

1 Inhibiting cough by silencing large pore-expressing airway sensory neurons with a charged  
2 sodium channel blocker

3  
4 Ivan Tochitsky<sup>1\*</sup>, Sooyeon Jo<sup>2\*</sup>, Nick Andrews<sup>1</sup>, Masakazu Kotoda<sup>1</sup>, Benjamin Doyle<sup>1</sup>, Jaehoon  
5 Shim<sup>1</sup>, Sebastien Talbot<sup>1,3</sup>, David Roberson<sup>1</sup>, Jinbo Lee<sup>4</sup>, Louise Haste<sup>5</sup>, Stephen M. Jordan<sup>5</sup>,  
6 Bruce D. Levy<sup>6#</sup>, Bruce P. Bean<sup>2#</sup>, Clifford J. Woolf<sup>1,2#</sup>

7  
8 1 F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, MA 02115  
9 2 Department of Neurobiology, Harvard Medical School, Boston MA 02115  
10 3 Département de Pharmacologie et Physiologie, Université de Montréal, Canada  
11 4 Sage Partner International, Andover MA 01810  
12 5 Covance Inc., Woolley Rd, Alconbury, Huntingdon PE28 4HS, United Kingdom  
13 6 Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and  
14 Women's Hospital, Harvard Medical School, Boston, MA 02115, USA

15  
16 \* These authors contributed equally: Ivan Tochitsky, Sooyeon Jo.  
17 #Co-senior authors

18  
19 Correspondence to B.D.L., B.P.B. and C.J.W.

20  
21 Submission: 30-11-2020-RA-eLife-65319

22  
23  
24  
25  
26  
27

28 **Abstract**

29     Although multiple diseases of the respiratory system cause cough, there are few effective  
30 treatments for this common condition. We previously developed a strategy to treat pain and itch  
31 via the long-lasting inhibition of nociceptor sensory neurons with QX-314, a cationic sodium  
32 channel blocker that selectively enters only into activated nociceptors by permeating through the  
33 endogenous TRPV1 and TRPA1 large pore ion channels they express. In this study we design  
34 and characterize BW-031, a novel cationic compound with ~6-fold greater potency than QX-314  
35 for inhibiting sodium channels when introduced inside cells and with minimal extracellular  
36 activity. We show that inhalation of aerosolized BW-031 effectively inhibits citric acid-induced  
37 cough in an allergic inflammation guinea pig cough model. These data support the use of  
38 charged sodium channel blockers for the selective inhibition of airway sensory neurons with  
39 activated large pore channels as a novel targeted therapy for treating cough.

40

41

42 **Introduction**

43     Cough is a major unmet medical need and one of the most common reasons patients see their  
44 primary care physician (Chung and Pavord, 2008; Simpson and Amin, 2006). Acute viral cough  
45 can evolve into long-lasting post-viral cough, and chronic cough can last for months or even  
46 years with severe impact on quality of life (Chung and Pavord, 2008; Mazzone et al., 2018;  
47 Simpson and Amin, 2006). Cough etiology includes viral infections, allergens, environmental  
48 pollutants and respiratory diseases, including asthma, chronic obstructive pulmonary disease  
49 (COPD), pulmonary fibrosis, cystic fibrosis (CF), and non-CF bronchiectasis (Chung and  
50 Pavord, 2008; Gibson, 2019; Mazzone et al., 2018). Coughing is initiated when sensory neurons  
51 innervating the upper airways are stimulated by transducer ion channels, including TRPA1 and  
52 TRPV1, either by inhaled irritants or by endogenous ligands from inflamed tissue (Bonvini et al.,  
53 2015; Canning, 2006; Canning et al., 2014; Canning et al., 2004; Mazzone et al., 2018; Patil et  
54 al., 2019; Widdicombe and Fontana, 2006). Viral infection upregulates TRPV1 and TRPA1  
55 expression (Abdullah et al., 2014; Omar et al., 2017; Zacccone et al., 2016), and increased cough  
56 reflex sensitivity can follow viral respiratory infection (Omar et al., 2017; Ryan et al., 2012;  
57 Zacccone et al., 2016). Cough is the main transmission vector of SARS-CoV-2 (Leung et al.,  
58 2020; Rothan and Byrareddy, 2020) as well as other viral and bacterial diseases (Footitt and

59 Johnston, 2009; Turner and Bothamley, 2014). Current cough treatments, principally  
60 dextromethorphan and codeine, are poorly effective and have considerable abuse liability (Bolser  
61 and Davenport, 2007; Song and Chung, 2020).

62 As cough is triggered by the activation of sensory nerve endings in the airways, blocking the  
63 activity of these neurons inhibits cough (Clivio et al., 2019; Slaton et al., 2013). Inhaled  
64 lidocaine, a non-selective sodium channel-blocking local anesthetic, is used to inhibit reflexive  
65 laryngospasm and cough during bronchoscopy, and nebulized lidocaine is highly effective in  
66 suppressing cough in patients with upper respiratory tract infections (Peleg and Binyamin, 2002),  
67 COPD (Chong et al., 2005; Udezu, 2001), asthma (Slaton et al., 2013; Udezu, 2001) and other  
68 causes (Udezu, 2001). However, lidocaine has a short duration of action (Chong et al., 2005)  
69 and produces potential cardiac and CNS side effects (Shirk et al., 2006) as a consequence of its  
70 high lipophilicity and ready diffusion into the bloodstream. Also, because lidocaine blocks  
71 activity in all neurons, including motor neurons, it inhibits swallowing and the gag reflex  
72 (Noitasaeng et al., 2016), limiting its translational utility.

73 We previously found that QX-314, a charged, cationic derivative of lidocaine, can permeate  
74 into neurons such as nociceptors which express large-pore cation-selective ion channels such as  
75 TRPV1. QX-314 thus produces a long-lasting inhibition of pain and itch (Binshtok et al., 2007;  
76 Brenneis et al., 2014; Brenneis et al., 2013; Lennertz et al., 2012; Puopolo et al., 2013; Roberson  
77 et al., 2011) by blocking the activity of the nociceptor sensory neurons mediating these  
78 sensations, without inhibiting low threshold sensory neurons or motor neurons, which do not  
79 express large pore channels (Binshtok et al., 2007; Brenneis et al., 2013).

80 Using BW-031, a novel cationic sodium channel inhibitor we developed to have increased  
81 potency compared to QX-314, we now find that delivery of large-pore-permeating cationic  
82 sodium channel blockers into airway sensory neurons activated by inflammation is a highly  
83 effective strategy for inhibiting cough in guinea pig models.

84

## 85 **Results**

86 We synthesized multiple cationic derivatives of lidocaine and identified one, BW-031 (Fig.  
87 1a), as a novel compound that inhibits  $Na_v1.7$  sodium channels when applied intracellularly with  
88 substantially higher potency than QX-314 (Fig. 1b-c). Inhibition by BW-031 accumulates with  
89 each cycle of activation and deactivation of the sodium channel, likely reflecting the trapping of

90 the blocker inside the channel (Strichartz, 1973; Schwarz et al., 1977; Yeh, 1978). BW-031 had a  
91 minimal effect on  $\text{Na}_v1.7$  currents when applied extracellularly (Fig. 1d-e), suggesting that, like  
92 QX-314, it cannot enter channels through the narrow ion selectivity filter in the outer pore region  
93 of the channel. BW-031 also inhibited  $\text{Na}_v1.1$  channels with a similar potency to  $\text{Na}_v1.7$ , and  
94  $\text{Na}_v1.8$  channels with a lower potency (Supplementary Fig. 1). BW-031 inhibited native sodium  
95 currents in nociceptors differentiated from human induced pluripotent stem cells (hiPSCs) with a  
96 similar potency to that of heterologously expressed  $\text{Na}_v1.7$  channels (Fig. 1f-g).

97 BW-031 applied externally to mouse TRPV1<sup>+</sup> DRG neurons inhibited sodium currents only  
98 when it was applied together with capsaicin to activate TRPV1 channels (Fig. 2a, Supplementary  
99 Fig. 2a) and had no effect on sodium currents in TRPV1<sup>-</sup> DRG neurons (Supplementary Fig. 2b-  
100 c). Thus, like QX-314 (Binshtok et al., 2007; Brenneis et al., 2014; Brenneis et al., 2013;  
101 Lennertz et al., 2012; Stueber et al., 2016), BW-031 permeates through activated TRPV1  
102 channels to block sodium channels from the inside of the cell.

103 Selective inhibition of neurons only in conditions in which TRPV1, TRPA1 or other large-  
104 pore channels are activated (as during noxious stimulation or inflammation (Julius, 2013)) would  
105 be valuable for clinical use, since there would be no or minimal inhibition of either motor  
106 neurons or low threshold sensory neurons and also of non-activated nociceptors. To test this  
107 selectivity *in vivo*, we performed peri-sciatic injections in naïve mice and found that BW-031  
108 and QX-314 produced no block of sensory or motor function, in contrast to the transient  
109 inhibition of both by lidocaine (Supplementary Fig. 2d-e). Like QX-314 (Binshtok et al., 2007;  
110 Binshtok et al., 2009b; Brenneis et al., 2013), BW-031 produces no inhibition of nerve fibers  
111 when large-pore channels are either not present (motor neurons and low threshold sensory  
112 neurons) or are not activated (nociceptors in absence of activated TRP channels).

113 We next tested the ability of BW-031 to inhibit activated nociceptors using a mouse model of  
114 UV-burn-induced inflammatory pain (Yin et al., 2016) where inflammatory mediators activate  
115 TRPV1 and TRPA1 channels in nociceptors (Acosta et al., 2014; Yin et al., 2016). Plantar UV-  
116 burn resulted in mechanical allodynia 24 hours later, at which time intra-plantar injection of 2%  
117 BW-031 produced robust mechanical analgesia (shifting values to supra-threshold levels) lasting  
118 for at least 7 hours (Fig. 2b). BW-031 also blocked both mechanical hyperalgesia in a rat paw  
119 incision model of surgical pain (Brennan et al., 1996) (Fig. 2c) and thermal hyperalgesia in a  
120 Complete Freund's Adjuvant (CFA)-paw injection rat model of inflammatory pain, both of

121 which engage TRPV1 and/or TRPA1 channels (Asgar et al., 2015; Kanai et al., 2007; Simonic-  
122 Kocjan et al., 2013) (Supplementary Fig. 2f). Interestingly, in both the mouse UV burn model  
123 and the rat CFA paw-injection model, BW-031 not only reversed the tactile hypersensitivity  
124 resulting from the injury but also produced substantial long-lasting analgesia (reduced response  
125 to noxious stimuli) relative to the control situation, indicating an effective silencing of most, if  
126 not all nociceptors, at the site of administration.

127 Guinea pigs are the standard pre-clinical model for studying cough (Adner et al., 2020;  
128 Bonvini et al., 2015; Lewis et al., 2007; Morice et al., 2007) as the main features of airway  
129 innervation are similar in guinea pigs (Mazzone and Undem, 2016) and humans (West et al.,  
130 2015), unlike mice or rats. Coughing in guinea pigs is mediated both by a subset of  
131 bronchopulmonary C-fibers and by a distinct mechanically-sensitive and acid-sensitive subtype  
132 of myelinated airway mechanoreceptors (Canning, 2006; Canning et al., 2014; Canning et al.,  
133 2004; Chou et al., 2018b; Mazzone et al., 2009; Mazzone and Undem, 2016). The neurons  
134 mediating the C-fiber pathway have strong expression of both TRPV1 and TRPA1 channels  
135 (Bonvini et al., 2015; Canning et al., 2014; Mazzone and Undem, 2016), and coughing in both  
136 guinea pigs and humans can be evoked by both TRPV1 agonists like capsaicin (Bonvini et al.,  
137 2015; Brozmanova et al., 2012; Kanezaki et al., 2012; Laude et al., 1993) and by TRPA1  
138 agonists (Birrell et al., 2009; Bonvini et al., 2015; Kanezaki et al., 2012; Long et al., 2019b). The  
139 importance of this population of TRPV1 and TRPA1-expressing neurons in at least some forms  
140 of cough, suggests the possibility of an effective nerve-silencing strategy for at least some cough  
141 conditions, based on loading cationic sodium channel inhibitors into airway sensory neurons  
142 through activated large pore channels.

143 We used two different experimental protocols to test whether BW-031 can inhibit cough in  
144 guinea pigs. In the first, we delivered a small volume (0.5 mL/kg) of different doses of BW-031  
145 intratracheally to animals under transient isoflurane anesthesia (Fig. 3a), capitalizing on the  
146 ability of isoflurane to activate TRPV1 and TRPA1 channels (Cornett et al., 2008; Kimball et al.,  
147 2015). One hour after the administration of BW-031, coughing was induced by inhalation of  
148 aerosolized citric acid as an airway irritant, which induces a low rate of coughing (typically 0.5-1  
149 cough/minute (Tanaka and Maruyama, 2005)), and coughs were measured using whole-body  
150 plethysmography. BW-031 caused a dose-dependent reduction in the number of coughs evoked  
151 by citric acid, with administration of 7.53 mg/kg BW-031 reducing cough counts during a 17-

152 minute period from  $9.4 \pm 2.4$  in control to  $0.9 \pm 0.5$  with BW-031 (n=9, p=0.005, Tukey's post-hoc  
153 test) (Fig. 3b), with a complete suppression of coughing in 5 of the 9 animals tested.

154 We next tested BW-031 in a more translationally relevant guinea pig model of ovalbumin-  
155 induced allergic airway inflammation, which produces activation and upregulation of both  
156 TRPV1 and TRPA1 channels in the airways (Liu et al., 2015; McLeod et al., 2006; Watanabe et  
157 al., 2008). Guinea pigs were sensitized by intraperitoneal and subcutaneous injections of  
158 ovalbumin (Fig. 4a). Fourteen days later, inhaled ovalbumin induced allergic airway  
159 inflammation, reflected by increased immune cell counts in the bronchoalveolar lavage (BAL)  
160 measured one day after the ovalbumin-challenge (Fig. 4b). Nebulized BW-031 was administered  
161 to restrained awake guinea pigs via snout-only inhalation chambers one day after the allergen  
162 challenge, and cough was then induced by citric acid one hour after the inhalation of BW-031.  
163 BW-031 strongly inhibited the citric acid-induced cough in a dose-dependent manner (Fig 4c).  
164 At the highest dose tested (17.6mg/kg, inhaled dose calculated as per Alexander et al. (2008a)),  
165 BW-031 reduced cough counts from  $10 \pm 1.6$  in control to  $2.2 \pm 0.89$  with BW-031 (n=12,  
166 p=0.0009, Tukey's post-hoc test), with complete suppression of cough in 7 of the 12 animals.  
167 Animals showed no evidence of aversion or distress in response to the BW-031 aerosol exposure  
168 at any dose tested.

169 The hydrophobicity of local anesthetics like lidocaine enables ready absorption from lung  
170 tissue into the blood but the absorption of cationic compounds like BW-031 would be expected  
171 to be much less. The highest dose of inhaled BW-031 (17.6 mg/kg) resulted in a serum  
172 concentration of  $419 \pm 46$  nM (n=12) (Supplementary Fig. 3a), many orders of magnitude below  
173 the concentration at which any effect of BW-031 was seen on contraction of human IPSC-  
174 derived cardiomyocytes (3 mM; Supplementary Fig. 3b-c). Thus, inhaled BW-031 should have a  
175 high therapeutic index with regard to *in vivo* cardiotoxicity, which is a major concern with  
176 inhaled lidocaine (Horáček and Vymazal, 2012).

177

## 178 **Discussion**

179 BW-031, a novel permanently charged cationic sodium channel inhibitor, is highly effective  
180 in blocking citric acid-induced cough in two guinea pig models, including one utilizing allergic  
181 airway inflammation to activate large pore channels. Our strategy was based on our previous  
182 work showing that the cationic lidocaine derivative QX-314 can permeate through both TRPV1

183 (Binshtok et al., 2007; Puopolo et al., 2013; Stueber et al., 2016) and TRPA1 (Brenneis et al.,  
184 2014; Stueber et al., 2016) channels and thereby produce a long-lasting silencing of nociceptors  
185 and in this way selectively inhibit pain and itch (Binshtok et al., 2007; Binshtok et al., 2009a;  
186 Lennertz et al., 2012; Roberson et al., 2011; Roberson et al., 2013), together with work from  
187 others showing an important role for neurons expressing TRPV1 and TRPA1 channels in  
188 mediating cough in both guinea pigs and humans (Belvisi et al., 2011; Birrell et al., 2009;  
189 Bonvini et al., 2015; Brozmanova et al., 2012; Forsberg et al., 1988; Grace and Belvisi, 2011; Jia  
190 et al., 2002; Laude et al., 1993; Undem et al., 2002). We designed BW-031 as a cationic  
191 piperidinium-containing compound, based on the observation that piperidine-containing local  
192 anesthetics like bupivacaine and mepivacaine, have higher potency as local anesthetics than  
193 lidocaine (Bräu et al., 1998; Scholz et al., 1998). Indeed, BW-031 was about 6-fold more potent  
194 than QX-314 for inhibiting  $\text{Na}_v1.7$  channels when applied intracellularly.

195 The ability of BW-031 to effectively inhibit cough, with complete suppression of cough in a  
196 majority of the animals treated with the highest dose in both models, strongly supports previous  
197 proposals that targeting peripheral nerve activity by sodium channel inhibition can be an  
198 effective strategy for inhibiting cough (Brozmanova et al., 2019; Kollarik et al., 2018; Patil et al.,  
199 2019; Sun et al., 2017; Undem and Sun, 2020). A key advantage of the strategy of using cationic  
200 sodium channel inhibitors is to limit the inhibition of nerve activity only to those neurons that  
201 express large-pore channels, like TRPV1 and TRPA1, and only under those conditions, such as  
202 inflammation or noxious irritation, where these channels are activated. Consistent with this  
203 selectivity, BW-031, like QX-314, required co-application of capsaicin to inhibit sodium currents  
204 in DRG neurons, had no effect in TRPV1-null DRGs, and in contrast to lidocaine had no sensory  
205 or motor blocking effect with peri-sciatic injection in naïve mice with no inflammation. These  
206 results indicate that BW-031 inhibition of nerve excitability requires entry through large pore  
207 channels. Its efficacy against cough in the ovalbumin-induced airway inflammation model  
208 suggests that the asthma-like allergic inflammation produced in this model activates large-pore  
209 ion channels (Bessac and Jordt, 2008; Choi et al., 2018; Talbot et al., 2015; Talbot et al., 2020)  
210 in a manner sufficient to allow for the effective entry of BW-031 into those sensory neurons that  
211 trigger cough in response to the citric acid.

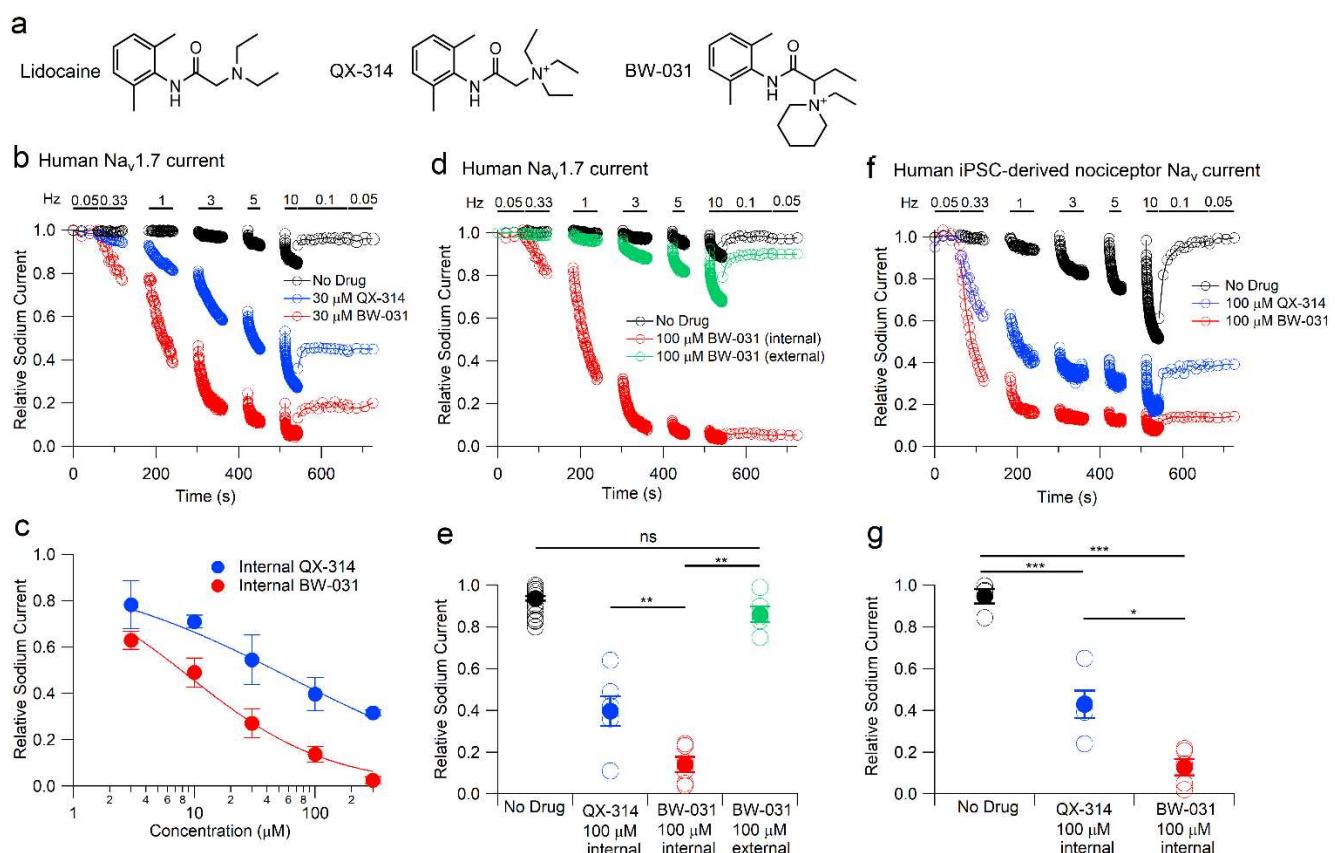
212 Recent efforts to develop new treatments for cough have largely focused on antagonists for  
213 TRPV1, TRPA1, and P2X3 channels (Garceau and Chauret, 2019; Grabczak et al., 2020; Keller

214 et al., 2017; Patil et al., 2019; Ryan et al., 2018; Smith and Badri, 2019) as well as GABA<sub>B</sub>  
215 receptor agonists (Canning et al., 2012). These channels likely have different contributions to  
216 cough in different patient populations (Long et al., 2019a; Mazzone et al., 2018) but even a  
217 complete inhibition of any single receptor will not prevent activation of cough-triggering neurons  
218 by other receptors, perhaps explaining the failure of selective TRPA1 or TRPV1 antagonists to  
219 inhibit naturally-occurring cough (Belvisi et al., 2017; Birrell et al., 2009; European Medicines  
220 Agency, 2013; Khalid et al., 2014). In recent clinical trials, P2X3 antagonists appear to be more  
221 promising (European Medicines Agency, 2013; Morice et al., 2019; Smith et al., 2017; Smith et  
222 al., 2020b). Animal studies show expression of P2X3 channels on sensory neurons innervating  
223 the lungs (Kollarik et al., 2019; Kwong et al., 2008; Mazzone and Undem, 2016) and P2X3  
224 inhibitors reduce cough in guinea pig models (Bonvini et al., 2015; Garceau and Chauret, 2019;  
225 Pelleg et al., 2019) but the exact role of P2X3 channels in mediating or sensitizing cough is still  
226 unclear (Dicpinigaitis et al., 2020). However, recent work has demonstrated that P2X3 receptors  
227 form large-pore channels capable of passing large cations (Harkat et al., 2017), similar to  
228 TRPV1, TRPA1, and P2X2 channels. Thus, it is plausible that activated P2X3-containing  
229 channels, as well as TRPV1 and TRPA1 channels, might provide a pathway for entry of BW-031  
230 into cough-mediating neurons. The localized and superficial application produced by aerosol  
231 inhalation of BW-031 may not necessarily enter and inhibit the activation of all airway sensory  
232 neurons that express large pore channels, only those whose terminals are accessible from the  
233 surface of the airway.

234 Our approach of exploiting activated large-pore channels to introduce charged sodium  
235 channel blockers inside activated sensory neurons will inhibit the activity of the neurons to  
236 subsequent different stimuli and may therefore have greater efficacy than targeting single  
237 receptors. Once cationic sodium channel inhibitors are loaded into a cell (concentrated by the  
238 negative intracellular potential), they will not readily diffuse out through the cell membrane and  
239 may produce effects lasting for many hours, as is the case for the analgesic effect of QX-314  
240 (Binshtok et al., 2009a; Gerner et al., 2008; Roberson et al., 2011) and as we find here for BW-  
241 031 (Fig. 2b,c).

242 From the current experiments, we do not know which exact population of sensory neurons  
243 BW-031 silences to inhibit the citric acid-induced cough or which large-pore entry pathways are  
244 most important. Citric acid-induced coughing in the guinea pig is mediated by C-fibers

245 expressing TRPV1 and TRPA1 channels (Canning, 2006; Canning et al., 2004), both of which  
246 are activated by citric acid, and also by a population of A-delta fibers (Canning et al., 2004),  
247 likely through activation of ASIC channels (Kollarik et al., 2007). In principle, the relative role  
248 of different large-pore channels could be tested by examining whether specific inhibitors of  
249 TRPA1, TRPA1, or P2X3 channels prevent the effect of inhaled BW-031, but as such inhibitors  
250 will themselves reduce coughing, interpreting such experiments would be challenging. It is also  
251 uncertain to what degree different large pore channels are activated in human cough conditions.  
252 Nevertheless, a sizeable fraction of human patients with chronic cough show amplification of the  
253 cough evoked by TRPV1 or TRPA1 agonists (Long et al., 2019b), and TRPV1 is up-regulated in  
254 the airway nerves of some patients with chronic cough (Groneberg et al., 2004), suggesting that  
255 these channels are likely active in certain human cough conditions. The efficacy of P2X3  
256 inhibitors against cough in recent clinical trials also indicates activation of this channel in  
257 patients (Smith et al., 2020a; Smith et al., 2020b).


258 The citric acid model of guinea pig cough, although widely used, clearly has limitations for  
259 predicting drug efficacy in human disease, because while TRPV1 and TRPA1 inhibitors are quite  
260 effective in this model (Leung et al., 2007; Mukhopadhyay et al., 2014) this has not been  
261 replicated, so far, in patients (Belvisi et al., 2017; European Medicines Agency, 2013). It would  
262 be useful in future studies to explore the efficacy of BW-031 in other modes of cough induction,  
263 such as hypo-osmotic solutions or direct mechanical stimulation, which may activate different  
264 populations of nerve fibers than citric acid (Chou et al., 2018a; Morice et al., 2007). While  
265 comparison of the relative efficacy of charged sodium channel blockers in different modes of  
266 cough induction may help suggest which of the many diverse etiologies of cough in humans  
267 (Gibson, 2019; Mazzone et al., 2018) may be best suited for this treatment strategy, the  
268 predictive power of the different preclinical models for patient efficacy is uncertain.

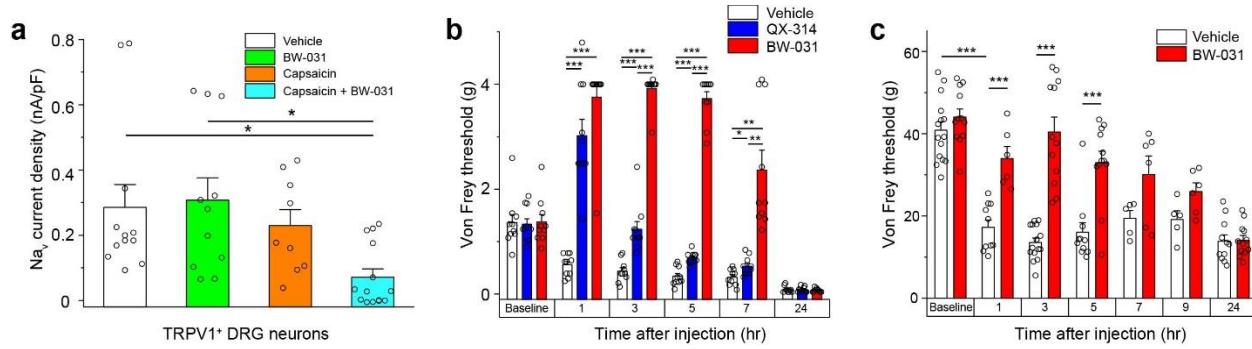
269 The charged local anesthetic strategy does not necessarily require generating compounds  
270 with selectivity only for blocking certain sodium channels, because the selectivity for silencing  
271 specific sensory neurons is based instead on targeting only those neurons with activated large-  
272 pore channels. We used  $\text{Na}_v1.7$  inhibition for our initial *in vitro* tests of BW-031 partly because  
273 of evidence that  $\text{Na}_v1.7$  channels are important in cough-mediating neurons (Kollarik et al.,  
274 2018; Muroi et al., 2011; Patil et al., 2019; Sun et al., 2017; Undem and Sun, 2020); however, we  
275 do not know what types of sodium channels are most important for the effects of BW-031 on

276 cough inhibition. Recent work has shown an important distinction between the sodium channels  
277 responsible for initiating action potentials in nerve terminals and those responsible for axonal  
278 conduction (Kollarik et al., 2018; Muroi et al., 2011). Conduction in airway C-fiber axons is  
279 mediated by tetrodotoxin-sensitive sodium channels, most likely mainly  $\text{Na}_v1.7$  channels  
280 (Kollarik et al., 2018; Muroi et al., 2011); however, action potential initiation at peripheral  
281 terminals is mediated in different neuronal types by either mainly tetrodotoxin-resistant  $\text{Na}_v1.8$   
282 channels (jugular C-fibers) or by  $\text{Na}_v1.7$  channels (nodose C-fibers and A-delta fibers (Kollarik  
283 et al., 2018)) and inhalation of the  $\text{Na}_v1.8$ -selective inhibitor A-803467 reduced capsaicin-  
284 induced coughing by ~65% in guinea pigs (Brozmanova et al., 2019). Thus, it might be desirable  
285 to design a next-generation set of cationic compounds able to potently inhibit both  $\text{Na}_v1.8$  and  
286  $\text{Na}_v1.7$  channels (Patil et al., 2019), to enhance inhibition of action potential initiation in jugular  
287 C-fibers, which play a major role in cough initiation and sensitization (Chou et al., 2018a;  
288 Driessen et al., 2020; Mazzone et al., 2005) and have peripheral terminals in the mucosal surface  
289 of the large airways (Mazzone and Undem, 2016) where aerosol delivery largely deposits (Chou  
290 et al., 2018a). While selecting high potency charged inhibitors of sodium channels is a logical  
291 starting point, it is likely that other factors will also be important for determining *in vivo* efficacy,  
292 especially rate of entry through various large pore channels. The rate of entry of cations through  
293 large pore channels can be very sensitive to their exact molecular dimensions and shape (Harkat  
294 et al., 2017), therefore, the structure-activity relationships for cough inhibition by charged  
295 sodium channel inhibitors may be complex and multidimensional.

296 In the context of potential clinical use, this strategy for inhibiting cough should be effective  
297 whenever there is inflammation, noxious stimulation, or tissue damage sufficient to activate  
298 TRPV1, TRPA1, or P2X channels in those sensory neurons that trigger cough. This likely  
299 includes inflammation from viral infection (Abdullah et al., 2014; Omar et al., 2017; Ryan et al.,  
300 2012; Zaccone et al., 2016) and many other etiologies. The involvement in particular human  
301 cough conditions of large pore channels and of the airway sensory neurons that express them  
302 should be readily detectable by whether inhalation of charged sodium channel blockers  
303 suppresses the cough, defining responsive and non-responsive populations. In addition to treating  
304 individual patients, inhibiting cough can also be disease-reducing for the entire population by  
305 reducing the spread of pathogens via cough-generated aerosols.

306 **Figures**



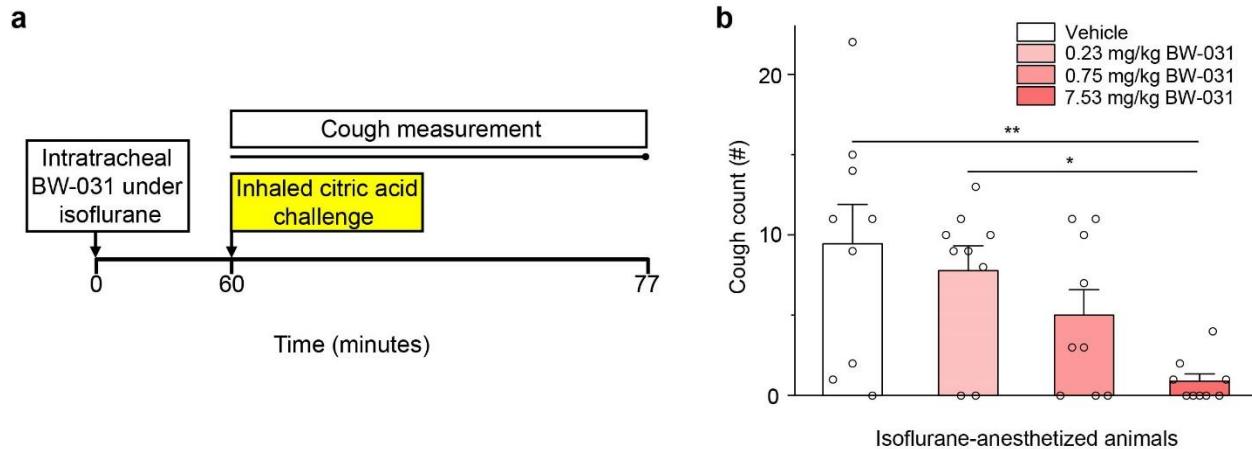

307

308 **Fig. 1. BW-031 is a potent, use-dependent intracellular charged sodium channel inhibitor.**

309 **a**, Chemical structures of lidocaine, QX-314 and BW-031. **b**, Whole-cell patch clamp recordings  
310 illustrating use-dependent inhibition of hNa<sub>v</sub>1.7 channels expressed in HEK 293 cells by 30  $\mu\text{M}$   
311 intracellular QX-314 (blue) or BW-031 (red) or with the use-dependent protocol run with control  
312 intracellular solution (black). hNa<sub>v</sub>1.7 current was evoked by 20-ms depolarizations from -100 to  
313 -20 mV. After an initial stimulation at 0.05 Hz, trains of depolarizations at frequencies from 0.33  
314 to 10 Hz were delivered, each for 1 minute (0.33 to 3 Hz) or 30 seconds (5 and 10 Hz), with a 1  
315 minute rest between trains. **c**, Dose-dependent inhibition by various intracellular concentrations  
316 of QX-314 (blue) and BW-031 (red). Mean $\pm$ SEM (n=6 for 30,100, and 300  $\mu\text{M}$  QX-314 and for  
317 3, 10, 30, and 100  $\mu\text{M}$  BW-031, n=4 for 3 and 10  $\mu\text{M}$  QX-314, n=3 for 300  $\mu\text{M}$  BW-031). Solid  
318 lines, best fits to  $(1/(1 + [\text{Drug}]/\text{IC}_{50}))$ , where [Drug] is the QX-314 or BW-031 concentration and  
319 IC<sub>50</sub> is the half-blocking concentration, with IC<sub>50</sub>=61  $\mu\text{M}$  for QX-314 and IC<sub>50</sub>=9.2  $\mu\text{M}$  for BW-  
320 031. Current was quantified during the final slow (0.05 Hz) stimulation following the higher-  
321 frequency trains of stimulation. **d**, Use-dependent inhibition of hNa<sub>v</sub>1.7 channels by 100  $\mu\text{M}$

322 intracellular BW-031 (red) contrasted with the same voltage protocol in control (black) or after  
323 application of 100  $\mu$ M extracellular BW-031 (green). **e**, Intracellular 100  $\mu$ M BW-031 inhibits  
324  $hNa_v1.7$  more strongly (to  $0.14\pm0.03$ , n=6) than intracellular 100  $\mu$ M QX-314 ( $0.40\pm0.07$ , n=6;  
325 p=0.008, two-tailed Mann Whitney Test) or extracellular 100  $\mu$ M BW-031 ( $0.86\pm0.04$ , n=6;  
326 p=0.008). ns p>0.05 and \*\*p<0.01. Black symbols are mean $\pm$ SEM ( $0.94\pm0.01$ , n=36) for control  
327 cells in which the same sequence of stimuli was delivered using intracellular solution without  
328 compound. **f**, Use-dependent inhibition of native  $Na_v$  currents in hiPSC-derived nociceptors by  
329 100  $\mu$ M intracellular QX-314 (blue) or 100  $\mu$ M intracellular BW-031 (red), and  $Na_v$  currents in  
330 untreated control neurons after the same voltage protocol (black) **g**, Collected results for hiPSC-  
331 derived nociceptors showing stronger inhibition by 100  $\mu$ M intracellular BW-031 (red,  
332  $0.13\pm0.04$ , n=5) compared to 100  $\mu$ M intracellular QX-314 (blue,  $0.43\pm0.07$ , n=5) or control  
333 (black,  $0.95\pm0.03$ , n=4). Control vs. QX-314, p=0.0004; control vs. BW-031, p<0.0001; BW-031  
334 vs. QX-314, p=0.01, two-tailed paired t-test. \*p<0.05, \*\*\*p<0.001.

335

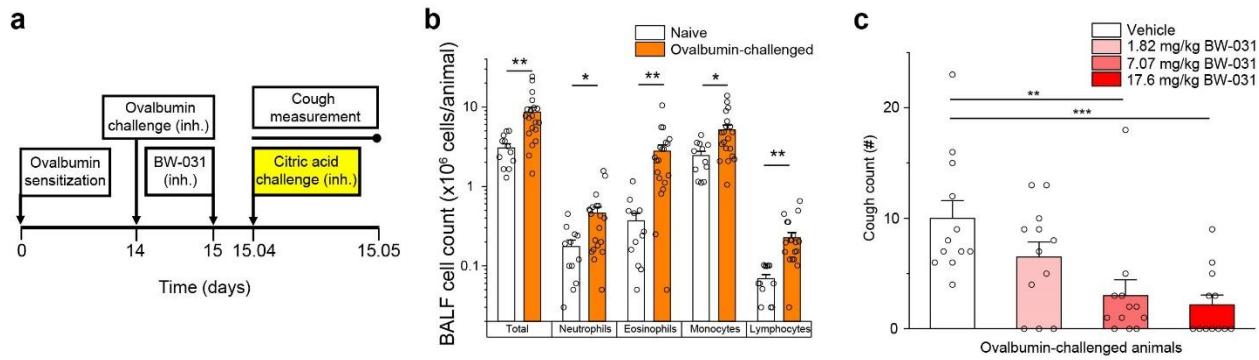



336

337 **Fig. 2. BW-031 inhibits  $Na_v$  currents selectively in TRPV1<sup>+</sup> DRG neurons *in vitro* and pain-  
338 related behavior *in vivo*.**

339 **a**, Quantification of voltage-clamp recordings of sodium currents in TRPV1<sup>+</sup> mouse DRG  
340 neurons pre-treated with vehicle (white), 100  $\mu$ M BW-031 (green), 1  $\mu$ M capsaicin (orange) or 1  
341  $\mu$ M capsaicin + 100  $\mu$ M BW-031 (cyan). Capsaicin facilitates the inhibition of  $Na_v$  currents in  
342 mouse TRPV1<sup>+</sup> DRG neurons treated with BW-031. N=9-14 cells per condition, 1-way  
343 ANOVA,  $[F(3, 42)=4.26]$ ,  $p=0.01$ ; Tukey's post-hoc, \* $p<0.05$ . **b**, Von Frey measurements of  
344 hindpaw mechanical sensitivity in mice after plantar UV-burn and intraplantar injection of  
345 vehicle, 2% QX-314 or 2% BW-031. Two-way repeated measures ANOVA with treatment as  
346 the between groups factor and time as the within groups factor. Treatment  $[F(2, 27)=291.1]$ , time  
347  $[F(3.129, 84.49)=44.83]$  and treatment x time interaction  $[F(10, 135)=37.80]$ , all  $p<0.001$ . Post-  
348 hoc Tukey's tests between treatment groups at each time point revealed significant increases in  
349 mechanical threshold by QX-314 and BW-031 at 1, 3, 5 and 7 hours post treatment as compared  
350 with vehicle, with BW-031 treatment producing a larger mechanical threshold than QX-314 at 3,  
351 5 and 7 hours after treatment. N=10 male mice per group, \* $p<0.05$ , \*\* $p<0.01$ , \*\*\* $p<0.001$ . **c**,  
352 Von Frey measurements of hindpaw mechanical sensitivity in rats after paw incision and  
353 intraplantar injection of vehicle or 2% BW-031. 2% BW-031 produces robust, long-lasting  
354 inhibition of mechanical hyperalgesia. Two-way ANOVA (mixed-effects model) with treatment  
355 as the between groups factor and time as the within groups factor. Treatment  $[F(1, 25) = 35.96]$ ,  
356 time  $[F(6.000, 99.00) = 44.83]$  and treatment x time interaction  $[F(6, 99) = 13.23]$ , all  $p<0.001$ .  
357 Post-hoc Bonferroni tests between treatment groups at each time point revealed significant  
358 increases in mechanical threshold by BW-031 at 1, 3 and 5 hours post treatment,  $p<0.001$ . N=5-  
359 15 male rats per group, \* $p<0.05$ , \*\* $p<0.01$ , \*\*\* $p<0.001$ . Bars for panels **a-c** represent  
360 mean $\pm$ SEM for each condition, while the individual data points are displayed as open circle.

361




362

363 **Fig. 3. Isoflurane-mediated intratracheal delivery of BW-031 inhibits citric acid evoked**  
364 **cough *in vivo*.**

365 **a**, Experimental design. BW-031 (0.23, 0.75 or 7.53 mg/kg) was delivered intratracheally to  
366 guinea pigs under isoflurane anesthesia, which activates TRPV1 and TRPA1 channels<sup>45,46</sup>. The  
367 animals were then challenged with inhaled 400 mM citric acid (yellow) and cough and  
368 respiratory function measured over 17 minutes during and after the citric acid challenge. **b**,  
369 Intratracheal BW-031 causes a robust dose-dependent block of citric acid-evoked cough. N=9  
370 female guinea pigs per group, 1-way ANOVA [ $F(3, 32)=5.03$ ],  $p=0.0057$ , Tukey's post-hoc,  
371  $*p<0.05$ ,  $**p<0.01$ . Bars represent mean $\pm$ SEM for each condition, while the individual data  
372 points are displayed as open circles.

373



374

375 **Fig. 4. BW-031 inhibits cough following allergic airway inflammation.**

376 **a**, Experimental design. Guinea pigs were sensitized with intraperitoneal and subcutaneous  
377 ovalbumin and challenged with inhaled (inh.) ovalbumin two weeks later. One day after  
378 ovalbumin challenge, the animals inhaled BW-031 (inhaled doses of 1.82, 7.07 or 17.6 mg/kg  
379 BW-031) followed one hour later by inhalation of 400 mM citric acid (yellow) to evoke cough.  
380 Cough counts were measured for 17 minutes during and following the citric acid challenge. **b**,  
381 Ovalbumin sensitization and challenge causes lung inflammation, as measured by immune cell  
382 counts in bronchoalveolar lavage (BAL). N=12-20 animals per group (1:1 male:female), 1-way  
383 ANOVAs; total immune cell [ $F(1, 30) = 10.3$ ],  $p=0.003$ ; neutrophils [ $F(1, 30)=5.82$ ],  $p=0.02$ ;  
384 eosinophils [ $F(1, 30)=11.9$ ],  $p=0.002$ ; monocytes [ $F(1, 30)=7.00$ ],  $p=0.01$ ; lymphocytes [ $F(1,$   
385  $30)=10.9$ ],  $p=0.003$ ; Tukey's post-hoc,  $*p<0.05$ ,  $**p<0.01$ . Bars represent mean $\pm$ SEM for each  
386 condition, while the individual data points are displayed as open circles. **c**, Inhaled BW-031  
387 produces dose-dependent inhibition of citric acid-evoked cough following allergic airway  
388 inflammation. N=12 animals per group (1:1 male:female), 1-way ANOVA, [ $F(3, 44)=7.113$ ],  
389  $p=0.0005$ ; Tukey's post-hoc,  $**p<0.01$ ,  $***p<0.001$ . Bars represent mean $\pm$ SEM for each  
390 condition, while the individual data points are displayed as open circles.

391

392 **Materials and Methods**

393

394 **Chemicals.** Except for BW-031, all chemicals were purchased from Sigma Aldrich or Tocris  
395 Bioscience. BW-031 (1-(1-(2, 6-dimethylphenylamino)-1-oxobutan-2-yl)-1-ethylpiperidinium)  
396 was synthesized by Acesys Pharmatech (synthetic pathway described in Supplementary Data).

397 **Stable cell line electrophysiology.** Human embryonic kidney (HEK 293) cells stably expressing  
398 the human  $\text{Na}_v1.7$  channel (Liu et al., 2012) were grown in Minimum Essential Medium (MEM,  
399 ATCC) containing 10% fetal bovine serum (FBS, Sigma), penicillin/streptomycin (Sigma), and  
400 800  $\mu\text{g}/\text{ml}$  G418 (Sigma) under 5%  $\text{CO}_2$  at 37°C. Human embryonic kidney (HEK 293) cells  
401 stably expressing the human  $\text{Na}_v1.1$  channel (gift of Dr. Alfred L. George, Jr.) were grown in  
402 Dulbecco's Modified Eagle Medium (DMEM, Thermo Fisher Scientific) containing 10% FBS  
403 (Sigma), penicillin/streptomycin (Sigma), and 3  $\mu\text{g}/\text{ml}$  Puromycin (Sigma) under 5%  $\text{CO}_2$  at  
404 37°C. Chinese Hamster Ovary (CHO-K1) cells stably expressing the human  $\text{Na}_v1.8$  channel and  
405 beta 3 subunit (B'SYS GmbH) were grown in Ham's F-12 medium (Corning) containing 10%  
406 FBS, penicillin/streptomycin (Sigma), and 3.5  $\mu\text{g}/\text{ml}$  Puromycin (Sigma) and 350  $\mu\text{g}/\text{ml}$   
407 Hygromycin (Sigma) under 5%  $\text{CO}_2$  at 37°C. For electrophysiological recordings, cells were re-  
408 plated on coverslips for 1 to 6 h before recording. Whole-cell recordings were obtained using  
409 patch pipettes with resistances of 2-2.5  $\text{M}\Omega$  when filled with the internal solution consisting of  
410 (in mM): 61 CsF, 61 CsCl, 9 NaCl, 1.8  $\text{MgCl}_2$ , 9 EGTA, 14 creatine phosphate (tris salt), 4  
411  $\text{MgATP}$ , and 0.3 GTP (tris salt), 9 HEPES, pH adjusted to 7.2 with CsOH. The shank of the  
412 electrode was wrapped with Parafilm in order to reduce capacitance and allow optimal series  
413 resistance compensation without oscillation. Seals were obtained and the whole-cell  
414 configuration established with cells in Tyrode's solution consisting of (in mM): 155 NaCl, 3.5  
415 KCl, 1.5  $\text{CaCl}_2$ , 1  $\text{MgCl}_2$ , 10 HEPES, 10 glucose, pH adjusted to 7.4 with NaOH. After  
416 establishing whole-cell recording, cells were lifted off the bottom of the recording chamber and  
417 placed in front of an array of quartz flow pipes (250  $\mu\text{m}$  internal diameter, 350  $\mu\text{m}$  external  
418 diameter). Recordings were made using a base external solution of Tyrode's solution with added  
419 10 mM TEA-Cl to inhibit small endogenous potassium currents. Solution changes were made (in  
420 < 1 second) by moving the cell between adjacent pipes. Currents were recorded at room  
421 temperature (21-23°C) with an Axopatch 200B amplifier and filtered at 5 kHz with a low-pass  
422 Bessel filter. The amplifier was tuned for partial compensation of series resistance (typically 70-

423 80% of a total series resistance of 4-10 MΩ), and tuning was periodically re-adjusted during the  
424 experiment. Currents were digitized using a Digidata 1322A data acquisition interface controlled  
425 by pCLAMP 9.2 software (Axon Instruments).

426 **Human iPSC-derived nociceptor neuron electrophysiology.** Sensory neurons were  
427 differentiated from human induced pluripotent stem cells (iPSCs) as previously  
428 described (Chambers et al., 2012). Cells were cultured in 35 mm dishes (Falcon), coated with 0.1  
429 mg/ml poly-d-lysine (Sigma) and 10 µg/ml laminin, and grown in DMEM/F12(1:1) media (Life  
430 Technologies) containing 10% HI FBS (Life Technologies) and 35 µg/ml Ascorbic acid (Sigma),  
431 10 ng/ml BDNF, 10 ng/ml GDNF, 10 ng/ml NGF, 10 ng/ml NT-3 (Life technologies) for 8  
432 weeks. Whole-cell recordings were made using patch pipettes with resistances of 1.5-2.5 MΩ  
433 when filled with the internal solution consisting of (in mM): 140 CsF, 10 NaCl, 1.1 EGTA, 10  
434 HEPES, 20 D-glucose, pH adjusted to 7.2 with CsOH. The external solution consisted of (in  
435 mM): 130 NaCl, 20 TEA-Cl, 5 KCl, 0.1 CdCl<sub>2</sub>, 2 CaCl<sub>2</sub>, 1 MgCl<sub>2</sub>, 10 D-glucose, 10 HEPES, pH  
436 adjusted to 7.4 with NaOH, which was perfused during the recording using the ValveBank  
437 perfusion system (Automate Scientific). The size of neurons was measured with inverted  
438 microscope Eclipse Ti (Nikon), and neurons with a diameter of less than 25 µm were used for  
439 the experiments. Currents were recorded using a Multiclamp 700B amplifier (Molecular  
440 Devices). Data were collected and digitized at 50 kHz using a Digidata 1440 16-bit A/D  
441 converter controlled by pCLAMP 10.5 software (Molecular Devices).

442 **Electrophysiology data analysis.** Data were analyzed using programs written in IGOR Pro 4.0  
443 (Wavemetrics, Lake Oswego, OR), using DataAccess (Bruxton Software) to read pCLAMP data  
444 files into Igor Pro. Currents were corrected for linear capacitive and leak currents, which were  
445 determined using 5 mV hyperpolarizations delivered from the resting potential and then  
446 appropriately scaled and subtracted. Statistical analyses were performed using IGOR Pro. Data  
447 are given as mean±SEM, and statistical significance was assessed with the Mann-Whitney Test.

448 **Mouse dorsal root ganglion (DRG) neuron culture and electrophysiology.** DRG neurons  
449 were cultured as previously described (Costigan et al., 1998). DRGs from adult male  
450 C57Bl/6 mice (8-12 weeks old, Jackson Laboratories stock #000664) were dissected from into  
451 Hank's balanced salt solution (HBSS) (Life Technologies). DRGs were dissociated in 1  
452 µg/ml collagenase A plus 2.4 U/ml dispase II (enzymes, Roche Applied Sciences) in HEPES-  
453 buffered saline (HBSS, Sigma) for 90 min at 37 °C and then triturated down to single-cell level

454 using glass Pasteur pipettes of decreasing size. DRGs were then centrifuged over a 10% BSA  
455 gradient and plated on laminin-coated cell culture dishes (Sigma). DRGs were cultured overnight  
456 in B27-supplemented neurobasal-A medium plus penicillin/streptomycin (Life Technologies).  
457 On the day following plating, DRG culture dishes were treated with either HBSS, 100  $\mu$ M BW-  
458 031, 1  $\mu$ M capsaicin or 100  $\mu$ M BW-031+1  $\mu$ M capsaicin in HBSS for 30 min, followed by a 5-  
459 minute perfusion of external solution to remove extracellular compounds.

460 Whole-cell current-clamp and voltage-clamp recordings were performed <24 hours after  
461 DRG culture using an Axopatch 200A amplifier (Molecular Devices) at 25°C. Data were  
462 sampled at 20 kHz and digitized with a Digidata 1440A A/D interface and recorded using  
463 pCLAMP 10 software (Molecular Devices). Data were low-pass filtered at 2 kHz. Patch pipettes  
464 were pulled from borosilicate glass capillaries on a Sutter Instruments P-97 puller and had  
465 resistances of 1.5–3 M $\Omega$ . Series resistance was 3–10 M $\Omega$  and compensated by at least 80% and  
466 leak currents were subtracted. Cells were classified as TRPV1 $^+$  or TRPV1 $^-$  by the presence or  
467 absence of a response to perfused 1  $\mu$ M capsaicin measured in voltage clamp mode at a holding  
468 potential of  $-80$  mV. Cells were then held at  $-100$ mV and depolarized to  $-10$ mV with a 100 ms  
469 step to activate Na $v$  channels. The external solution for DRG electrophysiological recordings  
470 consisted of (in mM): 30 NaCl, 90 Choline-Cl, 20 TEA-Cl, 3 KCl, 1 CaCl<sub>2</sub>, 1 MgCl<sub>2</sub>, 0.1 CdCl<sub>2</sub>,  
471 10 HEPES, 10 Dextrose; pH 7.4, 320 mOsm. The internal pipette solution consisted of (in mM):  
472 140 CsF, 10 NaCl, 1 EGTA, 10 HEPES, 20 Dextrose; pH 7.3.

473 **Animals for pain studies.** Male CD rats (7-8 weeks old) were purchased from Charles River and  
474 male C57BL/6J mice (8-12 weeks old) were purchased from Jackson Laboratories (stock  
475 #000664) and housed for 1 week prior to experiments. Rats were housed 3 animals per cage and  
476 mice were housed 5 animals per cage in separate rooms with constant temperature (23°C) and  
477 humidity (45-55%) with food and water available *ad libitum*. All procedures were approved by  
478 the Institutional Animal Care and Use Committee (IACUC), Boston Children's Hospital.

479 **Plantar incision surgery.** Rats were placed in a chamber with 5% isoflurane and monitored  
480 until they were visibly unconscious. Once unconscious, rats were removed from the chamber and  
481 anesthesia was maintained using 2% isoflurane delivered via nose cone. A toe pinch was used to  
482 confirm that animals were fully anesthetized. The animals were then secured with surgical tape  
483 at their toes and upper leg for paw stability during surgery. The plantar surface of one hind paw  
484 was sterilized with 3 alternating wipes of betadine and ethanol. A 1.5 cm longitudinal incision

485 was made using a scalpel along the center of the plantar surface, beginning 1 cm from the heel  
486 and extending towards the foot pad and toes. Incision was made to the minimal depth necessary  
487 to cut through skin and fascia to expose the underlying plantaris muscle, approximately 1-2 mm.  
488 Once exposed the plantaris muscle was elevated for 10 seconds with surgical forceps and gently  
489 lifted for 10 seconds. After irritation of the plantaris muscle, the wound was closed with three  
490 sutures. After surgery animals were returned to their cage and monitored until they fully  
491 recovered from anesthesia. Treatments were administered subcutaneously 24 hours after injury.

492 **Intraplantar injection of Complete Freund's Adjuvant.** Complete Freund's Adjuvant (CFA)  
493 was purchased from Sigma Aldrich (Cat. No. F5881). Rats were restrained and subcutaneously  
494 injected in the plantar region of the left paw with 50  $\mu$ L of CFA (1 mg/ml). Animals receiving  
495 test compounds (2% QX-314 or 2% BW-031) were injected with these compounds dissolved in  
496 50  $\mu$ L of CFA.

497 **Plantar ultraviolet (UV) burn.** Mice were anesthetized with 3% isoflurane. UV irradiation was  
498 performed on the plantar surface of the left hind paw under maintenance anesthesia with 2%  
499 isoflurane at an intensity of 0.5 J/cm<sup>2</sup> for 1 minute at a wavelength of 305–315 nm using a  
500 fluorescent UV-B light source (XR UV LEDs 308nm, RayVio, Hayward, California, USA).

501 **Peri-sciatic injection.** Mice were anesthetized with 2.5% isoflurane. Upon achieving sufficient  
502 depth of anesthesia, mice were placed in the prone position, the fur on their left hindleg was  
503 shaved and the area was cleaned with betadine and 70% isopropanol. A 1-centimeter incision  
504 was made in the skin on the upper thigh. The sciatic nerve was identified in the intermuscular  
505 interval between the biceps femoris and gluteal muscle without the dissection of the superficial  
506 fascia layers. Then, a mixture of physiological saline with 0.5% lidocaine, 0.5% QX-314 or 0.5%  
507 BW-031 (70  $\mu$ L) was injected into the perineural space below the fascia using an insulin syringe  
508 with a 30-gauge needle. The surgical wounds were closed with stainless steel wound clips (EZ  
509 Clips, Stoelting Co.).

510 **Behavioral measurements of sensory and motor function**

511 **Von Frey assay of mechanical sensitivity.** An electronic Von Frey device (Bioseb, Model:  
512 BIO-EVF4) was used to assess mechanical sensitivity in rats before and after paw incision  
513 injury. Animals were habituated for 1 hour, one day prior to baseline testing. Animals were given  
514 30 minutes to settle before testing. An average mechanical threshold was calculated using 5  
515 measurements taken 5 minutes apart for each animal. For baseline measurements two testing

516 sessions were performed on separate days prior to injury and averaged together. 50  $\mu$ L of BW-  
517 031 or saline were administered into the plantar region of the hind paw adjacent to the incision  
518 24 hours post injury. Animals were then tested 1, 3, 5, and 24 hours post treatment. Additional  
519 timepoints were added at 7 and 9 hours for higher concentrations of treatments.

520 A manual Von Frey assay was used to assess mechanical sensitivity in mice before and after  
521 UV burn, as previously described (Lee et al., 2019). After mice were habituated to the testing  
522 cage (7.5  $\times$  7.5  $\times$  15 cm) with a metal grid floor for 45 min for 2 days, baseline values were  
523 measured using nine von Frey filaments with different bending forces (0.04, 0.07, 0.16, 0.4, 0.6,  
524 1, 1.4, 2, and 4 g). The response patterns were collected and converted into corresponding 50%  
525 withdrawal thresholds using the Up-Down Reader software and associated protocol (Gonzalez-  
526 Cano et al., 2018). Based on the baseline measurement, mice were assigned to three groups so  
527 that the baseline mechanical sensitivity among the groups was similar. Each group consisted of  
528 10 mice, based on previous experiments showing sufficient power to detect significance with  
529 95% confidence. Twenty-four hours after UV irradiation, mice received a 10- $\mu$ L bolus  
530 intraplantar injection of either 2% BW-031, 2% QX-314, or vehicle (normal saline) to the  
531 irradiated paw. The von Frey test was performed at 1, 3, 5, 7, and 24 hours after the drug  
532 injection.

533 **Radiant heat assay of thermal sensitivity.** Thermal hypersensitivity was measured using the  
534 plantar radiant heat test (Hargreaves et al., 1988) (Ugo Basile, Model code: 37370) in CFA  
535 injected rats. Rats were habituated to testing enclosures for 1 hour one day prior to baseline  
536 testing. Rats were given 30 minutes to settle before testing. An average paw withdrawal latency  
537 was calculated using 3 measurements taken 5 minutes apart. Animals were tested 1, 4, and 24  
538 hours after injury from CFA injection.

539 **Toe spread assay of motor function.** Mouse toe movement was evaluated in the ipsilateral  
540 hind-paws as previously described (Ma et al., 2011) in order to assess the presence of motor  
541 block after peri-sciatic injection of lidocaine or charged sodium channel blockers. Briefly, 5  
542 minutes after peri-sciatic injection, mice were lifted by the tail, uncovering the hind paws for  
543 clear observation. Under this condition, the digits spread, maximizing the space between them  
544 (the toe spreading reflex). This reflex was scored as previously described: 0, no spreading; 1,  
545 intermediate spreading with all toes; and 2, full spreading. Full toe spreading was defined as a

546 complete, wide, and sustained (at least 2 seconds) spreading of the toes. Full toe spreading was  
547 observed in the contralateral paws for all mice tested.

548 **Pinprick assay of sensory function.** Mouse responses to pinprick were measured as previously  
549 described (Ma et al., 2011), with modifications. Mice were placed in wire mesh cages and  
550 habituated for 3 sessions prior to peri-sciatic injection. After peri-sciatic injection and  
551 measurement of motor function, mice were immediately placed in wire mesh cages and an  
552 Austerlitz insect pin (size 000) (FST, USA) was gently applied to the plantar surface of the paw  
553 without moving the paw or penetrating the skin. The pinprick was applied three times to the sole  
554 of the ipsilateral hind paw and three times to the sole of the contralateral hind paw. A response  
555 was considered positive (1) when the animal briskly removed its paw. If none of the applications  
556 elicited a positive response, the overall grade was 0.

557 **Blinding.** All behavioral measurements of sensory and motor function were performed by  
558 investigators blinded to the drug treatment; the test order was randomized with multiple groups  
559 being represented in each cage.

## 560 **Guinea Pig Cough Experiments**

561 **Animals and pre-screening.** For cough studies, animal care and studies were conducted in  
562 alignment with applicable animal welfare regulations in an AAALAC-accredited facility. The  
563 cough studies used 5-10 week-old Dunkin Hartley guinea pigs. The initial study using  
564 intratracheal application of BW-031 under isoflurane anesthesia used female animals (range of  
565 weights of 374-505 g on the day of dosing and cough challenge), with 9 animals per each of the  
566 4 experimental groups. The subsequent study using ovalbumin sensitization to induce lung  
567 inflammation used 6 male (416-580 g) and 6 female (456-557 g) animals for each experimental  
568 group. The number of animals per group was increased in the ovalbumin sensitization  
569 experiments because of the possibility that variable levels of sensitization might increase  
570 variability in the effectiveness with which BW-031 could enter nerve terminals. Because  
571 preliminary studies showed that some guinea pigs failed to cough in response to the citric acid  
572 challenge, each study began with 20% more animals than were planned for the protocols and  
573 animals were first pre-screened by inhalation of citric acid (400 mM for 7 minutes, with coughs  
574 counted during the 7 minute application and for 10 minutes afterward) and the lowest responders  
575 were omitted from the remaining study protocol. For the intratracheal protocol, animals with 0-1  
576 coughs were omitted; for the ovalbumin sensitization protocol, the 6 animals of each sex with

577 lowest cough counts (0-3 coughs) were omitted. Pre-screening was performed a minimum of 7  
578 days before the start of the study protocol to allow animals to recover from any sensitization  
579 produced by the citric acid exposure during the pre-screening. After pre-screening, the remaining  
580 animals were allocated into each group so that each group had approximately equal group mean  
581 cough counts measured in the pre-screening protocol.

582 **Intratracheal drug administration and citric acid challenge.** Animals were dosed via the  
583 intratracheal route at a dose volume of 0.5 mL/kg of BW-031 dissolved in saline based on  
584 individual bodyweights. Animals were anaesthetized (3-5% isoflurane/oxygen mix) and secured  
585 to the intubation device by a cord around their upper incisor teeth. A rodent fiber optic  
586 laryngoscope was inserted into the animal's mouth to illuminate the posterior pharynx and  
587 epiglottis. The tongue was released and the needle of the dosing device (Penn Century  
588 intratracheal aerosol Microsprayer) guided through the vocal cords into the lumen of the trachea.  
589 Following dosing, the animals were removed from the secured position and carefully monitored  
590 until full recovery. Approximately 1 hour after intratracheal treatment, animals were placed into  
591 whole body plethysmographs connected to a Buxco Finepointe System and exposed to nebulized  
592 400 mM citric acid for 7 minutes. Cough counts and respiratory parameters (minute volume)  
593 were recorded throughout the 7 minute exposure period and for 10 minutes following the end of  
594 nebulization period. Determinations of coughs by the Buxco Finepointe system were confirmed  
595 against manual cough counts and this was periodically re-confirmed. Recovery from the  
596 isoflurane anesthesia was complete within an hour based on the overt behavior of the animals,  
597 consistent with rapid recovery seen using measurements of physiological parameters (Schmitz et  
598 al., 2016); however, because isoflurane is highly lipid-soluble and could be present in small  
599 amounts even after an hour, we cannot eliminate the possibility of some lingering effect on  
600 chemoreceptor responses; in future studies, a longer recovery time from anesthesia might be  
601 preferable.

602 **Ovalbumin sensitization/challenge.** On Day 0 all animals were sensitized with intraperitoneal  
603 and subcutaneous injections of chicken egg albumin (ovalbumin). Animals were administered 1  
604 mL of a 50 mg/mL Ovalbumin (Ova) in 0.9% w/v saline solution via the intraperitoneal route  
605 and 0.5 mL of the same solution into 2 separate subcutaneous sites (1 mL in total divided  
606 between the left and right flank). All animals were administered a single intraperitoneal dose of  
607 pyrilamine (15 mg/kg) at a dose volume of 1 mL/kg approximately 30 min prior to ovalbumin

608 challenge on Day 14 to inhibit histamine-induced bronchospasm (Featherstone et al., 1988; Hara  
609 et al., 2005). On Day 14 animals were challenged with aerosolised ovalbumin in 0.9% w/v saline  
610 (3 mg/mL) or 0.9% w/v saline for 15 min. Animals were placed in groups in an acrylic box.  
611 8 mL of ovalbumin in saline was placed in each of two jet nebulisers (Sidestream®).  
612 Compressed air at approximately 6 L/min was passed through each nebuliser and the output of  
613 the nebulisers passed into the box containing the animals.

614 **Drug administration.** On Day 15 approximately 24 hours after the inflammatory challenge with  
615 ovalbumin, animals were placed in a whole-body plethysmograph (Buxco Finepointe) and dosed  
616 with vehicle or BW-031 by inhalation using an Aeroneb nebulizer (Aerogen) over 60 minutes.  
617 Upon the completion of dosing animals were returned to their home cage for approximately one  
618 hour before the cough challenge.

619 The inhaled dose of BW-031 was calculated according to the algorithm recommended by the  
620 Association of Inhalation Toxicologists<sup>61</sup>: Inhaled dose (mg/kg) = [C (mg/L) x RMV (L/min) x  
621 D (min)]/BW (kg), where C is the concentration of drug in air inhaled, RMV is respiratory  
622 minute volume, D is the of exposure in minutes, and BW is bodyweight in kg. Following the  
623 algorithm documented in (Alexander et al., 2008b), RMV (in L/min) was calculated as 0.608 x  
624 BW (kg)<sup>0.852</sup>.

625 **Cough/respiratory function measurement.** One hour following the end of vehicle or drug  
626 administration on Day 15, the animals were placed into a whole-body plethysmograph connected  
627 to a Buxco Finepointe system. Animals were then exposed to nebulized 400 mM citric acid for 7  
628 minutes. Cough counts were recorded throughout the 7 minute exposure period and for 10  
629 minutes following the end of nebulization period. Animals were euthanized within  
630 approximately 60 min following the end of the cough challenge recording period by an overdose  
631 of pentobarbitone administered by the intraperitoneal route.

632 **Tissue sampling.** Upon euthanasia, 2 mL of blood were sampled from the descending vena cava  
633 from each animal. The blood was allowed to stand at room temperature for a minimum of 60  
634 minutes but less than 120 minutes to allow the clotting process to take place. Samples were then  
635 centrifuged at 2000 g for 10 minutes at 25°C and the resulting serum was frozen at -80°C for  
636 subsequent analysis of BW-031 concentrations. Also following termination an incision was made  
637 in the neck and the muscle layers were separated by blunt dissection and the trachea isolated. A  
638 small incision was made in the trachea and a tracheal cannula inserted. The cannula was secured

639 in place with a piece of thread. The lungs were then removed and the left lung lobe tied off and  
640 removed. The right lung was lavaged with 3 mL of phosphate buffered saline (PBS) at room  
641 temperature. The PBS was left in the airway for 10 seconds whilst the organ was gently  
642 massaged before being removed, this was repeated twice further. In total, three lots of 3 mL of  
643 PBS was used to lavage the right lung.

644 **BAL immune cell quantification.** A total and differential cell count of the BAL was performed  
645 using the XT-2000iV (Sysmex UK Ltd). The sample was vortexed for approximately 5 seconds  
646 and analyzed. A total and differential cell count (including eosinophils, neutrophils, lymphocytes  
647 and mononuclear cells (includes monocytes and macrophages)) was reported as number of cells  
648 per right lung per animal.

649 **Liquid Chromatography/Mass Spectrometry (LC/MS).** Serum samples were kept at -80°C  
650 until being assayed, at which time they were thawed at room temperature. Each serum sample  
651 was added to 100  $\mu$ L of 80:20 (acetonitrile:water) solution and the mixture placed in a 1.5 mL  
652 Eppendorf Safe-Lock tubes prefilled with zirconium oxide beads (Next Advance Inc., Troy,  
653 NY). After vortexing for 30 seconds and sonicating for 10 minutes, the homogenate was  
654 centrifuged at 10,000 rpm for 10 minutes. The supernatant was then separated into a new  
655 Eppendorf tube to be stored at -80°C until the time for analysis. To 20  $\mu$ L of liquid sample, 10  
656  $\mu$ L of internal standard (bupivacaine 10 ng/mL in acetonitrile:water (50:50)) were added, plus  
657 170  $\mu$ L of methanol chilled at 4°C. After vortexing for 30 seconds, the mixture was centrifuged  
658 at 10,000 rpm for 10 minutes. The supernatant solution was then transferred to a clean Eppendorf  
659 tube and evaporated to dryness under vacuum at 50 °C for 40 minutes. The residue was  
660 reconstituted with 100  $\mu$ L of the starting mobile phase, i.e. aqueous 0.1% formic acid:methanol  
661 (90:10), and vortexed for 30 seconds. This solution was transferred to amber screw neck vials  
662 and setup in the refrigerated autosampler tray of the chromatograph for injection. This whole  
663 procedure was also applied to spiked calibrators and quality control QC samples used in the  
664 quantification and validation methods. At least three injections were carried out from each vial.  
665 Bupivacaine, used as internal standard, methanol LC/MS grade, and formic acid LC/MS grade  
666 were purchased from Sigma-Aldrich St. Louis, MO, USA). Pure MilliQ water at 18 MΩ-cm was  
667 obtained by reserve osmosis with a Direct-Q3 UV water purifier (Millipore SAS, France).

668 The quantification of BW-031 in serum fluid samples was carried out with an Acquity H  
669 Class UPLC chromatographer with a XEVO TQ MS triple quadrupole mass spectrometer

670 detector (Water Corp., Milford, MA, USA). The assay used an Acquity UPLC BEH C18 1.7  $\mu$ m  
671 2.1x100 mm column with a VanGuard 2.1X 5 mm guard column, both kept at constant 35°C.  
672 The mobile phase was ran on a gradient of A: aqueous 0.1% formic acid and B: methanol  
673 starting at time zero with a A:B proportion of 90:10, at 3 min 10:90, and at 4.2 min 90:10 until  
674 the end of the run at 6 minutes. The flow rate was set at 0.3 mL/min, with an injection volume of  
675 3  $\mu$ L, and a post-run organic wash of 5 seconds. Multiple reaction monitoring (MRM) was used  
676 for the mass spectrometry acquisition in positive electrospray ionization (ESI) mode. The mass  
677 transitions monitored were m/z 263.22  $\rightarrow$  86.02 and m/z 289.09  $\rightarrow$  140.2, for BW-031 and  
678 bupivacaine respectively. The cone voltages were 36V and 30V, and the collision energies 24eV  
679 and 12eV, also respectively. The whole LC/MS system was controlled by the MassLynx v.4.2  
680 software (Water Corp., Milford, MA, USA), including the TargetLynx Application Manager for  
681 data processing and analytes quantification. Good linearity and reproducibility were achieved in  
682 the range of 1–100 ng/mL, and the precision and accuracy of the method were 2.74% and 98.6%,  
683 respectively. The lower limit of quantification was 1.8 ng/mL.

684 **Cardiotoxicity.** Frozen human IPSC-derived cardiomyocytes (Cor.4U cardiomyocytes) were  
685 purchased from Axiogenesis AG (currently NCardia AG). Cor.4U cells were thawed and plated  
686 at a density of 10000 cells/well into 384-well plates that were pre-coated with 10  $\mu$ g/mL bovine  
687 fibronectin in sterile phosphate buffered saline, pH 7.4. Cor.4U Culture Medium (Axiogenesis)  
688 was used to maintain the cells in culture for 7 days and was changed daily. Cells exhibited  
689 synchronous beating on day 3 after plating. On day 7 after plating, the medium was changed to  
690 BMCC medium (Axiogenesis). The EarlyTox Cardiotoxicity Kit (Molecular Devices) was used  
691 to measure calcium flux as a proxy for cardiomyocyte beating activity<sup>112</sup>. Cor.4U cells were  
692 incubated with the EarlyTox calcium sensitive dye in BMCC media for 1 hour, and then the  
693 plates were transferred to the FDSS700EX plate reader (Hamamatsu Photonics). The baseline  
694 calcium flux was measured for 5 minutes and then charged local anesthetics dissolved in BMCC  
695 media or media alone were added to the wells using a robot. 10 minutes after compound  
696 treatment, the calcium flux was measured again. All measurements were performed at 37°C  
697 under 95% CO<sub>2</sub>/5% O<sub>2</sub>. Calcium flux parameters were measured using the Hamamatsu Analysis  
698 Software.

699 **Statistical Analysis.** Data represent mean  $\pm$  standard error of the mean (SEM). Statistical  
700 comparisons were performed using GraphPad Prism 8.0 software with the parameters described

701 in each respective figure legend. Statistical tests were corrected for multiple comparisons where  
702 appropriate; corrections used for each data set are stated in figure legends.

703

704

705

## References

706 Abdullah, H., Heaney, L.G., Cosby, S.L., and McGarvey, L.P. (2014). Rhinovirus upregulates  
707 transient receptor potential channels in a human neuronal cell line: implications for  
708 respiratory virus-induced cough reflex sensitivity. *Thorax* 69, 46-54.

709 Acosta, M.C., Luna, C., Quirce, S., Belmonte, C., and Gallar, J. (2014). Corneal Sensory Nerve  
710 Activity in an Experimental Model of UV Keratitis. *Investigative Ophthalmology & Visual  
711 Science* 55, 3403-3412.

712 Adner, M., Canning, B.J., Meurs, H., Ford, W., Ramos Ramírez, P., van den Berg, M.P.M.,  
713 Birrell, M.A., Stoffels, E., Lundblad, L.K.A., Nilsson, G.P., et al. (2020). Back to the future:  
714 re-establishing guinea pig *in vivo* asthma models. *Clinical science (London, England : 1979)*  
715 134, 1219-1242.

716 Alexander, D., Collins, C., Coombs, D., Gilkison, I., Hardy, C., Healey, G., Karantabias, G.,  
717 Johnson, N., Karlsson, A., Kilgour, J., et al. (2008a). Association of Inhalation Toxicologists  
718 (AIT) Working Party Recommendation for Standard Delivered Dose Calculation and  
719 Expression in Non-Clinical Aerosol Inhalation Toxicology Studies With Pharmaceuticals.  
720 *Inhalation toxicology* 20, 1179-1189.

721 Alexander, D.J., Collins, C.J., Coombs, D.W., Gilkison, I.S., Hardy, C.J., Healey, G.,  
722 Karantabias, G., Johnson, N., Karlsson, A., Kilgour, J.D., et al. (2008b). Association of  
723 Inhalation Toxicologists (AIT) working party recommendation for standard delivered dose  
724 calculation and expression in non-clinical aerosol inhalation toxicology studies with  
725 pharmaceuticals. *Inhalation toxicology* 20, 1179-1189.

726 Asgar, J., Zhang, Y., Saloman, J.L., Wang, S., Chung, M.K., and Ro, J.Y. (2015). The role of  
727 TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in  
728 rats. *Neuroscience* 310, 206-215.

729 Belvisi, M.G., Birrell, M.A., Wortley, M.A., Maher, S.A., Satia, I., Badri, H., Holt, K., Round,  
730 P., McGarvey, L., Ford, J., et al. (2017). XEN-D0501, a Novel Transient Receptor Potential  
731 Vanilloid 1 Antagonist, Does Not Reduce Cough in Patients with Refractory Cough.  
732 *American journal of respiratory and critical care medicine* 196, 1255-1263.

733 Belvisi, M.G., Dubuis, E., and Birrell, M.A. (2011). Transient receptor potential A1 channels:  
734 insights into cough and airway inflammatory disease. *Chest* 140, 1040-1047.

735 Bessac, B.F., and Jordt, S.-E. (2008). Breathtaking TRP channels: TRPA1 and TRPV1 in airway  
736 chemosensation and reflex control. *Physiology (Bethesda)* 23, 360-370.

737 Binshtok, A.M., Bean, B.P., and Woolf, C.J. (2007). Inhibition of nociceptors by TRPV1-  
738 mediated entry of impermeant sodium channel blockers. *Nature* 449, 607-610.

739 Binshtok, Alexander M., Gerner, P., Oh, Seog B., Puopolo, M., Suzuki, S., Roberson, David P.,  
740 Herbert, T., Wang, C.-F., Kim, D., Chung, G., et al. (2009a). Coapplication of Lidocaine and  
741 the Permanently Charged Sodium Channel Blocker QX-314 Produces a Long-lasting  
742 Nociceptive Blockade in Rodents. *Anesthesiology* 111, 127-137.

743 Binshtok, Alexander M.P.D., Gerner, P.M.D., Oh, Seog B.D.D.S.P.D., Puopolo, M.P.D., Suzuki,  
744 S.M.D., Roberson, David P.M.B.A., Herbert, T.B.S., Wang, C.-F.M.D., Kim, D.B.S., Chung,  
745 G.D.D.S., et al. (2009b). Coapplication of Lidocaine and the Permanently Charged Sodium  
746 Channel Blocker QX-314 Produces a Long-lasting Nociceptive Blockade in Rodents.  
747 *Anesthesiology: The Journal of the American Society of Anesthesiologists* 111, 127-137.

748 Birrell, M.A., Belvisi, M.G., Grace, M., Sadofsky, L., Faruqi, S., Hele, D.J., Maher, S.A.,  
749 Freund-Michel, V., and Morice, A.H. (2009). TRPA1 agonists evoke coughing in guinea pig

750 and human volunteers. *American journal of respiratory and critical care medicine* 180, 1042-  
751 1047.

752 Bolser, D.C., and Davenport, P.W. (2007). Codeine and cough: an ineffective gold standard.  
753 *Curr Opin Allergy Clin Immunol* 7, 32-36.

754 Bonvini, S.J., Birrell, M.A., Smith, J.A., and Belvisi, M.G. (2015). Targeting TRP channels for  
755 chronic cough: from bench to bedside. *Naunyn-Schmiedeberg's archives of pharmacology*  
756 388, 401-420.

757 Bräu, M.E., Vogel, W., and Hempelmann, G. (1998). Fundamental properties of local  
758 anesthetics: half-maximal blocking concentrations for tonic block of Na<sup>+</sup> and K<sup>+</sup> channels in  
759 peripheral nerve. *Anesthesia and analgesia* 87, 885-889.

760 Brennan, T.J., Vandermeulen, E.P., and Gebhart, G.F. (1996). Characterization of a rat model of  
761 incisional pain. *Pain* 64, 493-501.

762 Brenneis, C., Kistner, K., Puopolo, M., Jo, S., Roberson, D., Sisignano, M., Segal, D., Cobos,  
763 E.J., Wainger, B.J., Labocha, S., et al. (2014). Bupivacaine-induced cellular entry of QX-314  
764 and its contribution to differential nerve block. *British journal of pharmacology* 171, 438-  
765 451.

766 Brenneis, C., Kistner, K., Puopolo, M., Segal, D., Roberson, D., Sisignano, M., Labocha, S.,  
767 Ferreiros, N., Strominger, A., Cobos, E.J., et al. (2013). Phenotyping the function of TRPV1-  
768 expressing sensory neurons by targeted axonal silencing. *The Journal of neuroscience : the  
769 official journal of the Society for Neuroscience* 33, 315-326.

770 Brozmanova, M., Mazurova, L., Ru, F., Tatar, M., and Kollarik, M. (2012). Comparison of  
771 TRPA1-versus TRPV1-mediated cough in guinea pigs. *European journal of pharmacology*  
772 689, 211-218.

773 Brozmanova, M., Svajdova, S., Pavelkova, N., Muroi, Y., Undem, B.J., and Kollarik, M. (2019).  
774 The voltage-gated sodium channel Na(V)1.8 blocker A-803467 inhibits cough in the guinea  
775 pig. *Respiratory physiology & neurobiology* 270, 103267.

776 Canning, B.J. (2006). Anatomy and neurophysiology of the cough reflex: ACCP evidence-based  
777 clinical practice guidelines. *Chest* 129, 33s-47s.

778 Canning, B.J., Chang, A.B., Bolser, D.C., Smith, J.A., Mazzone, S.B., and McGarvey, L. (2014).  
779 Anatomy and neurophysiology of cough: CHEST Guideline and Expert Panel report. *Chest*  
780 146, 1633-1648.

781 Canning, B.J., Mazzone, S.B., Meeker, S.N., Mori, N., Reynolds, S.M., and Undem, B.J. (2004).  
782 Identification of the tracheal and laryngeal afferent neurones mediating cough in  
783 anaesthetized guinea-pigs. *The Journal of physiology* 557, 543-558.

784 Canning, B.J., Mori, N., and Lehmann, A. (2012). Antitussive effects of the peripherally  
785 restricted GABAB receptor agonist lesogaberan in guinea pigs: comparison to baclofen and  
786 other GABAB receptor-selective agonists. *Cough* 8, 7.

787 Chambers, S.M., Qi, Y., Mica, Y., Lee, G., Zhang, X.J., Niu, L., Bilsland, J., Cao, L., Stevens,  
788 E., Whiting, P., et al. (2012). Combined small-molecule inhibition accelerates developmental  
789 timing and converts human pluripotent stem cells into nociceptors. *Nature biotechnology* 30,  
790 715-720.

791 Choi, J.Y., Lee, H.Y., Hur, J., Kim, K.H., Kang, J.Y., Rhee, C.K., and Lee, S.Y. (2018). TRPV1  
792 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine  
793 Model. *Allergy, asthma & immunology research* 10, 216-224.

794 Chong, C.F., Chen, C.C., Ma, H.P., Wu, Y.C., Chen, Y.C., and Wang, T.L. (2005). Comparison  
795 of lidocaine and bronchodilator inhalation treatments for cough suppression in patients with  
796 chronic obstructive pulmonary disease. *Emergency medicine journal : EMJ* 22, 429-432.

797 Chou, Y.-L., Mori, N., and Canning, B.J. (2018a). Opposing effects of bronchopulmonary C-  
798 fiber subtypes on cough in guinea pigs. *American Journal of Physiology-Regulatory, Integrative  
799 and Comparative Physiology* 314, R489-R498.

800 Chou, Y.L., Mori, N., and Canning, B.J. (2018b). Opposing effects of bronchopulmonary C-fiber  
801 subtypes on cough in guinea pigs. *American journal of physiology Regulatory, integrative  
802 and comparative physiology* 314, R489-r498.

803 Chung, K.F., and Pavord, I.D. (2008). Prevalence, pathogenesis, and causes of chronic cough.  
804 *Lancet* (London, England) 371, 1364-1374.

805 Clivio, S., Putzu, A., and Tramèr, M.R. (2019). Intravenous Lidocaine for the Prevention of  
806 Cough: Systematic Review and Meta-analysis of Randomized Controlled Trials. *Anesthesia  
807 and analgesia* 129, 1249-1255.

808 Cornett, P.M., Matta, J.A., and Ahern, G.P. (2008). General anesthetics sensitize the capsaicin  
809 receptor transient receptor potential V1. *Molecular pharmacology* 74, 1261-1268.

810 Costigan, M., Mannion, R.J., Kendall, G., Lewis, S.E., Campagna, J.A., Coggeshall, R.E.,  
811 Meridith-Middleton, J., Tate, S., and Woolf, C.J. (1998). Heat shock protein 27: developmental  
812 regulation and expression after peripheral nerve injury. *The Journal of neuroscience : the official  
813 journal of the Society for Neuroscience* 18, 5891-5900.

814 Dicpinigaitis, P.V., McGarvey, L.P., and Canning, B.J. (2020). P2X3-Receptor Antagonists as  
815 Potential Antitussives: Summary of Current Clinical Trials in Chronic Cough. *Lung* 198,  
816 609-616.

817 Driessen, A.K., McGovern, A.E., Behrens, R., Moe, A.A.K., Farrell, M.J., and Mazzone, S.B.  
818 (2020). A role for neurokinin 1 receptor expressing neurons in the paratrigeminal nucleus in  
819 bradykinin-evoked cough in guinea-pigs. *J Physiol* 598, 2257-2275.

820 European Medicines Agency (2013). A Phase 2a, Multi-Centre, Randomised, Double-Blind,  
821 Parallel Group, Placebo-Controlled Study to Evaluate Efficacy, Safetyand Tolerability of  
822 Inhaled GRC 17536, Administered for 4 Weeks, in Patientswith Refractory Chronic  
823 Cough. EU Clinical Trials Registry 2016.

824 Featherstone, R.L., Hutson, P.A., Holgate, S.T., and Church, M.K. (1988). Active sensitization  
825 of guinea-pig airways in vivo enhances in vivo and in vitro responsiveness. *The European  
826 respiratory journal* 1, 839-845.

827 Footitt, J., and Johnston, S.L. (2009). Cough and viruses in airways disease: Mechanisms.  
828 *Pulmonary Pharmacology & Therapeutics* 22, 108-113.

829 Forsberg, K., Karlsson, J.A., Theodorsson, E., Lundberg, J.M., and Persson, C.G. (1988). Cough  
830 and bronchoconstriction mediated by capsaicin-sensitive sensory neurons in the guinea-pig.  
831 *Pulmonary pharmacology* 1, 33-39.

832 Garceau, D., and Chauret, N. (2019). BLU-5937: A selective P2X3 antagonist with potent anti-  
833 tussive effect and no taste alteration. *Pulm Pharmacol Ther* 56, 56-62.

834 Gerner, P., Binshtok, A.M., Wang, C.F., Hevelone, N.D., Bean, B.P., Woolf, C.J., and Wang,  
835 G.K. (2008). Capsaicin combined with local anesthetics preferentially prolongs  
836 sensory/nociceptive block in rat sciatic nerve. *Anesthesiology* 109, 872-878.

837 Gibson, P.G. (2019). Management of Cough. *The journal of allergy and clinical immunology In  
838 practice* 7, 1724-1729.

839 Gonzalez-Cano, R., Boivin, B., Bullock, D., Cornelissen, L., Andrews, N., and Costigan, M.  
840 (2018). Up-Down Reader: An Open Source Program for Efficiently Processing 50% von  
841 Frey Thresholds. *Frontiers in pharmacology* 9, 433.

842 Grabczak, E.M., Dabrowska, M., Birring, S.S., and Krenke, R. (2020). Looking ahead to novel  
843 therapies for chronic cough. Part 1 - peripheral sensory nerve targeted treatments. *Expert*  
844 *review of respiratory medicine*, 1-17.

845 Grace, M.S., and Belvisi, M.G. (2011). TRPA1 receptors in cough. *Pulm Pharmacol Ther* 24,  
846 286-288.

847 Groneberg, D.A., Niimi, A., Dinh, Q.T., Cosio, B., Hew, M., Fischer, A., and Chung, K.F.  
848 (2004). Increased expression of transient receptor potential vanilloid-1 in airway nerves of  
849 chronic cough. *American journal of respiratory and critical care medicine* 170, 1276-1280.

850 Hara, J., Fujimura, M., Myou, S., Oribe, Y., Furusho, S., Kita, T., Katayama, N., Abo, M.,  
851 Ohkura, N., Herai, Y., et al. (2005). Comparison of cough reflex sensitivity after an inhaled  
852 antigen challenge between actively and passively sensitized guinea pigs. *Cough* 1, 6-6.

853 Hargreaves, K., Dubner, R., Brown, F., Flores, C., and Joris, J. (1988). A new and sensitive  
854 method for measuring thermal nociception in cutaneous hyperalgesia. *Pain* 32, 77-88.

855 Harkat, M., Peverini, L., Cerdan, A.H., Dunning, K., Beudez, J., Martz, A., Calimet, N., Specht,  
856 A., Cecchini, M., Chataigneau, T., et al. (2017). On the permeation of large organic cations  
857 through the pore of ATP-gated P2X receptors. *Proceedings of the National Academy of*  
858 *Sciences of the United States of America* 114, E3786-e3795.

859 Horáček, M., and Vymazal, T. (2012). Lidocaine not so innocent: Cardiotoxicity after topical  
860 anaesthesia for bronchoscopy. *Indian J Anaesth* 56, 95-96.

861 Jia, Y., McLeod, R.L., Wang, X., Parra, L.E., Egan, R.W., and Hey, J.A. (2002). Anandamide  
862 induces cough in conscious guinea-pigs through VR1 receptors. *British journal of*  
863 *pharmacology* 137, 831-836.

864 Julius, D. (2013). TRP channels and pain. *Annual review of cell and developmental biology* 29,  
865 355-384.

866 Kanai, Y., Hara, T., Imai, A., and Sakakibara, A. (2007). Differential involvement of TRPV1  
867 receptors at the central and peripheral nerves in CFA-induced mechanical and thermal  
868 hyperalgesia. *Journal of Pharmacy and Pharmacology* 59, 733-738.

869 Kanezaki, M., Ebihara, S., Gui, P., Ebihara, T., and Kohzuki, M. (2012). Effect of cigarette  
870 smoking on cough reflex induced by TRPV1 and TRPA1 stimulations. *Respiratory medicine*  
871 106, 406-412.

872 Keller, J.A., McGovern, A.E., and Mazzone, S.B. (2017). Translating Cough Mechanisms Into  
873 Better Cough Suppressants. *Chest* 152, 833-841.

874 Khalid, S., Murdoch, R., Newlands, A., Smart, K., Kelsall, A., Holt, K., Dockry, R., Woodcock,  
875 A., and Smith, J.A. (2014). Transient receptor potential vanilloid 1 (TRPV1) antagonism in  
876 patients with refractory chronic cough: a double-blind randomized controlled trial. *The*  
877 *Journal of allergy and clinical immunology* 134, 56-62.

878 Kimball, C., Luo, J., Yin, S., Hu, H., and Dhaka, A. (2015). The Pore Loop Domain of TRPV1 Is  
879 Required for Its Activation by the Volatile Anesthetics Chloroform and Isoflurane. *Molecular*  
880 *pharmacology* 88, 131.

881 Kollarik, M., Ru, F., and Undem, B.J. (2007). Acid-sensitive vagal sensory pathways and cough.  
882 *Pulmonary pharmacology & therapeutics* 20, 402-411.

883 Kollarik, M., Ru, F., and Undem, B.J. (2019). Phenotypic distinctions between the nodose and  
884 jugular TRPV1-positive vagal sensory neurons in the cynomolgus monkey. *Neuroreport* 30,  
885 533-537.

886 Kollarik, M., Sun, H., Herbstsommer, R.A., Ru, F., Kocmalova, M., Meeker, S.N., and Undem,  
887 B.J. (2018). Different role of TTX-sensitive voltage-gated sodium channel (NaV1) subtypes  
888 in action potential initiation and conduction in vagal airway nociceptors. *The Journal of  
889 Physiology* 596, 1419-1432.

890 Kwong, K., Kollarik, M., Nassenstein, C., Ru, F., and Undem, B.J. (2008). P2X2 receptors  
891 differentiate placodal vs. neural crest C-fiber phenotypes innervating guinea pig lungs and  
892 esophagus. *American journal of physiology Lung cellular and molecular physiology* 295,  
893 L858-865.

894 Laude, E.A., Higgins, K.S., and Morice, A.H. (1993). A comparative study of the effects of citric  
895 acid, capsaicin and resiniferatoxin on the cough challenge in guinea-pig and man. *Pulmonary  
896 pharmacology* 6, 171-175.

897 Lee, S., Jo, S., Talbot, S., Zhang, H.B., Kotoda, M., Andrews, N.A., Puopolo, M., Liu, P.W.,  
898 Jacquemont, T., Pascal, M., et al. (2019). Novel charged sodium and calcium channel  
899 inhibitor active against neurogenic inflammation. *eLife* 8.

900 Lennertz, R.C., Kossyрева, Е.А., Smith, A.K., and Stucky, C.L. (2012). TRPA1 mediates  
901 mechanical sensitization in nociceptors during inflammation. *PloS one* 7, e43597.

902 Leung, N.H.L., Chu, D.K.W., Shiu, E.Y.C., Chan, K.-H., McDevitt, J.J., Hau, B.J.P., Yen, H.-L.,  
903 Li, Y., Ip, D.K.M., Peiris, J.S.M., et al. (2020). Respiratory virus shedding in exhaled breath  
904 and efficacy of face masks. *Nature Medicine* 26, 676-680.

905 Leung, S.Y., Niimi, A., Williams, A.S., Nath, P., Blanc, F.-X., Dinh, Q.T., and Chung, K.F.  
906 (2007). Inhibition of citric acid-and capsaicin-induced cough by novel TRPV-1 antagonist,  
907 V112220, in guinea-pig. *Cough* 3, 1-5.

908 Lewis, C.A., Ambrose, C., Banner, K., Battram, C., Butler, K., Giddings, J., Mok, J., Nasra, J.,  
909 Winny, C., and Poll, C. (2007). Animal models of cough: literature review and presentation  
910 of a novel cigarette smoke-enhanced cough model in the guinea-pig. *Pulm Pharmacol Ther*  
911 20, 325-333.

912 Liu, P., Jo, S., and Bean, B.P. (2012). Modulation of neuronal sodium channels by the sea  
913 anemone peptide BDS-I. *Journal of neurophysiology* 107, 3155-3167.

914 Liu, Z., Hu, Y., Yu, X., Xi, J., Fan, X., Tse, C.-M., Myers, A.C., Pasricha, P.J., Li, X., and Yu, S.  
915 (2015). Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber  
916 subtypes in guinea pig esophagus. *Am J Physiol Gastrointest Liver Physiol* 308, G482-G488.

917 Long, L., Yao, H., Tian, J., Luo, W., Yu, X., Yi, F., Chen, Q., Xie, J., Zhong, N., Chung, K.F., et  
918 al. (2019a). Heterogeneity of cough hypersensitivity mediated by TRPV1 and TRPA1 in  
919 patients with chronic refractory cough. *Respiratory research* 20, 112.

920 Long, L., Yao, H., Tian, J., Luo, W., Yu, X., Yi, F., Chen, Q., Xie, J., Zhong, N., Chung, K.F., et  
921 al. (2019b). Heterogeneity of cough hypersensitivity mediated by TRPV1 and TRPA1 in  
922 patients with chronic refractory cough. *Respiratory Research* 20, 112.

923 Ma, C.H., Omura, T., Cobos, E.J., Latremoliere, A., Ghasemlou, N., Brenner, G.J., van Veen, E.,  
924 Barrett, L., Sawada, T., Gao, F., et al. (2011). Accelerating axonal growth promotes motor  
925 recovery after peripheral nerve injury in mice. *The Journal of clinical investigation* 121,  
926 4332-4347.

927 Mazzone, S.B., Chung, K.F., and McGarvey, L. (2018). The heterogeneity of chronic cough: a  
928 case for endotypes of cough hypersensitivity. *The Lancet Respiratory medicine* 6, 636-646.

929 Mazzone, S.B., Mori, N., and Canning, B.J. (2005). Synergistic interactions between airway  
930 afferent nerve subtypes regulating the cough reflex in guinea-pigs. *The Journal of physiology*  
931 569, 559-573.

932 Mazzone, S.B., Reynolds, S.M., Mori, N., Kollarik, M., Farmer, D.G., Myers, A.C., and  
933 Canning, B.J. (2009). Selective expression of a sodium pump isozyme by cough receptors  
934 and evidence for its essential role in regulating cough. *The Journal of neuroscience : the*  
935 *official journal of the Society for Neuroscience* 29, 13662-13671.

936 Mazzone, S.B., and Undem, B.J. (2016). Vagal Afferent Innervation of the Airways in Health  
937 and Disease. *Physiological reviews* 96, 975-1024.

938 McLeod, R.L., Fernandez, X., Correll, C.C., Phelps, T.P., Jia, Y., Wang, X., and Hey, J.A.  
939 (2006). TRPV1 antagonists attenuate antigen-provoked cough in ovalbumin sensitized guinea  
940 pigs. *Cough* 2, 10-10.

941 Morice, A.H., Fontana, G.A., Belvisi, M.G., Birring, S.S., Chung, K.F., Dicpinigaitis, P.V.,  
942 Kastelik, J.A., McGarvey, L.P., Smith, J.A., Tatar, M., et al. (2007). ERS guidelines on the  
943 assessment of cough. *European Respiratory Journal* 29, 1256.

944 Morice, A.H., Kitt, M.M., Ford, A.P., Tershakovec, A.M., Wu, W.-C., Brindle, K., Thompson,  
945 R., Thackray-Nocera, S., and Wright, C. (2019). The Effect of Gefapixant, a P2X3  
946 antagonist, on Cough Reflex Sensitivity: A randomised placebo-controlled study. *European*  
947 *Respiratory Journal*, 1900439.

948 Mukhopadhyay, I., Kulkarni, A., Aranake, S., Karnik, P., Shetty, M., Thorat, S., Ghosh, I., Wale,  
949 D., Bhosale, V., and Khairatkar-Joshi, N. (2014). Transient receptor potential ankyrin 1  
950 receptor activation in vitro and in vivo by pro-tussive agents: GRC 17536 as a promising  
951 anti-tussive therapeutic. *PloS one* 9, e97005.

952 Muroi, Y., Ru, F., Kollarik, M., Canning, B.J., Hughes, S.A., Walsh, S., Sigg, M., Carr, M.J.,  
953 and Undem, B.J. (2011). Selective silencing of NaV1. 7 decreases excitability and  
954 conduction in vagal sensory neurons. *The Journal of physiology* 589, 5663-5676.

955 Noitasaeng, P., Vichitvejpaisal, P., Kaosombatwattana, U., Tassanee, J., and Suwannee, S.  
956 (2016). Comparison of Spraying and Nebulized Lidocaine in Patients Undergoing Esophago-  
957 Gastro-Duodenoscopy: A Randomized Trial. *Journal of the Medical Association of Thailand*  
958 = Chotmaihet thangphaet 99, 462-468.

959 Omar, S., Clarke, R., Abdullah, H., Brady, C., Corry, J., Winter, H., Touzelet, O., Power, U.F.,  
960 Lundy, F., McGarvey, L.P., et al. (2017). Respiratory virus infection up-regulates TRPV1,  
961 TRPA1 and ASICS3 receptors on airway cells. *PloS one* 12, e0171681.

962 Patil, M.J., Sun, H., Ru, F., Meeker, S., and Undem, B.J. (2019). Targeting C-fibers for  
963 peripheral acting anti-tussive drugs. *Pulmonary Pharmacology & Therapeutics* 56, 15-19.

964 Peleg, R., and Binyamin, L. (2002). Practice tips. Treating persistent cough. Try a nebulized  
965 mixture of lidocaine and bupivacaine. *Canadian family physician Medecin de famille*  
966 canadien 48, 275.

967 Pelleg, A., Xu, F., Zhuang, J., Undem, B., and Burnstock, G. (2019). DT-0111: a novel drug-  
968 candidate for the treatment of COPD and chronic cough. *Therapeutic advances in respiratory*  
969 *disease* 13, 1753466619877960.

970 Puopolo, M., Binshtok, A.M., Yao, G.L., Oh, S.B., Woolf, C.J., and Bean, B.P. (2013).  
971 Permeation and block of TRPV1 channels by the cationic lidocaine derivative QX-314.  
972 *Journal of neurophysiology* 109, 1704-1712.

973 Roberson, D.P., Binshtok, A.M., Blasl, F., Bean, B.P., and Woolf, C.J. (2011). Targeting of  
974 sodium channel blockers into nociceptors to produce long-duration analgesia: a systematic  
975 study and review. *British journal of pharmacology* 164, 48-58.

976 Roberson, D.P., Gudes, S., Sprague, J.M., Patoski, H.A.W., Robson, V.K., Blasl, F., Duan, B.,  
977 Oh, S.B., Bean, B.P., Ma, Q., et al. (2013). Activity-dependent silencing reveals functionally  
978 distinct itch-generating sensory neurons. *Nature Neuroscience* 16, 910-918.

979 Rothan, H.A., and Byrareddy, S.N. (2020). The epidemiology and pathogenesis of coronavirus  
980 disease (COVID-19) outbreak. *Journal of Autoimmunity* 109, 102433.

981 Ryan, N.M., Vertigan, A.E., and Birring, S.S. (2018). An update and systematic review on drug  
982 therapies for the treatment of refractory chronic cough. *Expert opinion on pharmacotherapy*  
983 19, 687-711.

984 Ryan, N.M., Vertigan, A.E., Ferguson, J., Wark, P., and Gibson, P.G. (2012). Clinical and  
985 physiological features of postinfectious chronic cough associated with H1N1 infection.  
986 *Respiratory medicine* 106, 138-144.

987 Schmitz, S., Tacke, S., Guth, B., and Henke, J. (2016). Comparison of Physiological Parameters  
988 and Anaesthesia Specific Observations during Isoflurane, Ketamine-Xylazine or  
989 Medetomidine-Midazolam-Fentanyl Anaesthesia in Male Guinea Pigs. *PloS one* 11,  
990 e0161258.

991 Scholz, A., Kuboyama, N., Hempelmann, G., and Vogel, W. (1998). Complex blockade of TTX-  
992 resistant Na<sup>+</sup> currents by lidocaine and bupivacaine reduce firing frequency in DRG neurons.  
993 *Journal of neurophysiology* 79, 1746-1754.

994 Schwarz W, Palade PT, Hille B. (1977) Local anesthetics. Effect of pH on use-dependent block  
995 of sodium channels in frog muscle. *Biophys J.* 1977

996 Shirk, M.B., Donahue, K.R., and Shirvani, J. (2006). Unlabeled uses of nebulized medications.  
997 *American journal of health-system pharmacy : AJHP : official journal of the American  
998 Society of Health-System Pharmacists* 63, 1704-1716.

999 Simonic-Kocjan, S., Zhao, X., Liu, W., Wu, Y., Uhac, I., and Wang, K. (2013). TRPV1  
1000 channel-mediated bilateral allodynia induced by unilateral masseter muscle inflammation in  
1001 rats. *Mol Pain* 9, 68-68.

1002 Simpson, C.B., and Amin, M.R. (2006). Chronic cough: state-of-the-art review. *Otolaryngology-  
1003 -head and neck surgery : official journal of American Academy of Otolaryngology-Head and  
1004 Neck Surgery* 134, 693-700.

1005 Slaton, R.M., Thomas, R.H., and Mbathi, J.W. (2013). Evidence for therapeutic uses of  
1006 nebulized lidocaine in the treatment of intractable cough and asthma. *The Annals of  
1007 pharmacotherapy* 47, 578-585.

1008 Smith, J.A., and Badri, H. (2019). Cough: New Pharmacology. *The journal of allergy and  
1009 clinical immunology In practice* 7, 1731-1738.

1010 Smith, J.A., Kitt, M.M., Butera, P., Smith, S.A., Li, Y., Xu, Z.J., Holt, K., Sen, S., Sher, M.R.,  
1011 and Ford, A.P. (2020a). Gefapixant in two randomised dose-escalation studies in chronic  
1012 cough. *European Respiratory Journal*, 1901615.

1013 Smith, J.A., Kitt, M.M., Morice, A.H., Birring, S.S., McGarvey, L.P., Sher, M.R., and Ford, A.P.  
1014 (2017). MK-7264, a P2X3 Receptor Antagonist, Reduces Cough Frequency in Patients with  
1015 Refractory Chronic Cough: Results from a Randomized, Controlled, Phase 2b Clinical Trial.  
1016 In *B14 CLINICAL TRIALS ACROSS PULMONARY DISEASE* (American Thoracic  
1017 Society), pp. A7608-A7608.

1018 Smith, J.A., Kitt, M.M., Morice, A.H., Birring, S.S., McGarvey, L.P., Sher, M.R., Li, Y.P., Wu,  
1019 W.C., Xu, Z.J., Muccino, D.R., et al. (2020b). Gefapixant, a P2X3 receptor antagonist, for  
1020 the treatment of refractory or unexplained chronic cough: a randomised, double-blind,  
1021 controlled, parallel-group, phase 2b trial. *The Lancet Respiratory medicine* 8, 775-785.

1022 Song, W.J., and Chung, K.F. (2020). Pharmacotherapeutic Options for Chronic Refractory  
1023 Cough. *Expert opinion on pharmacotherapy* 21, 1345-1358.

1024 Strichartz, G.R. (1973). The inhibition of sodium currents in myelinated nerve by quaternary  
1025 derivatives of lidocaine. *The Journal of general physiology* 62, 37-57.

1026 Stueber, T., Eberhardt, M.J., Hadamitzky, C., Jangra, A., Schenk, S., Dick, F., Stoetzer, C.,  
1027 Kistner, K., Reeh, P.W., Binshtok, A.M., et al. (2016). Quaternary Lidocaine Derivative QX-  
1028 314 Activates and Permeates Human TRPV1 and TRPA1 to Produce Inhibition of Sodium  
1029 Channels and Cytotoxicity. *Anesthesiology* 124, 1153-1165.

1030 Sun, H., Kollarik, M., and Undem, B.J. (2017). Blocking voltage-gated sodium channels as a  
1031 strategy to suppress pathological cough. *Pulm Pharmacol Ther* 47, 38-41.

1032 Talbot, S., Abdulnour, R.E., Burkett, P.R., Lee, S., Cronin, S.J., Pascal, M.A., Laedermann, C.,  
1033 Foster, S.L., Tran, J.V., Lai, N., et al. (2015). Silencing Nociceptor Neurons Reduces  
1034 Allergic Airway Inflammation. *Neuron* 87, 341-354.

1035 Talbot, S., Doyle, B., Huang, J., Wang, J.C., Ahmadi, M., Roberson, D.P., Yekkirala, A., Foster,  
1036 S.L., Browne, L.E., Bean, B.P., et al. (2020). Vagal sensory neurons drive mucous cell  
1037 metaplasia. *The Journal of allergy and clinical immunology*.

1038 Tanaka, M., and Maruyama, K. (2005). Mechanisms of Capsaicin- and Citric-Acid-Induced  
1039 Cough Reflexes in Guinea Pigs. *Journal of Pharmacological Sciences* 99, 77-82.

1040 Turner, R.D., and Bothamley, G.H. (2014). Cough and the Transmission of Tuberculosis. *The  
1041 Journal of Infectious Diseases* 211, 1367-1372.

1042 Udezue, E. (2001). Lidocaine inhalation for cough suppression. *The American journal of  
1043 emergency medicine* 19, 206-207.

1044 Undem, B.J., Carr, M.J., and Kollarik, M. (2002). Physiology and plasticity of putative cough  
1045 fibres in the Guinea pig. *Pulm Pharmacol Ther* 15, 193-198.

1046 Undem, B.J., and Sun, H. (2020). Molecular/Ionic Basis of Vagal Bronchopulmonary C-Fiber  
1047 Activation by Inflammatory Mediators. *Physiology (Bethesda)* 35, 57-68.

1048 Watanabe, N., Horie, S., Spina, D., Michael, G.J., Page, C.P., and Priestley, J.V. (2008).  
1049 Immunohistochemical localization of transient receptor potential vanilloid subtype 1 in the  
1050 trachea of ovalbumin-sensitized Guinea pigs. *International archives of allergy and  
1051 immunology* 146 Suppl 1, 28-32.

1052 West, P.W., Canning, B.J., Merlo-Pich, E., Woodcock, A.A., and Smith, J.A. (2015).  
1053 Morphologic Characterization of Nerves in Whole-Mount Airway Biopsies. *American  
1054 journal of respiratory and critical care medicine* 192, 30-39.

1055 Widdicombe, J., and Fontana, G. (2006). Cough: what's in a name? *The European respiratory  
1056 journal* 28, 10-15.

1057 Yeh, J.Z. (1978). Sodium inactivation mechanism modulates QX-314 block of sodium channels  
1058 in squid axons. *Biophysical journal* 24, 569-574.

1059 Yin, K., Deuis, J.R., Lewis, R.J., and Vetter, I. (2016). Transcriptomic and behavioural  
1060 characterisation of a mouse model of burn pain identify the cholecystokinin 2 receptor as an  
1061 analgesic target. *Mol Pain* 12, 1744806916665366.

1062 Zaccone, E.J., Lieu, T., Muroi, Y., Potenzieri, C., Undem, B.E., Gao, P., Han, L., Canning, B.J.,  
1063 and Undem, B.J. (2016). Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig  
1064 Airways. *PloS one* 11, e0155526.

1065

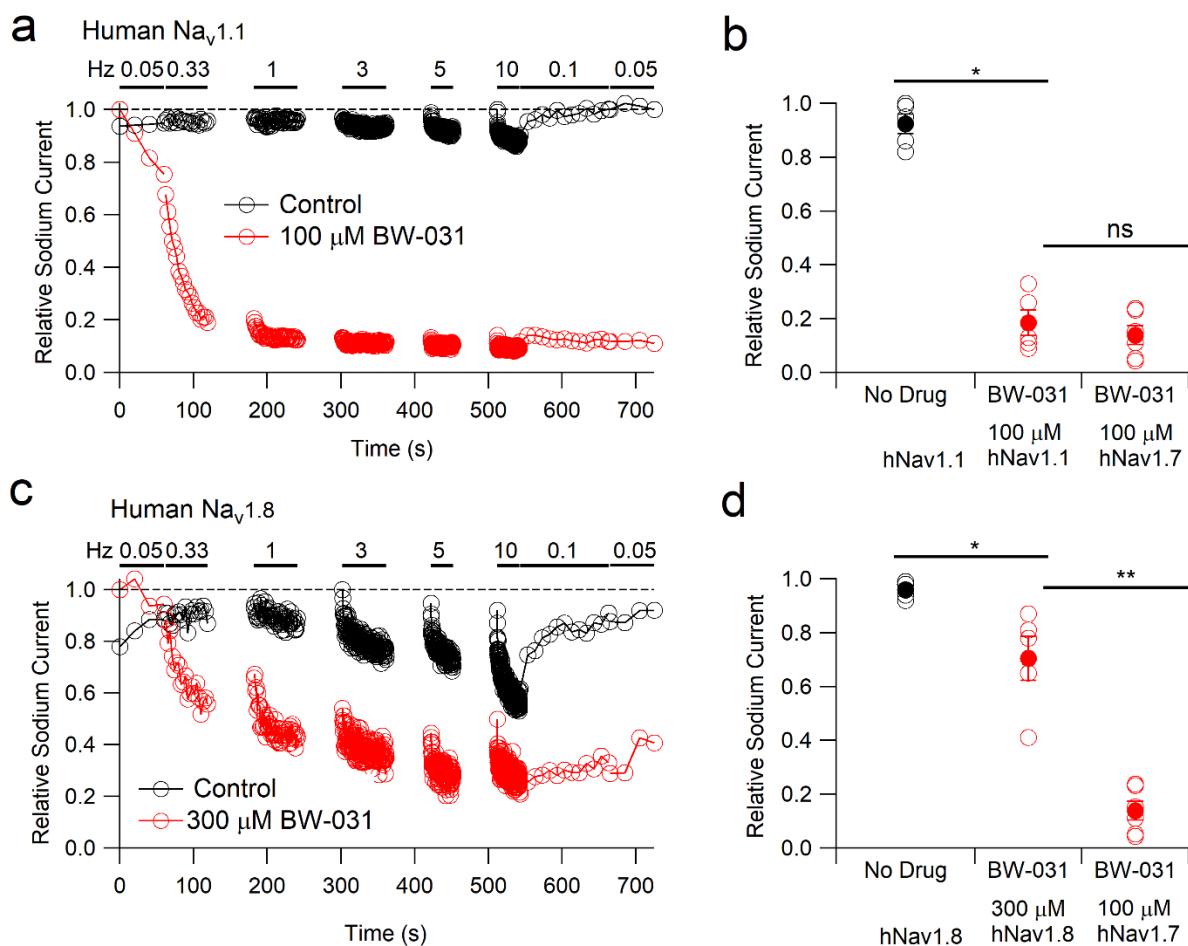
1066

1067 **Acknowledgements**

1068 We are grateful to Alyssa Grantham, Mary Kate Dornon, Yu Wang, Daniel Taub, Huan Wang  
1069 and Lee Barrett for technical assistance, to the Boston Children's Hospital PK-lab for assistance  
1070 with LC/MS experiments, and to Ronald Blackman, James Ellis, and Richard Batycky for  
1071 helpful discussions and suggestions. This work was supported by the National Institutes of  
1072 Health National Institute of Neurological Diseases and Stroke [R35NS105076 (C.J.W.),  
1073 R01NS036855 (B.P.B.), R01NS110860 (B.P.B.), R01HL122531 (B.D.L.)], the Department of  
1074 Defense [W81XWH-15-1-0480 (C.J.W. & B.B.)], Boston Biomedical Innovation Center, the  
1075 Blavatnik Biomedical Accelerator Fund, and the Boston Children's Hospital's Technology  
1076 Development Fund.

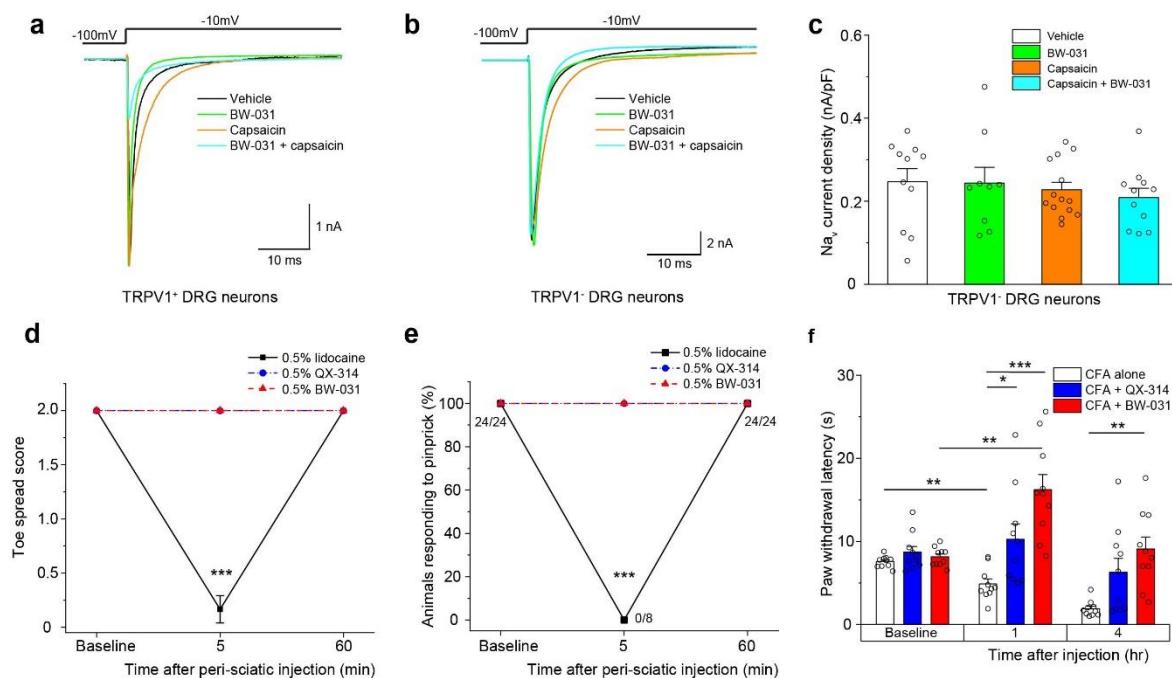
1077

1078 **Author Contributions**


1079 I.T., S.J., N.A., M.K., B.D.L., B.P.B. and C.J.W. designed experiments; I.T., S.J., N.A., M.K.,  
1080 B.D., J.S., S.T., D.R., J.L., L.H., S.M.J. carried out experiments; I.T., S.J., N.A., M.K., B.D.,  
1081 J.S., L.H. and S.M.J. analyzed data; I.T., S.J., N.A., M.K., B.D., J.S., B.D.L., B.P.B. and C.J.W.  
1082 provided advice on the interpretation of data; I.T., B.D.L., B.P.B. and C.J.W. wrote the  
1083 manuscript with input from all co-authors; B.D.L., B.P.B., and C.J.W. supervised the study. All  
1084 authors approved the final manuscript.

1085

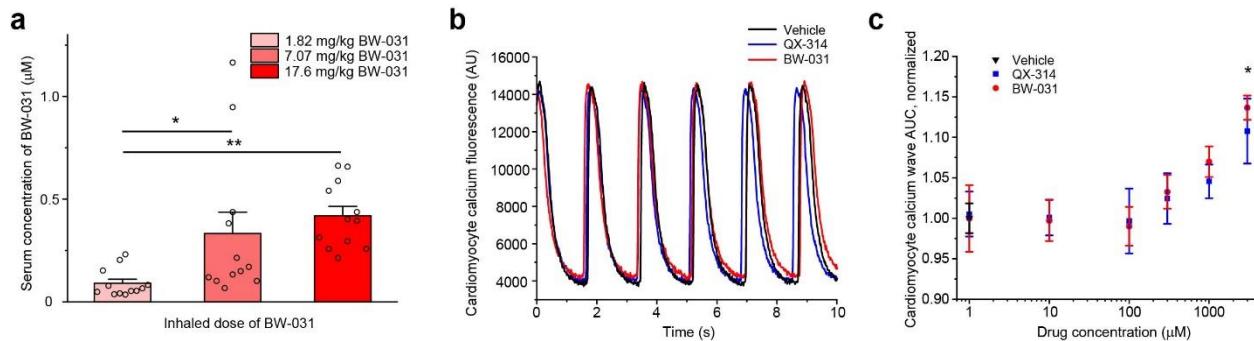
1086 **Competing Interests**


1087 B.D.L., B.P.B. and C.J.W. are cofounders of and equity holders in Nocion Therapeutics which is  
1088 developing charged sodium channel blockers as treatments for various disease indications,  
1089 including cough, and which has licensed BW-031 from Harvard Medical School. I.T., S.J., N.A.,  
1090 S.T. and D.R. also have founder shares in Nocion.

**Supplementary Data Tochitsky et al.**

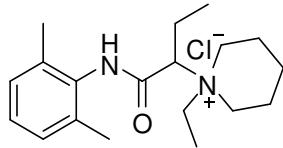


**Supplementary Fig. 1. BW-031 inhibition of human  $\text{Na}_v1.1$  and human  $\text{Na}_v1.8$  channels.**

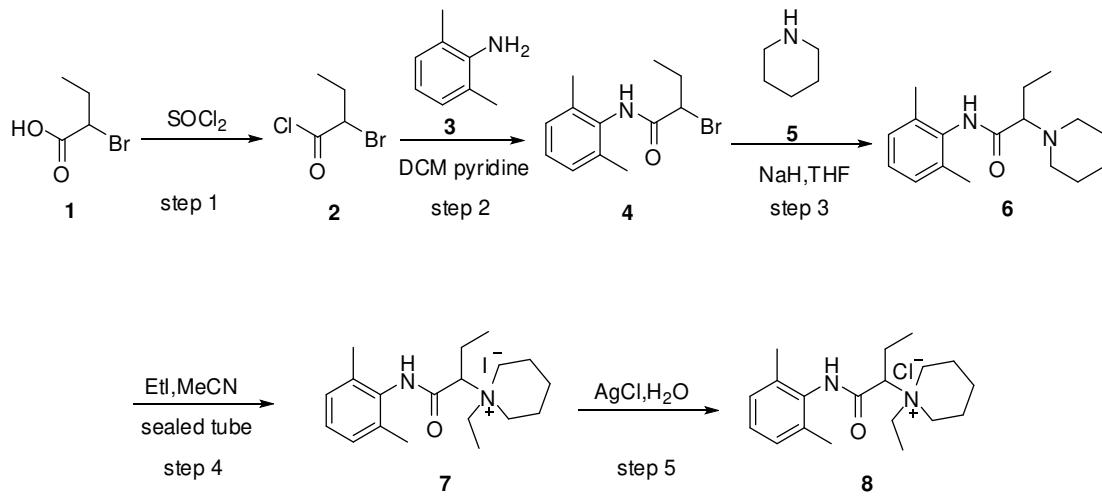

**a**, Use-dependent inhibition of h $\text{Na}_v1.1$  channels by 100  $\mu\text{M}$  intracellular BW-031 (red) compared to recording with control intracellular solution (black).  $\text{Na}_v$  current was evoked by 20-ms depolarizations from -100 to 0 mV at the indicated frequencies. **b**, Collected results for h $\text{Na}_v1.1$  inhibition by 100  $\mu\text{M}$  intracellular BW-031 (red, n=5) compared with control (black, n=5) and with inhibition of h $\text{Na}_v1.7$  (n=6, replotted from Fig. 1e) **c**, Use-dependent inhibition of h $\text{Na}_v1.8$  channels by 300  $\mu\text{M}$  intracellular BW-031 (red) compared to recording with control intracellular solution (black).  $\text{Na}_v$  current was evoked by 20-ms depolarizations from -70 to 0 mV at the indicated frequencies. **d**, Collected results (mean $\pm$ SEM) of h $\text{Na}_v1.8$  inhibition by 300  $\mu\text{M}$  intracellular BW-031 (red, n=5) compared with control (black, n=5) and with inhibition of h $\text{Na}_v1.7$  by 100  $\mu\text{M}$  BW-031 (n=6, replotted from Fig. 1e) Data are mean $\pm$ SEM and statistics are calculated from two-tailed Mann-Whitney Test. ns p>0.05, \*p<0.05, and \*\*p<0.01.



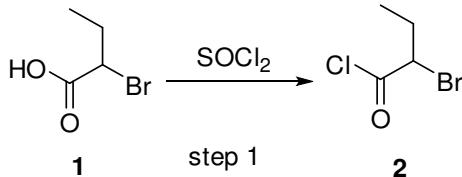
**Supplementary Fig. 2. BW-031 does not inhibit  $\text{Na}_v$  currents in  $\text{TRPV1}^-$  DRG neurons *in vitro* and has no effect on sensory or motor function in naïve mice when injected peri-sciatically *in vivo*.**


**a, b**, Representative patch clamp recordings of  $\text{Na}_v$  currents in  $\text{TRPV1}^+$  (a) and  $\text{TRPV1}^-$  (b) mouse DRG neurons pre-treated with vehicle (white), 100  $\mu\text{M}$  BW-031 (green), 1  $\mu\text{M}$  capsaicin (orange) or 1  $\mu\text{M}$  capsaicin + 100  $\mu\text{M}$  BW-031 (cyan).  $\text{Na}_v$  currents were activated by voltage steps from -100 mV to -10 mV. **c**, Quantification of the  $\text{Na}_v$  current density data from  $\text{TRPV1}^-$  DRG neurons pre-treated with vehicle (white), 100  $\mu\text{M}$  BW-031 (green), 1  $\mu\text{M}$  capsaicin (orange) or 1  $\mu\text{M}$  capsaicin + 100  $\mu\text{M}$  BW-031 (cyan). Capsaicin does not facilitate the block of  $\text{Na}_v$  channels in mouse  $\text{TRPV1}^-$  DRG neurons treated with BW-031. N=9-14 cells per group, 1-way ANOVA,  $[F(3,41)=0.40]$ ,  $p=0.75$ . Bars represent mean $\pm$ SEM for each condition, while the individual data points are displayed as open circles. **d**, Toe spread assay of motor function in mice after peri-sciatic injection of 0.5% lidocaine, 0.5% QX-314 or 0.5% BW-031. Only lidocaine produces robust block of motor function in naïve mice. N=10 male mice per group, 1-way ANOVA (5 min time point),  $[F(2, 21)=81]$ ,  $p=1.3\times 10^{-10}$ ; Tukey's post-hoc, \*\*\*p<0.001. Data are mean $\pm$ SEM. **e**, Plantar pinprick responses in naïve mice after peri-sciatic injection of 0.5% lidocaine, 0.5% QX-314 or 0.5% BW-031. Only lidocaine produces robust sensory analgesia in naïve mice. N=10 male mice per group, Fisher's exact test (5 min time point),  $p=4.1\times 10^{-6}$ , \*\*\*p<0.001. Data are mean $\pm$ SEM. **f**, Hargreaves assay of hindpaw thermal

sensitivity in rats after intraplantar injection of Complete Freund's Adjuvant (CFA) alone (white), 2% QX-314 dissolved in CFA (blue) or 2% BW-031 dissolved in CFA (red). Both QX-314 and BW-031 produce robust thermal analgesia. Two-way repeated measures ANOVA with treatment as the between groups factor and time as the within groups factor. Treatment [ $F(2, 27)=15.05$ ], time [ $F(1.980, 53.46)=14.88$ ], and treatment x time interaction [ $F(4, 54)=6.767$ ], all  $p<0.001$ . Post-hoc Tukey's tests between treatment groups at each time point revealed significant increases in mechanical threshold by BW-031 at 1 and 4 hours post treatment and QX-314 at 1h post treatment. N=10 male rats per group, \* $p<0.05$ , \*\* $p<0.01$ , \*\*\* $p<0.001$ .

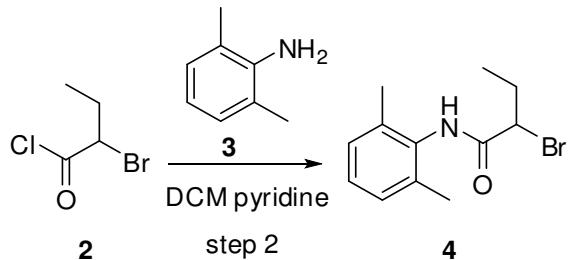



**Supplementary Fig. 3. Inhaled BW-031 has minimal systemic distribution and is not cardiotoxic.** **a**, Serum concentrations of BW-031 following inhalation. N=12 animals per group (1:1 male:female), 1-way ANOVA,  $[F(2, 33)=6.54]$ ,  $p=0.004$ , Tukey's post-hoc,  $*p<0.05$ ,  $**p<0.01$ . Bars represent mean $\pm$ SEM for each condition, while the individual data points are displayed as open circles. **b**, Representative calcium fluorescence signals from hiPSC-derived cardiomyocytes treated with vehicle, 100  $\mu\text{M}$  QX-314 or 100  $\mu\text{M}$  BW-031. **c**, Quantification of the effect of QX-314 and BW-031 on cardiomyocyte calcium signals as measured by area under the curve (AUC). Micromolar doses of QX-314 or BW-031 do not affect cardiomyocyte calcium signal AUC. N=5-10 wells per treatment, 1-way ANOVA (mixed-effects model),  $[F(2.412, 9.647)=3.27]$ ,  $p=0.0763$ ; Dunnett's post hoc,  $*p<0.05$ . Data are mean $\pm$ SEM.


1091 **Supplementary Data: Synthesis of BW-031 (1-(1-(2, 6-dimethylphenylamino)-1-oxobutan-2-yl)-1-ethylpiperidinium)**

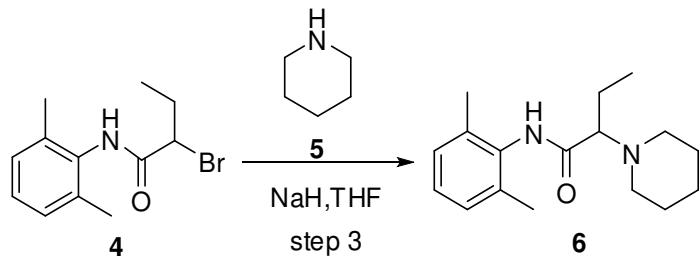


Synthetic Scheme



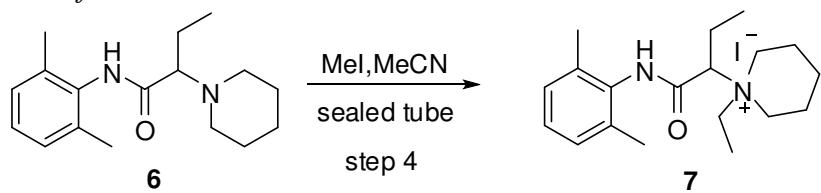

*Step 1: Preparation of intermediate 2*




To a mixture of **1** (10.0g, 59.88mmol) was added  $\text{SOCl}_2$  (60mL,  $c=1.0$ ). The mixture was heated to reflux. After completion, the reaction mixture was concentrated under reduced pressure to give intermediate **2** (9.2g, yield=82.8%) as a yellow oil.

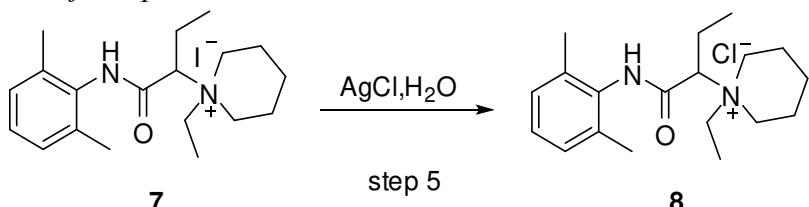
*Step 2: Preparation of intermediate 4*




To a solution of **3** (5.0g, 41.3mmol, 1.0eq) in DCM (100mL,  $c=0.5$ ) was added pyridine (4.9g, 61.95mmol, 1.5eq). To the solution was added **2** (9.2g, 49.59mmol, 1.2eq) in DCM (40mL,  $c=1.2$ ). The reaction mixture was stirred at room temperature over night. Then to the solution was added water (50mL). The organic phase was washed with brine, dried over  $\text{Na}_2\text{SO}_4$ , filtered and concentrated under reduced pressure. The residue was washed with n-hexane to give intermediate **4** (7.8g, yield=70%, HPLC: 98.6%).

*Step 3: Preparation of intermediate 6*




To a solution of NaH (0.35g, 14.8mmol, 2.0eq) in THF (37mL, c=0.4) was added **5** (0.75g, 8.8mmol, 1.2eq). To the solution was added **4** (2.0g, 7.4mmol, 1.0eq) in THF (20mL, c=0.37). The reaction mixture was then stirred at room temperature over night. To the suspension was added water (20mL) and EA (50mL). The organic phase was washed with water (50mL×2). Then the organic phase was adjusted to pH 2, extracted with EA(40mL×2). The aqueous fractions were combined and adjusted to pH 9, then extracted with EA (40×2). The combined organic fractions was washed with brine, dried over  $\text{Na}_2\text{SO}_4$ , filtered and concentrated under reduce pressure. The residue was washed with n-hexane to give the intermediate **6** (0.48g, yield=24%, HPLC: 99.3%) as a solid.

*Step 4: Preparation of intermediate 7*



Intermediate **6** (0.48g, 1.75mmol, 1.0 eq) and MeCN (9mL, c=0.2) was added in sealed tube. To this solution, EtI (2mL, 14.0 eq) was added. After addition, the reaction mixture was stirred at 90°C for 10h. After completion, the reaction mixture was concentrated under reduce pressure. The residue was purified by column chromatography to give intermediate **7** (470mg, yield=62.6%, HPLC: 99%) as a solid.

*Step 4: Preparation of compound 8*



1093 To a solution of **7** (200mg, 0.465mmol, 1.0 eq) in deionized water (3ml, c=0.15) was added  
 1094 AgCl (133mg, 0.93mmol, 2.0 eq). After addition, the reaction mixture was stirred at room  
 1095 temperature overnight. The suspension was then filtered and the filtrate was lyophilized to give  
 1096 compound 8 (141mg, yield=89.8%) as a solid. HPLC purity: at 220nm; Mass: M+1=339.4. 1H  
 1097 NMR (300 MHz, D<sub>2</sub>O):  $\delta$  7.117 (m, 3H), 4.056 (dd,  $J$ =8.1 Hz, 1H), 3.712~3.808 (m, 1H), 3.656  
 1098 (m,  $J$ =13.2 Hz, 2H), 3.510~3.582 (m, 1H), 3.344 (m, 2H), 2.117 (s, 6H), 1.984~2.070 (m, 2H),  
 1099 1.818 (m, 4H), 1.660 (m, 1H), 1.455 (m, 1H), 1.278 (t,  $J$ =7.2 Hz, 3H), 1.107 (t, 3H) ppm.