

1 UbiB proteins regulate cellular CoQ distribution

2
3 Zachary A. Kemmerer^{1,2,7}, Kyle P. Robinson^{1,2,7}, Jonathan M. Schmitz^{1,2}, Brett R. Paulson⁴, Adam
4 Jochem^{1,2}, Paul D. Hutchins⁴, & Joshua J. Coon^{3,4,5}, and David J. Pagliarini^{1,2,6*}

5
6 ¹Morgridge Institute for Research, Madison, WI 53715, USA.

7 ²Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.

8 ³Genome Center of Wisconsin, Madison, Wisconsin 53706, USA.

9 ⁴Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.

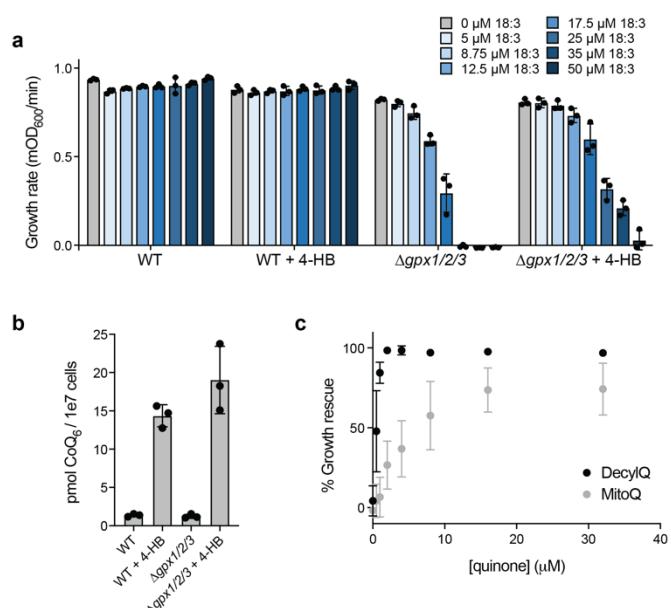
10 ⁵Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.

11 ⁶Departments of Cell Biology and Physiology; Biochemistry and Molecular Biophysics; and Genetics,
12 Washington University School of Medicine, St. Louis, MO 63110

13 ⁷These authors contributed equally to this work.

14 *e-mail: pagliarini@wustl.edu

16 Abstract



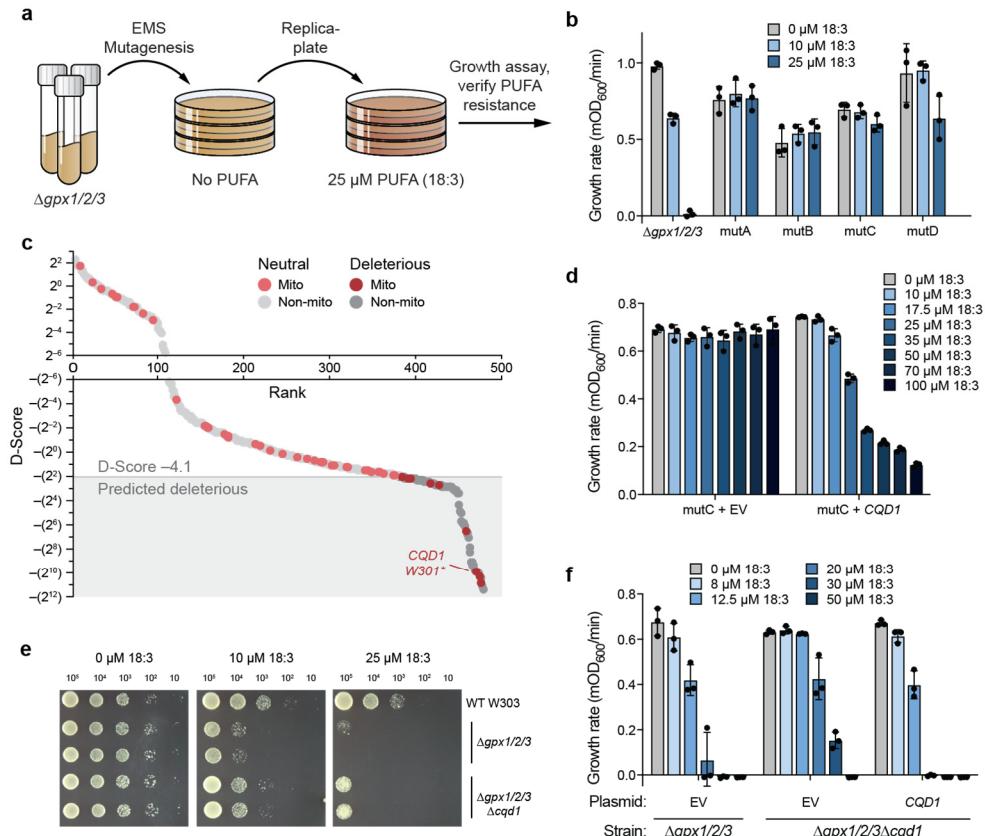
17 **Coenzyme Q (CoQ, ubiquinone) is a redox-active lipid essential for many core**
18 **metabolic processes in mitochondria, including oxidative phosphorylation¹⁻³.**

19 **While lesser appreciated, CoQ also serves as a key membrane-embedded**
20 **antioxidant throughout the cell⁴. However, how CoQ is mobilized from its site of**
21 **synthesis on the inner mitochondrial membrane to other sites of action remains a**
22 **longstanding mystery. Here, using a combination of yeast genetics, biochemical**
23 **fractionation, and lipid profiling, we identify two highly conserved but poorly**
24 **characterized mitochondrial proteins, Ypl109c (Cqd1) and Ylr253w (Cqd2), that**
25 **reciprocally regulate this process. Loss of Cqd1 skews cellular CoQ distribution**
26 **away from mitochondria, resulting in markedly enhanced resistance to oxidative**
27 **stress caused by exogenous polyunsaturated fatty acids (PUFAs), whereas loss**
28 **of Cqd2 promotes the opposite effects. The activities of both proteins rely on**
29 **their atypical kinase/ATPase domains, which they share with Coq8—an essential**
30 **auxiliary protein for CoQ biosynthesis. Overall, our results reveal new protein**
31 **machinery central to CoQ trafficking in yeast and lend new insights into the**
32 **broader interplay between mitochondrial and cellular processes.**

33 **Extramitochondrial CoQ combats oxidative stress**

34 To our knowledge, no proteins have yet been directly associated with cellular CoQ
35 trafficking from mitochondria, but the extreme hydrophobicity of CoQ suggests that this
36 process likely requires dedicated machinery. We sought to identify such proteins by
37 exploiting CoQ's extramitochondrial antioxidant role. Budding yeast (*Saccharomyces*
38 *cerevisiae*) lacking CoQ or phospholipid hydroperoxide glutathione peroxidases
39 (PHGPx) are sensitive to the oxidative stress conferred by exogenous polyunsaturated
40 fatty acids (PUFAs), such as linolenic acid (18:3)^{5,6}. To force cells into relying more
41 heavily on the antioxidant properties of CoQ, we deleted all three PHGPx genes in
42 W303 *S. cerevisiae* ($\Delta gpx1\Delta gpx2\Delta gpx3$, hereafter referred to as $\Delta gpx1/2/3$). We
43 validated that this strain is sensitized to 18:3 treatment and demonstrated that this
44 sensitivity is dampened when cellular CoQ levels are augmented through
45 supplementation with the soluble CoQ precursor 4-hydroxybenzoate (4-HB) (Fig. 1a-b).
46 Importantly, the CoQ analog decylubiquinone was markedly more effective at protecting
47 against PUFA stress than its mitochondria-targeted counterpart, mitoquinone,

Fig. 1: Extramitochondrial CoQ combats oxidative stress. **a**, Growth rate of wild type (WT) and $\Delta gpx1/2/3$ yeast in synthetic complete media minus para-aminobenzoate (pABA-) containing 2% (w/v) glucose (mean \pm SD, n = 3) and the indicated additives. 4-hydroxybenzoate, 4-HB; linolenic acid (PUFA), 18:3. **b**, Total CoQ from WT and $\Delta gpx1/2/3$ yeast described in **a** (mean \pm SD, n = 3). **c**, Rescue assay under the conditions described in **a** comparing the ability of decylubiquinone (DecylQ) and mitoquinone (MitoQ) to restore growth of $\Delta gpx1/2/3$ yeast treated with 35 μM 18:3 (mean \pm SD, n = 3).


48 suggesting that extramitochondrial CoQ is the predominant mediator of PUFA
49 resistance (Fig. 1c). This is consistent with previous data showing that exogenous
50 PUFAs are incorporated into endogenous membranes slowly, and therefore, populate
51 non-mitochondrial membranes first⁶. Thus, we established a strain whose survival in the
52 presence of PUFAs is especially dependent on extramitochondrial CoQ.

53

54 **Loss of Cqd1 confers PUFA resistance**

55 We reasoned that suppressor mutations that increase extramitochondrial CoQ levels
56 would enhance PUFA resistance in the $\Delta gpx1/2/3$ strain, so we performed a forward-
57 genetic suppressor screen (Fig. 2a). We randomly mutagenized this strain with ethyl
58 methanesulfonate (EMS) and isolated colonies tolerant of 18:3 treatment. From ~20,000
59 unique mutant colonies, we obtained four hit strains with substantial PUFA resistance
60 (Fig. 2b). We then performed whole-genome sequencing that revealed non-
61 synonymous mutations in 442 unique genes across these four strains (Extended Data
62 Table 1). These mutants were ranked using PROVEAN (Protein Variation Effect
63 Analyzer), a software tool for predicting deleterious protein changes⁷. PROVEAN
64 assigns a disruption score (D-Score) that reflects the likelihood that a given mutation is
65 deleterious. In our collective dataset, 99 genes achieved a D-Score below the strict
66 threshold of -4.1 (Fig. 2c; Extended Data Table 1). Given the overall limited overlap in
67 hits between mutant strains, it is likely that our dataset includes multiple genes that
68 contribute to an enhanced PUFA resistance phenotype.

Fig. 2: Genome-wide screen for CoQ trafficking genes identifies uncharacterized UbiB protein Cqd1. **a**, Schematic of forward-genetic yeast screen for genes involved in CoQ trafficking. **b**, Growth rates of $\Delta gpx1/2/3$ and four mutant strains resistant to 18:3 treatment (mutA-D). Yeast were assayed in pABA– media containing 2% (w/v) glucose with 0-25 μ M 18:3 (mean \pm SD, n = 3). **c**, Mutant strains mutA-D were submitted for whole-genome sequencing to identify non-synonymous mutations (total = 442). Mutations were analyzed with PROVEAN to filter for likely deleterious changes (D-score ≤ -4.1 , shaded box). Gray, all genes; red, mitochondrial genes. Light, predicted neutral; dark, predicted deleterious. **d**, Growth rate of mutC yeast expressing empty vector (EV) or endogenous CQD1 (mean \pm SD, n = 3). Yeast were assayed under the conditions described in **b** with 0-100 μ M 18:3. **e**, Drop assay of WT, $\Delta gpx1/2/3$, and $\Delta gpx1/2/3\Delta cqd1$ yeast grown for 3 days on solid pABA– medium containing 2% (w/v) glucose, 0.5% (w/v) ethanol (EtOH), and 0-25 μ M 18:3. **f**, Growth rates of $\Delta gpx1/2/3$ and $\Delta gpx1/2/3\Delta cqd1$ yeast expressing EV or endogenous CQD1 (mean \pm SD, n = 3). Yeast were assayed under the conditions described in **b** with 0-50 μ M 18:3. Source data for panel **c** is provided as a Source Data file.

69 We chose to focus on mitochondrial proteins for further examination since, to our
 70 knowledge, trafficking machinery at the site of CoQ synthesis in mitochondria has yet to
 71 be identified. Of the nine mitochondrial proteins harboring likely deleterious mutations,
 72 one, Ypl109c (renamed here as Cqd1, see below), is an uncharacterized protein that
 73 resides on the inner mitochondrial membrane (IMM), making it an attractive candidate
 74 for further study (Fig. 2c; Extended Data Fig. 1a). Moreover, Cqd1 possesses the same

75 UbiB family atypical kinase/ATPase domain as Coq8, an essential protein for CoQ
76 synthesis that resides on the matrix face of the IMM⁸⁻¹¹. Our recent work suggests that
77 Coq8 ATPase activity may be coupled to the extraction of hydrophobic CoQ precursors
78 from the IMM for subsequent processing by membrane-associated matrix enzymes¹².
79 Cqd1 resides on the opposite side of the IMM, facing the intermembrane space^{9,13}
80 (Extended Data Fig. 1b), physically separated from the other CoQ-related enzymes but
81 still positioned for direct access to membrane-embedded CoQ precursors and mature
82 CoQ. Furthermore, a recent study reported that haploinsufficiency of human *CQD1*
83 ortholog *ADCK2* led to aberrant mitochondrial lipid oxidation and myopathy associated
84 with CoQ deficiency¹⁴.

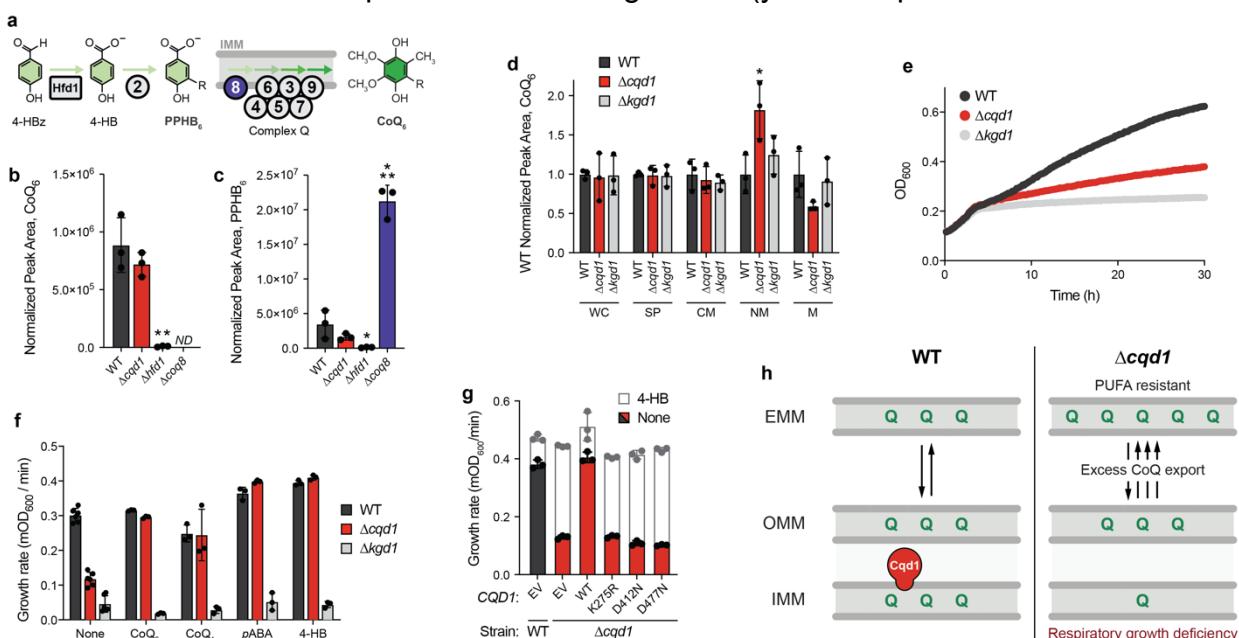
85 In our screen, mutant C (mutC) contains an early stop codon in *CQD1* (Fig. 2c,
86 Extended Data Fig. 1c). To test whether this mutation is important for mutC's
87 phenotype, we reintroduced WT *CQD1* into this strain under its endogenous promoter.
88 Indeed, this reintroduction re-conferred PUFA sensitivity (Fig. 2d). Furthermore, deletion
89 of *CQD1* in the parent $\Delta gpx1/2/3$ strain, which lacks all other mutC mutations, was
90 sufficient to enhance PUFA resistance (Fig. 2e-f). Collectively, these data demonstrate
91 that disruption of *CQD1* is at least partially causative for mutC's PUFA-resistant
92 phenotype.

93

94 **Cqd1 affects CoQ distribution**

95 Our results above suggest that loss of *CQD1* confers cellular resistance to PUFA-
96 mediated oxidative stress by increasing extramitochondrial CoQ. We reasoned that this
97 was likely rooted either in a general increase in CoQ production or in its redistribution.
98 To test these models, we first measured total levels of CoQ and its early mitochondrial

99 precursor polyisoprenyl-4-hydroxybenzoate (PPHB) in cells lacking *CQD1* or control genes
100 (Fig. 3a-c). As expected, disruption of *HFD1*, which encodes the enzyme that produces
101 the soluble CoQ precursor 4-HB, led to loss of CoQ and PPHB, while disruption of
102 *COQ8* caused complete loss of CoQ with the expected buildup of the PPHB precursor.
103 However, we found no significant change in CoQ or PPHB levels in the $\Delta cqd1$ strain,
104 demonstrating that *Cqd1* is essential neither for CoQ biosynthesis nor the import of CoQ
105 precursors under the conditions of our analyses.


106 To next examine CoQ distribution, we fractionated yeast and measured CoQ
107 levels (Fig. 3d; Extended Data Fig. 2a). We observed that $\Delta cqd1$ yeast had a significant
108 increase in CoQ from the non-mitochondrial (NM) fraction, consisting of organelles and
109 membranes that do not pellet with mitochondria, and a corresponding decrease in
110 mitochondrial (M) CoQ. Deletion of the tricarboxylic acid (TCA) cycle enzyme *Kgd1* had
111 no effect on relative CoQ levels (Fig. 3d) despite causing a deficiency in respiratory
112 growth (Fig. 3e), indicating that general mitochondrial dysfunction does not perturb CoQ
113 distribution. The increased extramitochondrial CoQ in $\Delta cqd1$ yeast is consistent with the
114 observation that deleting *CQD1* increases PUFA resistance (Fig. 2e-f).

115 To our knowledge, this is the first example of a genetic disruption leading to
116 altered cellular distribution of endogenous CoQ, hence our renaming of this gene CoQ
117 Distribution 1 (*CQD1*). To further validate this finding, we examined growth in glycerol, a
118 non-fermentable carbon source, which requires an intact mitochondrial electron
119 transport chain. We reasoned that a decrease in mitochondrial CoQ would disrupt
120 respiratory growth in media depleted of CoQ precursors. Indeed, deletion of *CQD1*
121 significantly reduced respiratory growth rate in this medium (Fig. 3e). To confirm that

122 this defect is caused by CoQ depletion, we rescued growth with CoQ of different
 123 isoprene tail lengths (CoQ₂ and CoQ₄) and with CoQ precursors, which are more readily
 124 delivered due to their solubility (Fig. 3f). Endogenous expression of CQD1 rescued
 125 respiratory growth without affecting total CoQ levels (Fig. 3g, Extended Data Fig. 2b),
 126 further supporting the hypothesis that CoQ distribution, not biosynthesis, is perturbed in
 127 $\Delta cqd1$ yeast.

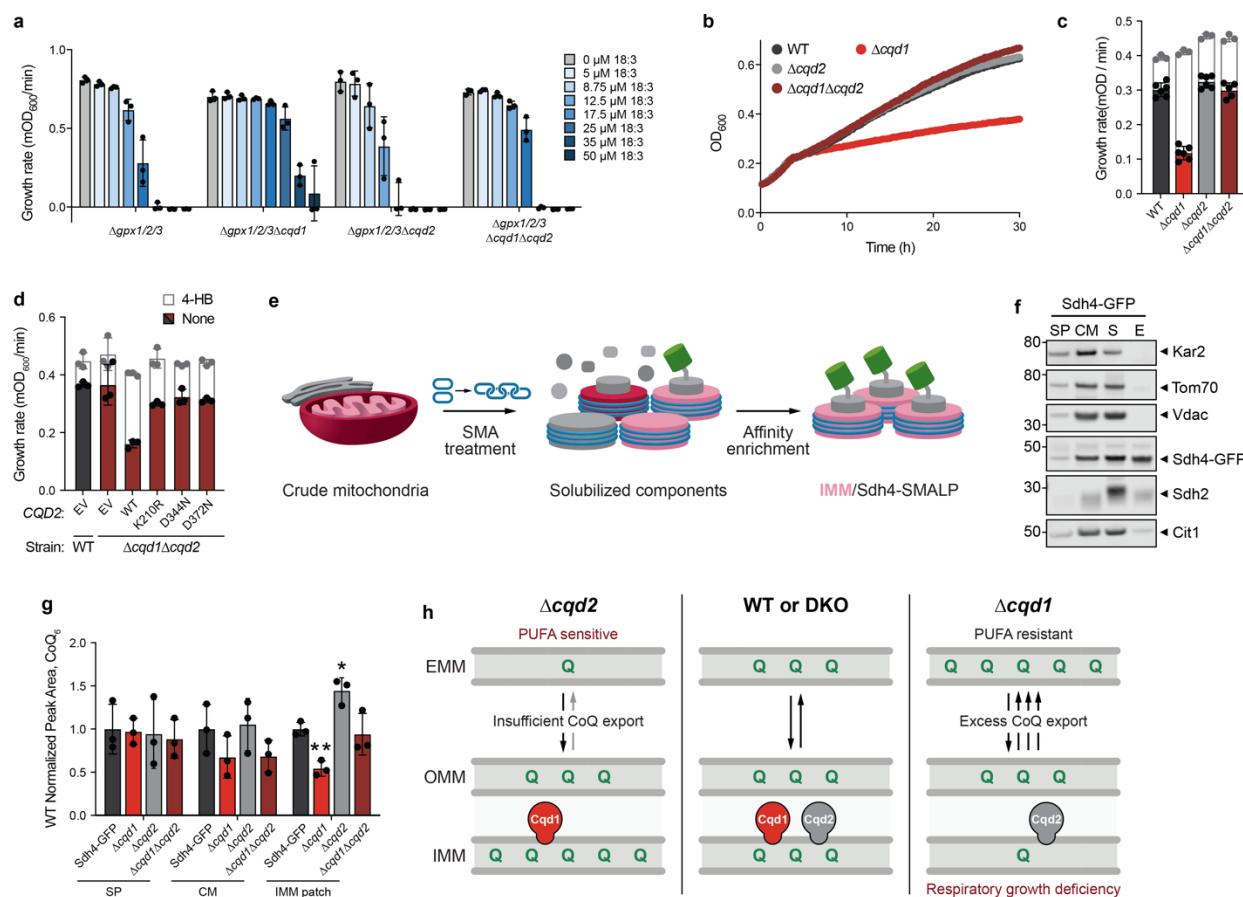
128 We next sought to begin understanding how Cqd1 functions in CoQ distribution.

129 Our recent work on Cqd1's UbiB homolog COQ8 (yeast Coq8 and human/mouse

Fig. 3: Cqd1 influences cellular CoQ distribution. **a**, Schematic of CoQ biosynthesis pathway. Polypropenyl hydroxybenzoate (PPHB) is an early precursor that undergoes a series of head group modifications by IMM-associated CoQ enzymes (complex Q) to produce CoQ. Hfd1 is essential for PPHB synthesis, while Coq8 is required for production of CoQ. **b**, Total CoQ and **c**, polypropenyl-4-hydroxybenzoate (PPHB) from WT, $\Delta cqd1$, $\Delta hfd1$, and $\Delta coq8$ yeast (mean \pm SD, n = 3); not detected, ND. **d**, CoQ from subcellular fractions derived from WT, $\Delta cqd1$, and $\Delta kgd1$ yeast (mean \pm SD, n = 3). Spheroplast, SP; crude mitochondria, CM; non-mitochondrial fraction, NM; enriched mitochondria, M. **e**, Growth assay of WT, $\Delta cqd1$, and $\Delta kgd1$ yeast in pABA- media containing 0.1% (w/v) glucose and 3% (w/v) glycerol (mean, n = 6). Yeast enter the respiratory phase of growth after ~4 hours in this growth condition. **f**, Growth rate of WT, $\Delta cqd1$, and $\Delta kgd1$ yeast assayed under conditions described in d (mean \pm SD; none n = 6, all others n = 3). Yeast were grown in the presence and absence of 100 μ M CoQ analogs (CoQ₂, CoQ₄) and 1 μ M CoQ precursors (pABA, 4-HB). **g**, Growth rate of WT and $\Delta cqd1$ yeast transformed with the indicated plasmids (EV, CQD1 or CQD1 point mutants) and grown in Ura-, pABA- media containing 0.1% (w/v) glucose and 3% (w/v) glycerol (mean \pm SD, n = 3). Yeast were treated with 0 (colored bars) or 1 μ M 4-HB (white bars, superimposed) to determine rescue of respiratory growth. **h**, Model for Cqd1's putative role in cellular CoQ distribution. Significance calculated by a two-tailed Student's t-test; * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$.

130 COQ8A) revealed that it possesses an atypical protein kinase-like (PKL) fold that
131 endows ATPase activity but occludes larger proteinaceous substrates from entering the
132 active site^{11,15} (Extended Data Fig. 2c-e). Unlike COQ8, Cqd1 is recalcitrant to
133 recombinant protein purification; therefore, in lieu of direct in vitro activity assays, we
134 examined the ability of Cqd1 point mutants to rescue the respiratory growth defect of
135 $\Delta cqd1$ yeast. Similar to Coq8^{11,12,15}, the ability of Cqd1 to rescue the $\Delta cqd1$ respiratory
136 growth deficiency depended on core protein kinase-like (PKL) family residues¹⁶ required
137 for phosphoryl transfer (Fig. 3g) and on quintessential UbiB motif residues (Extended
138 Data Fig. 2e-h). Further biochemical work is required to prove Cqd1's enzymatic
139 activity; however, these data support a model whereby Cqd1's ability to promote CoQ
140 distribution relies on atypical kinase/ATPase activity (Fig. 3h).

141


142 **Cqd2 counteracts Cqd1 function**

143 Beyond Coq8 and Cqd1, the *S. cerevisiae* genome encodes just one other member of
144 the UbiB family—Ylr253w (aka Mcp2, and renamed here Cqd2). Cqd2 is also poorly
145 characterized and resides in the same location as Cqd1, on the outer face of the
146 IMM^{9,13,17} (Extended Data Fig. 1b). Previous studies have identified genetic and
147 physical interactions connecting Cqd2 to mitochondrial lipid homeostasis, but not to a
148 specific pathway¹⁷⁻¹⁹. Given the similarity between these three proteins (Extended Data
149 Fig. 2d-e), we anticipated that Cqd2 might also be connected to CoQ biology.

150 To test this hypothesis, we disrupted *CQD2* in $\Delta gpx1/2/3$ yeast and subjected
151 this strain to PUFA-mediated stress. Surprisingly, $\Delta gpx1/2/3\Delta cqd2$ yeast exhibited an
152 enhanced sensitivity to PUFA treatment—the opposite phenotype to that of
153 $\Delta gpx1/2/3\Delta cqd1$ (Fig. 4a; Extended Data Fig. 3a). Furthermore, $\Delta gpx1/2/3\Delta cqd1\Delta cqd2$

154 yeast phenocopied the parental ($\Delta gpx1/2/3$) strain (Fig. 4a; Extended Data Fig. 3a).
 155 Under respiratory conditions, $\Delta cqd2$ yeast exhibited no detectable change in growth.
 156 However, deleting *CQD2* from $\Delta cqd1$ yeast ($\Delta cqd1\Delta cqd2$) restored this strain's impaired
 157 respiratory growth rate to WT levels (Fig. 4b-c). Conversely, reintroduction of *CQD2* into

Fig. 4: Cqd2 function opposes Cqd1 control of CoQ distribution. **a**, Growth rate of $\Delta gpx1/2/3$ and the described yeast strains in pABA- media containing 2% (w/v) glucose and the indicated additives (mean \pm SD, n = 3). **b**, Growth assay of WT, $\Delta cqd1$, $\Delta cqd2$, and $\Delta cqd1\Delta cqd2$ yeast in pABA- media containing 0.1% (w/v) glucose and 3% (w/v) glycerol (mean \pm SD, n = 6). **c**, Growth rate of yeast strains in b treated with 0 (colored bars) or 1 μ M 4-HB (white bars, superimposed) (mean \pm SD; 0 μ M 4-HB n = 6, 1 μ M 4-HB n = 3). **d**, Growth rate of WT and $\Delta cqd1\Delta cqd2$ yeast transformed with the indicated plasmids (EV, CQD2 or CQD2 point mutants) and grown in Ura-, pABA- media containing 0.1% (w/v) glucose and 3% (w/v) glycerol (mean \pm SD, n = 3). Yeast were treated with 0 (colored bars) or 1 μ M 4-HB (white bars, superimposed) to determine recapitulation of respiratory growth defect. **e**, Schematic of Sdh4-GFP styrene maleic acid (SMA) lipid particle (SMALP) isolation. **f**, Western blot to assess purity of SMALP isolation samples from endogenously tagged Sdh4-GFP yeast. Spheroplast, SP; crude mitochondria, CM; soluble, S; elution, E (or IMM patch). Kar2, endoplasmic reticulum; Tom70, outer mitochondrial membrane (OMM); Vdac, OMM; Sdh4-GFP, SMALP target/IMM; Sdh2, IMM; Cit1, mitochondrial matrix. **g**, CoQ from subcellular fractions derived from SMALP isolation described in f for the indicated strains (mean \pm SD, n = 3). **h**, Summary model depicting opposing roles for yeast UbiB family proteins in cellular distribution of CoQ. Significance calculated by a two-tailed Student's t-test: * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

158 the $\Delta cqd1\Delta cqd2$ strain recapitulated the respiratory growth deficiency of $\Delta cqd1$ (Fig.
159 4d). Total cellular CoQ levels remained unchanged (Extended Data Fig. 3b), again
160 suggesting these CoQ-related phenotypes are unrelated to CoQ biosynthesis. Similar to
161 Cqd1 (Fig. 3g), Cqd2 function was dependent on intact canonical PKL and UbiB-specific
162 residues (Fig. 4d, Extended Data Fig. 3c-e), suggesting that all three UbiB family
163 proteins in yeast are active phosphoryl transfer enzymes.

164 The analyses above, coupled with the submitochondrial location of Cqd1 and
165 Cqd2, suggest a model whereby these enzymes may reciprocally regulate the amount
166 of CoQ within the IMM. To test this directly, we used the amphipathic polymer styrene
167 maleic acid (SMA) to solubilize integral membrane proteins into detergent-free SMA
168 lipid particles (SMALPs)²⁰ from yeast harboring an endogenously-tagged subunit of
169 mitochondrial complex II (Sdh4-GFP). We reasoned that purifying lipid patches
170 containing Sdh4, which directly interacts with CoQ to facilitate succinate dehydrogenase
171 (Complex II) activity²¹, would yield a suitable lipid microenvironment to measure IMM-
172 localized CoQ. After solubilization (Extended Data Fig. 3f), we isolated native IMM
173 patches that possessed Sdh4-GFP using a recombinantly purified His-tagged GFP
174 nanobody (Fig. 4e; Extended Data Fig. 3g-h). We show that purified Sdh4-GFP IMM
175 patches are largely void of extramitochondrial and outer mitochondrial membrane
176 (OMM) protein contamination (Fig. 4f), making this a reliable sample for assessing IMM
177 CoQ abundance.

178 We generated a panel of deletion strains in the Sdh4-GFP background to
179 investigate how loss of Cqd1 and Cqd2 impact CoQ abundance in this IMM
180 microenvironment. These yeast strains exhibited the same respiratory phenotypes as

181 the W303 background strains and had similar levels of whole-cell CoQ (Extended Data
182 Fig. 3i-j). After solubilization and affinity enrichment (Extended Data Fig. 3k-l), Sdh4-
183 GFP IMM patch lipids were extracted for targeted CoQ measurements. Consistent with
184 our respiratory growth observations, $\Delta cqd1$ yeast had significantly lower levels of IMM
185 patch CoQ. Conversely, the $\Delta cqd2$ yeast had elevated IMM patch CoQ, while
186 $\Delta cqd1\Delta cqd2$ yeast had levels similar to the parental strain (Fig. 4g). These data provide
187 direct evidence of protein-dependent changes in CoQ distribution, corroborating our
188 phenotypic observations. Taken together, our results suggest that Cqd1 and Cqd2
189 reciprocally regulate the levels of IMM CoQ and support a model wherein proper cellular
190 CoQ distribution is dependent on the balance of their activities (Fig. 4h).

191

192 **Discussion**

193 Our work demonstrates that two previously uncharacterized UbiB family proteins
194 influence the cellular distribution of mitochondria-derived CoQ. To our knowledge, Cqd1
195 and Cqd2 are the first proteins implicated in this process, which is essential for
196 providing membranes throughout the cell with the CoQ necessary for enzymatic
197 reactions and antioxidant defense. Further efforts are needed to establish how these
198 proteins support CoQ distribution mechanistically; however, their similarity to Coq8 and
199 the requirement for canonical PKL residues in their active sites suggests that Cqd1 and
200 Cqd2 may couple ATPase activity to the selective extraction/deposition of CoQ from/to
201 the IMM.

202 Once extracted from the IMM, we expect that subsequent steps would be
203 required to deliver CoQ throughout the cell. The multimeric ER-mitochondrial encounter
204 structure (ERMES) and mitochondrial contact site and cristae organizing system

205 (MICOS) complexes facilitate interorganellar lipid and metabolite transfer^{22,23}. Recent
206 work has revealed that CoQ biosynthetic machinery and MICOS subcomplexes often
207 colocalize with ERMES²⁴⁻²⁶, suggesting that these sites could serve as conduits for CoQ
208 transport. Additionally, COQ9 is a lipid binding protein that likely delivers CoQ
209 precursors to matrix enzymes²⁷, suggesting that other lipid binding proteins may exist to
210 shuttle CoQ from mitochondria to other membranes. Our genetic screen has nominated
211 several extramitochondrial and cytosolic proteins as promising leads for these
212 processes.

213 Our investigations here focused on CoQ; however, it is possible that Cqd1 and
214 Cqd2 (aka Mcp2) influence lipid transport and homeostasis more broadly. Previous
215 work has identified an array of genetic interactions for Cqd1 and Cqd2 with lipid
216 biosynthesis and homeostasis genes^{19,28}. Moreover, Cqd2 was previously identified as
217 a high-copy suppressor of a growth defect caused by loss of the ERMES subunit
218 Mdm10¹⁷. More recently, three conserved Cqd2 active site residues were shown to
219 mitigate rescue of Δ mdm10 yeast growth¹⁸, results that we confirm (Cqd2 K210R) and
220 expand upon with six additional residue mutations.

221 Finally, UbiB family proteins are found across all domains of life²⁹. UbiB
222 homologs in plants (termed ABC1K proteins) are abundant, with 17 found in
223 *Arabidopsis*³⁰. Many of these ABC1K proteins are localized to plastoglobules—plastid-
224 localized lipoprotein particles that contain various lipid-derived metabolites—and recent
225 work suggests that ABC1K1 and ABC1K3 may affect the mobility and exchange of their
226 subcellular plastoquinone-9 pools³¹, suggesting UbiB proteins might function in quinone
227 distribution across species. In humans, five UbiB proteins have been identified, ADCK1-

228 5. While COQ8A (ADCK3) and COQ8B (ADCK4) have established roles in CoQ
229 biosynthesis and human disease^{11,32,33}, the biological roles of other ADCK proteins
230 remain elusive. Genome-wide knockdown studies have implicated these
231 uncharacterized *ADCK* genes in several cancer disease states³⁴⁻³⁷. As novel targets for
232 human disease intervention, it will be important to determine if functional conservation
233 exists between Cqd1 and Cqd2 and their putative human orthologs, ADCK2 and
234 ADCK1/5, respectively. Recently, a crucial new role for extramitochondrial CoQ was
235 identified in mitigating ferroptosis, a type of cell death stemming from a buildup of toxic
236 lipid peroxides, suggesting that manipulating CoQ distribution could provide therapeutic
237 benefits^{38,39}. Notably, we have developed small-molecule modulators for Coq8¹² and
238 COQ8A⁴⁰, indicating that UbiB proteins are promising druggable targets.

239 Collectively, our work to de-orphanize these poorly characterized mitochondrial
240 proteins represents the first step in addressing enduring questions regarding
241 endogenous cellular CoQ distribution and unlocking the therapeutic potential of
242 manipulating this pathway.

243

244 **Methods**

245 **Yeast Strains and Cultures**

246 Unless otherwise described, *Saccharomyces cerevisiae* haploid W303 (MAT α his3 leu2
247 met15 trp1 ura3) yeast were used. For SMA-derived lipid nanodisc work, endogenous
248 GFP-tagged BY4741 (MAT α his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) yeast strains⁴¹ were
249 used. Yeast deletion strains were generated using standard homologous recombination
250 or CRISPR-mediated methods. For homologous recombination, open reading frames

251 were replaced with the KanMX6, HygMX6, or NatMX6 cassette as previously
252 described⁴². Cassette insertion was confirmed by a PCR assay and DNA sequencing.
253 CRISPR-mediated deletions were performed as described in⁴³. 20-mer guide
254 sequences were designed with the ATUM CRISPR gRNA design tool
255 (<https://www.atum.bio/eCommerce/cas9/input>) and cloned into pRCC-K, and 500 ng of
256 the guide-inserted pRCC-K was used per yeast transformation. Donor DNA was 300
257 pmol of an 80-nt Ultramer consisting of 40 bp upstream and 40 bp downstream of the
258 ORF (for scarless deletions) or ~6 µg of PCR-amplified Longtine cassette with flanking
259 homology 40 bp upstream and 40 bp downstream of the ORF (for cassette-replacement
260 deletions).

261
262 Synthetic complete (and dropout) media contained drop-out mix (US Biological), yeast
263 nitrogen base (with ammonium sulfate and without amino acids) (US Biological), and
264 the indicated carbon source. *pABA*⁻ (and dropout) media contained Complete
265 Supplement Mixture (Formedium), Yeast Nitrogen Base without amino acids and
266 without *pABA* (Formedium), and the indicated carbon source. All media were sterilized
267 by filtration (0.22 µm pore size).

268

269 **Yeast Growth Assay and Drop Assay**

270 *PUFA Growth Assays*

271 To assay yeast growth in liquid media, individual colonies were used to inoculate
272 synthetic complete (or synthetic complete dropout) media (2% glucose, w/v) starter
273 cultures, which were incubated overnight (30 °C, 230 rpm). Yeast were diluted to

274 1.1×10⁶ cells/mL in *pABA*[−] (or *pABA*[−] dropout) media (2% glucose, w/v) and incubated
275 until early log phase (30 °C, 7-8 h, 230 rpm). Yeast were swapped into fresh
276 *pABA*[−] media (2% glucose, w/v) at an initial density of 5×10⁶ cells/mL with indicated
277 additives. The cultures were incubated (30 °C, 1140 rpm) in an Epoch2™ plate reader
278 (BioTek®) in a sterile 96 well polystyrene round bottom microwell plate (Thermo) with a
279 Breathe-Easy® cover seal (Diversified Biotech). Optical density readings (A₆₀₀) were
280 obtained every 10 minutes, and growth rates were calculated with Gen5 v3.02.2
281 software (BioTek®), excluding timepoints from stationary phase.

282

283 *Respiratory Growth Assays*

284 Individual colonies of *S. cerevisiae* were used to inoculate synthetic complete media
285 (2% glucose, w/v) starter cultures, which were incubated overnight (30 °C, 230 rpm).
286 For transformed yeast strains, the corresponding Ura[−] media was used. Yeast were
287 diluted to 1×10⁶–1.33×10⁶ cells/mL in *pABA*[−] media (2% glucose, w/v) and incubated
288 until early log phase (30 °C, 7-8 h, 230 rpm). Yeast were swapped into *pABA*[−] media
289 with glucose (0.1%, w/v) and glycerol (3%, w/v) at an initial density of 5×10⁶ cells/mL
290 with indicated additives. The cultures were incubated (30 °C, 1140 rpm) in an Epoch2
291 plate reader (BioTek) in a sterile 96 well polystyrene round bottom microwell plate
292 (Thermo) with a Breathe-Easy cover seal (Diversified Biotech). Optical density readings
293 (A₆₀₀) were obtained every 10 minutes, and growth rates were calculated with Gen5
294 v3.02.2 software (BioTek), excluding timepoints before the diauxic shift and during
295 stationary phase growth.

296

297 *Drop Assays*

298 Individual colonies of yeast were used to inoculate *pABA*-limited media (2% w/v
299 glucose, 100 nM *pABA*) starter cultures, which were incubated overnight (30 °C,
300 230 rpm). Cells were spun down (21,000 x *g*, 2 min) and resuspended in water. Serial
301 dilutions of yeast (10⁵, 10⁴, 10³, 10², or 10 cells) were dropped onto *pABA*⁻ media (2%
302 glucose and 1% EtOH, w/v) agar plates with indicated additives and incubated (30 °C,
303 2-3 d).

304

305 **Forward-genetic Screen**

306 Individual colonies of $\Delta gpx1/2/3$ yeast were used to inoculate YEPD starter cultures,
307 which were incubated overnight. 1.0×10⁸ cells were pelleted, washed once with sterile
308 water, and resuspended in 2.5 mL of 100 mM sodium phosphate buffer, pH 7.0. Ethyl
309 methanesulfonate (EMS) (80 μ L) was added, and cells were incubated (90 min, 30 °C,
310 230 rpm). Cells were washed thrice with sodium thiosulfate (5% w/v) to inactivate EMS.
311 Cells were resuspended in water, and 1.0×10⁴ cells were plated on *pABA*-limited (2%
312 w/v glucose, 100 nM *pABA*) agar plates. After 3 days, cells were replica-plated onto
313 *pABA*⁻ (2% glucose, w/v) plates with 0 μ M or 25 μ M linolenic acid (C18:3, Sigma).
314 Colonies that grew on 25 μ M linolenic acid were picked into YEPD overnight cultures
315 and struck on YEPD plates, and PUFA resistance phenotypes were confirmed with
316 plate reader growth assays. For mutant strains that grew in the presence of 25 μ M
317 linolenic acid, genomic DNA was isolated with the MasterPure™ Yeast DNA Purification
318 Kit (Lucigen) and submitted to GENEWIZ for whole-genome sequencing. *S. cerevisiae*
319 genome assembly and variation calling were performed with SeqMan NGen 14 and

320 ArrayStar 14 (DNASTAR Lasergene suite). Variant D-Score predictions were obtained
321 using the PROVEAN v1.1.3 web server (http://provean.jcvi.org/seq_submit.php).

322

323

324

325 **Plasmid Cloning**

326 Expression plasmids were cloned with standard restriction enzyme cloning methods.
327 ORF specific primers were used to amplify Cqd1 (Ypl109c) and Cqd2 (Ylr253w) from
328 W303 yeast genomic DNA. Amplicons were treated with DpnI to degrade genomic DNA
329 and ligated into the digested p416 GPD plasmid (Addgene). Cloning products were then
330 transformed into *E. coli* 10G chemically competent cells (Lucigen). Plasmids were
331 isolated from transformants and Sanger sequencing was used to identify those
332 containing the correct insertion.

333

334 Constructs containing Cqd1 and Cqd2 were digested with Sall and BamHI or HindIII to
335 liberate the GPD promoter. Digested backbones were then combined with amplified
336 endogenous promoter regions (1000 bases upstream for Cqd1, 500 bases upstream for
337 Cqd2) and ligated to generate endogenous promoter vectors for Cqd1 and Cqd2.

338

339 **Site-Directed Mutagenesis**

340 Point mutants were constructed as described in the Q5® Site-Directed Mutagenesis Kit
341 (New England Biolabs) and were confirmed via Sanger sequencing. Yeast were
342 transformed as previously described⁴⁴ with plasmids encoding Cqd1 and Cqd2 variants

343 with their endogenous promoters and grown on uracil drop-out (Ura⁻) synthetic media
344 plates containing glucose (2%, w/v).

345

346 **Homology Model Generation**

347 Amino acid sequences of Cqd1 and Cqd2 were threaded through COQ8A apo crystal
348 structure (PDB:4PED) via the online iTASSER webserver⁴⁵. Superimposed homology
349 models were visualized in the PyMOL Molecular Graphics System (Version 2.0,
350 Schrödinger, LLC). Color schemes depicting protein domain organization were chosen
351 according to previous work¹⁵.

352

353 **Subcellular Fractionation**

354 Individual colonies of *S. cerevisiae* were used to inoculate synthetic complete media
355 (2% glucose, w/v) starter cultures, which were incubated overnight (30 °C, 230 rpm).
356 Yeast were diluted to 1.2×10^6 cells/mL in 50 mL *pABA*⁻ media (2% glucose, w/v) and
357 incubated until early log phase (30 °C, 12 h, 230 rpm). Yeast were swapped into 2 L of
358 *pABA*⁻ media with glucose (0.1%, w/v) and glycerol (3%, w/v) at an initial density of
359 5×10^4 cells/mL and incubated until early log phase (30 °C, 20 h, 230 rpm). 1×10^8 cells
360 were collected for whole-cell (WC) analyses. The remaining culture was pelleted by
361 centrifugation (4,500 x g, 7 min) and weighed (5-6 g). Pellets were then fractionated
362 using previously described methods⁴⁶. To isolate crude mitochondria, samples were
363 pelleted by centrifugation (15,000 x g, 10 min, 4 °C). Crude mitochondria were
364 resuspended in SEM buffer (10 mM MOPS/KOH pH 7.2, 250 mM sucrose, 1 mM EDTA)
365 containing 10 µg trypsin (sequencing grade, Promega) and rotated end-over-end

366 overnight (12 h, 4 °C) to disrupt proteinaceous organelle contact tethers⁴⁷. Digested
367 samples were pelleted by centrifugation (12,000 x g, 10 min, 4 °C) and the supernatant
368 was collected. Pelleted material was resuspended in 900 µL SEM buffer containing 1
369 mM phenylmethylsulfonyl fluoride (SEM+PMSF) to deactivate trypsin. Resuspended
370 material was pelleted (12,000 x g, 10 min, 4 °C) and the supernatant was collected. This
371 was repeated once more and supernatant material was pooled (2.7 mL). To this, SEM
372 buffer was added up to 10 mL before ultracentrifugation (106,000 x g, 1 h, 4 °C) to
373 collect microsomes (non-mitochondrial fraction; NM). Pelleted crude mitochondria were
374 resuspended in 700 µL SEM+PMSF and then added to a freshly prepared sucrose
375 gradient (bottom to top: 1.5 mL 60% sucrose, 4 mL 32% sucrose, 1.5 mL 23% sucrose,
376 and 1.5 mL 15% sucrose) for separation by ultracentrifugation (134,000 x g, 1 h, 4 °C).
377 Enriched mitochondrial samples were recovered at the 32-60% interface and diluted
378 with 30 mL SEM. Mitochondria were pelleted (15,000 x g, 10 min, 4 °C) and
379 resuspended in fresh SEM (150 µL total). The protein concentration of all subcellular
380 fractions (spheroplasts, SP; crude mitochondria, CM; non-mitochondrial fraction, NM;
381 enriched mitochondria, M) was determined using the Pierce™ BCA Protein Assay Kit
382 (Thermo) before Western blot (5 µg) analyses and lipid extractions.

383

384 **GFP Nanobody**

385 *Recombinant Purification*

386 pCA528-His-SUMO-GFP nanobody (GFPnb) constructs were transformed into RIPL
387 competent *E. coli* cells for protein expression. GFPnb was overexpressed in *E. coli* by
388 autoinduction overnight⁴⁸ (37 °C, 4 h; 20°C, 20 h). Cells were isolated by centrifugation

389 (4,500 x g, 12 min, RT), flash frozen in N₂(l) dropwise, and stored at -80 °C. For protein
390 purification, cells were added to a Retsch® mixer mill MM 400 screw-top grinding jar
391 pre-equilibrated with N₂(l). The cells were lysed by cryogenic grinding (-196 °C, 30 Hz,
392 120 s x 3). Ground cell pellet was collected and resuspended end-over-end for 1 h in
393 lysis buffer (160 mM HEPES pH 7.5, 400 mM NaCl, 0.25 mM PMSF, 1 Roche
394 cComplete™ Protease Inhibitor Cocktail tablet, 500 U Benzonase® Nuclease) at 4 °C.
395 The lysate was clarified by centrifugation (15,000 x g, 30 min, 4 °C). Clarified lysate was
396 added to pre-equilibrated TALON® cobalt resin (Takara Bio) and incubated end-over-
397 end for 1 h at 4 °C. TALON® resin was pelleted by centrifugation (700 x g, 2 min, 4 °C)
398 and washed twice with equilibration buffer (160 mM HEPES pH 7.5, 400 mM NaCl, 0.25
399 mM PMSF) and twice with wash buffer (160 mM HEPES pH 7.5, 400 mM NaCl, 0.25
400 mM PMSF, 20 mM imidazole). His-tagged protein was eluted with elution buffer (160
401 mM HEPES (pH 7.5), 400 mM NaCl, 0.25 mM PMSF, 400 mM imidazole). The eluted
402 protein was concentrated to ~600 µL with an Amicon® Ultra Centrifugal Filter (10 kDa
403 MWCO) and exchanged into equilibration buffer. Concentrated protein elution was
404 centrifuged (15,000 x g, 5 min, 4 °C) to pellet precipitate and filtered through a 0.22 µM
405 syringe filter. Concentrated protein elution was separated via size exclusion
406 chromatography on a HiLoad™ 16/600 Superdex™ 75 pg. Fractions from the size
407 exclusion chromatography were analyzed by SDS-PAGE, and the fractions containing
408 GFPnb were pooled and concentrated to ~1 mL. The concentration of GFPnb was
409 determined by Bradford assay (Bio-Rad Protein Assay Kit II) and was diluted with
410 equilibration buffer and glycerol to a final concentration of 20 mg/mL protein (160 mM
411 HEPES pH 7.5, 400 mM NaCl, 10% glycerol). The final protein was aliquoted, flash

412 frozen in N₂(l) and stored at -80 °C. Fractions from the protein preparation were
413 analyzed by SDS-PAGE.

414

415 *Differential Scanning Fluorimetry*

416 The differential scanning fluorimetry method (thermal shift assay) was performed as
417 described previously⁴⁹. Purified recombinant GFPnb was diluted to a final concentration
418 of 4 µM with DSF buffer (100 mM HEPES pH 7.5, 150mM NaCl) and 1:1250 SYPRO®
419 Orange Dye (Life Tech). Thermal shift data was collected with QuantStudio Real-Time
420 PCR v1.2 software and analyzed with Protein Thermal Shift v1.3 software.

421

422 **Native Nanodisc Isolation**

423 Individual colonies of *S. cerevisiae* (BY4741) were used to inoculate synthetic
424 complete media (2% glucose, w/v) starter cultures, which were incubated overnight (30
425 °C, 230 rpm). Yeast were diluted to 5×10⁶ cells/mL in 50 mL *pABA*⁻ media (2% glucose,
426 w/v) and incubated until late log phase (30 °C, 16 h, 230 rpm). Yeast were swapped
427 into 2 L of *pABA*⁻ media with glucose (0.1%, w/v) and glycerol (3%, w/v) at an initial
428 density of 2.5×10⁶ cells/mL and incubated until early log phase (30 °C, 16 h, 230 rpm).
429 Yeast cultures were pelleted by centrifugation (4,500 x g, 7 min) and weighed (2–3 g).
430 Pellets were then fractionated using previously described methods⁴⁶. For preparative
431 scale affinity purification, crude mitochondria were resuspended in 50 µL BB7.4 (0.6 M
432 sorbitol, 20 mM HEPES-KOH pH 7.4), diluted in 950 µL ice cold BB7.S (20 mM HEPES-
433 KOH pH 7.4), vortexed for 10 sec (medium setting 8, Vortex Genie), and incubated on
434 ice for 30 minutes. Swollen mitochondria were then sonicated briefly (1/8" tip, 20%

435 amplitude) for 2 - 5 second pulses with 60 seconds between pulses. Mitoplasts with
436 osmotically ruptured outer membranes were recovered by centrifugation at (20,000 \times g,
437 10 min, 4 °C). After removing the supernatant, each pellet was resuspended with 1 mL
438 of Buffer B (20 mM HEPES-KOH pH 8.0, 200 mM NaCl) containing 2% (w/v) styrene
439 maleic acid copolymer (SMA, Polyscope SMALP® 25010P) by repeat pipetting and
440 rotated end-over-end (4 h, 4 °C). Soluble SMA extracts were separated from non-
441 extracted material by centrifugation at 21,000 \times g for 10 min at 4 °C. Soluble material
442 was then were added to NTA nickel resin (400 μ L slurry, Qiagen), which was pre-
443 charged (overnight at 4 °C, end-over-end) with recombinant His-tagged GFPnb (12.5
444 μ L, 20 mg/mL). This mixture of soluble SMA extracts and charged nickel resin was
445 rotated end-over-end (24 h, 4 °C).

446

447 Nickel resin was pelleted by centrifugation (700 \times g, 2 min, 4 °C) and the supernatant
448 fraction was carefully collected. Nickel resin was washed twice with Buffer B and twice
449 with 500 μ L Wash Buffer [Buffer B containing 20 mM imidazole]. Native nanodiscs
450 bound to His-GFPnb were eluted with Buffer B containing 250 mM imidazole by rotating
451 end-over-end for 20 min at 4 °C. Due to the presence of GFP nanobody in the elution
452 samples, relative target abundance was determined by Western analysis and anti-GFP
453 band quantification. Protein concentrations of all other samples were quantified by
454 Pierce™ BCA Protein Assay Kit (Thermo).

455

456 **Lipid Extraction**

457 *CHCl₃:MeOH Extraction*

458 1x10⁸ yeast cells were harvested by centrifugation (4,000 g, 5 min, 4 °C). The
459 supernatant was removed, and the cell pellet was flash frozen in N₂ (l) and stored at -80
460 C. (l) and stored at -80 °C. Frozen yeast pellets were thawed on ice and resuspended
461 in 100 µL cold water. To this, 100 µL of glass beads (0.5 mm; RPI) and CoQ₁₀ internal
462 standard (10 µL, 10 µM) were added and bead beat (2 min, 4 °C). 900 µL extraction
463 solvent (1:1 CHCl₃/MeOH, 4 °C) was added and samples were vortexed briefly. To
464 complete phase separation, samples were acidified with 85 µL 6 M HCl (4 °C), vortexed
465 (2 x 30 s, 4 °C), and centrifuged (5,000 g, 2 min, 4 °C). The resulting aqueous layer
466 (top) was removed and 400 µL of the organic layer (bottom) was transferred to a clean
467 tube and dried under Ar_(g). Dried organic matter (lipids) were reconstituted in
468 ACN/IPA/H₂O (65:30:5, v/v/v, 100 µL) by vortexing (2 x 30 s, RT) and transferred to an
469 amber vial (Sigma; QSertVial™, 12 x 32 mm, 0.3 mL) for LC–MS analysis.

470

471 *Petroleum Ether:MeOH Extraction*

472 For yeast whole-cell measurements, 1 x10⁸ cells were collected by centrifugation (4,000
473 x g, 5 min) and layered with 100 µL of glass beads (0.5 mm; RPI). Whole-cell samples
474 and all other fractions were then suspended in ice-cold methanol (500 µL; with 1 µM
475 CoQ₈ internal standard) and vortexed (10 min, 4 °C). ~500 µL of petroleum ether was
476 added to extract lipids, and samples were vortexed (3 min, 4 °C) and centrifuged
477 (17,000 x g, 1 min) to separate phases. The petroleum ether (upper) layer was
478 collected, and the extraction was repeated with another round of petroleum ether (500
479 µL), vortexing (3 min, 4 °C), and centrifugation (17,000 x g, 1 min). The petroleum ether
480 layers were pooled and dried under argon. Lipids were resuspended in 2-propanol (15

481 μ L) and transferred to amber glass vials (Sigma; QSertVialTM, 12 x 32 mm, 0.3 mL).
482 Sodium borohydride (15 μ L of 10 mM in 2-propanol) was added to reduce quinones,
483 and samples were vortexed briefly and incubated (5-10 min). Methanol (20 μ L) was
484 added to remove excess sodium borohydride, and samples were vortexed briefly and
485 incubated (5-10 min). Samples were briefly flushed with nitrogen gas.

486

487

488 **Lipidomic Analysis**

489 *Targeted LC-MS for Yeast CoQ₆ and PPHB₆*

490 LC-MS analysis was performed on an Acquity CSH C18 column held at 50 °C (100 mm
491 x 2.1 mm x 1.7 μ m particle size; Waters) using a Vanquish Binary Pump (400 μ L/min
492 flow rate; Thermo Scientific). Mobile phase A consisted of 10 mM ammonium acetate
493 and 250 μ L/L acetic acid in ACN:H2O (70:30, v/v). Mobile phase B consisted of
494 IPA:ACN (90:10, v/v) also with 10 mM ammonium acetate and 250 μ L/L acetic acid.
495 Mobile phase B was initially held at 50% for 1.5 min and then increased to 99% over 7.5
496 min and held there for 2 min. The column was equilibrated for 2.5 min before the next
497 injection. 10 μ L of each extract was injected by a Vanquish Split Sampler HT
498 autosampler (Thermo Scientific) in a randomized order.

499

500 The LC system was coupled to a Q Exactive Orbitrap mass spectrometer (MS) through
501 a heated electrospray ionization (HESI II) source (Thermo Scientific). Source conditions
502 were as follow: HESI II and capillary temperature at 350 °C, sheath gas flow rate at 25
503 units, aux gas flow rate at 15 units, sweep gas flow rate at 5 units, spray voltage at +3.5

504 kV/-3.5 kV, and S-lens RF at 90.0 units. The MS was operated in a polarity switching
505 mode acquiring positive and negative full MS and MS2 spectra (Top2) within the same
506 injection. Acquisition parameters for full MS scans in both modes were 17,500
507 resolution, 1×10^6 automatic gain control (AGC) target, 100 ms ion accumulation time
508 (max IT), and 200 to 1600 m/z scan range. MS2 scans in both modes were then
509 performed at 17,500 resolution, 1×10^5 AGC target, 50 ms max IT, 1.0 m/z isolation
510 window, stepped normalized collision energy (NCE) at 20, 30, 40, and a 10.0 s dynamic
511 exclusion.

512

513 Parallel Reaction Monitoring (PRM) in positive polarity mode was utilized to monitor for
514 two primary adducts, $[M+H]^+$ and $[M+NH_4]^+$, of each CoQ species. For CoQ₆, we
515 targeted the mass to charge ratio of 592.449 and 609.475; for CoQ₈, 728.574 and
516 745.601; and for CoQ₁₀, 864.7 and 881.727. PRM MS settings were: Automatic gain
517 control (AGC) target at 5×10^5 , Maximum IT at 100 ms, resolving power at 35,000, loop
518 count at 2, isolation window at 3.0 m/z, and collision energy at 35. Another experiment
519 performed in tandem with PRM used targeted single ion monitoring (t-SIM) in negative
520 mode to determine the primary adduct, $[M-H]^-$, of CoQ intermediates. For PPHB₆, we
521 targeted the mass to charge ratio of 544.908 and used the following t-SIM MS settings:
522 AGC target at 5×10^5 , Maximum IT at 100 ms, and resolving power at 140,000 with an
523 isolation window of 4.0 m/z.

524

525 *Data Analysis*

526 The resulting LC-MS data was manually processed using a custom TraceFinder 4.1
527 (Thermo Scientific) method using a mass precision of 4 and mass tolerance of 10 ppm
528 to detect and identify the different species and adducts of CoQ₆ and CoQ₈ and
529 intermediates.

530

531 *Targeted HPLC-ECD for Yeast CoQ₆*

532 For yeast whole-cell measurements, 5 x10⁸ cells were collected by centrifugation (4,000
533 x g, 5 min) and layered with 100 µL of glass beads (0.5 mm; RPI). Lipids from whole-cell
534 samples and other fractions were extracted according to the "*Petroleum Ether:MeOH*
535 *Extraction*" section above. Samples were analyzed by reverse-phase high-pressure
536 liquid chromatography with electrochemical detection (HPLC-ECD) using a C18 column
537 (Thermo Scientific, Betasil C18, 100 x 2.1 mm, particle size 3 µm) at a flow rate of 0.3
538 mL/min with a mobile phase of 75% methanol, 20% 2-propanol, and 5% ammonium
539 acetate (1 M, pH 4.4). After separation on the column, the NaBH₄-reduced quinones
540 were quantified on ECD detector (Thermo Scientific ECD3000-RS) equipped with
541 6020RS omni Coulometric Guarding Cell "E1", and 6011RS ultra Analytical Cell "E2"
542 and "E3". To prevent premature quinone oxidation, the E1 guarding electrode was set to
543 -200 mV. Measurements were made using the analytical E2 electrode operating at 600
544 mV after complete oxidation of the quinone sample and E3 electrode (600 mV) was
545 used to ensure that total signal was recorded on the E2 cell. For each experiment, a
546 CoQ₆ standard in 2-propanol was also prepared with sodium borohydride and methanol
547 treatment, and different volumes were injected to make a standard curve. Quinones

548 were quantified by integrating respective peaks using the Chromeleon 7.2.10 software
549 (Thermo) and normalized to CoQ₈ internal standard.

550

551 **Antibodies and Western Blots**

552 *Antibodies*

553 Primary antibodies used in this study include anti-Kar2 (SCBT sc-33630, 1:5000; RRID:
554 AB_672118), anti-Cit1⁵⁰ (Biomatik, 1:4000), anti-β-actin (Abcam ab8224, 1:1000; RRID:
555 AB_449644), anti-Tom70⁵¹ (1:1000, a gift from Nora Vogtle, University of Freiburg),
556 anti-Vdac (Abcam ab110326, 1:2000; RRID: AB_10865182); anti-GFP (SCBT sc-9996,
557 1:1000; RRID: AB_627695), anti-Sdh2⁵² (1:5000, a gift from Oleh Khalimonchuk,
558 University of Nebraska). Secondary antibodies include goat anti-mouse (LI-COR 926-
559 32210, 1:15000; RRID: AB_621842) and goat anti-rabbit (LI-COR 926-32211, 1:15000;
560 RRID: AB_621843).

561

562 *SMA Solubility Western Blot*

563 Mitoplasts were recovered and solubilized in styrene maleic acid containing buffer as
564 described above in “*Native Nanodisc Isolation*.” To determine the extent of GFP target
565 solubilization, equal amounts of “input” (IP) and soluble supernatant (S) were obtained,
566 along with the total pellet (insoluble, IS). 75 µL of the input sample was collected
567 immediately after SMA solubilization. After separating soluble SMA extracts from non-
568 extracted material via centrifugation (21,000 × g, 10 min, 4 °C), the supernatant was
569 transferred to a clean tube for an additional 5 minute spin. 75 µL of soluble sample was
570 then transferred to a new tube. The resulting pellet was washed with 1 mL of Buffer B

571 and centrifuged (21,000 \times g for 5 min at 4 °C). The resulting supernatant was aspirated
572 and 75 μ L of Buffer B was added to the insoluble (IS) fraction. From each sample,
573 proteins were extracted by standard chloroform-methanol procedures. Precipitated
574 protein was reconstituted in 75 μ L 0.1 M NaOH. 25 μ L 4X LDS sample buffer containing
575 beta-mercaptoethanol (BME) was added and samples were incubated (95 °C, ~10 min).
576 Proteins were analyzed with 4–12% Novex NuPAGE Bis-Tris SDS-PAGE (Invitrogen)
577 gels (1 h, 150 V). The gel was transferred to PVDF membrane at 100 V for 1 h with
578 transfer buffer (192 mM glycine, 25 mM Tris, 20% methanol [v/v]). The membrane was
579 blocked with 5% nonfat dry milk (NFDM) in TBST (20 mM Tris pH 7.4, 150 mM NaCl,
580 0.05% Tween 20 [v/v]) (1 h with agitation). Antibodies were diluted in 1% NFDM in
581 TBST and incubated with the PVDF (overnight, 4 °C with agitation). The PVDF was
582 washed three times in TBST and the secondary antibodies were diluted 1:15,000 in 1%
583 NFDM in TBST (1.5 h, r.t.). The membrane was washed three times in TBST and
584 imaged on a LI-COR Odyessey CLx using Image Studio v5.2 software.

585

586 *SMALP Fractionation Western Blot*

587 Fractions described above in “*Native Nanodisc Isolation*” and “*SMA Solubility Western*
588 *Blot*” were collected and used for western blot analysis. 4 μ g of spheroplasts (SP) and
589 crude mitochondria (CM) were loaded, along with equal volumes of extracted soluble
590 (S) and final elution (E) samples. Western blots were performed as described above.

591

592 **Statistical Analysis**

593 All experiments were performed in at least biological triplicate, unless stated otherwise.
594 In all cases, "mean" refers to arithmetic mean, and "SD" refers to sample standard
595 deviation. Statistical analyses were performed using Microsoft Excel. *p*-values were
596 calculated using an unpaired, two-tailed, Student's *t*-test. In all cases, *n* represents
597 independent replicates of an experiment.

598

599 **Reporting Summary**

600 Further information on research design is available in the Nature Research Reporting
601 Summary linked to this article.

602

603

604 **Data availability**

605 Next generation sequencing data (Fig. 2, Extended Data Fig 1) have been deposited to
606 NCBI SRA (BioProject ID PRJNA679831; SRA accession SRP293543). Additional
607 source data for Fig. 1-4 and Extended Data 1-3 are provided with the paper. All other
608 data supporting the finding of this study are available from the corresponding authors on
609 reasonable request.

610

611

612 **References**

613 1. Hatefi, Y., Haavik, A.G., Fowler, L.R. & Griffiths, D.E. Studies on the electron
614 transfer system. XLII. Reconstitution of the electron transfer system. *J Biol Chem*
615 **237**, 2661-2669 (1962).

616 2. Frerman, F.E. Acyl-CoA dehydrogenases, electron transfer flavoprotein and
617 electron transfer flavoprotein dehydrogenase. *Biochem Soc Trans* **16**, 416-418
618 (1988).

619 3. Jones, M.E. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and
620 regulation of UMP biosynthesis. *Annu Rev Biochem* **49**, 253-279 (1980).

621 4. Bentinger, M., Brismar, K. & Dallner, G. The antioxidant role of coenzyme Q.
622 *Mitochondrion* **7 Suppl**, S41-50 (2007).

623 5. Do, T.Q., Schultz, J.R. & Clarke, C.F. Enhanced sensitivity of ubiquinone-
624 deficient mutants of *Saccharomyces cerevisiae* to products of autoxidized
625 polyunsaturated fatty acids. *Proc Natl Acad Sci U S A* **93**, 7534-7539 (1996).

626 6. Avery, A.M. & Avery, S.V. *Saccharomyces cerevisiae* expresses three
627 phospholipid hydroperoxide glutathione peroxidases. *J Biol Chem* **276**, 33730-
628 33735 (2001).

629 7. Choi, Y., Sims, G.E., Murphy, S., Miller, J.R. & Chan, A.P. Predicting the
630 functional effect of amino acid substitutions and indels. *PLoS One* **7**, e46688
631 (2012).

632 8. Tauche, A., Krause-Buchholz, U. & Rodel, G. Ubiquinone biosynthesis in
633 *Saccharomyces cerevisiae*: the molecular organization of O-methylase Coq3p
634 depends on Abc1p/Coq8p. *FEMS Yeast Res* **8**, 1263-1275 (2008).

635 9. Vogtle, F.N. *et al.* Landscape of submitochondrial protein distribution. *Nat Commun* **8**, 290 (2017).

636 10. Rhee, H.W. *et al.* Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. *Science* **339**, 1328-1331 (2013).

637 11. Stefely, J.A. *et al.* Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity. *Mol Cell* **63**, 608-620 (2016).

638 12. Reidenbach, A.G. *et al.* Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinase-like UbiB Family. *Cell Chem Biol* **25**, 154-165 e111 (2018).

639 13. Morgenstern, M. *et al.* Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale. *Cell Rep* **19**, 2836-2852 (2017).

640 14. Vazquez-Fonseca, L. *et al.* ADCK2 Haploinsufficiency Reduces Mitochondrial Lipid Oxidation and Causes Myopathy Associated with CoQ Deficiency. *J Clin Med* **8** (2019).

641 15. Stefely, J.A. *et al.* Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis. *Mol Cell* **57**, 83-94 (2015).

642 16. Kannan, N., Taylor, S.S., Zhai, Y., Venter, J.C. & Manning, G. Structural and functional diversity of the microbial kinome. *PLoS Biol* **5**, e17 (2007).

643 17. Tan, T., Ozbalci, C., Brugger, B., Rapaport, D. & Dimmer, K.S. Mcp1 and Mcp2, two novel proteins involved in mitochondrial lipid homeostasis. *J Cell Sci* **126**, 3563-3574 (2013).

656 18. Odendall, F. *et al.* The mitochondrial intermembrane space-facing proteins Mcp2
657 and Tgl2 are involved in yeast lipid metabolism. *Mol Biol Cell* **30**, 2681-2694
658 (2019).

659 19. Costanzo, M. *et al.* A global genetic interaction network maps a wiring diagram of
660 cellular function. *Science* **353** (2016).

661 20. Lee, S.C. *et al.* A method for detergent-free isolation of membrane proteins in
662 their local lipid environment. *Nat Protoc* **11**, 1149-1162 (2016).

663 21. Oyedotun, K.S. & Lemire, B.D. The Quinone-binding sites of the *Saccharomyces*
664 *cerevisiae* succinate-ubiquinone oxidoreductase. *J Biol Chem* **276**, 16936-16943
665 (2001).

666 22. Murley, A. & Nunnari, J. The Emerging Network of Mitochondria-Organelle
667 Contacts. *Mol Cell* **61**, 648-653 (2016).

668 23. Tamura, Y., Kawano, S. & Endo, T. Organelle contact zones as sites for lipid
669 transfer. *J Biochem* **165**, 115-123 (2019).

670 24. Subramanian, K. *et al.* Coenzyme Q biosynthetic proteins assemble in a
671 substrate-dependent manner into domains at ER-mitochondria contacts. *J Cell
672 Biol* **218**, 1353-1369 (2019).

673 25. Eisenberg-Bord, M. *et al.* The Endoplasmic Reticulum-Mitochondria Encounter
674 Structure Complex Coordinates Coenzyme Q Biosynthesis. *Contact (Thousand
675 Oaks)* **2**, 2515256418825409 (2019).

676 26. Tirrell, P.S., Nguyen, K.N., Luby-Phelps, K. & Friedman, J.R. MICOS
677 subcomplexes assemble independently on the mitochondrial inner membrane in
678 proximity to ER contact sites. *J Cell Biol* **219** (2020).

679 27. Lohman, D.C. *et al.* An Isoprene Lipid-Binding Protein Promotes Eukaryotic
680 Coenzyme Q Biosynthesis. *Mol Cell* **73**, 763-774 e710 (2019).

681 28. Hoppins, S. *et al.* A mitochondrial-focused genetic interaction map reveals a
682 scaffold-like complex required for inner membrane organization in mitochondria.
683 *J Cell Biol* **195**, 323-340 (2011).

684 29. Leonard, C.J., Aravind, L. & Koonin, E.V. Novel families of putative protein
685 kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase
686 superfamily. *Genome Res* **8**, 1038-1047 (1998).

687 30. Lundquist, P.K., Davis, J.I. & van Wijk, K.J. ABC1K atypical kinases in plants:
688 filling the organellar kinase void. *Trends Plant Sci* **17**, 546-555 (2012).

689 31. Pralon, T. *et al.* Mutation of the Atypical Kinase ABC1K3 Partially Rescues the
690 PROTON GRADIENT REGULATION 6 Phenotype in *Arabidopsis thaliana*. *Front
691 Plant Sci* **11**, 337 (2020).

692 32. Ashraf, S. *et al.* ADCK4 mutations promote steroid-resistant nephrotic syndrome
693 through CoQ10 biosynthesis disruption. *J Clin Invest* **123**, 5179-5189 (2013).

694 33. Lagier-Tourenne, C. *et al.* ADCK3, an ancestral kinase, is mutated in a form of
695 recessive ataxia associated with coenzyme Q10 deficiency. *Am J Hum Genet* **82**,
696 661-672 (2008).

697 34. Wiedemeyer, W.R. *et al.* Pattern of retinoblastoma pathway inactivation dictates
698 response to CDK4/6 inhibition in GBM. *Proc Natl Acad Sci U S A* **107**, 11501-
699 11506 (2010).

700 35. Brough, R. *et al.* Functional viability profiles of breast cancer. *Cancer Discov* **1**,
701 260-273 (2011).

702 36. Simpson, K.J. *et al.* Identification of genes that regulate epithelial cell migration
703 using an siRNA screening approach. *Nat Cell Biol* **10**, 1027-1038 (2008).

704 37. Qiu, M. *et al.* aarF domain containing kinase 5 gene promotes invasion and
705 migration of lung cancer cells through ADCK5-SOX9-PTTG1 pathway. *Exp Cell*
706 *Res* **392**, 112002 (2020).

707 38. Bersuker, K. *et al.* The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit
708 ferroptosis. *Nature* **575**, 688-692 (2019).

709 39. Doll, S. *et al.* FSP1 is a glutathione-independent ferroptosis suppressor. *Nature*
710 **575**, 693-698 (2019).

711 40. Asquith, C.R.M., Murray, N.H. & Pagliarini, D.J. ADCK3/COQ8A: the choice
712 target of the UbiB protein kinase-like family. *Nat Rev Drug Discov* **18**, 815 (2019).

713 41. Huh, W.K. *et al.* Global analysis of protein localization in budding yeast. *Nature*
714 **425**, 686-691 (2003).

715 42. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A
716 simple and efficient method for direct gene deletion in *Saccharomyces*
717 *cerevisiae*. *Nucleic Acids Res* **21**, 3329-3330 (1993).

718 43. Generoso, W.C., Gottardi, M., Oreb, M. & Boles, E. Simplified CRISPR-Cas
719 genome editing for *Saccharomyces cerevisiae*. *J Microbiol Methods* **127**, 203-
720 205 (2016).

721 44. Gietz, R.D. & Woods, R.A. Transformation of yeast by lithium acetate/single-
722 stranded carrier DNA/polyethylene glycol method. *Methods Enzymol* **350**, 87-96
723 (2002).

724 45. Yang, J. *et al.* The I-TASSER Suite: protein structure and function prediction. *Nat*
725 *Methods* **12**, 7-8 (2015).

726 46. Meisinger, C., Pfanner, N. & Truscott, K.N. Isolation of yeast mitochondria.
727 *Methods Mol Biol* **313**, 33-39 (2006).

728 47. Forner, F., Arriaga, E.A. & Mann, M. Mild protease treatment as a small-scale
729 biochemical method for mitochondria purification and proteomic mapping of
730 cytoplasm-exposed mitochondrial proteins. *J Proteome Res* **5**, 3277-3287
731 (2006).

732 48. Fox, B.G. & Blommel, P.G. Autoinduction of protein expression. *Curr Protoc*
733 *Protein Sci Chapter 5*, Unit 5 23 (2009).

734 49. Niesen, F.H., Berglund, H. & Vedadi, M. The use of differential scanning
735 fluorimetry to detect ligand interactions that promote protein stability. *Nat Protoc*
736 **2**, 2212-2221 (2007).

737 50. Guo, X. *et al.* Ptc7p Dephosphorylates Select Mitochondrial Proteins to Enhance
738 Metabolic Function. *Cell Rep* **18**, 307-313 (2017).

739 51. Vogtle, F.N. *et al.* Mutations in PMPCB Encoding the Catalytic Subunit of the
740 Mitochondrial Presequence Protease Cause Neurodegeneration in Early
741 Childhood. *Am J Hum Genet* **102**, 557-573 (2018).

742 52. Bohovych, I. *et al.* Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic
743 Function and Respiratory Supercomplex Stability. *Sci Rep* **5**, 13989 (2015).

744

745

746 **Acknowledgements**

747 We thank Steven Claypool for consultation on SMALP generation, Adam Frost for
748 providing the plasmid containing GFP nanobody, Nora Vogtle and Oleh Khalimonchuk
749 for providing mitochondrial antibodies, Jared Rutter and Jodi Nunnari for providing the
750 parental yeast strains used in our studies, Matt Stefely for assistance with figure
751 generation, and current and former members of the Pagliarini Laboratory for their
752 feedback. This work was supported by NIH R35GM131795 and R01 GM112057 (to
753 D.J.P.), NIH T32DK007665, William H. Peterson Fellowship, Washburn Wharton
754 Fellowship, and University of Wisconsin Biochemistry Funding (to Z.A.K.), a National
755 Science Foundation Graduate Research Fellowship DGE-1747503 (to K.P.R.), and
756 P41GM108538 (to J.J.C. and D.J.P.).

757

758 **Author information**

759 These authors contributed equally: Zachary A. Kemmerer, Kyle P. Robinson.

760

761 **Affiliations**

762 Morgridge Institute for Research, Madison, WI, USA.

763 Zachary A. Kemmerer, Kyle P. Robinson, Jonathan M. Schmitz, Adam Jochem, and

764 David J. Pagliarini

765

766 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.

767 Zachary A. Kemmerer, Kyle P. Robinson, Jonathan M. Schmitz, Adam Jochem, and

768 David J. Pagliarini

769

770 Genome Center of Wisconsin, Madison, Wisconsin, USA.

771 Joshua J. Coon

772

773 Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.

774 Brett R. Paulson, Paul D. Hutchins, and Joshua J. Coon

775

776 Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI,

777 USA.

778 Joshua J. Coon

779

780 Departments of Cell Biology and Physiology; Biochemistry and Molecular Biophysics;

781 and Genetics, Washington University School of Medicine, St. Louis, MO, USA

782 David J. Pagliarini

783

784 **Contributions**

785 Z.A.K., K.P.R., and D.J.P. conceived of the project and its design. Z.A.K. and K.P.R.

786 conducted experiments and performed data analysis. J.M.S. purified and characterized

787 GFP nanobody. B.R.P. and P.D.H. performed and analyzed mass spectrometry

788 experiments. A.J. contributed to new reagents (cloning). All authors edited the

789 manuscript. Z.A.K., K.P.R., and D.J.P. wrote the manuscript. D.J.P. supervised the

790 project.

791

792

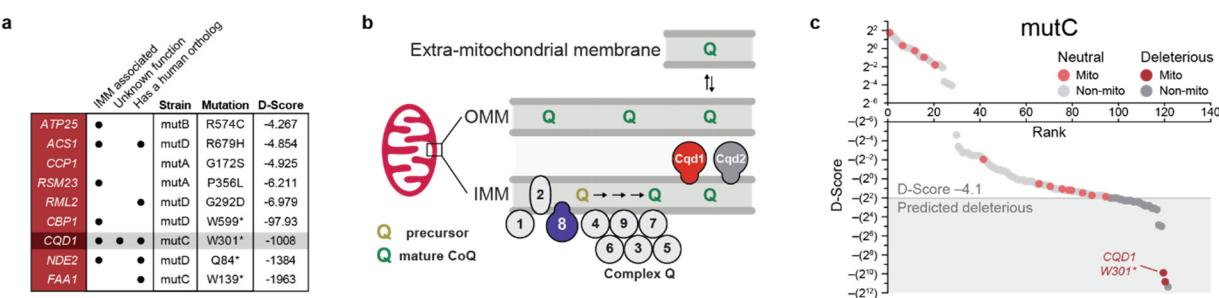
793 **Corresponding Author**

794 Correspondence and requests for materials should be addressed to D.J.P.

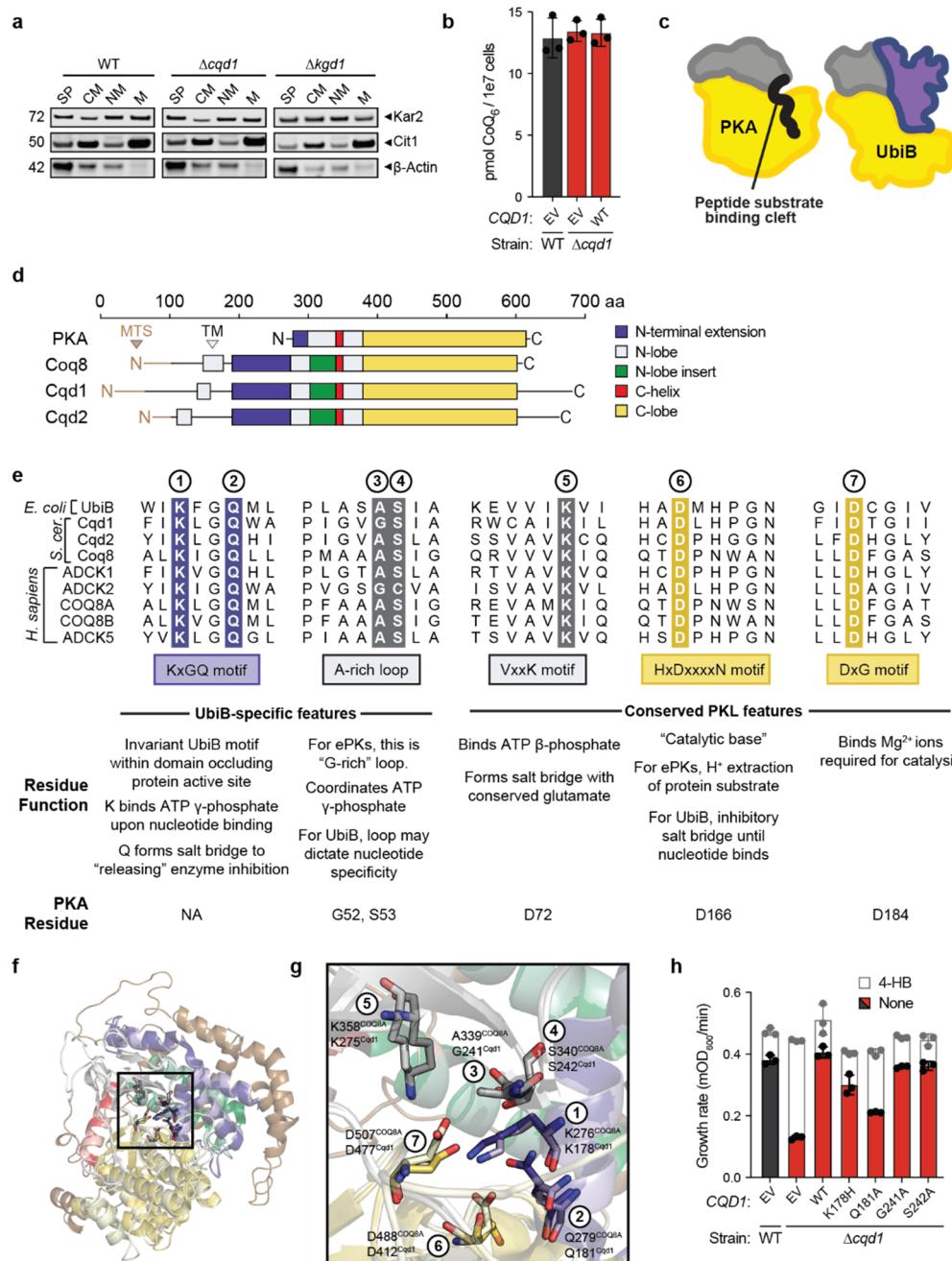
795 (pagliarini@wustl.edu).

796

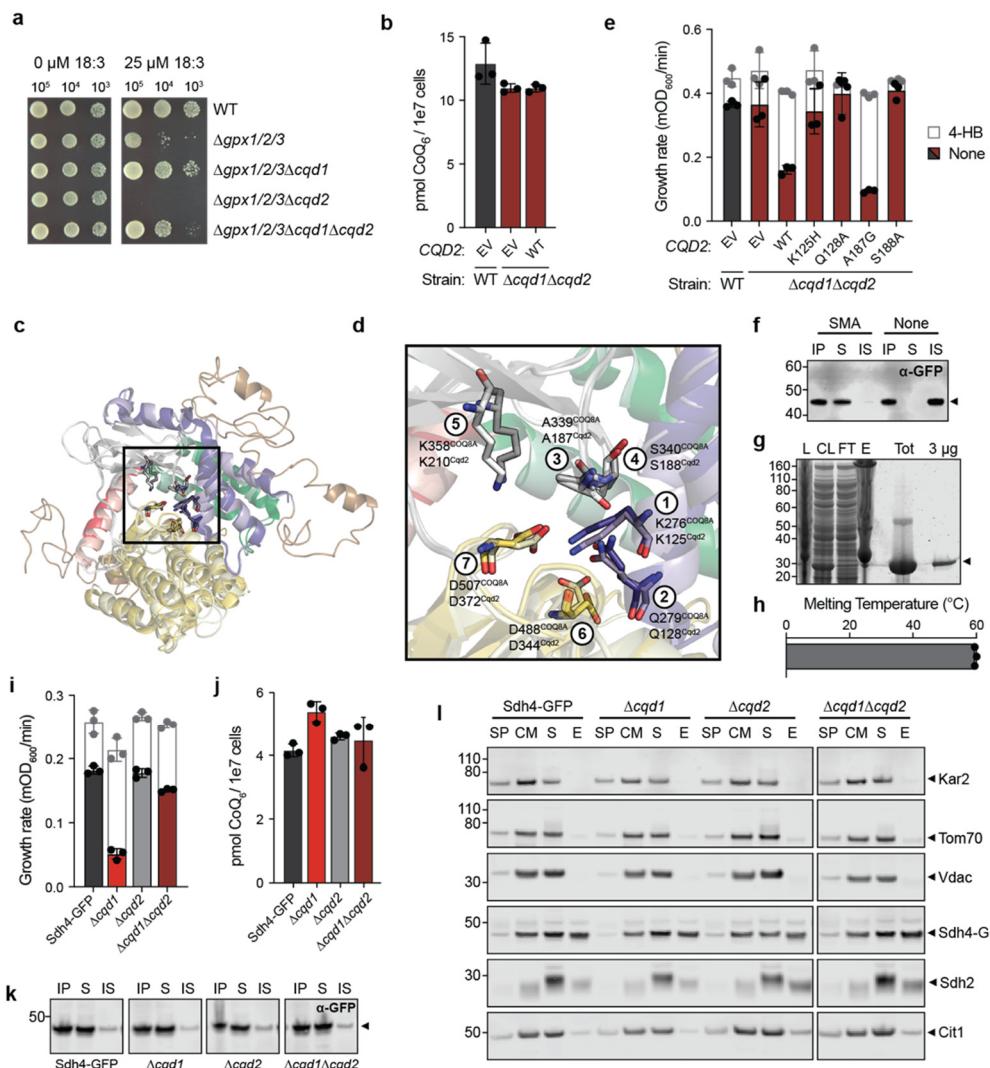
797 **Ethics declaration**


798 **Competing interests**

799 J.J.C. is a consultant for Thermo Fisher Scientific.


800

801


802 **Extended data**

804 **Extended Data Fig. 1 Genome-wide screen for CoQ trafficking genes identifies uncharacterized UbiB protein Cqd1.** **a**, Criteria for nine mitochondrial candidates used to nominate genes for additional investigation. Submitochondrial localization was confirmed by comparison to previous submitochondrial profiling datasets⁹, while protein function and human ortholog criteria were determined with existing database mining (UniProt and PhylomeDB, respectively). **b**, Schematic showing the submitochondrial localization of UbiB family proteins Coq8 (purple), Cqd1 (red), and Cqd2 (gray). Coq8 is essential for CoQ biosynthesis in concert with other Coq proteins (Coq1-9). **c**, Non-synonymous mutations identified using whole-genome sequencing for strain mutC were analyzed with PROVEAN to filter for likely deleterious changes (D-score ≤ -4.1 , shaded box). Gray, all genes; red, mitochondrial genes. Light, predicted neutral; dark, predicted deleterious.

806 **Extended Data Fig. 2 Cqd1 influences cellular CoQ distribution.** **a**, Western blot of subcellular samples derived from fractionated WT, $\Delta cqd1$, and $\Delta kgd1$ yeast. Spheroplast, SP; crude mitochondria, CM; non-mitochondrial fraction, NM; enriched mitochondria, M. Kar2, endoplasmic reticulum; Cit1, mitochondria; β -actin, cytoplasm. **b**, Total CoQ from WT and $\Delta cqd1$ yeast transformed with the indicated plasmids and grown in Ura-, *pABA*- media containing 0.1% (w/v) glucose and 3% (w/v) glycerol (mean \pm SD, n = 3). **c**, Cartoon of canonical protein kinase A (PKA; 1ATP) and human COQ8A (4PED) showing protein domain organization. Protein kinases often contain a β -sheet rich N-terminal domain (gray) and a helical C-terminal domain (yellow). COQ8A contains a unique N-terminal extension (purple) containing the invariant UbiB-specific 'KxGQ' motif. **d**, Domain alignment of PKA and yeast UbiB proteins. Mitochondrial targeting sequence, MTS; transmembrane domain, TM. **e**, UbiB family sequence alignment of UbiB-specific and conserved protein kinase-like (PKL) features. Residue functions within the canonical protein kinase or UbiB architecture are described below. The three conserved PKL residues shown are essential for phosphoryl transfer activity. **f**, Homology model for Cqd1 (light) aligned with COQ8A (4PED, dark). The model was threaded using I-TASSER⁴⁵ and COQ8A structure to guide modeling. Boxed and outlined in black are residues described in **g**, and unmodeled regions are colored in brown. **i**, Zoomed in view of conserved PKL and UbiB-specific residues. **h**, Growth rate of WT and $\Delta cqd1$ yeast transformed with the indicated plasmids (EV, *CQD1* or *CQD1* point mutants) and grown in Ura-, *pABA*- media containing 0.1% (w/v) glucose and 3% (w/v) glycerol (mean \pm SD, n = 3). Yeast were treated with 0 (colored bars) or 1 μ M 4-HB (white bars, superimposed) to determine rescue of respiratory growth.

807

Extended Data Fig. 3 Cqd2 function opposes Cqd1 control of CoQ distribution.

a, Serial dilution drop assay of indicated yeast strains grown for 3 days on solid pABA- medium containing 2% (w/v) glucose, 0.5% (w/v) ethanol (EtOH), and 0-25 μ M 18:3. **b**, Total CoQ from WT and Δ cqd1 Δ cqd2 yeast transformed with EV or endogenous CQD2 and grown in Ura-, pABA- media containing 0.1% (w/v) glucose and 3% (w/v) glycerol (mean \pm SD, n = 3). **c**, Homology model for Cqd2 (light) aligned with COQ8A (4PED, dark). The model was threaded using I-TASSER⁴⁵ and COQ8A structure to guide modeling. Boxed and outlined in black are residues described previously (Extended Data Fig. 2f) and unmodeled regions are colored in brown. **d**, Zoomed in view of conserved PKL and UbiB-specific residues described previously. **e**, Growth rate of WT and Δ cqd1 Δ cqd2 yeast transformed with the indicated plasmids and grown in Ura-, pABA- media containing 0.1% (w/v) glucose and 3% (w/v) glycerol (mean \pm SD, n = 3). Yeast were treated with 0 (colored bars) or 1 μ M 4-HB (white bars, superimposed) to determine recapitulation of respiratory growth defect. **f**, Western blot to determine solubility of Sdh4-GFP target in the presence and absence of 2% (w/v) SMA. Input, IP; soluble, S; insoluble, IS. **g**, Recombinant purification of His-tagged GFP nanobody (GFPnb) via nickel resin enrichment and size-exclusion isolation. Lysate, L; clarified lysate, CL; flow-through, FT; elution, E; size-exclusion chromatography, SEC. **h**, Differential scanning fluorimetry of recombinant GFPnb to determine protein melting temperature. **i**, Growth rate of Sdh4-GFP yeast and indicated deletion strains assayed in pABA- media containing 0.1% (w/v) glucose and 3% (w/v) glycerol and treated with 0 (colored bars) or 1 μ M 4-HB (white bars, superimposed) (mean \pm SD, n = 3). **j**, Total CoQ from yeast strains described in i. **k**, Western blot to determine solubility of Sdh4-GFP target during SMALP preparation from the indicated yeast strains. Input, IP; soluble, S; insoluble, IS. **l**, Western blot of SMALP isolation samples derived from the indicated yeast. Spheroplast, SP; crude mitochondria, CM; soluble, S; elution, elution, E (or IMM patch). Kar2, endoplasmic reticulum; Tom70, OMM; Vdac, OMM; Sdh4-GFP, SMALP target/IMM; Sdh2, IMM; Cit1, mitochondrial matrix.