

1 Metabolic potential of uncultured Antarctic soil bacteria revealed 2 through long-read metagenomic sequencing

3
4 Valentin Waschulin¹, Chiara Borsetto¹, Robert James¹, Kevin K. Newsham², Stefano
5 Donadio³, Christophe Corre^{1,4}, Elizabeth Wellington¹

6
7 ¹School of Life Sciences, University of Warwick, Coventry, United Kingdom

8 ²NERC British Antarctic Survey, Cambridge, United Kingdom

9 ³NAICONS Srl, Milano, Italy

10 ⁴Department of Chemistry, University of Warwick, Coventry, United Kingdom

12 Abstract

13 The growing problem of antibiotic resistance has led to the exploration of uncultured
14 bacteria as potential sources of new antimicrobials. PCR amplicon analyses and short-read
15 sequencing studies of samples from different environments have reported evidence of high
16 biosynthetic gene cluster (BGC) diversity in metagenomes. However, few complete BGCs
17 from uncultivated bacteria have been recovered, making assessment of BGC diversity
18 difficult. Here, long-read sequencing and genome mining were used to recover >1400
19 mostly complete BGCs that demonstrate the rich diversity of BGCs from uncultivated
20 lineages present in soil from Mars Oasis, Antarctica. The phyla Acidobacteriota,
21 Verrucomicrobiota and Gemmatimonadota, but also the actinobacterial classes
22 Acidimicrobiia, Thermoleophilia, and the gammaproteobacterial order UBA7966, were
23 found to encode a large number of highly divergent BGCs. Our findings underline the
24 biosynthetic potential of underexplored phyla as well as unexplored lineages within
25 seemingly well-studied producer phyla. They also showcase long-read metagenomic
26 sequencing as a promising way to access the untapped reservoir of specialised metabolites
27 of the uncultured majority of microbes.

29 Introduction

30 Throughout the last century, bacterial natural products have proven invaluable for
31 humankind. Their diversity has been harnessed to treat different ailments, and above all, to
32 fight infectious disease. However, their biological roles and even the extent of their diversity
33 are not well understood. Over the last decade, metagenomics has shown that a vast amount
34 of the bacterial diversity on Earth is comprised of uncultured bacterial taxa, with 97.9% of
35 bacterial operational taxonomic units (OTUs) estimated as unsequenced¹. First efforts to
36 characterise and harness the specialised metabolite diversity encoded in metagenomes
37 have shown promising results^{2–4}. Metagenomic library screenings have yielded novel
38 compounds, among them antibiotics^{3,5,6}, while sequence-based studies have documented
39 their diversity. In a study of grasslands with 1.3 Tb of short-read sequence data, Crits-Cristof
40 et al. recovered hundreds of metagenome-assembled genomes (MAGs) obtained through a
41 combination of binning approaches⁷. Analysis of the MAGs revealed a large number of BGCs
42 in Acidobacteria and Verrucomicrobia, widespread but underexplored phyla of soil bacteria.
43 Analysis of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) domains

45 indicated that NRPS and PKS from these groups were highly divergent from known BGCs of
46 these classes. Borsetto et al. also reported a high degree of diversity of NRPS and PKS
47 domains in Verrucomicrobia and other difficult-to-culture phyla⁸. Finding efficient ways to
48 access this treasure trove of diverse and unexplored specialised metabolites will expand our
49 understanding of microbial natural products, yield novel and useful compounds, and be an
50 important step towards the development of much-needed antimicrobials.

51
52 Recent advances in long-read sequencing technology have made it possible to recover
53 largely complete genomes metagenomic sequencing projects. A sequencing effort of 26 Gb
54 returned 20 circular genomes from human stool samples⁹, while a recent study using 1 Tb of
55 long-read data from wastewater treatment plants recovered thousands of high-quality
56 MAGs, 50 of which were circular¹⁰. Using mock community data, Pérez et al. demonstrated
57 that full-sized BGCs could be successfully recovered from long-read metagenomic
58 sequencing¹¹.

59
60 In recent years, a number of tools to explore and understand BGC diversity have been
61 developed. Genomes can be mined for known classes of BGCs using tools such as
62 antiSMASH¹², while the MiBiG database¹³ links BGCs to known compounds. BGCs can then
63 be compared in networking-based tools such as BiG-SCAPE¹⁴ and BiG-SLiCE¹⁵ to assess
64 relations of BGCs and estimate their novelty relative to extant BGC databases.

65
66 The isolated, harsh and unique environments of Antarctica show high degrees of endemism
67 in their bacterial life, but their diversity remains underexplored¹⁶. Little is known about the
68 specialised metabolites of Antarctic microorganisms. Few studies have explored polar, and
69 specifically Antarctic, natural products using functional screening of isolates and
70 metabolomics^{17–21}. A high number pigmented bacterial isolates indicates that carotenoids
71 and PKS, among other pigments, could be abundant BGC classes²². One culturing study
72 suggested that Antarctic isolates show a below average potential for antimicrobials¹⁷. On
73 the other hand, a primer-based study showed a promising diversity of NRPS and PKS
74 diversity in soil from Mars Oasis in the southern maritime Antarctic⁸, a site with
75 exceptionally high diversity of micro- and macroorganismal life for its latitude^{23,24}. Low-
76 temperature, aerated Antarctic soils have previously also been linked to
77 methanotrophy^{25,26}, and these soils could therefore harbour methanobactins, small
78 ribosomally synthesised peptides that scavenge copper needed for methane
79 monooxygenases.

80
81 In the present study, we used long-read shotgun metagenomic sequencing coupled with
82 genome mining and bin- and contig-based taxonomic classification to analyse the
83 biosynthetic potential of soil from Mars Oasis. We recovered >1,400 highly diverse and
84 mostly complete BGCs from largely uncultured and underexplored bacterial phyla such as
85 Acidobacteriota, Verrucomicrobiota and Gemmatimonadota as well as hitherto uncultured
86 members of Proteobacteria and Actinobacteriota. This helps elucidate the biosynthetic
87 diversity and highlights potential applications of the underexplored Antarctic soil
88 microbiome. The present study further demonstrates how long reads make BGC recovery,
89 analysis and taxonomic classification from highly complex metagenomes feasible even at
90 low sequencing efforts (<100 Gb).

92 Materials and Methods:

93

94 Site description

95 Mars Oasis is situated on the south-eastern coast of Alexander Island in the southern
96 maritime Antarctic at 71° 52' 42" S, 68° 15' 00" W (Figure 1A). Mean soil pH is 7.9, with NO_3^-
97 -N and NH_4^+ -N concentrations of 0.007 mg kg⁻¹ and 0.095 mg kg⁻¹, and total organic C, N,
98 phosphorus and potassium concentrations of 0.26%, 0.02%, 8.01% and 0.22%, respectively.
99 Soil moisture concentrations range between 2% and 6% in December–February, when snow
100 or rainfall events are very rare, with the majority of precipitation falling as snow between
101 March and November. Mars Oasis has a continental Antarctic climate, with frequent periods
102 of cloudless skies during summer, when temperatures at soil surfaces reach 19 °C. During
103 midwinter, the temperatures of surface soils decline to -32 °C. Mean annual air
104 temperature is c. -10 °C²⁷.

105

106

107 Soil sample, extraction and sequencing

108 Four samples of surface soil (each c. 2.5 kg) were collected from the lower terrace at Mars
109 Oasis by British Antarctic Survey staff in 2018 and were kept cool for several hours before
110 being stored at -20 °C. Soils were kept at this temperature until DNA extraction. A gentle
111 chemical lysis and DNA extraction were performed and the DNA was subjected to size
112 selection to approximately 20 Kb and larger by agarose gel electrophoresis using a protocol
113 previously used for metagenomic library construction²⁸. DNA was sequenced using Oxford
114 Nanopore Technologies (ONT) MinION and Illumina HiSeq 150 bp paired-end reads. For long
115 reads, the DNA was sequenced using three R9.4.1 flow cells and the SQK-LSK109 kit. The
116 nuclease flush protocol was used between each independent library run on a flow cell. Short
117 read DNA library preparation and Illumina sequencing were performed by Novogene
118 according to their in-house pipeline. In short, one µg of DNA was sheared to 350 bp, then
119 prepared for sequencing using NEBNext® DNA Library Prep Kit. The library was enriched by
120 PCR and underwent SPRI-bead purification prior to sequencing on a HiSeq sequencing
121 platform.

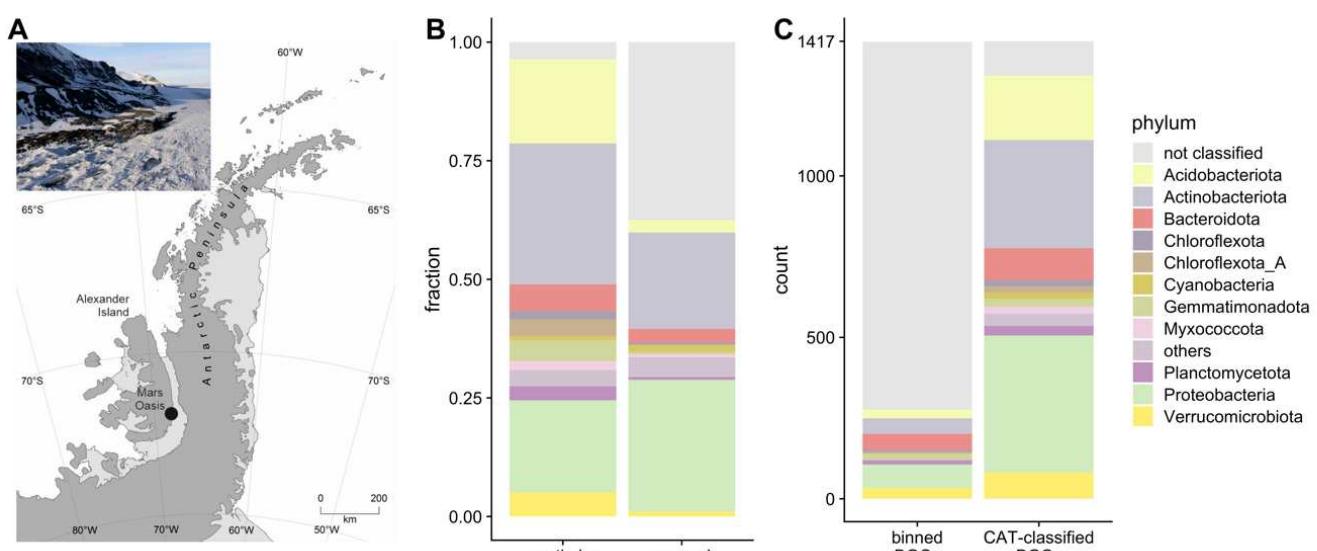
122

123 Assembly, polishing and quality control

124 The long reads raw data were basecalled with Guppy v.3.03 (HAC model) and assembled
125 using Flye²⁹ v2.5 using the --meta flag. The resulting assembly was polished with 4 iterations
126 of Racon³⁰ v1.4.7 followed by one run of Medaka³¹ v0.7.1. Then, the short reads were used
127 for six rounds of polishing with pilon³² v1.23. The approximate assembly quality was
128 checked at every step using ideel³³. Read and assembly statistics can be found in Results
129 Table 1. Initial assessment of potential indels showed that 82% of all proteins were shorter
130 than 0.9 times the length of the closest reference protein in the UniProt database and 7.2%
131 were longer than 1.1 times the length of the closest reference protein. After polishing using
132 Racon, Medaka and pilon, the proportion of potentially truncated proteins was reduced to
133 70%, while that of proteins that were potentially too long slightly increased to 7.6%.

134

135


136 **Genome mining, binning, taxonomic assignment and quality control**
137 For detecting biosynthetic gene clusters, the polished assembly was analysed by
138 antiSMASH¹² v5.1. For taxonomic assignment of contigs, proteins were predicted using
139 Prodigal³⁴, and CAT³⁵ (settings --sensitive -r 0.5 and -f 0.3) was used with a DIAMOND³⁶
140 database built from proteins in the GTDB_r89_54k database³⁷ as well as the NCBI non-
141 redundant protein database. The contigs were also binned with MetaBAT2³⁸, CONCOCT³⁹
142 and MaxBin2⁴⁰, using long- and short-read abundance profiles for differential coverage. The
143 resulting bins were subjected to metawrap-refine⁴¹ to produce the final bins. BiG-SCAPE¹⁴
144 1.0.1 was run in --auto mode with --mibig enabled to identify BGCs families. Networks using
145 similarity thresholds of 0.1, 0.3, 0.5 and 0.7 were examined, since higher thresholds led to
146 extensively large proposed BGC families. In order to calculate BGC novelty, BiG-SLiCE 1.1.0¹⁵
147 was run in --query mode with a previously prepared dataset which had been computed
148 from 1.2 million BGCs using --complete_only and t = 900 as threshold⁴². The resulting
149 distance d indicates how closely a given BGC is related to previously computed gene cluster
150 families (GCFs), with a higher d indicating higher novelty. For this analysis, we highlighted
151 values of $d > t$ and $d > 2t$ (i.e. $d > 900$ and $d > 1800$, respectively), as they were previously
152 suggested as arbitrary cutoffs for “core”, “putative” and “orphan” BGCs⁴².
153
154 **Precursor peptide homology searches and sequence logo construction**
155 ORFs were aligned using Clustal Omega⁴³ and a HMMER⁴⁴ search was performed in the EBI
156 reference proteome database with a cut-off E-value of 10E-10. The resulting protein
157 sequences were aligned using Clustal Omega and a HMM was generated and visualised
158 using skylign.org⁴⁵.
159
160

161 Results

162 Taxonomic classification and binning of
163 BGCs
164 Contigs were binned using CONCOCT,
165 MaxBin2 and MetaBAT2, and consensus
166 bins were generated using metaWRAP
167 refine. This yielded 114 bacterial bins with
168 CheckM completeness > 50% and
169 contamination < 10% containing 278 BGCs
170 (see Table 1.) Since only 278 BGCs had
171 been binned, a contig-based classification
172 approach was adopted. All contigs were
173 classified using CAT with a database based
174 on Genome Taxonomy Database (GTDB)
175 r89 proteins, leading to a classification of
176 93% of BGC-containing contigs at a phylum
177 level (Figure 1B-C). A cross-check of bin-
178 level classification and contig-level
179 classification of BGC-containing contigs
180 showed no conflicting assignments. Of the
181 2,980 total binned contigs, 71 (2.4%) were
182 classified differently at order level using
183 CAT. Bin-level classification was preferred
184 where available.
185

Table 1: Raw sequence, polished assembly, BGC mining and binning statistics

	No. of reads	9.3 million
Nanopore reads	Total length	44.4 Gb
	N50	9.4 Kb
150bp PE Illumina reads	No. of reads	186.6 million
	Total length	28 Gb
Polished assembly	No. of contigs	48422
	length	2.4 Gb
	N50	84.8 Kb
	Max length	129.6 Kb
antiSMASH BGCs	No. of BGCs	1,417
	BGCs on contig edge	353
	Total length	40.5 Mb
	Mean length	28.5 Kb
	Max length	129.6 Kb
metaWRAP 50/10 bins	No. of bins	114
	Mean no. of contigs per bin	18.5
	BGCs in bins	278
	Average bin N50	224 Kb

186
187 Figure 1: (A): Map of the Antarctic Peninsula with Mars Oasis indicated. Inset: Aerial photo of the site taken in austral
188 summer; (B): Phylogenetic classification of contigs (by CAT) and reads (by kraken2); (C) phylogenetic classification success
189 of BGCs from binned contigs and CAT-classified contigs.

190

191 Recovery of diverse and complete BGCs

192 The polished assembly was analysed using antiSMASH v5.1. A total of 1,417 BGCs were
193 identified on 1,350 contigs (Table 1). A total of 353 BGCs (24.9%) were identified as being on
194 a contig edge and were therefore categorised potentially incomplete. The most abundant
195 classes of BGCs were terpenes (27.2%), followed by NRPS (15.7%) and bacteriocins (10.1%).
196 In particular, terpenes were dominated by few subclasses. Out of 401 observed terpene
197 BGCs, 321 contained a squalene/phytoene synthase Pfam domain (PF00494). This indicates
198 that the product of these BGCs is a tri- or tetraterpene. Forty-four BGCs also contained a
199 squalene/hopene cyclase (N terminal; PF13249), 39 BGCs contained a carotenoid synthase
200 (PF04240), while 47 contained a lycopene cyclase domain (PF05834).

201

202 Approximately half of the ribosomally synthesized and post-translationally modified
203 peptides (RiPPs) identified in the sample contained methanobactin-like DUF692 domains
204 (PF05114). However, no BGCs resembling known methanobactin BGCs were found.

205

206 The proportion of proteins identified as too short on BGC-containing contigs was estimated
207 at 63%. It is possible that this measure was influenced by the UniProt reference database
208 not containing representative proteins for the mostly uncultivated strains recovered in this
209 study. However, fragmentation of ORFs through indels was clearly visible, especially in NRPS
210 and PKS BGCs in which whole megasynthase genes were broken up into several fragments.

211

212 Long reads and GTDB improve phylogenetic classification of environmental BGCs

213

214 The use of GTDB proteins instead of the NCBI non-redundant protein database increased
215 the classification success of BGC-containing contigs from 36.8% classified at order level with
216 the NCBI database to 71.8% with GTDB. The difference was mainly due to BGCs from MAG-
217 derived orders which were not present in the NCBI database, such as UBA7966. However,
218 the GTDB database is also much smaller than the NCBI nr database, and many MAG-derived
219 clades especially at lower taxonomic ranks do not have many representatives in the GTDB
220 database. To avoid misclassifications, we therefore decided to conduct analysis at class and
221 order level, even if contigs were classified at lower taxonomic ranks.

222

223 To assess the advantages of long-read sequencing for BGCs detection and classification, the
224 output was compared with Biosyntheticspades, which allows the assembly of NRPS and PKS
225 from short-read sequences by following an ambiguous assembly graph using *a priori*
226 information about their modularity. Using Biosyntheticspades with the 28 Gb of short reads,
227 228 unambiguous NRPS/PKS BGCs were predicted. Sixty-one of these were above 5 Kb long
228 and five NRPS were larger than 30 Kb. Furthermore, 202 other BGCs were predicted from
229 other contigs. Classification success with CAT using GTDB was comparatively lower, with
230 only 70% classified at phylum level, and 54% classified at order level. This could be
231 attributed to the fact that Biosyntheticspades does not assemble the genomic context
232 around the BGCs. The phylogenetic classification of BGCs reflected the composition found
233 using the nanopore assembly. While Biosyntheticspades predicted a large number of BGCs
234 in total, the practical usability and interpretability of the output remained low, since
235 completeness, cluster borders and potential modification genes could not be assessed and
236 phylogenetic classification success was reduced.

237

238 Highly divergent BGCs found in unusual specialised metabolite producer phyla
239 Examination of the BGC counts by BGC type and phylum showed that the three well-known
240 producer phyla Actinobacteriota, Proteobacteria and Bacteroidota together contributed
241 over 60% of BGCs (Figure 2A). BGCs attributed to Acidobacteriota and Verrucomicrobiota
242 represented up to 20% of the total BGCs, while other phyla constituted the remaining 12%,
243 and 7% remained unclassified at phylum level. In particular, 20% of NRPS remained
244 unclassified at phylum level. No archaeal BGCs were found.
245

246 The 1,417 BGCs were then analysed with BiG-SLiCE's query mode in order to calculate their
 247 distance (d) from a set of pre-computed gene cluster families (GCFs) comprised of 1.2 mio
 248 known BGCs. The analysis showed that 845 out of 1,417 BGCs (59.6%) had a $d > 900$,
 249 indicating that they were only distantly related to a GCF. Fifty-five outliers were found with

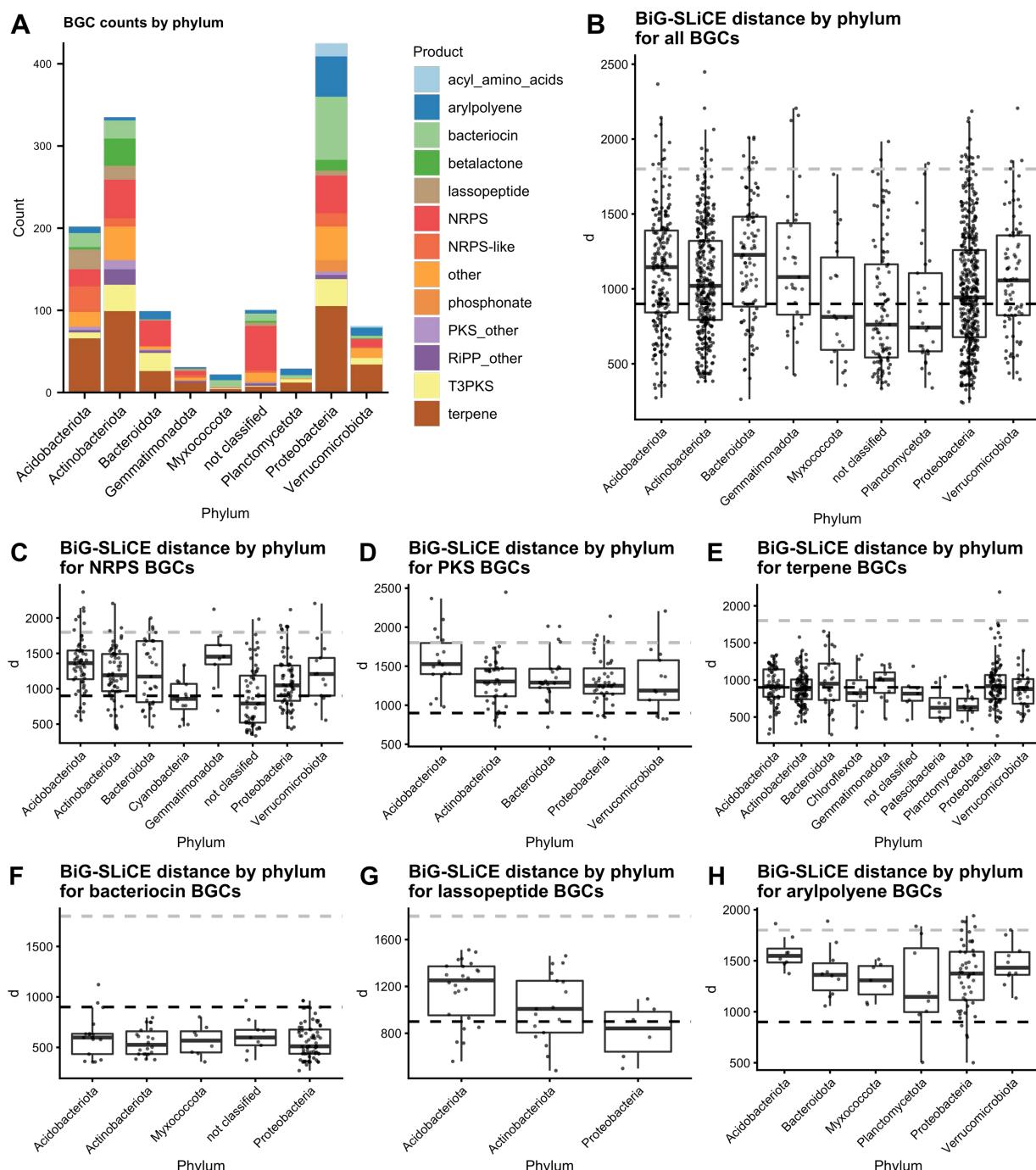
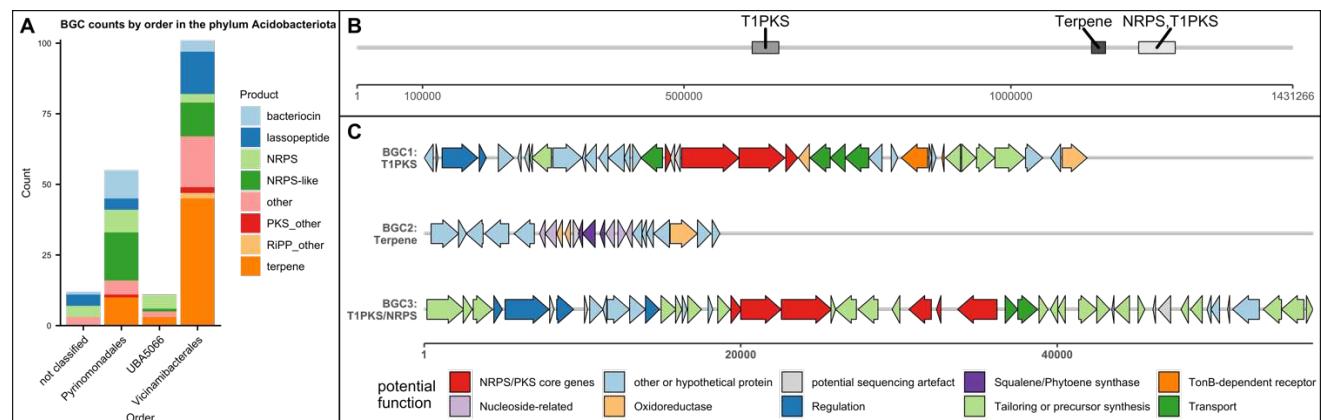


Figure 2: (A) BGCs by phylum and BGC type (phyla with a count <20 removed; products with count <10 under "others", (B) BiG-SLiCE distances of BGCs by phylum, with the black dotted line indicating $d = 900$ and the grey dotted line $d = 1800$ (phyla with a count <20 removed); (C-H) BiG-SLiCE distances for different BGC types plotted by phylum (phyla with < 5 BGCs of the type removed; hybrid BGCs counted for both classes)


250 $d > 1800$, indicating extremely divergent BGCs. A wide span of distances was present within
 251 each phylum which indicates that each phylum contained BGCs that are both closely and

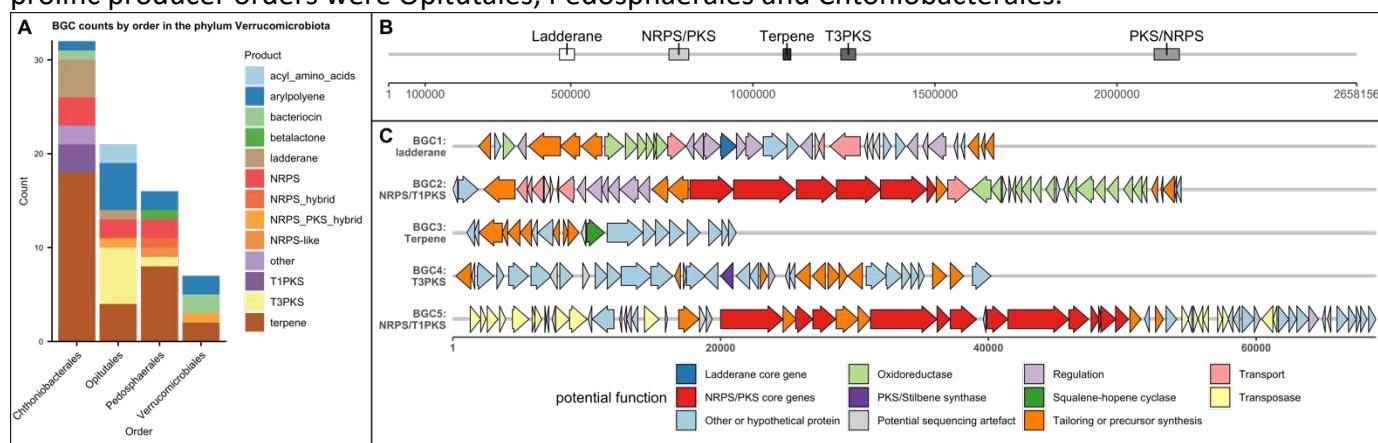
252 distantly related to known BGCs (Figure 2B). The median distances showed significant
253 variation between phyla, with Bacteroidota containing the highest novelty (median $d =$
254 1227) and Planctomycetota the lowest (median $d = 742$). This overall score was, however,
255 influenced by the fact that different classes of BGC scored differently. For example,
256 NRPS/PKS BGCs scored higher than e.g. terpenes or bacteriocins. Rankings of single BGC
257 classes showed that the high Bacteroidota score was partly driven by the large number of
258 NRPS (Figure 2C) and the small number of terpenes and bacteriocins (Figures 2E and F) in
259 the phylum. This is evidenced by the fact that other phyla scored the highest in individual
260 BGC classes. For NRPS BGCs, Gemmatimonadota, Acidobacteriota and Verrucomicrobiota
261 showed the highest values for d (Figure 2C). Gemmatimonadota furthermore showed the
262 highest value for d when considering terpene BGCs (Figure 2E), while Acidobacteriota
263 scored high for lassopeptides, arylpolyenes and PKS (Figure 2G,H,D). To check whether low
264 coverage and the resulting insertion and deletion errors in the assembly led to
265 overestimation of d , contig coverage as well as percentage of correctly-sized ORFs (as
266 calculated by ideel) were plotted against d . There was no correlation between percentage of
267 correctly sized ORFs and distance, indicating no effect of truncated ORFs on distance
268 estimation. There was a slight positive correlation of d values with increased coverage,
269 indicating a light, counterintuitive underestimation of novelty at low coverage. As expected,
270 coverage showed a strong positive correlation with percentage of correctly-sized ORFs (see
271 Supplementary Figures 1-3).

272
273

274 Acidobacterial BGCs

275 Analysis of acidobacterial BGCs by order (Figure 3A) showed that terpenes were the most
276 numerous, but with significant contributions from PKS, NRPS, lassopeptide and bacteriocin
277 clusters. The orders of Pyrinomonadales and Vicinamibacterales constituted >60% of BGCs.
278

279
280 Figure 3: (A) BGC counts by BGC type and order in phylum Acidobacteriota; (B) Map of a large Acidobacteriota contig
281 (order Vicinamibacterales) and the BGCs on it (C) Cluster map of proposed functions of genes in BGC1, BGC2 and BGC3.
282 Functions were predicted from BLASTing against NCBI nr database as well as antiSMASH module predictions. A detailed
283 table of homologous proteins can be found in the supplementary files


284 BiG-SCAPE analysis showed that BGCs mainly clustered together within orders
285 (Supplementary Table 1). None of the families contained MiBiG clusters at the cut-offs used.
286 Acidobacteriota showed a large number of lassopeptides, 16 of which grouped into two
287 GCFs. NRPS-like BGCs also contributed a large number to the sample. In particular, one
288 NRPS-like family from the order Vicinamibacterales showed homology to the VEPE BGC from

289 *Myxococcus xanthus* in ClusterBlast. Furthermore, seven NRPS/PKS with a megasynthase
290 gene length of over 20 Kb were found with the largest BGC measuring 89 Kb of NRPS and
291 PKS megasynthase genes. The largest Acidobacteriota (order Vicinamibacterales) contig was
292 1.5 Mb in size and contained three BGCs: a PKS, a terpene and a NRPS/PKS hybrid cluster
293 (Figure 3B,C). BGC1 ($d = 1397$) contained a partial one-module NRPS followed by a partial
294 PKS module as well as transporter genes and a TonB-dependent receptor protein,
295 suggesting a role as a siderophore. BGC2 ($d = 1103$) contained squalene/phytoene synthase
296 genes and several potential tailoring enzymes. BGC3 ($d = 1977$) contained a complete NRPS
297 and a partial NRPS module and an incomplete PKS domains. Several gaps visible in the BGC
298 make a sequencing error seem possible, leading to truncated genes and therefore missing
299 domains.

300

301 Verrucomicrobial BGCs

302 The analysis of Verrucomicrobial BGCs by order (Figure 4A) showed that the vast majority of
303 BGCs were terpenes, followed by arylpolyenes, PKS, NRPS, as well as ladderanes. The most
304 prolific producer orders were Opitutales, Pedosphaerales and Chtoniobacterales.

305

306

307 *Figure 4: (a) BGC counts by BGC type and order in phylum Verrucomicrobacteria, (b) map of a large Verrucomicrobacteria contig*
308 *(order Opitutales) and the BGCs on it; (b) Cluster map of proposed functions of genes in BGC1 – BGC5. Functions were*
309 *predicted from BLASTing against NCBI nr database as well as antiSMASH module predictions. X axis represents basepairs. A*
310 *detailed table of homologous proteins can be found in the supplementary files*

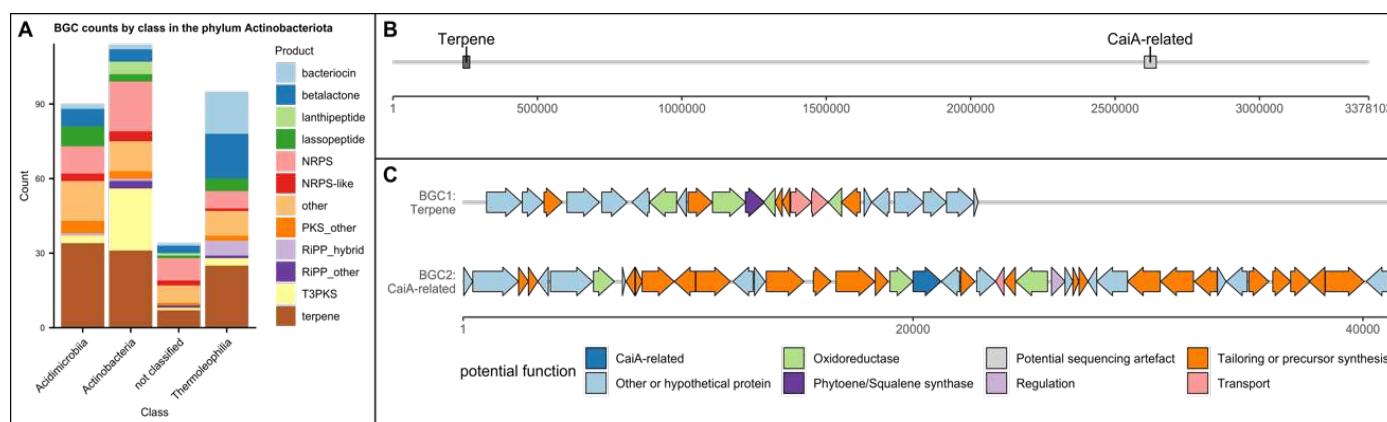
311

312

313 Verrucomicrobial BGCs did not show strong clustering into conserved GCFs compared to
314 Acidobacteriota (Supplementary Table 2). One NRPS and one PKS BGC were the only BGCs
315 that clustered with MiBiG clusters.

316

317 The largest Verrucomicrobial contig (order Opitutales) was 2.6 Mb in size and featured five
318 BGCs, two of which were NRPS-PKS hybrids with megasynthase genes above 20 Kb (Figure
319 4B, C). BGC1 ($d = 1479$) contained a ladderane-type 3-oxoacyl-[acyl-carrier-protein]
320 synthase. BGC2 ($d = 1305$) contained four NRPS modules interspersed by one PKS module.
321 BGC3 ($d = 673$) contained a squalene-hopene cyclase, indicating a role in hopanoid
322 biosynthesis. BGC4 ($d = 1142$) encoded a chalcone/stilbene synthase. BGC5 ($d = 1340$)
323 contained a PKS module followed by five NRPS modules. The third module, however,
324 showed a truncated A domain, with the antiSMASH HMM NRPS-A_a3 only matching around
325 50 bp at the end of ORF ctg423_1968. This could be explained by a sequencing error in


326 which an indel lead to a frameshift, causing a premature stop codon. Indeed, nucleotide-
327 level BLAST of the gap between ctg423_1968 and the PCP-domain containing ctg423_1970
328 showed a match to known A domains. It is, however, not possible to rule out potential
329 pseudogenisation.
330

331 Uncultivated and underexplored classes and orders from Actinobacteriota and 332 Proteobacteria show a large biosynthetic potential

333 Actinobacteriota: Acidimicrobiiia and Thermoleophilia

334 The phylum Actinobacteriota (335 BGCs) featured a large amount of BGCs unclassified at
335 order level. Therefore, they were analysed by class (Figure 5A). The class Actinobacteria
336 (114 BGCs) contained BGC-rich genera such as *Streptomyces* and *Pseudonocardia* and
337 accordingly contributed a large amount of BGCs in the sample. The class Acidimicrobiiia (90
338 BGCs) contained the genera *Illumatobacter* and *Microthrix* and several uncultured genera.
339 The class Thermoleophilia (95 BGCs) contained genera such as *Solirubrobacter* and
340 *Patulibacter*, besides uncultured genera, and contributed to a large amount of the
341 bacteriocin and betalactone BGCs. The amount of BGCs in these classes that were not
342 placed into lower taxonomic ranks indicated that there is a large unexplored diversity of
343 uncultured Actinobacteriota containing a great diversity of BGCs.
344

345

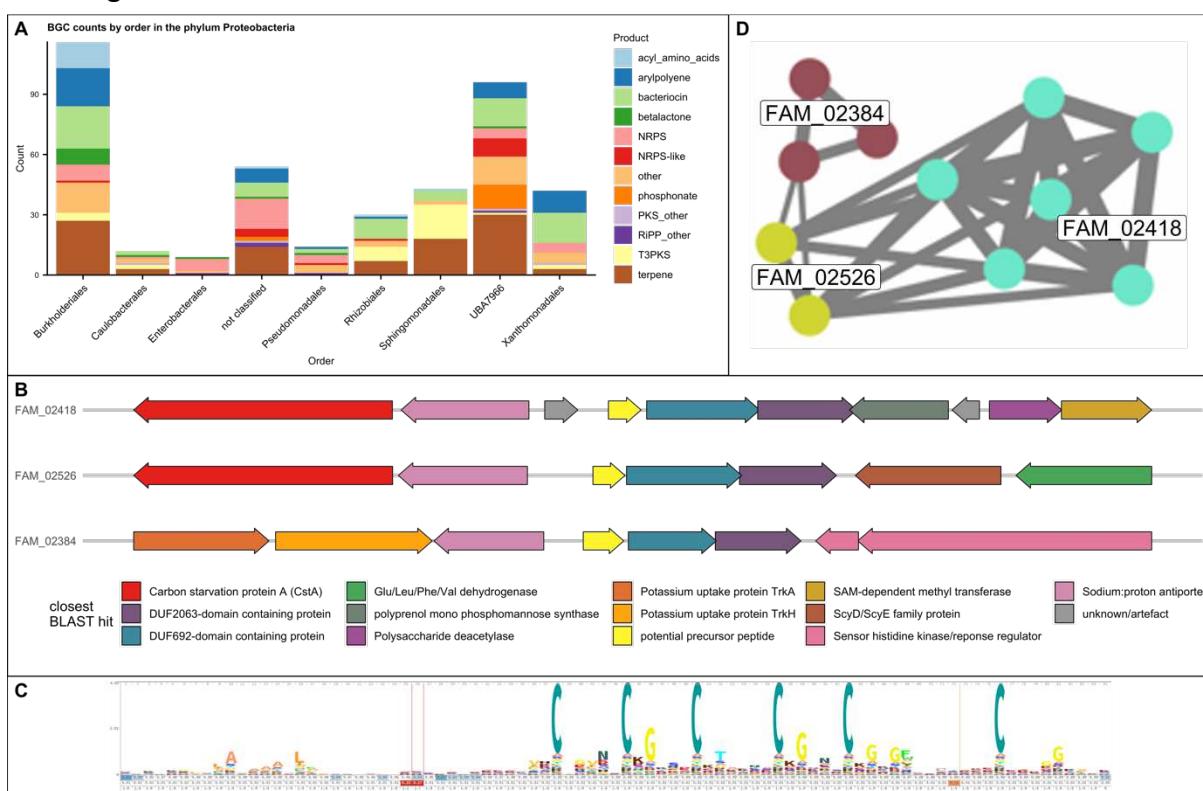
346

347

348 Figure 5: (a) BGC counts by BGC type and class in Actinobacteriota; (b) Map of a large Actinobacteriota contig (order
349 IMCC26256) and number of basepairs; (c) Cluster map of proposed functions of genes in BGC1 and BGC2. Functions were
350 predicted from BLASTing against NCBI nr database as well as antiSMASH module predictions. X axis represents basepairs. A
351 detailed table of homologous proteins can be found in the supplementary files

352 Remarkably, one circular genome from the uncultured order IMCC26256 from the class
353 Acidimicrobiiia was recovered in a single contig, measuring 3.3 Mb in size and containing two
354 BGCs (Figure 5B-C). The terpene BGC ($d = 1398$) contained a squalene synthase, a lycopene
355 cyclase and polypropenyl synthetases, suggesting a role in pigment formation. The CaiA-
356 related BGC ($d = 1869$) contained an acyl-CoA dehydrogenase related to CaiA (involved in
357 saccharide antibiotic BGCs). BLAST hits indicated other genes related to small organic acids,
358 sugars and nucleoside metabolism.

359


360 Two families of terpenes containing terpene cyclases, methyltransferases and/or P450s
361 showing similarity to the known geosmin and 2-methylisoborneol BGCs were found, with
362 members belonging to both Acidimicrobiiia, Thermoleophilia and unclassified

363 Actinobacteriota. One BGC from a *Streptomyces* spp. was detected, containing a LmbU-like
364 gene on the very edge of the contig. BiG-SCAPE analysis showed that Actinobacteriota BGCs
365 mostly grouped within the classes, and one lanthipeptide BGC grouped with MiBiG BGCs at
366 the cut-off used (Supplementary Table 3).

367
368

369

370 Proteobacteria: the uncultured methanotrophic order UBA7966 as a specialised metabolite
371 producer
372 Analysis at the order level of the proteobacterial BGCs showed that the biggest contributor
373 was the Burkholderiales order with 116 BGCs (Figure 6A) followed by order UBA7966 with
374 96 BGCs. UBA7966 BGCs included a variety BGCs, including terpenes, bacteriocins,
375 phosphonates, NRPS & NRPS hybrids, NRPS-like, and arylpolyenes. In particular, the high
376 abundance of NRPS-like and phosphonate BGCs in UBA7966 contrasted with the lower
377 counts in other proteobacterial orders in the dataset. By order, UBA7966 contigs also
378 showed a high average coverage 26x, compared to the total average of 10.2x, indicating a
379 high abundance. The total length of UBA7966 contigs was 53 Mb, indicating the presence of
380 several genomes.

381
382
383
384
385
386
387
Figure 6: (a) BGC counts by BGC type and order in the phylum Proteobacteria; (b) Cluster layout of three
387 gammaproteobacterial DUF692-containing BGCs representatives: contig_12391 for FAM_02418, contig_14956 for
388 FAM_02526, and scaffold_15362 for FAM_02384; (c) Sequence logo generated from an HMM of 301 potential precursor
389 peptides; (d) Similarity network generated from BiG-SCAPE with brown: FAM_02384, turquoise: FAM_02418, green:
390 FAM_02526.

391 The order UBA7966 is an uncultured order consisting of one family, UBA7966, which
392 contains two genera, *UBA7966* and *USCy-Taylor*. *UBA7966*-family bin bin.3 was assigned no
393 genus, while all CAT-assigned contigs were assigned species *USCy-Taylor* sp002007425, the
394 only species in the *USCy-Taylor* genus. The *USCy-Taylor* genus is based on a putatively
395 methanotrophic MAG extracted from a methane-oxidising soil metagenome from Taylor
396 Valley in Antarctica (Genbank accession GCA_002007425.1)²⁶. The low number of *UBA7966*
397 reference genomes in the GTDB database means, however, that these classifications remain
398 an approximation. The two closest orders to *UBA7966* that contain cultured
representatives, *Beggiatoales* and *Nitrosococcales*, both have members implicated in
methanotropy, sulphur cycling and ammonia oxidation as well as varying degrees of
chemolithotrophy and chemoautotrophy⁴⁶⁻⁴⁹. On all the contigs assigned to order *UBA7966*

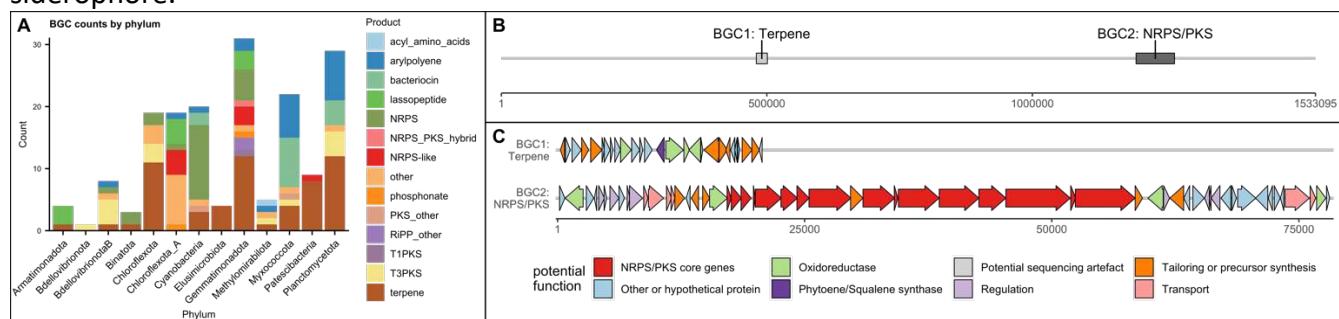
399 by CAT, four *pmoCAB* operons were found, with *pmoA* showing 92.9% to 96.8% identity with
400 *pmoA* from *USCγ-Taylor*. This indicates that, in addition to the methanotrophy of *USCγ-*
401 *Taylor*, other members of the order UBA7966 could be involved in similar lifestyles.

402
403 When analysed with BiG-SCAPE at cut-off 0.7 (Supplementary Table 4), phosphonates
404 (median $d = 1421$), NRPS/NRPS-like (median $d = 1262$) and bacteriocins seemed to form
405 especially conserved GCFs. Other GCFs were shared with other proteobacterial orders. With
406 96 BGCs, UBA7966 contributed a similar number of BGCs as the established specialised
407 metabolite producing order Burkholderiales (116 BGCs). However, the BiG-SLiCE distances
408 of UBA7966 were higher than Burkholderiales for all but one BGC class, indicating more
409 novel BGCs (Supplementary Figure 4).

410
411 The potential methanotrophy of UBA7966 suggested the potential presence of
412 methanobactins, but no BGCs corresponding to known methanobactins were found in the
413 dataset. On the other hand, an abundance of DUF692-containing BGCs were observed,
414 grouping into three GCFs. DUF692 proteins are a diverse family of proteins with largely
415 unknown functions, although some are known to be involved in methanobactin
416 biosynthesis⁵⁰. The analysis of three related GCFs containing DUF692 domains (including
417 BGCs from UBA7966 and unclassified gammaproteobacterial contigs) showed that
418 FAM_02526 (two BGCs), FAM_02384 (three BGCs) and FAM_02418 (six BGCs) (Figures 6B
419 and D) all contained a short (circa 240 bp) ORF followed by first a DUF692-domain
420 containing protein, then a DUF2063-domain containing protein. Furthermore, a putative
421 cation antiporter was found upstream of the precursor peptide. The three families differed
422 by the genes surrounding this core cluster (Figure 6B). The 11 small translated 240bp ORFs
423 were aligned using Clustal Omega and a HMM search was made in ebi reference proteome
424 database with a cut-off E-value of 10E-10. The resulting 290 protein sequences (almost
425 exclusively from Proteobacteria) plus 11 original sequences were aligned using Clustal
426 Omega and a HMM was generated and visualised using skylign.org. The resulting logo
427 showed a low degree of sequence conservation except for a pattern of six conserved
428 cysteines – some followed by glycines – within forty amino acids towards the N-terminus,
429 and a slightly conserved hydrophobic patch towards the C-terminus (Figure 6C). This might
430 represent a potential precursor peptide, with the six cysteines marking the potential core
431 peptide.

432
433 The UBA7966 order also contained larger BGCs such as four NRPS/ NRPS-PKS BGCs with
434 megasynthase genes with a length of more than 20 Kb, the largest cluster possessing 56 Kb
435 of PKS (seven modules) along with NRPS (three modules) genes. This latter BGC also formed
436 a BiG-SCAPE GCF with several MiBiG BGCs which shared the presence of a small peptide
437 moiety followed by several malonyl units.

438


439 [Low numbers of BGC found in other underexplored phyla](#)

440

441 Lower numbers of biosynthetic gene clusters were detected in the phyla Gemmatimonadota
442 (31 BGCs), Planctomycetota (29), Myxococcota (22), Patescibacteria (9), Methylomirabilota
443 (5), Bdellovibrionota_B (8), Elusimicrobiota (4), Armatimonadota (4) and Binatota (3) (Figure
444 7A).

445

446 One remarkably long (1.5 Mb, Figure 7B,C) *Gemmatusimonadota* contig from the order
447 *Gemmatusimonadales* was found to contain two BGCs: one terpene ($d = 998$) and one
448 NRPS/PKS BGC ($d = 1423$). BGC1 contained a phytoene synthase and several related
449 oxidases. BGC2 contained six PKS modules and two NRPS modules as well as modifying
450 enzymes presence of a TonB receptor indicated that the product could serve as a
451 siderophore.

452
453
454 *Figure 3: (A) Distribution of BGCs among phyla with 31 or fewer BGCs in the dataset; (B) Map of a large Gemmatimonadota*
455 *contig (order Gemmatimonadales) and BGCs detected on it; (C) Cluster map of proposed functions of genes in BGC1 and*
456 *BGC2. Functions were predicted from BLASTing against NCBI nr database as well as antiSMASH module predictions. X axis*
457 *represents basepairs. A detailed table of homologous proteins can be found in the supplementary files*

458
459

460 Discussion

461

462 Metagenomics reveal biosynthetic potential of underexplored bacterial lineages
463 In our dataset, we found a large number of BGCs in underexplored phyla not usually
464 associated with specialised metabolites. Two previous studies noted NRPS and PKS novelty
465 and diversity in Acidobacteria and Verrucomicrobia^{7,8}. The present study indicates that
466 these underexplored phyla harbour not only novel NRPS/PKS, but new BGCs from many
467 different classes, such as lassopeptides and bacteriocins. While Crits-Cristof et al.⁷
468 highlighted two promising acidobacterial MAGs from the classes Blastocatellia and the
469 Acidobacteriales, in the present sample the classes Blastocatellia and Vicinamibacteria were
470 the main contributors of acidobacterial BGCs. Furthermore, many BGCs were found in other
471 ubiquitous phyla such as Patescibacteria, Gemmatimonadota and Armatimonadota. Three
472 BGCs (two NRPS and one terpene) were placed in the phylum Binatota. The phylum Binatota
473 was proposed by Chuvochina et al. based on a handful of soil MAGs with no cultured
474 representatives³⁷. To our knowledge, this is the first description of BGCs belonging to the
475 phylum Binatota. We also discovered highly divergent BGCs from the underexplored
476 Actinobacteriota classes Acidimicrobia and Thermoleophilia. This indicates that
477 Actinobacteriota, which contain the heavily exploited genus *Streptomyces*, contain unknown
478 lineages harbouring interesting BGC diversity.

479

480 In the present dataset, 845 out of 1,417 BGCs (59.6%) had a $d > 900$ and 55 (3.9%) had a $d >$
481 1800 to the closest GCF. These numbers contrast starkly with the 1.2 million original BGCs in
482 the BiG-SLiCE dataset, of which only 13.9% and 0.2% showed $d > 900$ and $d > 1800$
483 respectively. While it is necessary to note that sequence diversity does not demonstrate
484 chemical diversity, the striking amount of sequence divergence encountered in just one soil
485 sample adds to the mounting evidence that uncultured and underexplored phyla –
486 especially Acidobacteriota – are promising candidates for the discovery of novel specialised
487 metabolites. It is furthermore worth noting that the great biosynthetic diversity found at
488 Mars Oasis is under threat from climate change, with the maritime Antarctic warming by 1–
489 3 °C between the 1950s and the turn of the millennium⁵¹, and, despite a recent pause in this
490 warming trend⁵², similar increases in temperature being predicted for later this century as
491 greenhouse gases continue to accumulate in the atmosphere^{52,53}.

492

493 The large number of terpene BGCs, most of them putatively C30/C40 carotenoids or
494 hopanoids, could be interpreted with respect to the roles of these compounds in membrane
495 function at extreme temperatures^{22,54,55}, as well as UV protection^{22,56}. A previous study
496 similarly noted a high number of pigmented bacteria among isolates from Antarctic
497 samples²². Kautsar et al.⁴² recorded only 7.8% terpene BGCs in their large-scale survey of
498 publicly available bacterial genomes, as opposed to the ca. 25% in this survey. Previous
499 short-read metagenomic studies of aquatic and soil environments also reported high
500 numbers of terpene BGCs, with terpenes representing between 15% and 50% of the
501 reported BGCs, respectively^{57–59}. However, the representativeness of BGC counts obtained
502 through metagenomic studies remains questionable. Small terpene BGCs are easier to
503 assemble than long and repetitive NRPS/PKS BGCs, therefore leading to bias.

504

505 In this study, a large number of BGCs were observed in potentially methanotrophic
506 members of the uncultured order UBA7966. Methanotrophic organisms have not usually

507 been linked to specialised metabolite production, except for siderophore-like RiPPs called
508 methanobactins able to scavenge the copper needed for methane and/or ammonia
509 oxygenase enzymes⁵⁰. We reason that the lack of known natural products might be related
510 to difficulties associated with cultivation such as specific nutrient requirements and often
511 slow growth, as well as to the amount of energy, carbon and nitrogen available for
512 specialised metabolite production. While no methanobactin BGCs were seen in UBA7966-
513 classified contigs, examining three gammaproteobacterial DUF692-domain containing GCFs
514 revealed the presence of a potential conserved six cysteine precursor peptide. The
515 conserved cysteines in the potential precursor peptides are resemblant of ranthipeptides
516 (formerly known as SCIFFs), which contain six cysteines in forty-five amino acids.
517 Ranthipeptides, however, contain thioethers formed by radical SAM enzymes⁶⁰. DUF692
518 domain proteins are furthermore known to be involved in methanobactin and TgIA-thiaGlu
519 biosynthesis^{50,61}, and at least one member has been shown to contain two iron atoms
520 potentially acting as cofactors⁶¹. All DUF692 protein containing GCFs in the order UBA7966
521 observed in the present study also contained DUF2063 proteins. DUF2063 family proteins
522 are mostly uncharacterised, though the crystal structure of a member from *Neisseria*
523 *gonorrhoeae* indicates that DUF2063 might be a DNA-binding domain involved in virulence,
524 and there has been one report of co-occurrence of DUF2063 and DUF692 proteins⁶². Other
525 studies discovered the two neighbouring proteins in operons related to stress response at
526 high calcium concentration⁶³ in *Pseudomonas* as well as responding to gold and copper
527 ions⁶⁴ in *Legionella*. The two genes were also found in the atmospheric methane oxidiser
528 *Methylocapsa gorgona*⁶⁵. We therefore hypothesize that these BGCs could be another form
529 of RiPP involved in chelating metals. While the six cysteines could be involved in forming
530 thioether bonds, disulfide bonds or lanthithionine groups like in many other RiPPs, they
531 could potentially also be directly involved in metal coordination as is the case in the group
532 of small metal-binding proteins called metallothioneins⁶⁶.
533
534

535 **Long reads make mining and phylogenetic classification of metagenomic BGCs feasible**
536 The advantage of long reads could be observed from comparing the results achieved from
537 long reads vs. short reads, with the short reads providing a lower number of BGCs and a
538 significantly lower taxonomic classification success compared to the BGCs assembled and
539 annotated using long reads. While the number of bases used in the assembly was about a
540 third lower for short reads (28 Gb vs 44 Gb), the number of recovered BGCs was more than
541 two thirds lower (430 BGCs vs 1,417 BGCs) and the BGCs assembled from short reads were
542 mostly incomplete. Moreover, this study showed that long-read metagenomes constitute a
543 valuable tool to achieve similar or even improved results to previously very expensive deep
544 short-reads metagenomes^{7,57,58}. For example, Cuadrat et al. used 500 million reads (c. 50
545 Gb if read length was 100 bp) for BGC genome mining of a lake community recovering 243
546 BGCs with a total of 2,200 ORFs, which averages to nine ORFs per BGC indicating small
547 and/or incomplete BGCs⁵⁸. A larger short-read study of microbial mats recovered 1,477
548 BGCs⁵⁷. While this study did not report the number of sequenced bases or BGC
549 completeness, the median BGC length of 103 BGCs from 15 representative and highly
550 complete MAGs was 11.9 Kb, also indicating mostly small and/or incomplete BGCs. Another
551 study by Crits-Cristof et al.⁷ used 1.3 Tb of short-read sequence data of grassland soil to
552 mine selected bins of four phyla, recovering a total of 1,599 BGCs, 240 of which were
553 NRPS/PKS BGCs, including several large and complete ones⁷. The present study indicates

554 that the long-read approach requires a relatively low sequencing input similar to the two
555 smaller studies to provide a result similar to the larger study. While the contigs, MAGs and
556 BGCs produced using shallow ONT sequencing are not as accurate as the ones produced
557 using deep short read sequencing, our results show that they are sufficiently accurate to
558 profile the biosynthetic potential of complex environmental samples, estimate their
559 diversity and could be used to guide isolation and heterologous expression strategies. Lower
560 error rates could be achieved through higher coverage in long and short reads as well as
561 advances in long-read basecalling. We furthermore conclude that contig-level classification
562 using CAT shows advantages compared to genome-resolved metagenomics in single-sample
563 data, where binning is inefficient. Cuadrat et al, Crits-Cristof et al. and Chen et al. used
564 genome-resolved metagenomics^{7,57,58}, in which contigs are binned and bins are mined for
565 BGCs. While it is favourable to attribute BGCs to distinct MAGs, it is viable only when a large
566 number of samples are used, making binning efficient through differential abundance⁶⁷.
567 When using only one sample, binning becomes inefficient and, in our case, missed the vast
568 number of BGCs, with 1,139 of 1,417 BGCs not being binned. Contig-based classification
569 approaches offer an alternative, but their accuracy is limited by contig length³⁵ and the
570 classification dependent on the database used. In our data, a contig N50 of >80 Kb provided
571 ample sequence data for accurate classification, leading to >90% classification at phylum
572 level. Usage of GTDB-derived databases ensured improved classification of uncultured taxa,
573 and few conflicts with single-copy core gene-based bin-level classification were detected.
574

575 Conclusions and Perspectives

576 The use of nanopore metagenomic sequencing, binning and contig-based classification
577 approaches using GTDB combined with BGC genome mining allowed us to identify 1,417
578 BGCs, 75% of which were complete, from a wide range of soil bacteria. This confirms and
579 further expands our knowledge of the biosynthetic potential of difficult-to-culture phyla
580 such as Verrucomicrobiota, Acidobacteriota and Gemmatimonadota. In addition, we show
581 that uncultured and underexplored lineages of the well-known producer phyla
582 Actinobacteriota (classes Thermoleophilia and Acidimicrobia) and Proteobacteria (order
583 UBA7966) show a large biosynthetic potential.
584

585 We furthermore demonstrate that ONT long-read sequencing enables the assembly,
586 detection and taxonomic classification of full-length BGCs on large contigs from a highly
587 complex environment using only one sample and <100 Gb sequencing data, which presents
588 a >10-fold reduction compared to studies using short reads to recover large and complete
589 BGCs. While more samples would be needed for improved binning and genome-resolved
590 metagenomics, our approach proved successful in classifying 70% of BGCs at order level.
591

592 Even with limited sequencing, we were able to retrieve megabase-sized contigs and one
593 circular genome containing multiple BGCs. With nanopore sequencing becoming more
594 widespread, it will soon be commonplace to profile the biosynthetic potential of uncultured
595 microbes from diverse environments without enormous sequencing efforts. In combination
596 with heterologous expression techniques such as DiPaC⁶⁸, accessing natural products from
597 metagenomes could be revolutionised, overcoming the need for constructing, maintaining
598 and screening large metagenomic libraries or large sequencing budgets. For remote and

599 endangered environments such as the Antarctic Peninsula, which is warming rapidly due to
600 climate change, these metagenomic strategies will prove especially valuable.
601

602 **Data availability statement**

603 The nanopore and Illumina reads generated in this study have been deposited in the
604 Sequence Read Archive with the accession code PRJNA681475
605 (<https://www.ncbi.nlm.nih.gov/sra/PRJNA681475>).

606

607 **Bibliography**

- 608 1. Zhang, Z., Wang, J., Wang, J., Wang, J. & Li, Y. Estimate of the sequenced proportion of the
609 global prokaryotic genome. *Microbiome* **8**, 134 (2020).
- 610 2. Milshteyn, A., Schneider, J. S. & Brady, S. F. Mining the Metabiome: Identifying Novel Natural
611 Products from Microbial Communities. *Chem. Biol.* **21**, 1211–1223 (2014).
- 612 3. Katz, M., Hover, B. M. & Brady, S. F. Culture-independent discovery of natural products from soil
613 metagenomes. *J. Ind. Microbiol. Biotechnol.* **43**, 129–141 (2016).
- 614 4. Trindade, M., van Zyl, L. J., Navarro-Fernández, J. & Abd Elrazak, A. Targeted metagenomics as a
615 tool to tap into marine natural product diversity for the discovery and production of drug
616 candidates. *Front. Microbiol.* **6**, (2015).
- 617 5. Hover, B. M. *et al.* Culture-independent discovery of the malacidins as calcium-dependent
618 antibiotics with activity against multidrug-resistant Gram-positive pathogens. *Nat. Microbiol.* **3**,
619 415–422 (2018).
- 620 6. Libis, V. *et al.* Uncovering the biosynthetic potential of rare metagenomic DNA using co-
621 occurrence network analysis of targeted sequences. *Nat. Commun.* **10**, 3848 (2019).
- 622 7. Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil
623 bacteria possess diverse genes for secondary metabolite biosynthesis. *Nature* **558**, 440–444
624 (2018).
- 625 8. Borsetto, C. *et al.* Microbial community drivers of PK/NRP gene diversity in selected global soils.
626 *Microbiome* **7**, 78 (2019).
- 627 9. Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial genomes from microbiomes
628 using nanopore sequencing. *Nat. Biotechnol.* **38**, 701–707 (2020).

629 10. Singleton, C. M. *et al.* Connecting structure to function with the recovery of over 1000 high-
630 quality activated sludge metagenome-assembled genomes encoding full-length rRNA genes
631 using long-read sequencing. *bioRxiv* 2020.05.12.088096 (2020) doi:10.1101/2020.05.12.088096.

632 11. Latorre-Pérez, A., Villalba-Bermell, P., Pascual, J., Porcar, M. & Vilanova, C. Assembly methods
633 for nanopore-based metagenomic sequencing: a comparative study. *bioRxiv* 722405 (2019)
634 doi:10.1101/722405.

635 12. Blin, K. *et al.* antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline.
636 *Nucleic Acids Res.* **47**, W81–W87 (2019).

637 13. Kautsar, S. A. *et al.* MIBiG 2.0: a repository for biosynthetic gene clusters of known function.
638 *Nucleic Acids Res.* **48**, D454–D458 (2020).

639 14. Navarro-Muñoz, J. C. *et al.* A computational framework to explore large-scale biosynthetic
640 diversity. *Nat. Chem. Biol.* **16**, 60–68 (2020).

641 15. Kautsar, S. A., Hooft, J. J. J. van der, Ridder, D. de & Medema, M. H. BiG-SLiCE: A Highly Scalable
642 Tool Maps the Diversity of 1.2 Million Biosynthetic Gene Clusters. *bioRxiv* 2020.08.17.240838
643 (2020) doi:10.1101/2020.08.17.240838.

644 16. Kleinteich, J. *et al.* Pole-to-Pole Connections: Similarities between Arctic and Antarctic
645 Microbiomes and Their Vulnerability to Environmental Change. *Front. Ecol. Evol.* **5**, (2017).

646 17. Silva, T. R. *et al.* Bacteria from Antarctic environments: diversity and detection of antimicrobial,
647 antiproliferative, and antiparasitic activities. *Polar Biol.* **41**, 1505–1519 (2018).

648 18. Shekh, R. M., Singh, P., Singh, S. M. & Roy, U. Antifungal activity of Arctic and Antarctic bacteria
649 isolates. *Polar Biol.* **34**, 139–143 (2011).

650 19. Mojib, N., Philpott, R., Huang, J. P., Niederweis, M. & Bej, A. K. Antimycobacterial activity in vitro
651 of pigments isolated from Antarctic bacteria. *Antonie Van Leeuwenhoek* **98**, 531–540 (2010).

652 20. Giudice, A. L., Bruni, V. & Michaud, L. Characterization of Antarctic psychrotrophic bacteria with
653 antibacterial activities against terrestrial microorganisms. *J. Basic Microbiol.* **47**, 496–505 (2007).

654 21. Millán-Aguiñaga, N. *et al.* Awakening ancient polar Actinobacteria: diversity, evolution and
655 specialized metabolite potential. *Microbiology*, **165**, 1169–1180 (2019).

656 22. Dieser, M., Greenwood, M. & Foreman, C. M. Carotenoid Pigmentation in Antarctic
657 Heterotrophic Bacteria as a Strategy to Withstand Environmental Stresses. *Arct. Antarct. Alp. Res.* **42**, 396–405 (2010).

659 23. Yergeau, E., Newsham, K. K., Pearce, D. A. & Kowalchuk, G. A. Patterns of bacterial diversity
660 across a range of Antarctic terrestrial habitats. *Environ. Microbiol.* **9**, 2670–2682 (2007).

661 24. Pearce, D. A. *et al.* Metagenomic Analysis of a Southern Maritime Antarctic Soil. *Front. Microbiol.* **3**, (2012).

663 25. Lau, M. C. Y. *et al.* An active atmospheric methane sink in high Arctic mineral cryosols. *ISME J.* **9**,
664 1880–1891 (2015).

665 26. Edwards, C. R. *et al.* Draft Genome Sequence of Uncultured Upland Soil Cluster
666 Gammaproteobacteria Gives Molecular Insights into High-Affinity Methanotrophy. *Genome Announc.* **5**, (2017).

668 27. Misiak, M. *et al.* Inhibitory effects of climate change on the growth and extracellular enzyme
669 activities of a widespread Antarctic soil fungus. *Glob. Change Biol.* **n/a**,

670 28. Brady, S. F. Construction of soil environmental DNA cosmid libraries and screening for clones
671 that produce biologically active small molecules. *Nat. Protoc.* **2**, 1297–1305 (2007).

672 29. Kolmogorov, M., Rayko, M., Yuan, J., Polevikov, E. & Pevzner, P. metaFlye: scalable long-read
673 metagenome assembly using repeat graphs. *bioRxiv* 637637 (2019) doi:10.1101/637637.

674 30. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from
675 long uncorrected reads. *Genome Res.* **27**, 737–746 (2017).

676 31. *nanoporetech/medaka*. (Oxford Nanopore Technologies, 2020).

677 32. Walker, B. J. *et al.* Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and
678 Genome Assembly Improvement. *PLOS ONE* **9**, e112963 (2014).

679 33. Watson, M. The genomic and proteomic landscape of the rumen microbiome revealed by
680 comprehensive genome-resolved metagenomics. (2018) doi:<https://doi.org/10.7488/ds/2470>.

681 34. Hyatt, D. *et al.* Prodigal: prokaryotic gene recognition and translation initiation site
682 identification. *BMC Bioinformatics* **11**, 119 (2010).

683 35. von Meijenfeldt, F. A. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E. Robust
684 taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. *Genome*
685 *Biol.* **20**, 217 (2019).

686 36. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. *Nat.*
687 *Methods* **12**, 59–60 (2015).

688 37. Parks, D. H. *et al.* A proposal for a standardized bacterial taxonomy based on genome phylogeny.
689 <http://biorxiv.org/lookup/doi/10.1101/256800> (2018) doi:10.1101/256800.

690 38. Kang, D. D. *et al.* MetaBAT 2: an adaptive binning algorithm for robust and efficient genome
691 reconstruction from metagenome assemblies. *PeerJ* **7**, e7359 (2019).

692 39. Alneberg, J. *et al.* Binning metagenomic contigs by coverage and composition. *Nat. Methods* **11**,
693 1144–1146 (2014).

694 40. Wu, Y.-W., Tang, Y.-H., Tringe, S. G., Simmons, B. A. & Singer, S. W. MaxBin: an automated
695 binning method to recover individual genomes from metagenomes using an expectation-
696 maximization algorithm. *Microbiome* **2**, 26 (2014).

697 41. Urtskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved
698 metagenomic data analysis. *Microbiome* **6**, 158 (2018).

699 42. Kautsar, S. A., Blin, K., Shaw, S., Weber, T. & Medema, M. H. BiG-FAM: the biosynthetic gene
700 cluster families database. *Nucleic Acids Res.* doi:10.1093/nar/gkaa812.

701 43. Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence alignments
702 using Clustal Omega. *Mol. Syst. Biol.* **7**, 539 (2011).

703 44. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity
704 searching. *Nucleic Acids Res.* **39**, W29–W37 (2011).

705 45. Wheeler, T. J., Clements, J. & Finn, R. D. Skylign: a tool for creating informative, interactive logos
706 representing sequence alignments and profile hidden Markov models. *BMC Bioinformatics* **15**, 7
707 (2014).

708 46. Zopfi, J., Kjær, T., Nielsen, L. P. & Jørgensen, B. B. Ecology of *Thioploca* spp.: Nitrate and Sulfur
709 Storage in Relation to Chemical Microgradients and Influence of *Thioploca* spp. on the
710 Sedimentary Nitrogen Cycle. *Appl. Environ. Microbiol.* **67**, 5530–5537 (2001).

711 47. Sweerts, J.-P. R. A. *et al.* Denitrification by sulphur oxidizing *Beggiatoa* spp. mats on freshwater
712 sediments. *Nature* **344**, 762–763 (1990).

713 48. Klotz, M. G. *et al.* Complete Genome Sequence of the Marine, Chemolithoautotrophic,
714 Ammonia-Oxidizing Bacterium *Nitrosococcus oceani* ATCC 19707. *Appl. Environ. Microbiol.* **72**,
715 6299–6315 (2006).

716 49. Boden, R., Kelly, D. P., Murrell, J. C. & Schäfer, H. Oxidation of dimethylsulfide to tetrathionate
717 by *Methylophaga thiooxidans* sp. nov.: a new link in the sulfur cycle. *Environ. Microbiol.* **12**,
718 2688–2699 (2010).

719 50. Dassama, L. M. K., Kenney, G. E. & Rosenzweig, A. C. Methanobactins: from genome to function.
720 *Met. Integr. Biometal Sci.* **9**, 7–20 (2017).

721 51. Adams, B. *et al.* in *Antarctic Climate Change and the Environment. A contribution to the*
722 *International Polar Year 2007-2008* (eds. Turner *et al.*) 183–298 (Scientific Committee on
723 Antarctic Research, Scott Polar Research Institute, 2009).

724 52. Turner, J. *et al.* Absence of 21st century warming on Antarctic Peninsula consistent with natural
725 variability. *Nature* **535**, 411–415 (2016).

726 53. Fraser, C. I. *et al.* Antarctica's ecological isolation will be broken by storm-driven dispersal and
727 warming. *Nat. Clim. Change* **8**, 704–708 (2018).

728 54. Belin, B. J. *et al.* Hopanoid lipids: from membranes to plant–bacteria interactions. *Nat. Rev.*
729 *Microbiol.* **16**, 304–315 (2018).

730 55. Bale, N. J. *et al.* Fatty Acid and Hopanoid Adaption to Cold in the Methanotroph *Methylovulum*
731 *psychrotolerans*. *Front. Microbiol.* **10**, (2019).

732 56. Osmond, C. B. *et al.* How carotenoids protect bacterial photosynthesis. *Philos. Trans. R. Soc.*
733 *Lond. B. Biol. Sci.* **355**, 1345–1349 (2000).

734 57. Chen, R. *et al.* Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial
735 Mats. *Front. Microbiol.* **11**, (2020).

736 58. Cuadrat, R. R. C., Ionescu, D., Dávila, A. M. R. & Grossart, H.-P. Recovering Genomics Clusters of
737 Secondary Metabolites from Lakes Using Genome-Resolved Metagenomics. *Front. Microbiol.* **9**,
738 (2018).

739 59. Sharrar, A. M. *et al.* Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with
740 Phylum, Depth, and Vegetation Type. *mBio* **11**, (2020).

741 60. Haft, D. H. & Basu, M. K. Biological Systems Discovery In Silico: Radical S-Adenosylmethionine
742 Protein Families and Their Target Peptides for Posttranslational Modification ▶ *J. Bacteriol.* **193**,
743 2745–2755 (2011).

744 61. Ting, C. P. *et al.* Use of a Scaffold Peptide in the Biosynthesis of Amino Acid Derived Natural
745 Products. *Science* **365**, 280–284 (2019).

746 62. Das, D. *et al.* The structure of the first representative of Pfam family PF09836 reveals a two-
747 domain organization and suggests involvement in transcriptional regulation. *Acta*
748 *Crystallograph. Sect. F Struct. Biol. Cryst. Commun.* **66**, 1174 (2010).

749 63. Sarkisova, S. A. *et al.* A *Pseudomonas aeruginosa* EF-Hand Protein, Efhp (PA4107), Modulates
750 Stress Responses and Virulence at High Calcium Concentration. *PLOS ONE* **9**, e98985 (2014).

751 64. Jwanowski, K. *et al.* The *Legionella pneumophila* GIG operon responds to gold and copper in
752 planktonic and biofilm cultures. *PLOS ONE* **12**, e0174245 (2017).

753 65. Tveit, A. T. *et al.* Widespread soil bacterium that oxidizes atmospheric methane. *Proc. Natl.*
754 *Acad. Sci.* **116**, 8515–8524 (2019).

755 66. Ziller, A. & Fraissinet-Tachet, L. Metallothionein diversity and distribution in the tree of life: a
756 multifunctional protein. *Metallomics* **10**, 1549–1559 (2018).

757 67. Albertsen, M. *et al.* Genome sequences of rare, uncultured bacteria obtained by differential
758 coverage binning of multiple metagenomes. *Nat. Biotechnol.* **31**, 533–538 (2013).

759 68. Greunke, C. *et al.* Direct Pathway Cloning (DiPaC) to unlock natural product biosynthetic
760 potential. *Metab. Eng.* **47**, 334–345 (2018).

761