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Abstract

Previous research has shown that the autonomic nervous system provides essential
constraints over ongoing cognitive function. However, there is currently a relative
lack of direct empirical evidence for how this interaction manifests in the brain at the
macro-scale level. Here, we examine the role of ascending arousal and attentional load
on large-scale network dynamics by combining pupillometry, functional MRI and
graph theoretical analysis to analyze data from a visual motion-tracking task with a
parametric load manipulation. We found that attentional load effects were observable
in measures of pupil diameter and in a set of brain regions that parametrically
modulated their BOLD activity and meso-scale network-level integration. In addition,
the regional patterns of network reconfiguration were correlated with the spatial
distribution of the a2a adrenergic receptor. Our results further solidify the
relationship between ascending noradrenergic activity, large-scale network

integration, and cognitive task performance.

Author Summary

In our daily lives, it is usual to encounter highly demanding cognitive tasks. They have been
traditionally regarded as challenges that are solved mainly through cerebral activity,
specifically via information-processing steps carried by neurons in the cerebral cortex. Activity
in cortical networks thus constitutes a key factor for improving our understanding cognitive
processes. However, recent evidence has shown that evolutionary older players in the central
nervous system, such as brainstem’s ascending modulatory systems, might play an equally
important role in diverse cognitive mechanisms. Our article examines the role of the ascending
arousal system on large-scale network dynamics by combining pupillometry, functional MRI

and graph theoretical analysis.
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Introduction

Cognitive processes emerge from the dynamic interplay between diverse mesoscopic
brain systems 2. Thus, the neural activity supporting cognition does not exist in a
vacuum, but instead is deeply embedded within the ongoing dynamics of the
physiological networks of the body?. In particular, the neural processes underlying
cognition are shaped and constrained by the ascending arousal system, whose activity
acts to facilitate the integration between internal states and external contingencies*.
Timely and selective interactions between the ascending arousal system and the
network-level configuration of the brain are thus likely to represent crucial constraints
on cognitive and attentional processes. Yet, despite these links, we currently have a
relatively poor understanding of how the ascending arousal system helps the brain as
a whole to functionally reconfigure during cognitive processes, such as attention, in

order to facilitate effective cognitive performance.

Recent evidence has linked higher-order cognitive functions in the brain to the
intersection between whole-brain functional network architecture and the autonomic
arousal system?>$. Central to these relationships is the unique neuroanatomy of the
ascending noradrenergic system. For instance, the pontine locus coeruleus, which is a
major hub of the ascending arousal system, sends widespread projections to the rest
of the brain’. Upon contact, adrenergic axons release noradrenaline, which acts as a
ligand on three types of post- and pre-synaptic adrenergic receptors (i.e., al, a2 and
B). The functional effects of each of these receptors depend on their differential
sensitivities to noradrenaline (affinities for the ligand differ across receptors: a2 > al
> ) and intracellular cascades, as well as their neuronal and regional distributions®'4.
By modulating the excitability of targeted regions, the locus coeruleus can effectively
coordinate neural dynamics across large portions of the cerebral cortex!>'e. However,
it is challenging to non-invasively track the engagement of the locus coeruleus during

whole-brain neuroimaging and cognitive task performance.

Fortunately, it has been widely shown that the pupil diameter directly responds to
changes in the activity of the locus coeruleus, and thus serves as an indirect, non-
invasive measure of the noradrenergic system!”18.Specifically pupil diameter has been
shown to indirectly monitor the neuromodulatory influences of the ascending arousal
system on a variety of different brain regions>1°2l . Moreover, noradrenergic-
mediated dilations in pupil diameter have been shown to effectively track the
allocation of attentional resources®?, in addition to both physical and mentally

effortful processes®? . Fast, phasic changes in pupil diameter have also been shown
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to directly relate to changes in the activity of the locus coeruleus'®?25, While there is
some evidence that pupil diameter covaries with other subcortical systems, such as
the cholinergic? and serotoninergic system®, the physiological mechanism for these
effects is more opaque, and there is also clear causal evidence linking stimulation of
the locus coeruleus to dilation of the pupil3!. Despite these insights, several questions
remain unanswered regarding how these processes are related to the complex
architecture of the brain®. For instance, the processes by which the ascending arousal
system modulates the functional dynamics of brain networks to facilitate attention,
decision making and optimal behavioural performance have only begun to be

explored3!3-%,

To examine these relationships in more detail, participants performed a motion-
tracking task (top panel of Figure 1A) involving four levels of increasing attentional
load, which was modulated by manipulating the number of items required to covertly
attend to over an 11s tracking period. Specifically, subjects were instructed to covertly
track the movement of several pre-identified targets (two to five) in a field of non-
target stimuli (ten in total, including targets; see Figure 1). To investigate the network
topological signatures of performing this task, we collected concurrent BOLD fMRI
and pupillometry data. We hypothesized that, if increasing mental effort led to the
reconfiguration of large-scale network architecture via the ascending arousal system,
then the number of items required to be tracked over time (i.e., the attentional load)
should relate to: i) increased pupil diameter; ii) heightened BOLD activity within
attentional networks; and iii) augmented topological integration. Also, we predicted
that individual differences in pupil diameter should track individual differences in
effective attentional performance and decision processes®-. Finally, we tested if the
regional patterns of network configuration were predicted by the distribution of a
predefined adrenergic receptor density atlas®3%%  Our results confirm these
predictions, and hence provide a mechanistic link between network topology,

ascending noradrenergic arousal and attentional load.
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Figure 1: Effect of task difficulty on pupil diameter. A) Group average (z-score) pupil diameter time
series for each Load condition. Colors represent passive viewing (PV) in blue, and Loads 2 to 5 in green,
orange, red and black, respectively. The shaded area represents the standard error of the mean. We
observed an average increase in pupil diameter, during tracking, with each Load condition. The light
grey area represents timepoints with significant parametric effect (Bpupi > 0; FDR corrected at p < 0.01).
Dotted lines represent the onset of each trial event (showed in the top part of the Figure). The red dotted
line (Time = 0) is the tracking onset period when the dots began to move; B) Drift rate in each load
condition. Each dot is the drift rate for each subject and load (mean oritt=-0.03, tar = -7.43, p = 9.7x10-
7); C) Pearson correlation between the pupil parametric effect of Load (Bpupi) with the average drift rate
across subjects (raritt= 0.8, p = 1.0x104). The x-axis is the mean beta estimate of the pupillary load effect

of the significative time window (Bpupil) and the y-axis represents the mean drift rate across Loads.

Results

The Relationship Between Sympathetic Tone and Attentional Processing
Consistent with previous work?®, our two level analysis - linear regression within each
subject, and a two-tailed f-test between subjects - found that task performance (i.e.,
correct responses) decreased with attentional load (mean Bacc = -6.66; tar = -5.19, p =
7.2x10°%; Figure S1B) while RT increased with attentional load (mean Brr = 0.06, ta7) =
5.10, p = 8.8x10%). We expanded on this result by translating performance into EZ-
diffusion model parameters. Roughly, this approach uses the accuracy and reaction
time distribution to estimate three latent parameters*: drift rate, a marker of the
accumulation of decision evidence (Eq. 1); boundary criteria, the amount of evidence
required to make a decision (Eq. 2); and non-decision time, the epoch spent processing
the tasks perceptually (Eq. 3). The advantages of using this model are twofold: firstly,
there are well-known links between the parameters to decision making processes*?,
pupil diameter?# and network reconfiguration? secondly, drift rate accounts for the

accuracy-reaction time trade off, as it takes into consideration both accuracy and the
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variability in reaction time into its calculation. In this way, our approach offers a better
approximation of the ongoing computational processing during the task than
accuracy and RT##%. Using this approach, we observed a decrease in both the
boundary criteria (Bsound =-0.01, taz) =-2.70, p = 0.015) and drift rate (mean Poritt=-0.03,
tan =-7.43, p = 9.7x107; Figure 1B), and an increase in the non decision time (mean Bnd

=0.07, tan =5.32, p = 5.5x10%) with increasing attentional load.

By calculating the linear effect of load on pupil size across a moving average window
of 160ms (see Methods), we observed a main effect of increased pupil diameter across
both the tracking and probe epochs (Bpupii> 0, pror < 0.01; light grey in Figure 1A depict
significant epochs of time during the task; and in Figure S1A show the group average
Brupil time series). We also observed a positive correlation between mean Bpupit during
the significant period (for simplicity we will refer to this value as fpupil) to the mean
drift rate, mean boundary criteria and accuracy across all loads (Pearson’s rasitt = 0.8, p
= 1.0x10% Figure 1C; racc= 0.68, p = 1.5x1073, Figure S1C; ra= 0.71, p = 9x10+). The same
relationships were not observed with non-decision time (Pearson’s rna=-0.31, p = 0.19).
Additionally, we analysed whether this effect was present both within and between
subjects in a trial-by-trial manner. To this end, we created a logistic linear mixed model
(Eq. 6) to test whether pupil diameter was a predictor of performance (i.e., correct or
incorrect response), as we would expect that incorrect responses should relate to
decreased pupil diameter in difficult trials. We used the average pupil diameter within
each trial of Load 4 and 5 (to account for the ceiling effect of Load 2 and 3) as regressors
and subject as a grouping variable. We found a statistically significant fixed effect of
pupil diameter on performance within each trial (8= 0.0127 + 5x10%; tese=2.48; p =
0.013). Furthermore, we analyzed the random effect coefficients, which are the
dispersion of the regressor across the grouping variable from the fixed regressor (in
this case there is one value per subject), to assess the role of average across task
performance. We found that the random effect covaried with the average performance
and drift rate of each subject (Accuracy: Pearson’s r = 0.73, p = 8x10%; Drift: Pearson’s
r=0.73, p = 5x10°) suggesting that trial by trial pupil diameter was a better predictor
of performance (i.e., correct or incorrect) on subjects with higher average performance
in comparison to subjects with lower performance across the task. In conclusion, these
results suggest that attentional load manipulation and pupil dilation covaried with

performance on this attentionally demanding task both within and between subjects.

Network Integration Increases as a Function of Attentional Load
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Based on previous studies, we hypothesized that an increase in attentional load
should recruit a distributed functional network architecture®, heightening network
integration?!2%. To test this hypothesis, we implemented a hierarchical topological
network analysis*# on the average time-resolved functional connectivity matrix
calculated across the tracking period of the task. Our analysis identified a subnetwork
of tightly inter-connected regions that were part of attentional, somatomotor, and
cerebellar network (red in Figure 2) that increased its BOLD activity after the tracking
onset (Figure 2F). The tightly integrated regions were diversely connected to a
separate frontoparietal sub-module (blue in Figure 2) that was less active during the
trial. Two remaining sub-modules (yellow and green in Figure 2) showed a negative
BOLD response during the tracking period and were part of a diverse set of networks.
Interestingly, 81% of the Frontoparietal network (FPN) and all the Default Mode
Network (DMN) were found to be within this less active group (see Supplementary

Table S2 for the complete list of regions and sub-module assignments).
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Figure 2: Hierarchical functional topology analysis of the brain during tracking across all loads. We
observed two large-scale modules, and two meso-scale modules within each larger module (Module
one [MI1, red/blue] and Module two [M2, green/yellow], respectively): M1 corresponded to
predominantly attentional and somatomotor network, and M2 to Frontoparietal (FPN) and Default
Mode Network (DMN) among others (B and E). A) Forced directed plot representation of the average
cluster across subjects. Edges higher than 0.15 are shown. Each color represents a unique sub module;
B) A circle plot representing the resting state regions that were included within each sub module, with
networks with > 30% of regions in each submodule shown in the plot. The diameter of the circles
corresponds to the percentage of network regions that participated in that cluster. Connection width
relates to average positive connection strength (functional connectivity), however only connections

with r > 0.1 are shown; C) Connectivity matrix (Pearson’s r) between all pair of regions ordered by
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module assignments — note the strong anti-correlation between the red and green/yellow sub-modules;
D) Correlation between parametric load effect on large scale modularity (e value), and drift rate
(Pearson’s r = 0.53; p = 0.022); E) Hierarchical analysis representation: Qr, Qm1 and Qw2 represent the
modularity value for each level (Qr large scale, and Qwmi-m2 meso-scale level) and ** represents the
probability of finding this value when running a null model (p = 0 for all three modularity values). The
brain maps correspond to the cortical regions associated with each sub module; F) BOLD mean effect
for each sub-cluster, each line represents the group average, and shaded areas are the standard error of
the mean, x-axis is Repetition Time (TR) centered around tracking onset (TR =0). DAN, dorsal attention;
VN, visual; FPN, frontoparietal; SN, salience; CO, cingulo-opercular; VAN, ventral attention; SMm,
somatomotor mouth; SMh, somatomotor hand; RSpN, retrosplenial; FTP, frontotemporal; DMN,

default mode; AN, auditory; CPN, cinguloparietal; SubC, subcortex; Cer, Cerebellar.

Contrary to expectations, we did not observe significant parametric topological
change (i.e., modularity, Q) at the macroscopic level as a function of attentional load
(p > 0.05 for all TRs, Figure S2A). However, when analysing the correlation between
modularity and performance measures (i.e., accuracy, drift rate and pupil diameter),
we observed that an increase in the large-scale modularity load effect (i.e., higher
modularity with load, Bot) positively correlated with higher mean drift rate (Pearson’s
r = 0.53; p = 0.022; Figure 2D), mean accuracy (Pearson’s r = 0.61; p = 0.007;
Supplementary Figure S3A), but was independent from pupil (Pearson’s r =0.43; p =
0.073). These results suggested that the system reconfigured during tracking towards
increasing modularity, which in turn affected the efficient encoding of the ongoing

task during tracking and hence, the decision-making process during the task probe.

Upon closer inspection of the data (Figure 2C), we observed a substantial number of
nodes that were playing an integrative role during task performance, albeit at a finer
resolution than the initial analysis suggested. We performed the modularity
assignment within each large-scale module. The hierarchical analysis resulted in two
pairs of sub-modules at the meso-scale level with a significant modularity (compared
to 100 random graphs with preserved signed degree distribution; Qwmi = 0.137, p = 0;
Qm2=0.137, p = 0; Figure 2E). Specifically, the red sub-module was found to selectively
increase its participation coefficient (PC) at the meso-scale level (i.e., by increasing the
connection weights to the blue submodule in comparison to intramodular
connections; Eq. 5) as a function of increasing attentional load (Brc=2.4x107, taz) =3.57;
p = 0.002; Figure 3A). Additionally, the extent of integration in the red sub-module
was positively correlated across subjects with Bpupil(Pearson r =0.62, p = 0.006; Figure
3B), drift rate (Pearson’s r = 0.66, p = 0.002; Figure 3C) and accuracy (r =0.57, p =0.012,
Figure S3B). Importantly, these relationships were found to be specific to the red sub-
module (Blue: Pearson’s r = -0.02, p = 0.936; Yellow: Pearson’s r = -0.011, p = 0.965;
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Green: Pearson’s r =-0.12, p = 0.617).

Based on these results, we implemented a linear mixed model (Eq. 7), using the
subjects” average pupil response within each Load as a regressor and the average
participation of the red sub module as the dependent variable, with grouping by
subject. Using this approach, we observed a significant fixed effect of pupil diameter
on PC (= 7.6x10°+ 3x103, tw) = 2.60, p = 0.011). Furthermore, the random effect
coefficients (i.e., the between subject variation of the regressor value) correlated
positively with accuracy (Pearson’s r = 0.47, p = 0.048) and drift rate (Pearson’s r = 0.62,
p = 0.005), suggesting that subjects with a strong relationship between red module
integration and pupil diameter have better behavioural outcomes. We then correlated
the red BPC to the load effect on large scale modularity (3Qv, Fig. 2D) and observed a
significant positive correlation (Pearson’s r = 0.59, p = 0.009). Finally, given that both
of the topological parameters were correlated to drift rate and also with each other,
we performed a partial correlation between drift rate and BPC controlling by QL (r =
0.51, p = 0.034), and the partial correlation between drift rate and QL controlling by
PPC (r = 0.36, p = 0.145). This suggests that drift rate is correlated to the mesoscale
integration of the red sub-module, but less so with increases in large scale modularity.
Thus, although the macroscale network did not demonstrate increased integration per
se, the relative amount of meso-scale integration within the red community was
associated with increased performance (i.e., drift rate) and sympathetic arousal (i.e.,
pupil diameter), both between and within subjects. In this way, these results provide
a direct relationship between the effect of attention load on pupillometry, drift rate,

and a trade-off between large-scale segregation and meso-scale network integration.
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Figure 3: Relationships between load effect on participation, drift rate and pupil load effect. A)
Average participation coefficient (PC) for each load, for the red module, during tracking. Each color

represents the corresponding tracking load (from 2 to 5). Grey lines correspond to each subject; B-C) A


https://doi.org/10.1101/2020.12.04.412551
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.04.412551; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

regression parameter ((3rc) was calculated for each subject and then correlated to Bpupil (B; r =0.62; p =

0.006) and Drift rate (C; r = 0.66; p = 2.4x10-3). Each circle corresponds to the mean value per subject.

Network meso-scale integration and adrenergic receptor density

Given the relationship between mental effort, noradrenergic tone and pupil
dilation>182649%, the results of our analyses strongly suggested that the adrenergic
system is involved in the meso-scale network reconfiguration observed during
attentional tracking. The locus coeruleus can impact the cortical system in multiple
ways, both through direct release of noradrenaline onto cortical neurons, and through
the modulation of subcortical regions (such as the thalamic nuclei) with concurrent
impact on the cortical dynamic. Importantly, in either case, the modulation is
dependent on the noradrenergic receptors subtypes, which have different sensitivities
to noradrenaline’®®!, variable expression in the cerebral cortex>>%73 and also belong
to distinct classes (i.e., al, a2, and f receptors). In particular, the a2a has been
previously associated with working memory, adaptive gain and effective
attention'*'%, To gain a deeper insight into the role of a2a receptors in mesoscale
integration during attentional tracking, we extracted the regional expression of the
ADRA2A gene (which codes for a2a adrenoceptors) from the Allen Human Brain
Atlas repository®%, and compared the cortical regional expression of this gene with

the brain activity patterns identified in our network analysis (Figure 2E).

Based on the relationships between pupil diameter (Figure 1), topological signatures
(Figure 2) and task performance (Figure 3), and the known link between these
variables and engagement of the noradrenergic system, we hypothesized that the
different modules and sub-modules that we observed should have different densities
of neuromodulatory receptors to account for the differential patterns across the
network. To test this hypothesis, we conducted a two-tailed ¢-test in each hierarchical
level comparing the density of the ADRA2A expression between modules. To account
for spatial autocorrelation, we generated 5,000 surrogates maps with the same spatial
autocorrelation of the ADRA2A map, calculated a t-statistic for each surrogate and the
evaluated the probability of finding the observed t-statistic against the null
distribution®”. We indeed observed significant differences between modules at the
meso-scale level. Specifically, we found significant differences between the blue and
yellow sub-modules (tass = 3.82, p = 2x10*, psa = 0.02) and the differences between
green and yellow sub-modules (ta7) = -4.47, p = 1.3x10%, psa = 0.004), while the other
differences did not survive the spatial autocorrelation test (green-red: tas» = 0.47; p =
0.635, psa = 0.590; yellow-red: tase) =-3.02, p = 0.003, psa = 0.121; green-blue: tazs) = -0.68,

10
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p = 0.496, psa = 0.324; red-blue: tass) =-1.30, p = 0.195, psa = 0.237; Figure S5A).

The modulatory effects of noradrenaline have been argued to depend directly on
ongoing glutamatergic activity in target regions>*®. Moreover, it has been shown that
the main source of the BOLD activity is the neurovascular response caused by
pyramidal neurons containing Cyclo-oxygenase-2°l. Importantly, this evoked
response following noradrenergic activation is dependent on the ongoing activity of
the pyramidal neurons®. Thus, the role of noradrenaline on brain dynamics and BOLD
response depends critically on ongoing glutamatergic activity, which putatively
represents pooled neural spiking activity®. Given the differential task-related BOLD
activity of the different sub-modules (i.e., Figure 2F, Figure S4and Figure 4A), and the
observed regional variability and specificity of integration across the network, we
hypothesized that network-level integration would be explained by the combined
effect of ongoing BOLD activity and the distribution of the adrenergic receptor
expression. Finally, we predicted that the role of the a2a receptor atlas in shaping
brain activity and topology should be dependent of the subjects’” pupil diameter, such
that higher Bpupil should rely on a stronger relationship between network topology

and a2a receptor expression.
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Figure 4: Receptor density analysis. A) Spatial maps of a2a density (left), BOLD parametric effect
(middle) and Participation Coefficient parametric effect (right); ‘~’ represents the linear model tested
in the analysis; B) Scatter plot depicting the relationship between Brupi and the random effect of a2a (RE
a2a; r=0.54, p = 0.02); C) Scatter plot depicting the relationship between the random effect of a2a and
drift rate (r=0.70, p = 0.001) — the colors of the dots represent the psa value from the linear effect of a2a
on BBOLD within each subject and the marked circles correspond to subjects with psa<0.05; D) Pearson
correlation of the group average BOLD parametric effect (fsoLp) and participation coefficient (frc; 1 =

0.26, p =17 x 107). Colors represent each module assignment as in Figure 2.
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To evaluate between these different hypotheses, we created three linear mixed models
in order to better disentangle the different plausible interactions between the variables
(see Methods), while still controlling for between subject’s variability as grouping
variable. Additionally, to control for spatial autocorrelation, we used 5,000 surrogate
maps that maintained the spatial autocorrelation of the a2a while permuting the
density values. In the first model (Eq. 8), we tested the hypothesis that the parametric
BOLD effect (i.e., BBOLD, Figure S4) is shaped by the distribution of a2a receptors.
We found significant evidence for a positive fixed effect of a2a on BBOLD activity,
however this effect did not survive correction for spatial autocorrelation (Ba2a=0.037+
0.016; teom=2.29; p = 0.022; psa = 0.106; Table S2). Furthermore, we correlated the
random effect coefficients (from the original and the surrogate maps) to both BPC and
Ppupil, and observed a significant positive correlation between the participation
coefficient and both pupils (Pearson’s r = 0.54, p =0.02, psa=0.036; Figure 4B) and mean
drift rate (Pearson’s r = 0.70, p = 0.001, psa = 0.001; Figure 4C). This result shows the
manner in which pupil diameter linearly shapes BBOLD cortical map through the
engagement of the a2a receptor expression map. Importantly, although the fixed effect
of a2a on BBOLD didn’t survive the spatial autocorrelation correction, the linear
correlation of this effect with both Bpupil and drift rate (between subjects) did survive

the correction.

To further analyze the between subject differences in the role of a2a receptor atlas in
shaping the BBOLD map, we ran a separate linear model within each subject with a2a
as a regressor and BBOLD of each region as the dependent variable (while also
correcting for spatial autocorrelation using 5,000 surrogate maps). As can be seen in
Figure 4B-C, we observed a dependency between the psa value, fpupil and drift rate,
in which the Bpupil and drift rate subject effects survived the spatial autocorrelation
correction (psa < 0.05; marked circles in Fig. 4B-C). Despite these results, there was no
significant effect of a2a on BPC (Eq. 9; B aza = 0.001 + 0.003; tsee2= -0.51; p = 0.6), and no
significant Pearson’s correlation were found between the random effects and both
Bpupit o1 drift rate (r =-0.24, p = 0.33 and r =-0.23, p = 0.341, respectively). However, we
did find a significant effect of BBOLD on BPC (Eq. 10; 3 = 0.0259 + 0.006; tse2 = 3.96; p
= 7.55 x 10%). Together these results propose a closer link between pupil diameter,
ascending neuromodulation and the cortical neuromodulation dependent on a2a

receptor density.
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Finally, we observed a differential relationship between PC and BBOLD depending
on the large-scale module to which the regions were assigned (Figure 4D). We
expanded the former result by measuring, within each subject, the Pearson correlation
between the BsoLp and Brc separately in each module (M1 being the modules assigned
as red and blue, and M2 assigned as yellow and green; Figure 2). The results
demonstrated a significant difference between modules, meaning that the M1lhas a
higher correlation with BPC, in comparison to M2 (ta7) =-12.99, p = 2.93 x 101%). These
results provided evidence that the adrenergic receptor distribution of a2a shapes the
BBOLD activation map in proportion to the subject's pupil diameter. Additionally,
PBOLD activation map modulates (i.e., was related to) meso-scale integration, and
meso-scale integration is related to pupil diameter. Based on these results, we
hypothesise that the adrenergic system shapes the BOLD activity, which in turns
shapes the topology of the network towards integration. However, future work is
required in order to test this hypothesis more directly, for instance by combining

optogenetic approaches with neuronal recordings in awake animals.

Discussion

Here, we leveraged a unique dataset to simultaneously track pupil diameter and
network topology during an attentional demanding task with increasing attentional
load. Our results provide integrative evidence that links the ascending arousal system
to the mesoscale topological signature of the functional brain network during the
processing of an attentionally demanding cognitive task. Pupil diameter tracked with
attentional load (Figure 1A) and was related to the speed of information accumulation
as estimated by a drift diffusion model (Figure 1B-C). Additionally, we observed
concurrent pupil dilations and adaptive mesoscale parametric topological changes as
a function of task demands (Figures 2 and 3). Finally, we found evidence that
topological reconfiguration was dependent on the regional activity and the genetic
expression of the adrenergic receptors in the brain (Figure 4). Together, these results
provide evidence for the manner in which the ascending arousal noradrenergic
system reconfigures brain network topology so as to promote attentional performance

according to task demands.

The relationship between performance and pupil diameter is consistent with the
predictions of Adaptive Gain Theory". Within this framework, the locus coeruleus is
proposed to adaptively alter its activity according to the demands imposed on the
system. More specifically, the theory proposes that performance follows an inverted

U-shaped relationship with arousal, such that maximal operational flexibility in the
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noradrenergic system is associated with optimal task performance!>**. We observed
that load-related increases in pupil diameter, presumably due to increased activity in
the ascending arousal system!”18%4, relates closely with the activity and topology of the
broader brain network (Figure 2), in a manner that is reflective of effective task
performance (Figure 3). Similar effects have been described in animal models after a
chemogenetic activation of the locus coeruleus, which strongly alters the large-scale
network structure towards large-scale integration, specifically in regions with
heightened adrenergic receptor expression’. How these changes, which are likely
related to the modulation of the neural gain that mediates effective connections
between distributed regions of the brain'>®, are traded-off against requirements for

specificity and flexibility remains an important open question for future research.

The addition of attentional load was found to alter the integration of meso-scale sub-
modules, but not the higher-level modular organization. This topological result is
somewhat more targeted than those described in previous work?3%, While these
differences may be related to disparities in the way that the data were analyzed, the
results of our study do demonstrate that alterations in the cerebral network topology
at a relatively local (i.e., sub-modular) level are crucial for effective task performance®.
Additionally, our results replicate and expand upon a previous study®, in which the
authors found that short term practice on an attentional task was related to increased
coupling between attentional networks and segregation among task-negative (DMN)
and frontoparietal network (FPN). Our study replicates the graph theoretical results
of that study, while also directly relating the findings to the architecture of the
ascending neuromodulatory system. One potential explanation for these results
comes from animal studies, in which rapid changes in pupil diameter have been
compared to changes in neural population activity at the microscale!®4>%. These
studies suggest that the ascending arousal system may be able to alter the topology of
the network in a hierarchical manner that is commensurate with the spatiotemporal
scale of the arousal systems’ capacity 2. Future work that integrates results across
spatiotemporal scales is required to appropriately adjudicate the implications of this

hypothesis.

Importantly, our approach is not without limitations. For one, the participation
measures used in our linear mixed model were estimated at the meso-scale level, and
hence derived from different modular partitions. Furthermore, the specificity of the
pupillary response as a correlate of LC activity is currently under active debate. For

instance, in addition to the strong empirical links between the noradrenergic system
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and pupil dilation, there is also evidence that the pupil is dilated in concert with
activity in the basal forebrain cholinergic system®, however it bears mention that both
peripheral® and central cholinergic tone? is associated with pupillary constriction.
There are more plausible physiological routes for the serotonergic system to dilate the
pupil (via the excitation of the intermediolateral cell column), and in keeping with
this, there is evidence that the serotonergic system is linked with pupil dilation®.
Nevertheless, it is important to take into account that the neuromodulatory arousal
system is replete with complex interconnections”7. In addition, based on the current
lack of a specific mechanism involving pupillary changes through the cholinergic
system, it is highly probable that those correlations are due to indirect modulation of
pupillary responses (e.g., via indirect neuromodulation mediated by the LC system).
On another hand, we acknowledge the limitations of the atlas receptor analysis and
the linear model used in our study. More specific neurobiological properties of the
receptor distributions are needed to make better inferences, and hence provide more
accurate answers of their role in brain dynamics. For instance, it would be ideal to
compare receptor distributions that incorporated layer-specific expression, as there
are well-known cellular and circuit differences across layers in the cerebral cortex”7.
Importantly, taking into consideration the strong correlation between different genetic
expression maps’, it is possible that the current correlation between ADRA2A
expression and brain activity is a false positive caused by another neuroanatomical
gradient strongly correlated to the ADRA2A. Therefore, future work studying the
interaction between genetic expression of the neuromodulatory receptors, pupil
diameter and brain activity is needed. In spite of this limitation, we believe in the
importance of integrating pupil diameter and receptor distribution in the analysis as
the relationships between noradrenergic tone, brain activity and network topology
will help us to disentangle the mechanistic steps connecting the locus coeruleus

system to both pupil diameter and brain dynamics.

In summary, we provide evidence linking mesoscale topological network integration,
hierarchical organization and BOLD dynamics in the human brain that increases in
attentional load, thus providing further mechanistic clarity over the processes that
underpin the Adaptive Gain Model of noradrenergic function in the central nervous

system.

Methods
Participants
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18 right-handed individuals (age 19-26 years; 5 male) were included in this study.
Exclusion criteria included: standard contraindications for MRI; neurological
disorders; mental disorders or drug abuse. All participants gave written informed

consent before the experiment.

Parametric Motion Tracking Task

Each trial of the task involved the same basic pattern (Figure 1A): the task begins with
a display presenting the objects (i.e., blue colored disks); after a 2.5 s delay, a subset of
the disks turns red for another 2.5 seconds; all of the disks then return to blue (2.5
seconds) before they started moving randomly inside the tracking area. The
participants’ job is to track the “target” dots on the screen while visually fixating at the
cross located at the center of the screen. After a tracking period of ~11 seconds, one of
the disks is highlighted in green (a ‘probe’) and the subject is then asked to respond,
as quickly as possible, as to whether the green probe object was one of the original
target objects. The number of objects that subjects were required to attend to across
the tracking period varied across trials. There were five trial types: passive viewing
(PV), in which no target is assigned; and four load conditions, in which two to five
targets were assigned for tracking. We operationalized attentional load as the linear

effect of increasing task difficulty (i.e., the number of targets to be tracked).

The experiment was conducted using a blocked design, in which each block included:
instruction (1s); fixation (0.3s, present throughout the rest of trial); object presentation
(all objects were blue; 2.5s); target assignment (i.e., the targets changed color from blue
to red; 2.5s); object representation (objects back to the original blue color; 2.5s); object
movement/attentional tracking (moving blue dots; 11s); object movement cessation
(0.5s); and a final probe (color change to green and response; 2.5 s). The total duration
of each trial was 22.8s. Each condition was repeated 4 times in one fMRI-run, which
also included 4 separate fixation periods of 11s each between five consecutive trials.
All participants completed 4 separate runs of the experiment, each of which comprised
267 volumes. The order of the conditions was pseudo-random, such that the different
conditions were grouped in sub-runs of triplets: PV, pseudo-random blocks of Loads
2 through 5 and a fixation trial. All objects were identical during the tracking interval
and standard object colors were isoluminant (to minimize incidental pupillary

responses during the task).

Behavior and EZ-Diffusion Model
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The EZ-diffusion model was used to interpret the performance measures from the
task*>77. This model considers the mean RT of correct trials, SD-RT across correct trials,
and mean accuracy across the task and computes from these a value for drift rate (v,
equation 1), boundary separation (g, equation 2) , and non-decision time (equation 3)

— the three main parameters for the drift-diffusion model”””%,

v = sign (P - %) L 0.1 - jloy (7=p) [P* - tog (ﬁ; log (=) + P ] )
a= 0.01-@ %)

a (1 — e—lOO-v-a)
Ter = MRT — XD (1 + e-100va) 3)

In which P is the average performance (range between 0 to 1); sign is an operator that
will be -1 if P < 0.5 or +1 if P > 0.5; VRT is the standard deviation of reaction time (in

seconds); and MRT is the mean reaction time (in seconds).

Pupillometry

Fluctuations in pupil diameter of the left eye were collected using an MR-compatible
coil-mounted infrared EyeTracking system (NNL EyeTracking camera,
NordicNeuroLab, Bergen, Norway), at a sampling rate of 60 Hz and recorded using
the iView X Software (SensoMotoric Instruments, SMI GmbH, Germany). Blinks,
artifacts and outliers were removed and linearly interpolated”. High frequency noise
was smoothed using a 2" order 2.5 Hz low-pass Butterworth filter. To obtain the pupil
diameter average profile for each level of attentional load (Fig. 1B), data from each
participant was normalized across each task block (corresponding to the five
consecutive trials between fixations). This allowed us to correct for low frequency
baseline changes without eliminating the load effect and baseline differences due to
load manipulations®8!. Following this, a linear regression was performed in each time
point using the task load as regressor and resulting in a ‘load effect’ time series for

each subject.

MRI Data
Imaging data were collected on a Philips Achieva 3 Tesla MR-scanner, equipped with
an 8-channel Philips SENSE head coil (Philips Medical Systems, Best, Netherlands) at

the Interventional Centre, Oslo University Hospital, Norway. Functional data were
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collected using a BOLD-sensitive T2* weighted echo-planar imaging sequence (36
slices, no gap; repetition time (TR), 2,2s; echo time (TE), 30 ms; flip-angle, 80°; voxel
size, 3x3x3; field of view (FOV), 240x240 mm; interleaved acquisition). Anatomical T1-
weighted images consisting of 180 sagittal oriented slices were obtained using a turbo
tield echo pulse sequence (TR, 6.7 ms; TE, 3.1 ms; flip angle 8°; voxel size 1x1.2x1.2
mm; FOV, 256x256 mm).

fMRI Data Preprocessing

After realignment (using FSL’s MCFLIRT), we used FEAT to unwarp the EPI images
in the y-direction with a 10% signal loss threshold and an effective echo spacing of
0.333. Following noise-cleaning with FIX (custom training set for scanner, threshold
20, included regression of estimated motion parameters), the un-warped EPI images
were then smoothed at 6 mm FWHM, and non-linearly co-registered with the
anatomical T1 to 2 mm isotropic MNI space. Temporal artifacts were identified in each
dataset by calculating framewise displacement (FD) from the derivatives of the six
rigid-body realignment parameters estimated during standard volume realignment®?,
as well as the root mean square change in BOLD signal from volume to volume
(DVARS). Frames associated with FD > 0.25mm or DVARS > 2.5% were identified,
however as no participants were identified with greater than 10% of the resting time
points exceeding these values, no trials were excluded from further analysis. There
were no differences in head motion parameters between the four sessions (p > 0.500).
Following artifact detection, nuisance covariates associated with the 6 linear head
movement parameters (and their temporal derivatives)) DVARS, physiological
regressors (created using the RETROICOR method) and anatomical masks from the
CSF and deep cerebral WM were regressed from the data using the CompCor
strategy®. Finally, in keeping with previous time-resolved connectivity experiments®,
a temporal band pass filter (0.0071 < f < 0.125 Hz) was applied to the data.

Brain Parcellation

Following pre-processing, the mean time series was extracted from 375 predefined
regions-of-interest (ROI). To ensure whole-brain coverage, we extracted: 333 cortical
parcels (161 and 162 regions from the left and right hemispheres, respectively) using
the Gordon atlas®, 14 subcortical regions from Harvard-Oxford subcortical atlas
(bilateral thalamus, caudate, putamen, ventral striatum, globus pallidus, amygdala
and hippocampus; http://fsl.fmrib.ox.ac.uk/), and 28 cerebellar regions from the SUIT
atlas® for each participant in the study.
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Time-Resolved Functional Connectivity and Network Analysis

Following pre-processing, the mean time series was extracted from 375 predefined
regions-of-interest (ROI). To estimate functional connectivity between the 375 ROIs,
we used the Jack-knife correlation approach (JC)¥. Briefly, this approach estimates the
static correlations between each pair of regions, and then recalculates the correlation
between each pair after systematically removing each temporal "slice” of data (i.e., each
TR). By subtracting the jack-knifed correlation matrix from the original ’static’ matrix,
the difference in connectivity at each slice from the static connectivity value can be
used as an estimate of time-resolved functional connectivity between each pair of

regions at each TR in a way that does not require windowing.

Community Structure

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT)® was
used in combination with the JC to estimate both time-averaged and time-resolved
community structure. The Louvain algorithm iteratively maximizes the modularity
statistic, Q, for different community assighments until the maximum possible score of

Q has been obtained (equation 1).

1 ! e
Qr = FZU(WJ - 65)6MiMj B mzﬁ(wii - eif)&MiMf @

Equation 1 — Louvain modularity algorithm, where v is the total weight of the network (sum of all
negative and positive connections), wj is the weighted and signed connection between regions i and j,
eij is the strength of a connection divided by the total weight of the network, and 6miv; is set to 1 when
regions are in the same community and 0 otherwise. ‘+" and '~ superscripts denote all positive and

negative connections, respectively.

For each subject, we calculated the mean adjacency matrix from 1 TR before tracking
until the end of the tracking period. Afterwards, a consensus partition was estimated
across subjects. Finally, to identify multi-level structure in our data, we repeated the
modularity analysis for each of the modules identified in the first step*+’. With this
final module assignment, we were afforded an estimate of the time resolved, multi-

level modularity (Qr) within each temporal window for each participant in the study.

Regional Integration

Based on the group consensus community assignments, we estimated between-
module connectivity using the participation coefficient, Br, which quantifies the extent
to which a region connects across all modules (i.e. between-module strength; equation

2). In our experiment, we used two separate community assignments, one for each of
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the modularity levels. In this manner we measure: 1) how the first hierarchical level
(i.e., large scale) topology changed during tracking across the complete brain; and 2)
how the topology of the sub-modules changed across the task. These values were
calculated in each time point using the time-resolved adjacency matrix across each

load condition.

Bir = 1 - 5, ()’ ©)

Kir

Equation 2 - Participation coefficient Bir, where «ist is the strength of the positive connections of region
i to regions in module s at time T, and «ir is the sum of strengths of all positive connections of region i
at time T. The participation coefficient of a region is therefore close to 1 if its connections are uniformly

distributed among all the modules and 0 if all of its links are within its own module.

Neurotransmitter Receptor Mapping

To investigate the potential correlates of meso-scale integration, we interrogated the
neurotransmitter receptor signature of each region of the brain. We used the Allen
Brain Atlas micro-array atlas dataset (http://human.brain-map.org/)* to identify the
regional signature of genetic expression of the a2a subtype of the adrenergic receptor
(ADRAZ2A). This receptor has been a priori related to cognitive function and attention®,
and is one of the most abundant adrenergic subtypes expressed in the cerebral cortex®.
This atlas contains postmortem samples of six donors that underwent microarray
transcriptional characterization. The spatial map of a2a mRNA expression was
obtained in volumetric 2mm isotropic MNI space, following improved nonlinear
registration and whole-brain prediction using variogram modeling®’. We used this
data instead of the native sample-wise values in the AHBA database to prevent bias
that could occur due to spatial inhomogeneity of the sampled locations. We projected
the volumetric a2a expression data onto the Gordon atlas with linear interpolation

and calculated the mean value within each parcel using custom MATLAB codes.

Statistical analysis

The Relationship Between Sympathetic Tone and Attentional Processing

We analysed the between subjects” effect of load on the behavioural, pupillometric
and fMRI related variables by performing a two-level linear model analysis. In the
tirst level, we used attentional load as a regressor (2 to 5) and -in independent models-
the mean accuracy, reaction time, standard deviation of reaction time, drift rate,
boundary criteria and non-decision time as dependent variables (i.e., 4 values per

subject). From this, we ran a two-tailed t-test on the statistical effects (i.e., the 3 value
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from the regression, one for each subject; N = 18). Similarly, to calculate the load effect
on pupil diameter, we calculated the average pupil diameter on each load condition
within each subject. Then, we performed a first-level analysis in which we ran a linear
regression in each time frame (1600 frames in total, corresponding to 26.6 seconds).
This procedure resulted in one (3 timeseries (i.e., the statistical load effect on pupil
diameter) for each subject across the trial (Figure S1A). After this, we performed a
right tailed t-test in each frame across subjects (n =18 in each frame) to find the periods
of time where the [3 value where higher than zero. Finally, we corrected by false
discovery rate (FDR)* for multiple testing, which resulted in a period of time where
the load effect was higher than 0 (light grey area in Figure 1A). The mean 3 values
during this section was calculated in each subject and defined as “Bpupil’. Finally,
following the same pipeline, we calculated the effect of attentional load on the brain
related signals (i.e., BOLD, participation coefficient [PC] and modularity [Q]). The
effect of load on BOLD was calculated running a separate linear model in each subject
and region within each TR (18 subjects; 375 regions; 10 TRs; 4 load condition), resulting

in a matrix of (3 values of 18 x 375 x 10.

To evaluate the statistical effect of pupil diameter on accuracy, we performed a logistic
linear mixed effects model. We used the mean pupil diameter of the significant time
period (Figure 1A) of the high load trials (Load 4 and 5), and the accuracy (i.e., correct
or incorrect) as the predictor variable of each trial, grouping by subject as the random

effect. The statistical model is described in the following equation:

Accuracy ~ Pupil + 1+ (Pupil + 1|Subject) (6)

Network meso-scale integration and adrenergic receptor density

To evaluate whether the modularity of the network we observed was higher than
chance, we generated 100 random networks in each hierarchical level (300 random
networks in total), with a preserved degree distribution (using the MATLAB
randmio_und_signed function from the Brain connectivity toolbox®). We calculated the
modularity value of each random network and used the resultant values to populate

a null distribution (Figure 2D).
We analyzed the statistical effect of pupil diameter on the participation coefficient

both within and between subjects by performing a linear mixed model using the time

varying PC of the red sub-module (Figure 3A) of each load as a dependent variable
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(N=72), and the respective pupil diameter as a regressor, with grouping by subject.

The statistical model is described in the following equation:
PC ~ Pupil +1 + (Pupil +1|Subject) (7)

Network meso-scale integration and adrenergic receptor density

Expression of brain genetic atlas vary smoothly across the surface and thus is
associated with non-trivial spatial autocorrelation that in turn violates the
assumption of independence between samples™%. To account for the spatial
autocorrelation in these brain maps, we used spatial autocorrelation null maps
as implemented in Brain Surrogate Maps with Autocorrelated Spatial
Heterogeneity (BrainSMASH) python toolbox®. A geodesic distance matrix of
the atlas parcels using the surface of the Gordon atlas was obtained to build the
surrogates using BrainSMASH functions. We generated 5,000 null maps which
were used to generate null distribution of the different statistics corrected by

spatial autocorrelation.

We measure the statistical difference in the receptor density between sub-modules by
a two-tailed t-test between each pair of modules. The same procedure was performed
using the surrogate maps to generate a null distribution of t-statistics. To evaluate the
effect of the density of each adrenergic receptor on the neural activity in the attentional
task, we built a linear mixed model aimed at predicting regional differences in BOLD
activity and participation coefficient. We created a model using the receptor density
atlas of a2a receptor to predict parametric BOLD activity (i.e., linear increase of BOLD
activity with task load) during tracking (Eq. 8). To evaluate the relationship between
BOLD activity, adrenergic receptor expression and changes in participation coefficient
as a function of attentional load, we tested two models: one using the adrenergic
receptor density as independent factor (Eq. 9); and another using the parametric
BOLD effect as an independent factor (Eq. 10). Additionally, we assessed the across-
subject variability using the subjects ID as grouping variable in order to evaluate the
random effects on the independent factor. We corrected the spatial autocorrelation by
running the same model using 5,000 surrogate maps. Then we used the fixed effect
null distribution to calculate the psa (i.e., the probability of finding the fixed effect
within the 95% percentile of the null distribution). The deterministic part of the model

is expressed in the following equations®:

PBOLD ~a2a +1+ (a2a +1ISubject)  (8)
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PPC ~a2a +1+ (a2a +1|Subject) )
PPC ~BOLD +1 + (BOLD +1!|Subject) (10)

Where PC is the parametric effect of meso-scale participation coefficient (i.e., fPC),
BOLD is the parametric effect of load on BOLD activity during tracking for each
region, and a2a are the regional densities of the respective adrenergic receptor atlas.
We then correlated the random effects parameters to pupil diameter responses and
behaviour and then compared these with the Pearson’s correlation of the null
distribution using the random effect of the surrogate maps. Finally, we performed a
linear model within each subject with a2a as a regressor and BBOLD as dependent
variable. Again, the statistical effect (i.e.,, p value) was compared against the null

distribution when performing the regression using the surrogate maps (figure 4B-C).

Data and code availability
The anonymized preprocessed fMRI and pupillometry data can be found at
https://figshare.com/articles/dataset/MOT data mat/13244504. The ADRA2A

expression atlas can be downloaded from

http://www.meduniwien.ac.at/neuroimaging/mRNA.html. All analysis of the fMRI

and pupil diameter data were performed on MATLAB 2020a. The surrogate maps of
the ADRA2A atlas were generated on python. Documented code for reproducing the
analyses is provided in https://github.com/gabwainstein/MOT.
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