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Abstract 

Previous research has shown that the autonomic nervous system provides essential 

constraints over ongoing cognitive function. However, there is currently a relative 

lack of direct empirical evidence for how this interaction manifests in the brain at the 

macro-scale level. Here, we examine the role of ascending arousal and attentional load 

on large-scale network dynamics by combining pupillometry, functional MRI and 

graph theoretical analysis to analyze data from a visual motion-tracking task with a 

parametric load manipulation. We found that attentional load effects were observable 

in measures of pupil diameter and in a set of brain regions that parametrically 

modulated their BOLD activity and meso-scale network-level integration. In addition, 

the regional patterns of network reconfiguration were correlated with the spatial 

distribution of the ³2a adrenergic receptor. Our results further solidify the 

relationship between ascending noradrenergic activity, large-scale network 

integration, and cognitive task performance.  

 

Author Summary 

In our daily lives, it is usual to encounter highly demanding cognitive tasks. They have been 

traditionally regarded as challenges that are solved mainly through cerebral activity, 

specifically via information-processing steps carried by neurons in the cerebral cortex. Activity 

in cortical networks thus constitutes a key factor for improving our understanding cognitive 

processes. However, recent evidence has shown that evolutionary older players in the central 

nervous system, such as brainstem’s ascending modulatory systems, might play an equally 

important role in diverse cognitive mechanisms. Our article examines the role of the ascending 

arousal system on large-scale network dynamics by combining pupillometry, functional MRI 

and graph theoretical analysis. 
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Introduction 

Cognitive processes emerge from the dynamic interplay between diverse mesoscopic 

brain systems 1,2. Thus, the neural activity supporting cognition does not exist in a 

vacuum, but instead is deeply embedded within the ongoing dynamics of the 

physiological networks of the body3. In particular, the neural processes underlying 

cognition are shaped and constrained by the ascending arousal system, whose activity 

acts to facilitate the integration between internal states and external contingencies4. 

Timely and selective interactions between the ascending arousal system and the 

network-level configuration of the brain are thus likely to represent crucial constraints 

on cognitive and attentional processes. Yet, despite these links, we currently have a 

relatively poor understanding of how the ascending arousal system helps the brain as 

a whole to functionally reconfigure during cognitive processes, such as attention, in 

order to facilitate effective cognitive performance.   

 

Recent evidence has linked higher-order cognitive functions in the brain to the 

intersection between whole-brain functional network architecture and the autonomic 

arousal system2,5–8. Central to these relationships is the unique neuroanatomy of the 

ascending noradrenergic system. For instance, the pontine locus coeruleus, which is a 

major hub of the ascending arousal system, sends widespread projections to the rest 

of the brain9. Upon contact, adrenergic axons release noradrenaline, which acts as a 

ligand on three types of post- and pre-synaptic adrenergic receptors (i.e., ³1, ³2 and 
´). The functional effects of each of these receptors depend on their differential 

sensitivities to noradrenaline (affinities for the ligand differ across receptors: ³2 > ³1 
> ´) and intracellular cascades, as well as their neuronal and regional distributions9–14. 

By modulating the excitability of targeted regions, the locus coeruleus can effectively 

coordinate neural dynamics across large portions of the cerebral cortex15,16. However, 

it is challenging to non-invasively track the engagement of the locus coeruleus during 

whole-brain neuroimaging and cognitive task performance. 

 

Fortunately, it has been widely shown that the pupil diameter directly responds to 

changes in the activity of the locus coeruleus, and thus serves as an indirect, non-

invasive measure of the noradrenergic system17,18.Specifically pupil diameter has been 

shown to indirectly monitor the neuromodulatory influences of the ascending arousal 

system on a variety of different brain regions5,11,19–21 . Moreover, noradrenergic-

mediated dilations in pupil diameter have been shown to effectively track the 

allocation of attentional resources22–24, in addition to both physical and mentally 

effortful processes25,26 . Fast, phasic changes in pupil diameter  have also been shown 
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to directly relate to changes in the activity of the locus coeruleus18,27,28. While there is 

some evidence that pupil diameter covaries with other subcortical systems, such as 

the cholinergic29 and serotoninergic system30, the physiological mechanism for these 

effects is more opaque, and there is also clear causal evidence linking stimulation of 

the locus coeruleus to dilation of the pupil19,31. Despite these insights, several questions 

remain unanswered regarding how these processes are related to the complex 

architecture of the brain32. For instance, the processes by which the ascending arousal 

system modulates the functional dynamics of brain networks to facilitate attention, 

decision making and optimal behavioural performance have only begun to be 

explored31,33–35.  

 

To examine these relationships in more detail, participants performed a motion-

tracking task (top panel of Figure 1A) involving four levels of increasing attentional 

load, which was modulated by manipulating the number of items required to covertly 

attend to over an 11s tracking period. Specifically, subjects were instructed to covertly 

track the movement of several pre-identified targets (two to five) in a field of non-

target stimuli (ten in total, including targets; see Figure 1). To investigate the network 

topological signatures of performing this task, we collected concurrent BOLD fMRI 

and pupillometry data. We hypothesized that, if increasing mental effort led to the 

reconfiguration of large-scale network architecture via the ascending arousal system, 

then the number of items required to be tracked over time (i.e., the attentional load) 

should relate to: i) increased pupil diameter; ii) heightened BOLD activity within 

attentional networks; and iii) augmented topological integration. Also, we predicted 

that individual differences in pupil diameter should track individual differences in 

effective attentional performance and decision processes35–37. Finally, we tested if the 

regional patterns of network configuration were predicted by the distribution of a 

predefined adrenergic receptor density atlas31,34,38,39. Our results confirm these 

predictions, and hence provide a mechanistic link between network topology, 

ascending noradrenergic arousal and attentional load. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2020.12.04.412551doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.412551
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

 

Figure 1: Effect of task difficulty on pupil diameter. A) Group average (z-score) pupil diameter time 

series for each Load condition. Colors represent passive viewing (PV) in blue, and Loads 2 to 5 in green, 

orange, red and black, respectively. The shaded area represents the standard error of the mean. We 

observed an average increase in pupil diameter, during tracking, with each Load condition. The light 

grey area represents timepoints with significant parametric effect (βpupil > 0; FDR corrected at p < 0.01). 

Dotted lines represent the onset of each trial event (showed in the top part of the Figure). The red dotted 

line (Time = 0) is the tracking onset period when the dots began to move; B) Drift rate in each load 

condition. Each dot is the drift rate for each subject and load (mean βDrift = -0.03, t(17)  = -7.43, p = 9.7x10-

7); C) Pearson correlation between the pupil parametric effect of Load (βpupil) with the average drift rate 

across subjects (rdrift = 0.8, p = 1.0x10-4). The x-axis is the mean beta estimate of the pupillary load effect 

of the significative time window (βpupil) and the y-axis represents the mean drift rate across Loads. 

 

Results 

The Relationship Between Sympathetic Tone and Attentional Processing 

Consistent with previous work5, our  two level analysis - linear regression within each 

subject, and a two-tailed t-test between subjects -  found that task performance (i.e., 

correct responses) decreased with attentional load (mean βAcc = -6.66; t(17) = -5.19, p = 

7.2x10-5;  Figure S1B) while RT increased with attentional load (mean βRT = 0.06, t(17) = 

5.10, p = 8.8x10-5). We expanded on this result by translating performance into EZ-

diffusion model parameters. Roughly, this approach uses the accuracy and reaction 

time distribution to estimate three latent parameters40: drift rate, a marker of the 

accumulation of decision evidence (Eq. 1); boundary criteria, the amount of evidence 

required to make a decision (Eq. 2); and non-decision time, the epoch spent processing 

the tasks perceptually (Eq. 3). The advantages of using this model are twofold: firstly, 

there are well-known links between the parameters to decision making processes41,42, 

pupil diameter27,43 and network reconfiguration2; secondly, drift rate accounts for the 

accuracy-reaction time trade off, as it takes into consideration both accuracy and the 
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variability in reaction time into its calculation. In this way, our approach offers a better 

approximation of the ongoing computational processing during the task than 

accuracy and RT44,45. Using this approach, we observed a decrease in both the 

boundary criteria (βBound  = -0.01, t(17)  = -2.70, p = 0.015) and drift rate (mean βDrift = -0.03, 

t(17)  = -7.43, p = 9.7x10-7; Figure 1B), and an increase in the non decision time (mean βnd 

= 0.07, t(17)  = 5.32, p = 5.5x10-5) with increasing attentional load. 

 

By calculating the linear effect of load on pupil size across a moving average window 

of 160ms (see Methods), we observed a main effect of increased pupil diameter across 

both the tracking and probe epochs (βpupil > 0, pFDR < 0.01; light grey in Figure 1A depict 

significant epochs of time during the task; and in Figure S1A show the group average βpupil time series). We also observed a positive correlation between mean βpupil during 

the significant period (for simplicity we will refer to this value as βpupil) to the mean 

drift rate, mean boundary criteria and accuracy across all loads (Pearson9s rdrift = 0.8, p 

= 1.0x10-4; Figure 1C; racc = 0.68, p = 1.5x10-3, Figure S1C; r³ = 0.71, p = 9x10-4). The same 

relationships were not observed with non-decision time (Pearson9s rnd = -0.31, p = 0.19). 

Additionally, we analysed whether this effect was present both within and between 

subjects in a trial-by-trial manner. To this end, we created a logistic linear mixed model 

(Eq. 6) to test whether pupil diameter was a predictor of performance (i.e., correct or 

incorrect response), as we would expect that incorrect responses should relate to 

decreased pupil diameter in difficult trials. We used the average pupil diameter within 

each trial of Load 4 and 5 (to account for the ceiling effect of Load 2 and 3) as regressors 

and subject as a grouping variable. We found a statistically significant fixed effect of 

pupil diameter on performance within each trial (´ = 0.0127 ± 5x10-4; t(286)= 2.48; p = 

0.013). Furthermore, we analyzed the random effect coefficients, which are the 

dispersion of the regressor across the grouping variable from the fixed regressor (in 

this case there is one value per subject), to assess the role of average across task 

performance. We found that the random effect covaried with the average performance 

and drift rate of each subject (Accuracy: Pearson9s r = 0.73, p = 8x10-5 ; Drift: Pearson9s 

r = 0.73, p = 5x10-5) suggesting that trial by trial pupil diameter was a better predictor 

of performance (i.e., correct or incorrect) on subjects with higher average performance 

in comparison to subjects with lower performance across the task. In conclusion, these 

results suggest that attentional load manipulation and pupil dilation covaried with 

performance on this attentionally demanding task both within and between subjects. 

 

Network Integration Increases as a Function of Attentional Load 
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Based on previous studies, we hypothesized that an increase in attentional load 

should recruit a distributed functional network architecture5, heightening network 

integration2,12,34. To test this hypothesis, we implemented a hierarchical topological 

network analysis46–48 on the average time-resolved functional connectivity matrix 

calculated across the tracking period of the task. Our analysis identified a subnetwork 

of tightly inter-connected regions that were part of attentional, somatomotor, and 

cerebellar network (red in Figure 2) that increased its BOLD activity after the tracking 

onset (Figure 2F). The tightly integrated regions were diversely connected to a 

separate frontoparietal sub-module (blue in Figure 2) that was less active during the 

trial. Two remaining sub-modules (yellow and green in Figure 2) showed a negative 

BOLD response during the tracking period and were part of a diverse set of networks. 

Interestingly, 81% of the Frontoparietal network (FPN) and all the Default Mode 

Network (DMN) were found to be within this less active group (see Supplementary 

Table S2 for the complete list of regions and sub-module assignments).  

 

 

 

Figure 2: Hierarchical functional topology analysis of the brain during tracking across all loads. We 

observed two large-scale modules, and two meso-scale modules within each larger module (Module 

one [M1, red/blue] and Module two [M2, green/yellow], respectively): M1 corresponded to 

predominantly attentional and somatomotor network, and M2 to Frontoparietal (FPN) and Default 

Mode Network (DMN) among others (B and E). A) Forced directed plot representation of the average 

cluster across subjects. Edges higher than 0.15 are shown. Each color represents a unique sub module; 

B) A circle plot representing the resting state regions that were included within each sub module, with 

networks with > 30% of regions in each submodule shown in the plot. The diameter of the circles 

corresponds to the percentage of network regions that participated in that cluster. Connection width 

relates to average positive connection strength (functional connectivity), however only connections 

with r > 0.1 are shown; C) Connectivity matrix (Pearson9s r) between all pair of regions ordered by 
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module assignments – note the strong anti-correlation between the red and green/yellow sub-modules; 

D) Correlation between parametric load effect on large scale modularity (´Q value), and drift rate 

(Pearson9s r = 0.53; p = 0.022); E) Hierarchical analysis representation: QL, QM1 and QM2 represent the 

modularity value for each level (QL large scale, and QM1-M2 meso-scale level) and ** represents the 

probability of finding this value when running a null model (p = 0 for all three modularity values). The 

brain maps correspond to the cortical regions associated with each sub module; F) BOLD mean effect 

for each sub-cluster, each line represents the group average, and shaded areas are the standard error of 

the mean, x-axis is Repetition Time (TR) centered around tracking onset (TR = 0). DAN, dorsal attention; 

VN, visual; FPN, frontoparietal; SN, salience; CO, cingulo-opercular; VAN, ventral attention; SMm, 

somatomotor mouth; SMh, somatomotor hand; RSpN, retrosplenial; FTP, frontotemporal; DMN, 

default mode; AN, auditory; CPN, cinguloparietal; SubC, subcortex; Cer, Cerebellar. 

 

Contrary to expectations, we did not observe significant parametric topological 

change (i.e., modularity, Q) at the macroscopic level as a function of attentional load 

(p > 0.05 for all TRs, Figure S2A). However, when analysing the correlation between 

modularity and performance measures (i.e., accuracy, drift rate and pupil diameter), 

we observed that an increase in the large-scale modularity load effect (i.e., higher 

modularity with load, ́ QL) positively correlated with higher mean drift rate (Pearson9s 
r = 0.53; p = 0.022; Figure 2D), mean accuracy (Pearson9s r = 0.61; p = 0.007; 

Supplementary Figure S3A), but was independent from ´pupil (Pearson9s r = 0.43; p = 

0.073). These results suggested that the system reconfigured during tracking towards 

increasing modularity, which in turn affected the efficient encoding of the ongoing 

task during tracking and hence, the decision-making process during the task probe. 

 

Upon closer inspection of the data (Figure 2C), we observed a substantial number of 

nodes that were playing an integrative role during task performance, albeit at a finer 

resolution than the initial analysis suggested. We performed the modularity 

assignment within each large-scale module. The hierarchical analysis resulted in two 

pairs of sub-modules at the meso-scale level with a significant modularity (compared 

to 100 random graphs with preserved signed degree distribution; QM1 = 0.137, p = 0; 

QM2 = 0.137, p = 0; Figure 2E). Specifically, the red sub-module was found to selectively 

increase its participation coefficient (PC) at the meso-scale level (i.e., by increasing the 

connection weights to the blue submodule in comparison to intramodular 

connections; Eq. 5) as a function of increasing attentional load (´PC = 2.4x10-3, t(17) = 3.57; 

p = 0.002; Figure 3A). Additionally, the extent of integration in the red sub-module 

was positively correlated across subjects with ´pupil(Pearson r = 0.62, p = 0.006; Figure 

3B), drift rate (Pearson9s r = 0.66, p = 0.002; Figure 3C) and accuracy (r = 0.57, p = 0.012, 

Figure S3B). Importantly, these relationships were found to be specific to the red sub-

module (Blue: Pearson9s r = -0.02, p = 0.936; Yellow: Pearson9s r = -0.011, p = 0.965; 
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Green: Pearson9s r = -0.12, p = 0.617). 

 

Based on these results, we implemented a linear mixed model (Eq. 7), using the 

subjects9 average pupil response within each Load as a regressor and the average 

participation of the red sub module as the dependent variable, with grouping by 

subject. Using this approach, we observed a significant fixed effect of pupil diameter 

on PC (´ = 7.6x10-3 ± 3x10-3, t(70) = 2.60, p =  0.011). Furthermore, the random effect 

coefficients (i.e., the between subject variation of the regressor value) correlated 

positively with accuracy (Pearson9s r = 0.47, p = 0.048) and drift rate (Pearson9s r = 0.62, 
p = 0.005), suggesting that subjects with a strong relationship between red module 

integration and pupil diameter have better behavioural outcomes. We then correlated 

the red ´PC to the load effect on large scale modularity (´QL, Fig. 2D) and observed a 

significant positive correlation (Pearson9s r = 0.59, p = 0.009).  Finally, given that both 

of the topological parameters were correlated to drift rate and also with each other, 

we performed a partial correlation between drift rate and ´PC controlling by ´QL (r = 

0.51, p = 0.034), and the partial correlation between drift rate and ´QL controlling by 

´PC (r = 0.36, p = 0.145). This suggests that drift rate is correlated to the mesoscale 

integration of the red sub-module, but less so with increases in large scale modularity. 

Thus, although the macroscale network did not demonstrate increased integration per 

se, the relative amount of meso-scale integration within the red community was 

associated with increased performance (i.e., drift rate) and sympathetic arousal (i.e., 

pupil diameter), both between and within subjects. In this way, these results provide 

a direct relationship between the effect of attention load on pupillometry, drift rate, 

and a trade-off between large-scale segregation and meso-scale network integration.  

 

Figure 3: Relationships between load effect on participation, drift rate and pupil load effect. A) 

Average participation coefficient (PC) for each load, for the red module, during tracking. Each color 

represents the corresponding tracking load (from 2 to 5). Grey lines correspond to each subject; B-C) A 
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regression parameter (´PC) was calculated for each subject and then correlated to ´pupil (B; r = 0.62; p = 

0.006) and Drift rate (C; r = 0.66; p = 2.4x10-3). Each circle corresponds to the mean value per subject. 

 

Network meso-scale integration and adrenergic receptor density 

Given the relationship between mental effort, noradrenergic tone and pupil 

dilation5,18,26,49,50, the results of our analyses strongly suggested that the adrenergic 

system is involved in the meso-scale network reconfiguration observed during 

attentional tracking. The locus coeruleus can impact the cortical system in multiple 

ways, both through direct release of noradrenaline onto cortical neurons, and through 

the modulation of subcortical regions (such as the thalamic nuclei) with concurrent 

impact on the cortical dynamic. Importantly, in either case, the modulation is 

dependent on the noradrenergic receptors subtypes, which have different sensitivities 

to noradrenaline13,51,  variable expression in the cerebral cortex52,537,58 and also belong 

to distinct classes (i.e., ³1, ³2, and � receptors). In particular, the ³2a has been 

previously associated with working memory, adaptive gain and effective 

attention13,51,54. To gain a deeper insight into the role of ³2a receptors in mesoscale 

integration during attentional tracking, we extracted the regional expression of the 

ADRA2A gene (which codes for  ³2a adrenoceptors) from the Allen Human Brain 

Atlas repository55,56, and compared the cortical regional expression of this gene with 

the brain activity patterns identified in our network analysis (Figure 2E).  

 

Based on the relationships between pupil diameter (Figure 1), topological signatures 

(Figure 2) and task performance (Figure 3), and the known link between these 

variables and engagement of the noradrenergic system, we hypothesized that the 

different modules and sub-modules that we observed should have different densities 

of neuromodulatory receptors to account for the differential patterns across the 

network. To test this hypothesis, we conducted a two-tailed t-test in each hierarchical 

level comparing the density of the ADRA2A expression between modules. To account 

for spatial autocorrelation, we generated 5,000 surrogates maps with the same spatial 

autocorrelation of the ADRA2A map, calculated a t-statistic for each surrogate and the 

evaluated the probability of finding the observed t-statistic against the null 

distribution57,58. We indeed observed significant differences between modules at the 

meso-scale level. Specifically, we found significant differences between the blue and 

yellow sub-modules (t(194) = 3.82, p =  2x10-4 , pSA = 0.02) and the differences between 

green and yellow sub-modules (t(177) = -4.47, p =  1.3x10-5 , pSA = 0.004), while the other 

differences did not survive the spatial autocorrelation test (green-red: t(152) = 0.47; p =  

0.635, pSA = 0.590; yellow-red: t(156) = -3.02, p =  0.003, pSA = 0.121; green-blue: t(173) = -0.68, 
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p =  0.496, pSA = 0.324; red-blue: t(135) = -1.30, p = 0.195 , pSA = 0.237; Figure S5A).  

 

The modulatory effects of noradrenaline have been argued to depend directly on 

ongoing glutamatergic activity in target regions59,60. Moreover, it has been shown that 

the main source of the BOLD activity is the neurovascular response caused by 

pyramidal neurons containing Cyclo-oxygenase-261. Importantly, this evoked 

response following noradrenergic activation is dependent on the ongoing activity of 

the pyramidal neurons62. Thus, the role of noradrenaline on brain dynamics and BOLD 

response depends critically on ongoing glutamatergic activity, which putatively 

represents pooled neural spiking activity63. Given the differential task-related BOLD 

activity of the different sub-modules (i.e., Figure 2F, Figure S4and Figure 4A), and the 

observed regional variability and specificity of integration across the network, we 

hypothesized that network-level integration would be explained by the combined 

effect of ongoing BOLD activity and the distribution of the adrenergic receptor 

expression. Finally, we predicted that the role of the ³2a receptor atlas in shaping 
brain activity and topology should be dependent of the subjects9 pupil diameter, such 

that higher ´pupil should rely on a stronger relationship between network topology 

and ³2a receptor expression. 

 

 
Figure 4: Receptor density analysis. A) Spatial maps of ³2a density (left), BOLD parametric effect 

(middle) and Participation Coefficient parametric effect (right);  8~9 represents the linear model tested 

in the analysis; B) Scatter plot depicting the relationship between ´Pupil and the random effect of ³2a (RE 
³2a; r = 0.54, p = 0.02); C) Scatter plot depicting the relationship between the random effect of ³2a and 

drift rate (r = 0.70, p = 0.001) – the colors of the dots represent the pSA value from the linear effect of ³2a 
on ´BOLD within each subject and the marked circles correspond to subjects with pSA < 0.05; D) Pearson 

correlation of the group average BOLD parametric effect (´BOLD) and participation coefficient (´PC; r = 

0.26, p = 17 x 10-7). Colors represent each module assignment as in Figure 2.  
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To evaluate between these different hypotheses, we created three linear mixed models 

in order to better disentangle the different plausible interactions between the variables 

(see Methods), while still controlling for between subject9s variability as grouping 

variable. Additionally, to control for spatial autocorrelation, we used 5,000 surrogate 

maps that maintained the spatial autocorrelation of the ³2a while permuting the 
density values. In the first model (Eq. 8), we tested the hypothesis that the parametric 

BOLD effect (i.e., ´BOLD, Figure S4) is shaped by the distribution of ³2a receptors. 

We found significant evidence for a positive fixed effect of ³2a on ´BOLD activity, 

however this effect did not survive correction for spatial autocorrelation (´³2a = 0.037± 

0.016; t(5992)= 2.29; p = 0.022; pSA = 0.106; Table S2). Furthermore, we correlated the 

random effect coefficients (from the original and the surrogate maps) to  both ́ PC and 
´pupil, and observed a significant positive correlation between the participation 
coefficient and both pupils (Pearson9s r = 0.54, p = 0.02, pSA = 0.036; Figure 4B) and mean 
drift rate (Pearson9s r = 0.70, p = 0.001, pSA = 0.001; Figure 4C). This result shows the 
manner in which pupil diameter linearly shapes ´BOLD cortical map through the 
engagement of the ³2a receptor expression map. Importantly, although the fixed effect 
of ³2a on ´BOLD didn9t survive the spatial autocorrelation correction, the linear 
correlation of this effect with both ´pupil and drift rate (between subjects) did survive 

the correction. 
 

To further analyze the between subject differences in the role of ³2a receptor atlas in 
shaping the ´BOLD map, we ran a separate linear model within each subject with ³2a 
as a regressor and ´BOLD of each region as the dependent variable (while also 

correcting for spatial autocorrelation using 5,000 surrogate maps). As can be seen in 
Figure 4B-C, we observed a dependency between the pSA value, ´pupil and drift rate, 
in which the ´pupil and drift rate subject effects survived the spatial autocorrelation 
correction (pSA < 0.05; marked circles in Fig. 4B-C). Despite these results, there was no 

significant effect of ³2a on ´PC (Eq. 9; ´ ³2a = 0.001 ± 0.003; t(5992)= -0.51; p = 0.6), and no 

significant Pearson9s correlation were found between the random effects and both 

´pupil or drift rate (r = -0.24, p = 0.33 and r = -0.23, p = 0.341, respectively). However, we 

did find a significant effect of ´BOLD on ´PC (Eq. 10; ´ = 0.0259 ± 0.006; t(5992) = 3.96; p 
= 7.55 x 10-5). Together these results propose a closer link between pupil diameter, 

ascending neuromodulation and the cortical neuromodulation dependent on ³2a 
receptor density.  
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Finally, we observed a differential relationship between ´PC and ´BOLD depending 

on the large-scale module to which the regions were assigned (Figure 4D). We 

expanded the former result by measuring, within each subject, the Pearson correlation 

between the ´BOLD and ´PC separately in each module (M1 being the modules assigned 

as red and blue, and M2 assigned as yellow and green; Figure 2). The results 

demonstrated a significant difference between modules, meaning that the M1has a 

higher correlation with ´PC, in comparison to M2 (t(17) = -12.99, p = 2.93 x 10-10). These 

results provided evidence that the adrenergic receptor distribution of ³2a shapes the 

´BOLD activation map in proportion to the subject's pupil diameter. Additionally, 

´BOLD activation map modulates (i.e., was related to) meso-scale integration, and 

meso-scale integration is related to pupil diameter. Based on these results, we 

hypothesise that the adrenergic system shapes the BOLD activity, which in turns 

shapes the topology of the network towards integration. However, future work is 

required in order to test this hypothesis more directly, for instance by combining 

optogenetic approaches with neuronal recordings in awake animals.  

 

Discussion 

Here, we leveraged a unique dataset to simultaneously track pupil diameter and 

network topology during an attentional demanding task with increasing attentional 

load. Our results provide integrative evidence that links the ascending arousal system 

to the mesoscale topological signature of the functional brain network during the 

processing of an attentionally demanding cognitive task. Pupil diameter tracked with 

attentional load (Figure 1A) and was related to the speed of information accumulation 

as estimated by a drift diffusion model (Figure 1B-C). Additionally, we observed 

concurrent pupil dilations and adaptive mesoscale parametric topological changes as 

a function of task demands (Figures 2 and 3). Finally, we found evidence that 

topological reconfiguration was dependent on the regional activity and the genetic 

expression of the adrenergic receptors in the brain (Figure 4). Together, these results 

provide evidence for the manner in which the ascending arousal noradrenergic 

system reconfigures brain network topology so as to promote attentional performance 

according to task demands. 

 

The relationship between performance and pupil diameter is consistent with the 

predictions of Adaptive Gain Theory17. Within this framework, the locus coeruleus is 

proposed to adaptively alter its activity according to the demands imposed on the 

system. More specifically, the theory proposes that performance follows an inverted 

U-shaped relationship with arousal, such that maximal operational flexibility in the 
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noradrenergic system is associated with optimal task performance13,54. We observed 

that load-related increases in pupil diameter, presumably due to increased activity in 

the ascending arousal system17,18,64, relates closely with the activity and topology of the 

broader brain network (Figure 2), in a manner that is reflective of effective task 

performance (Figure 3). Similar effects have been described in animal models after a 

chemogenetic activation of the locus coeruleus, which strongly alters the large-scale 

network structure towards large-scale integration, specifically in regions with 

heightened adrenergic receptor expression31. How these changes, which are likely 

related to the modulation of the neural gain that mediates effective connections 

between distributed regions of the brain15,33, are traded-off against requirements for 

specificity and flexibility remains an important open question for future research.  

 

The addition of attentional load was found to alter the integration of meso-scale sub-

modules, but not the higher-level modular organization. This topological result is 

somewhat more targeted than those described in previous work2,34,65. While these 

differences may be related to disparities in the way that the data were analyzed, the 

results of our study do demonstrate that alterations in the cerebral network topology 

at a relatively local (i.e., sub-modular) level are crucial for effective task performance66. 

Additionally, our results replicate and expand upon a previous study67, in which the 

authors found that short term practice on an attentional task was related to increased 

coupling between attentional networks and segregation among task-negative (DMN) 

and frontoparietal network (FPN). Our study replicates the graph theoretical results 

of that study, while also directly relating the findings to the architecture of the 

ascending neuromodulatory system. One potential explanation for these results 

comes from animal studies, in which rapid changes in pupil diameter have been 

compared to changes in neural population activity at the microscale18,49,50. These 

studies suggest that the ascending arousal system may be able to alter the topology of 

the network in a hierarchical manner that is commensurate with the spatiotemporal 

scale of the arousal systems9 capacity 2. Future work that integrates results across 

spatiotemporal scales is required to appropriately adjudicate the implications of this 

hypothesis. 

 

Importantly, our approach is not without limitations. For one, the participation 

measures used in our linear mixed model were estimated at the meso-scale level, and 

hence derived from different modular partitions. Furthermore, the specificity of the 

pupillary response as a correlate of LC activity is currently under active debate. For 

instance, in addition to the strong empirical links between the noradrenergic system 
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and pupil dilation, there is also evidence that the pupil is dilated in concert with 

activity in the basal forebrain cholinergic system68, however it bears mention that both 

peripheral69 and central cholinergic tone21 is associated with pupillary constriction. 

There are more plausible physiological routes for the serotonergic system to dilate the 

pupil (via the excitation of the intermediolateral cell column), and in keeping with 

this, there is evidence that the serotonergic system is linked with pupil dilation30. 

Nevertheless, it is important to take into account that the neuromodulatory arousal 

system is replete with complex interconnections70–73. In addition, based on the current 

lack of a specific mechanism involving pupillary changes through the cholinergic 

system, it is highly probable that those correlations are due to indirect modulation of 

pupillary responses (e.g., via indirect neuromodulation mediated by the LC system). 

On another hand, we acknowledge the limitations of the atlas receptor analysis and 

the linear model used in our study. More specific neurobiological properties of the 

receptor distributions are needed to make better inferences, and hence provide more 

accurate answers of their role in brain dynamics. For instance, it would be ideal to 

compare receptor distributions that incorporated layer-specific expression, as there 

are well-known cellular and circuit differences across layers in the cerebral cortex74,75. 

Importantly, taking into consideration the strong correlation between different genetic 

expression maps76, it is possible that the current correlation between ADRA2A 

expression and brain activity is a false positive caused by another neuroanatomical 

gradient strongly correlated to the ADRA2A. Therefore, future work studying the 

interaction between genetic expression of the neuromodulatory receptors, pupil 

diameter and brain activity is needed. In spite of this limitation, we believe in the 

importance of integrating pupil diameter and receptor distribution in the analysis as 

the relationships between noradrenergic tone, brain activity and network topology 

will help us to disentangle the mechanistic steps connecting the locus coeruleus 

system to both pupil diameter and brain dynamics. 

 

In summary, we provide evidence linking mesoscale topological network integration, 

hierarchical organization and BOLD dynamics in the human brain that increases in 

attentional load, thus providing further mechanistic clarity over the processes that 

underpin the Adaptive Gain Model of noradrenergic function in the central nervous 

system. 

 

Methods 

Participants 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2020.12.04.412551doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.412551
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

18 right-handed individuals (age 19–26 years; 5 male) were included in this study. 

Exclusion criteria included: standard contraindications for MRI; neurological 

disorders; mental disorders or drug abuse. All participants gave written informed 

consent before the experiment. 

 

Parametric Motion Tracking Task 

Each trial of the task involved the same basic pattern (Figure 1A): the task begins with 

a display presenting the objects (i.e., blue colored disks); after a 2.5 s delay, a subset of 

the disks turns red for another 2.5 seconds; all of the disks then return to blue (2.5 

seconds) before they started moving randomly inside the tracking area. The 

participants9 job is to track the 8target9 dots on the screen while visually fixating at the 
cross located at the center of the screen. After a tracking period of ~11 seconds, one of 

the disks is highlighted in green (a 8probe9) and the subject is then asked to respond, 
as quickly as possible, as to whether the green probe object was one of the original 

target objects. The number of objects that subjects were required to attend to across 

the tracking period varied across trials. There were five trial types: passive viewing 

(PV), in which no target is assigned; and four load conditions, in which two to five 

targets were assigned for tracking. We operationalized attentional load as the linear 

effect of increasing task difficulty (i.e., the number of targets to be tracked). 

 

The experiment was conducted using a blocked design, in which each block included: 

instruction (1s); fixation (0.3s, present throughout the rest of trial); object presentation 

(all objects were blue; 2.5s); target assignment (i.e., the targets changed color from blue 

to red; 2.5s); object representation (objects back to the original blue color; 2.5s); object 

movement/attentional tracking (moving blue dots; 11s); object movement cessation 

(0.5s); and a final probe (color change to green and response; 2.5 s). The total duration 

of each trial was 22.8s. Each condition was repeated 4 times in one fMRI-run, which 

also included 4 separate fixation periods of 11s each between five consecutive trials. 

All participants completed 4 separate runs of the experiment, each of which comprised 

267 volumes. The order of the conditions was pseudo-random, such that the different 

conditions were grouped in sub-runs of triplets: PV, pseudo-random blocks of Loads 

2 through 5 and a fixation trial. All objects were identical during the tracking interval 

and standard object colors were isoluminant (to minimize incidental pupillary 

responses during the task). 

 

Behavior and EZ-Diffusion Model 
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The EZ-diffusion model was used to interpret the performance measures from the 

task45,77. This model considers the mean RT of correct trials, SD-RT across correct trials, 

and mean accuracy across the task and computes from these a value for drift rate (v, 

equation 1), boundary separation (a, equation 2) , and non-decision time (equation 3) 

– the three main parameters for the drift-diffusion model77,78.  

 

ÿ = Ā��ÿ (ÿ 2 12) ∙  0.1 ∙  √�Ā� ( ÿ1 2 ÿ) ∙  [ÿ2  ∙  �Ā� ( ÿ1 2 ÿ) 2 ÿ ∙  �Ā� ( ÿ1 2 ÿ) + ÿ 2 12]�ā�4
 

 

� =  0.01 ∙ �Ā� ( ÿ1 2 ÿ)  ÿ  

 ��ÿ = �ā� 2  �2 × ÿ × (1 2 �2100∙�∙�)(1 + �2100∙�∙�) 

 

In which P is the average performance (range between 0 to 1); sign is an operator that 

will be -1 if P < 0.5 or +1 if P > 0.5; VRT is the standard deviation of reaction time (in 

seconds); and MRT is the mean reaction time (in seconds).  

 

Pupillometry 

Fluctuations in pupil diameter of the left eye were collected using an MR-compatible 

coil-mounted infrared EyeTracking system (NNL EyeTracking camera, 

NordicNeuroLab, Bergen, Norway), at a sampling rate of 60 Hz and recorded using 

the iView X Software (SensoMotoric Instruments, SMI GmbH, Germany). Blinks, 

artifacts and outliers were removed and linearly interpolated79. High frequency noise 

was smoothed using a 2nd order 2.5 Hz low-pass Butterworth filter. To obtain the pupil 

diameter average profile for each level of attentional load (Fig. 1B), data from each 

participant was normalized across each task block (corresponding to the five 

consecutive trials between fixations). This allowed us to correct for low frequency 

baseline changes without eliminating the load effect and baseline differences due to 

load manipulations80,81. Following this, a linear regression was performed in each time 

point using the task load as regressor and resulting in a 8load effect9 time series for 
each subject.  

 

MRI Data 

Imaging data were collected on a Philips Achieva 3 Tesla MR-scanner, equipped with 

an 8-channel Philips SENSE head coil (Philips Medical Systems, Best, Netherlands) at 

the Interventional Centre, Oslo University Hospital, Norway.  Functional data were 

(1) 

(2) 

 

 

(3) 
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collected using a BOLD-sensitive T2* weighted echo-planar imaging sequence (36 

slices, no gap; repetition time (TR), 2,2s; echo time (TE), 30 ms; flip-angle, 80°; voxel 

size, 3x3x3; field of view (FOV), 240x240 mm; interleaved acquisition). Anatomical T1-

weighted images consisting of 180 sagittal oriented slices were obtained using a turbo 

field echo pulse sequence (TR, 6.7 ms; TE, 3.1 ms; flip angle 8°; voxel size 1x1.2x1.2 

mm; FOV, 256x256 mm).  

 

fMRI Data Preprocessing 

After realignment (using FSL9s MCFLIRT), we used FEAT to unwarp the EPI images 
in the y-direction with a 10% signal loss threshold and an effective echo spacing of 

0.333. Following noise-cleaning with FIX (custom training set for scanner, threshold 

20, included regression of estimated motion parameters), the un-warped EPI images 

were then smoothed at 6 mm FWHM, and non-linearly co-registered with the 

anatomical T1 to 2 mm isotropic MNI space. Temporal artifacts were identified in each 

dataset by calculating framewise displacement (FD) from the derivatives of the six 

rigid-body realignment parameters estimated during standard volume realignment82, 

as well as the root mean square change in BOLD signal from volume to volume 

(DVARS). Frames associated with FD > 0.25mm or DVARS > 2.5% were identified, 

however as no participants were identified with greater than 10% of the resting time 

points exceeding these values, no trials were excluded from further analysis. There 

were no differences in head motion parameters between the four sessions (p > 0.500). 

Following artifact detection, nuisance covariates associated with the 6 linear head 

movement parameters (and their temporal derivatives), DVARS, physiological 

regressors (created using the RETROICOR method) and anatomical masks from the 

CSF and deep cerebral WM were regressed from the data using the CompCor 

strategy83. Finally, in keeping with previous time-resolved connectivity experiments84, 

a temporal band pass filter (0.0071 < f < 0.125 Hz) was applied to the data. 

 

Brain Parcellation 

Following pre-processing, the mean time series was extracted from 375 predefined 

regions-of-interest (ROI). To ensure whole-brain coverage, we extracted: 333 cortical 

parcels (161 and 162 regions from the left and right hemispheres, respectively) using 

the Gordon atlas85, 14 subcortical regions from Harvard-Oxford subcortical atlas 

(bilateral thalamus, caudate, putamen, ventral striatum, globus pallidus, amygdala 

and hippocampus; http://fsl.fmrib.ox.ac.uk/), and 28 cerebellar regions from the SUIT 

atlas86 for each participant in the study. 
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Time-Resolved Functional Connectivity and Network Analysis 

Following pre-processing, the mean time series was extracted from 375 predefined 

regions-of-interest (ROI). To estimate functional connectivity between the 375 ROIs, 

we used the Jack-knife correlation approach (JC)87. Briefly, this approach estimates the 

static correlations between each pair of regions, and then recalculates the correlation 

between each pair after systematically removing each temporal 9slice9 of data (i.e., each 

TR). By subtracting the jack-knifed correlation matrix from the original 9static9 matrix, 

the difference in connectivity at each slice from the static connectivity value can be 

used as an estimate of time-resolved functional connectivity between each pair of 

regions at each TR in a way that does not require windowing.  

 

Community Structure 

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT)88 was 

used in combination with the JC to estimate both time-averaged and time-resolved 

community structure. The Louvain algorithm iteratively maximizes the modularity 

statistic, Q, for different community assignments until the maximum possible score of 

Q has been obtained (equation 1).  

 Ā� = 1�+ ∑ (ĀÿĀ+ 2 �ÿĀ+)��ÿ�ĀÿĀ 2 1�++�2 ∑ (ĀÿĀ2 2 �ÿĀ2)��ÿ�ĀÿĀ   (4) 

 

Equation 1 – Louvain modularity algorithm, where v is the total weight of the network (sum of all 

negative and positive connections), wij is the weighted and signed connection between regions i and j, 

eij is the strength of a connection divided by the total weight of the network, and δMiMj is set to 1 when 

regions are in the same community and 0 otherwise. 8+9 and 8–8 superscripts denote all positive and 
negative connections, respectively.  

 

For each subject, we calculated the mean adjacency matrix from 1 TR before tracking 

until the end of the tracking period. Afterwards, a consensus partition was estimated 

across subjects. Finally, to identify multi-level structure in our data, we repeated the 

modularity analysis for each of the modules identified in the first step46,47. With this 

final module assignment, we were afforded an estimate of the time resolved, multi-

level modularity (QT) within each temporal window for each participant in the study.  

 

Regional Integration 

Based on the group consensus community assignments, we estimated between-

module connectivity using the participation coefficient, BT, which quantifies the extent 

to which a region connects across all modules (i.e. between-module strength; equation 

2). In our experiment, we used two separate community assignments, one for each of 
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the modularity levels. In this manner we measure: 1) how the first hierarchical level 

(i.e., large scale) topology changed during tracking across the complete brain; and 2) 

how the topology of the sub-modules changed across the task. These values were 

calculated in each time point using the time-resolved adjacency matrix across each 

load condition.  

 

             �ÿ� = 1 2 ∑ (�ÿ���ÿ� )2���=1   (5) 

 

Equation 2 - Participation coefficient BiT, where κisT is the strength of the positive connections of region 

i to regions in module s at time T, and κiT is the sum of strengths of all positive connections of region i 

at time T. The participation coefficient of a region is therefore close to 1 if its connections are uniformly 

distributed among all the modules and 0 if all of its links are within its own module. 

 

Neurotransmitter Receptor Mapping 

To investigate the potential correlates of meso-scale integration, we interrogated the 

neurotransmitter receptor signature of each region of the brain. We used the Allen 

Brain Atlas micro-array atlas dataset (http://human.brain-map.org/)55 to identify the 

regional signature of genetic expression of the ³2a subtype of the adrenergic receptor 
(ADRA2A). This receptor has been a priori related to cognitive function and attention89, 

and is one of the most abundant adrenergic subtypes expressed in the cerebral cortex90. 

This atlas contains postmortem samples of six donors that underwent microarray 

transcriptional characterization. The spatial map of ³2a mRNA expression was 
obtained in volumetric 2mm isotropic MNI space, following improved nonlinear 

registration and whole-brain prediction using variogram modeling91. We used this 

data instead of the native sample-wise values in the AHBA database to prevent bias 

that could occur due to spatial inhomogeneity of the sampled locations. We projected 

the volumetric ³2a expression data onto the Gordon atlas with linear interpolation 
and calculated the mean value within each parcel using custom MATLAB codes. 

 

Statistical analysis 

The Relationship Between Sympathetic Tone and Attentional Processing 

We analysed the between subjects9 effect of load on the behavioural, pupillometric 
and fMRI related variables by performing a two-level linear model analysis. In the 

first level, we used attentional load as a regressor (2 to 5) and -in independent models- 

the mean accuracy, reaction time, standard deviation of reaction time, drift rate, 

boundary criteria and non-decision time as dependent variables (i.e., 4 values per 

subject). From this, we ran a two-tailed t-test on the statistical effects (i.e., the ´ value 
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from the regression, one for each subject; N = 18). Similarly, to calculate the load effect 

on pupil diameter, we calculated the average pupil diameter on each load condition 

within each subject. Then, we performed a first-level analysis in which we ran a linear 

regression in each time frame (1600 frames in total, corresponding to 26.6 seconds). 

This procedure resulted in one ´ timeseries (i.e., the statistical load effect on pupil 

diameter) for each subject across the trial (Figure S1A). After this, we performed a 

right tailed t-test in each frame across subjects (n = 18 in each frame) to find the periods 

of time where the ´ value where higher than zero. Finally, we corrected by false 

discovery rate (FDR)92 for multiple testing, which resulted in a period of time where 

the load effect was higher than 0 (light grey area in Figure 1A). The mean ´ values 

during this section was calculated in each subject and defined as 8´pupil9. Finally, 
following the same pipeline, we calculated the effect of attentional load on the brain 

related signals (i.e., BOLD, participation coefficient [PC] and modularity [Q]). The 

effect of load on BOLD was calculated running a separate linear model in each subject 

and region within each TR (18 subjects; 375 regions; 10 TRs; 4 load condition), resulting 

in a matrix of ´ values of 18 x 375 x 10.  

 

To evaluate the statistical effect of pupil diameter on accuracy, we performed a logistic 

linear mixed effects model. We used the mean pupil diameter of the significant time 

period (Figure 1A) of the high load trials (Load 4 and 5), and the accuracy (i.e., correct 

or incorrect) as the predictor variable of each trial, grouping by subject as the random 

effect. The statistical model is described in the following equation:  

 

Accuracy ~ Pupil   + 1 + (Pupil   + 1|Subject)      (6) 

 

Network meso-scale integration and adrenergic receptor density 

To evaluate whether the modularity of the network we observed was higher than 

chance, we generated 100 random networks in each hierarchical level (300 random 

networks in total), with a preserved degree distribution (using the MATLAB 

randmio_und_signed function from the Brain connectivity toolbox88). We calculated the 

modularity value of each random network and used the resultant values to populate 

a null distribution (Figure 2D). 

 

We analyzed the statistical effect of pupil diameter on the participation coefficient 

both within and between subjects by performing a linear mixed model using the time 

varying PC of the red sub-module (Figure 3A) of each load as a dependent variable 
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(N=72), and the respective pupil diameter as a regressor, with grouping by subject. 

The statistical model is described in the following equation: 

 

PC ~ Pupil   + 1 + (Pupil   + 1|Subject)               (7) 

 

Network meso-scale integration and adrenergic receptor density 

Expression of brain genetic atlas vary smoothly across the surface and thus is 

associated with non-trivial spatial autocorrelation that in turn violates the 

assumption of independence between samples57,58,93. To account for the spatial 

autocorrelation in these brain maps, we used spatial autocorrelation null maps 

as implemented in Brain Surrogate Maps with Autocorrelated Spatial 

Heterogeneity (BrainSMASH) python toolbox57. A geodesic distance matrix of 

the atlas parcels using the surface of the Gordon atlas was obtained to build the 

surrogates using BrainSMASH functions. We generated 5,000 null maps which 

were used to generate null distribution of the different statistics corrected by 

spatial autocorrelation. 

 

We measure the statistical difference in the receptor density between sub-modules by 

a two-tailed t-test between each pair of modules. The same procedure was performed 

using the surrogate maps to generate a null distribution of t-statistics. To evaluate the 

effect of the density of each adrenergic receptor on the neural activity in the attentional 

task, we built a linear mixed model aimed at predicting regional differences in BOLD 

activity and participation coefficient. We created a model using the receptor density 

atlas of ³2a receptor to predict parametric BOLD activity (i.e., linear increase of BOLD 

activity with task load) during tracking (Eq. 8). To evaluate the relationship between 

BOLD activity, adrenergic receptor expression and changes in participation coefficient 

as a function of attentional load, we tested two models: one using the adrenergic 

receptor density as independent factor (Eq. 9); and another using the parametric 

BOLD effect as an independent factor (Eq. 10). Additionally, we assessed the across-

subject variability using the subjects ID as grouping variable in order to evaluate the 

random effects on the independent factor. We corrected the spatial autocorrelation by 

running the same model using 5,000 surrogate maps. Then we used the fixed effect 

null distribution to calculate the pSA (i.e., the probability of finding the fixed effect 

within the 95th percentile of the null distribution). The deterministic part of the model 

is expressed in the following equations94:  

    

´BOLD ~ ³2a   + 1 + (³2a   + 1|Subject) (8) 
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´PC ~ ³2a   + 1 + (³2a   + 1|Subject)             (9) 

  ´PC ~ BOLD   + 1 + (BOLD   + 1|Subject)    (10) 

 

Where PC is the parametric effect of meso-scale participation coefficient (i.e., ´PC), 
BOLD is the parametric effect of load on BOLD activity during tracking for each 

region, and ³2a are the regional densities of the respective adrenergic receptor atlas. 

We then correlated the random effects parameters to pupil diameter responses and 

behaviour and then compared these with the Pearson9s correlation of the null 
distribution using the random effect of the surrogate maps. Finally, we performed a 

linear model within each subject with ³2a as a regressor and ´BOLD as dependent 
variable. Again, the statistical effect (i.e., ´ value) was compared against the null 
distribution when performing the regression using the surrogate maps (figure 4B-C).  

 

Data and code availability 

The anonymized preprocessed fMRI and pupillometry data can be found at 

https://figshare.com/articles/dataset/MOT_data_mat/13244504. The ADRA2A 

expression atlas can be downloaded from 

http://www.meduniwien.ac.at/neuroimaging/mRNA.html. All analysis of the fMRI 

and pupil diameter data were performed on MATLAB 2020a. The surrogate maps of 

the ADRA2A atlas were generated on python. Documented code for reproducing the 

analyses is provided in https://github.com/gabwainstein/MOT. 
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