program translates to a join

in the compiled Spark application. When the somatic mutations are

joined with annotations in STANDARD, the result contains 5170132 tu-

ples nested within the candidates collections of the whole output.

For SHRED, the somatic mutations are joined with the top-level source

Annotations_top, which has replaced the candidates values with la-

bels. The first-level output BuildOccur_cands is the same as the input

Annotations_candidates, which has 3777092 tuples. The shredded rep-

resentation has reduced the total size of the transcripts by over 1 million tuples.

The results of this experiment are based off a small dataset. Since many of the

samples will share mutations specific to cancer, the benefits of sharing will in-

crease for datasets that include more samples. To further explore the benefits of

sharing by the shredded compilation route, future experiments should perform

the use cases of this section with the output of BuildOccur in place of the

Occurrences data source.

Conclusions

The TraNCE framework provides a foundation for exploring how query com-

pilation and shredding optimizations can support scalable processing of nested

collections. We present several use cases that highlight how the framework

can support multi-modal biomedical analyses in research and clinical settings.

The results show that the platform has promise in automating the challenges

that arise for large-scale distributed processing of nested collections; showing

scalable performance for increasing number of genomic variants and perfor-

mance when flattening methods are unable to perform at all. Further, we ex-

hibit how data integration tasks can feed into machine learning tasks and analyt-

ics pipelines. The framework is experimental and its development is ongoing,

but our work shows that the techniques applied can provide a basis for many

biomedical data integration tasks.

0 100 200 300 400 500 600

OccurGrouped

OccurCNVJoin

OccurCNVAgg

OccurGrouped

OccurCNVJoin

OccurCNVAgg

P
a

n
c
a

n
c
e

r
B

re
a

st
 C

a
n

c
e
r

Runtime (seconds)

Unshred Standard Shred

FAIL

FAIL

FAIL

Figure 11. Results for the clinical exploration programs. The standard compilation route fails for

all runs with the Pancancer dataset.

Future work should examine the interface between learning analyses and data

integration tasks. For example, a user should be able to describe inference-

based tasks within their programs with an extended language that supports iter-

ation and user-defined functions.

The clinical exploration programs present an interesting perspective for the de-

sign of biomedical data integration infrastructure. Web-based data types are of-

ten nested, and our results show that manipulation of these structures using the

standard flattening methods scales poorly. All the use cases have highlighted

major advantages for the shredded representation, supporting nested data with-

out compromising the ability to scale. The ability of biomedical systems and

analysis applications to work on a succinct representation could present inter-

esting opportunities for optimization, but requires adjustments in backend ap-

plications. For example, the clinical exploratory queries could display somatic

mutation and copy number data in integrated format to the user, while per-

sisting the shredded representations in the backend. A subsequent request for

clinical report generation could use cached inputs that perform localized aggre-

gate operations and return likelihood measurements or risk scores. Future work

should consider situations where iterative exploration and aggregation occurs

on the data, which is applicable to both research and clinical applications.

Outside of clinical settings, consortium and data biobanks could consider us-

ing shredded representations in the backend. Datasets often occur as dump

files, which have already gone through a pre-processing phase that employs

flattening. Adapting the data representation could support the development of

optimized data analysis pipelines. Overall, the TraNCE framework presents an

interesting angle for systems development of research and clinical biomedical

applications at scale.

Availability of source code and requirements

• Project name: TraNCE (TRAnslating Nested Collections Efficiently)

• Project home page: github.com/jacmarjorie/trance

• Operating system(s): Platform independent

• Programming language: Scala 2.12

• Other requirements: Spark 2.4.2

• License: MIT Any restrictions to use by non-academics: licence needed

Availability of supporting data and materials

The data set supporting the results of this article, primarily raw runtimes

of performance results, are available in the figshare repository at https:

//doi.org/10.6084/m9.figshare.13363502.v1.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

github.com/jacmarjorie/trance
https://doi.org/10.6084/m9.figshare.13363502.v1
https://doi.org/10.6084/m9.figshare.13363502.v1
https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

Smith et al. | 15

Declarations

List of abbreviations

API: Application Programming Interface; BRCA: Breast Cancer; CNV: Copy

Number Variation; DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lym-

phoma; FPKM: Fragments Per Kilobase of transcript per Million mapped read;

EHR: Electronic Health Record; GB: Gigabyte; GDC: Genomic Data Com-

mons; GMB: Gene Mutational Burden; GTF: General Transfer Format; i2b2:

Informatics for Integrating Biology and Bedside; ICGC: International Genome

Consortium; ID: Identifier; JSON: JavaScript Object Notation; MAF: Muta-

tion Annotation Format; MB: Megabyte; MSigDB: The Molecular Signatures

Database; NRC: Nested Relational Calculus; PMB: Pathway Mutational Bur-

den; RDD: Resilient Distributed Dataset; SO: Sequence Ontology; SQL: Struc-

tured Query Language; TCGA: The Cancer Genome Atlas; TMB: Tumor Mu-

tational Burden; TraNCE: Transforming Nested Collections Efficiently; VCF:

Variant Call Format; VEP: Variant Effect Predictor;

Consent for publication

Not applicable.

Competing Interests

The author(s) declare that they have no competing interests.

Funding

The work was funded by EPSRC grant EP/M005852/1 and by Oxford’s EPSRC

IAA Technology Fund, grant EP/R511742/1.

Author’s Contributions

JS, MB, and MN conceived the idea and design of the framework. JS and

MN built the framework. JS and YS conceived and designed the burden based

analyses; YS performed and validated the burden-based analyses. JS conceived,

designed, performed, and validated the driver and clinical analyses. MB and

MN supervised the project. JS wrote the original draft of the manuscript. All

authors reviewed and edited the manuscript.

Acknowledgements

The authors would like to thank Omics Data Automation, Inc. for supplying

hardware, compute time, and contributing to use case discussions.

References

1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork

P, et al. A method and server for predicting damaging missense mutations.

Nature Methods 2010;7(4):248–249.

2. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M,

et al. The Galaxy platform for accessible, reproducible and collab-

orative biomedical analyses: 2018 update. Nucleic Acids Research

2018;46(W1):W537–W544.

3. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bent-

ley DR, et al. A global reference for human genetic variation. Nature

2015;526(7571):68–74.

4. Battré D, Ewen S, Hueske F, Kao O, Markl V, Warneke D. Nephele/-

PACTs: a programming model and execution framework for web-scale

analytical processing. In: ACM symposium on Cloud computing; 2010. .

5. Birney E, Andrews TD, Bevan P, Caccamo M, Chen Y, Clarke L,

et al. An Overview of Ensembl(GRCH37/Release 87). Genome Res

2004;14(5):925–928.

6. Buneman P, Naqvi S, Tannen V, Wong L. Principles of programming with

complex objects and collection types. Theoret Comput Sci 1995;149(1):3–

48.

7. den Bussche JV. Simulation of the Nested Relational Algebra by the Flat

Relational Algebra. Theor Comput Sci 2001;254(1-2):363–377.

8. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al.

Analysis of 100,000 human cancer genomes reveals the landscape of tu-

mor mutational burden. Genome Medicine 2017;9(1):34.

9. Cheng F ZZ Zhao J. Advances in computational approaches for prioritiz-

ing driver mutations and significantly mutated genes in cancer genomes.

Briefings in Bioinformatics 2016;17(4):642–656.

10. Coppola L, Cianflone A, Grimaldi AM, Incoronato M, Bevilacqua P,

Messina F, et al. Biobanking in health care: evolution and future direc-

tions. Journal of Translational Medicine 2019;17(1):172.

11. Curoverse I. Introduction to Arvados A Curoverse White Paper. Curo-

verse, Inc.; 2014.

12. Dean J, Ghemawat S. MapReduce: simplified data processing on large

clusters. Communications of the ACM 2008;51(1):107–113.

13. Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, et al.

The Sequence Ontology: A tool for the unification of genome annotations.

Nature Methods 2005;6:R44.

14. Fancello L, Gandini S, Pelicci PG, Mazzarella L. Tumor mutational

burden quantification from targeted gene panels: major advancements

and challenges. Journal for ImmunoTherapy of Cancer 2019;7(1):183.

https://doi.org/10.1186/s40425-019-0647-4.

15. Fegaras L, Maier D. Optimizing object queries using an effective calculus.

ACM Transactions on Database Systems 2000;25(4):457–516.

16. Gabetta M, Limongelli I, Rizzo E, Riva A, Segagni D, Bellazzi R. BigQ:

a NoSQL based framework to handle genomic variants in i2b2. BMC

Bioinformatics 2015;16(1):415.

17. Genomic Data Commons Endpoints; 2020. https:

//docs.icgc.org/portal/api-endpoints/.

18. Glow; 2019. https://github.com/projectglow/glow.

19. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G,

et al. Patterns of somatic mutation in human cancer genomes. Nature

2007;446(7132):153–158.

20. Hail; 2015. https://github.com/hail-is/hail.

21. Hodson R. Precision medicine. Nature 2016;537(7619):S49.

22. A Java API for high-throughput sequencing data (HTS) formats.; 2020.

23. i2b2; 2020. i2b2.org/software/index.html.

24. International Cancer Genome Consortium; 2020. https:

//icgc.org/.

25. Jiao W, Atwal G, Polak P, Karlic R, Cuppen E, Al-Shahrour F, et al. A deep

learning system accurately classifies primary and metastatic cancers us-

ing passenger mutation patterns. Nature Communications 2020;11(1):728.

https://doi.org/10.1038/s41467-019-13825-8.

26. JK G, B TC, M J, S G, Y M, R M, et al. Application of a Neu-

ral Network Whole Transcriptome-Based Pan-Cancer Method for Diag-

nosis of Primary and Metastatic Cancers. JAMA Netw Open 2019

April;2(4):e192597.

27. Keras; 2020. https://keras.io/.

28. Kichaev G, Yang WY, Lindstrom S, Hormozdiari F, Eskin E, Price AL,

et al. Integrating Functional Data to Prioritize Causal Variants in Statistical

Fine-Mapping Studies. PLoS Genetics 2014;10(10).

29. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv

2014 Dec;https://arxiv.org/abs/1412.6980v9.

30. Liang Y, Wang H, Yang J, Li X, Dai C, Shao P, et al. A Deep Learning

Framework to Predict Tumor Tissue-of-Origin Based on Copy Number

Alteration. Frontiers in Bioengineering and Biotechnology 2020;8:701.

frontiersin.org/article/10.3389/fbioe.2020.00701.

31. Masseroli M, Pinoli P, Venco F, Kaitoua A, Jalili V, Palluzzi F, et al. Geno-

Metric Query Language: A Novel Approach to Large-scale Genomic Data

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://doi.org/10.1186/s40425-019-0647-4
https://docs.icgc.org/portal/api-endpoints/
https://docs.icgc.org/portal/api-endpoints/
https://github.com/projectglow/glow
https://github.com/hail-is/hail
i2b2.org/software/index.html
https://icgc.org/
https://icgc.org/
https://doi.org/10.1038/s41467-019-13825-8
https://keras.io/
https://arxiv.org/abs/1412.6980v9
frontiersin.org/article/10.3389/fbioe.2020.00701
https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

16 | GigaScience, 2017, Vol. 00, No. 0

Management. Bioinformatics 2015;31(12):1881–1888.

32. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD,

et al. ADAM: Genomics Formats and Processing Patterns for Cloud Scale

Computing. UCB/EECS; 2013.

33. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al.

The Ensembl Variant Effect Predictor. Genome Biology 2016;17(1):122.

34. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar

J, et al. PGC-1alpha-responsive genes involved in oxidative phosphoryla-

tion are coordinately downregulated in human diabetes. Nature Genetics

2003;34(3):267–273.

35. Murphy SN, Avillach P, Bellazzi R, Phillips L, Gabetta M, Eran A, et al.

Combining clinical and genomics queries using i2b2 – Three methods.

PLOS ONE 2017 04;12(4):1–16.

36. Nothaft FA, Massie M, Timothy D, Zhang Z, Laserson U, Yeksigian C,

et al. Rethinking Data-Intensive Science Using Scalable Analytics Sys-

tems. In: SIGMOD; 2015. .

37. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, et al. Tav-

erna: A tool for the composition and enactment of bioinformatics work-

flows. Bioinformatics 2004;20(17):3045–3054.

38. Pezoa F, Reutter JL, Suarez F, Ugarte M, Vrgoč D. Foundations of JSON

schema. In: WWW; 2016. .

39. PySpark; 2020. Online documentation.

40. scikit-learn; 2020. https://scikit-learn.org/stable/.

41. Smedley D. The BioMart community portal: an innovative alternative

to large, centralized data repositories. Nucleic Acids Research 2015

04;43(W1):W589–W598.

42. Smemo S, Tena JJ, Nóbrega MA. Obesity-associated variants within

FTO form long-range functional connections with IRX3. Nature

2014;507(7492):371–375.

43. Smith J, Benedikt M, Nikolic M, Shaikhha A, Scalable Querying of

Nested Data; 2020. arxiv.org/abs/2011.06381.

44. Smith J, Benedikt M, Nikolic M, Shaikhha A. Scalable Querying of

Nested Data. In: VLDB; 2021. .

45. Smith JM, Lathara M, Wright H, Hill B, Ganapati N, Srinivasa G, et al. Ad-

vancing clinical cohort selection with genomics analysis on a distributed

platform. PLOS ONE 2020 04;15(4):1–20.

46. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R.

Dropout: a simple way to prevent neural networks from overfitting. Jour-

nal of Machine Learning Research 2014;15(1):1929–1958.

47. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette

MA, et al. Gene set enrichment analysis: a knowledge-based approach for

interpreting genome-wide expression profiles. Proc Natl Acad Sci USA

2005;102(43):15545–15550.

48. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK

Biobank: An Open Access Resource for Identifying the Causes of a Wide

Range of Complex Diseases of Middle and Old Age. PLoS Medicine

2015;12(3):1–10.

49. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddle-

ston J, et al. An integrated map of structural variation in 2,504 human

genomes. Nature 2015;526(7571):75–81.

50. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J,

et al. STRING v11: protein-protein association networks with increased

coverage, supporting functional discovery in genome-wide experimental

datasets. Nucleic Acids Res 2019;47(D1):D607–D613.

51. pandas development team T, pandas-dev/pandas: Pandas. Zenodo; 2020.

https://doi.org/10.5281/zenodo.3509134.

52. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng P. SIFT missense predic-

tions for genomes. Nature Protocols 2009;11(1):1073–1081.

53. Voss K, Gentry J, Auwera GVD. Full-stack genomics pipelin-

ing with GATK4+ WDL+ Cromwell [version 1; not peer reviewed].

F1000Research 2017;p. 4.

54. Wang Q, Xu M, Sun Y, Chen J, Chen C, Qian C, et al. Gene Expression

Profiling for Diagnosis of Triple-Negative Breast Cancer: A Multicenter,

Retrospective Cohort Study. Front Oncol 2019 May;9:354.

55. Weinstein JN, Collisson EA, Mills GB, Shaw KM, Brad A, Ellrott K, et al.

The Cancer Genome Atlas Pan-Cancer Analysis Project. Nature Genetics

2013;45(10):1113–1120.

56. Wong L. Querying Nested Collections. PhD dissertation, University of

Pennsylvania; 1994.

57. Xu B, Wang N, Chen T, Li M. Empirical Evaluation of Recti-

fied Activations in Convolutional Network. arXiv 2015 May;https:

//arxiv.org/abs/1505.00853v2.

58. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauly M, et al. Re-

silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory

Cluster Computing. In: 9th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 12); 2016. .

59. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Clus-

ter Computing with Working Sets. In: 2nd USENIX Workshop on Hot

Topics in Cloud Computing, HotCloud’10; 2010. .

60. Zhang W, Wang SL. A Novel Method for Identifying the Potential Cancer

Driver Genes Based on Molecular Data Integration. Biochemical Genetics

2020;58(1):16–39.

61. Zhao X, Guan S, Man KL. An Output Grouping Based Approach to Mul-

ticlass Classification Using Support Vector Machines. In: Park JJJH, Jin

H, Jeong YS, Khan MK, editors. Advanced Multimedia and Ubiquitous

Engineering Singapore: Springer Singapore; 2016. p. 389–395.

62. Zheng Y, Ding Y, Wang Q, Sun Y, Teng X, Gao Q, et al. 90-gene sig-

nature assay for tissue origin diagnosis of brain metastases. Journal of

translational medicine 2019;17(1):331.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422781doi: bioRxiv preprint

https://spark.apache.org/docs/latest/api/python/index.html
https://scikit-learn.org/stable/
arxiv.org/abs/2011.06381
https://doi.org/10.5281/zenodo.3509134
https://arxiv.org/abs/1505.00853v2
https://arxiv.org/abs/1505.00853v2
https://doi.org/10.1101/2020.12.14.422781
http://creativecommons.org/licenses/by/4.0/

	Background
	Methods
	TraNCE platform
	High-level Language
	Standard compilation
	Shredded compilation
	Skew-Resilient Processing
	Code generation

	Results
	Input data sources
	Application 1: Mutational Burden
	Application 2: Multi-omics cancer driver gene analysis
	Application 3: Clinical exploratory queries
	Sharing in the shredded representation

	Conclusions
	Availability of source code and requirements
	Availability of supporting data and materials
	Declarations
	List of abbreviations
	Consent for publication
	Competing Interests
	Funding
	Author's Contributions

	Acknowledgements

