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 1 

ABSTRACT  2 

SARS-CoV-2 employs the angiotensin-converting enzyme 2 (ACE2) receptor and 3 

the transmembrane serine protease (TMPRSS2) to infect human lung cells. Previous studies 4 

have suggested that different host genetic backgrounds in ACE2 and TMPRSS2 could 5 

contribute to differences in the rate of infection or severity of COVID-19. Recent studies 6 

also showed that variants in 15 genes related to type I interferon immunity to influenza 7 

virus could predispose to life-threatening COVID-19 pneumonia. Additional genes 8 

(SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1, IL6, CTSL, ABO, and FURIN) and 9 

HLA alleles have also been implicated in response to infection with SARS-CoV-2. 10 

Currently, Brazil has recorded the third-highest number of COVID-19 patients worldwide. 11 

We aim to investigate the genetic variation present in COVID-19-related genes in the 12 

Brazilian population. We analysed 27 candidate genes and HLA alleles in 954 admixed 13 

Brazilian exomes. We used the information available in two public databases 14 

(http://www.bipmed.org and http://abraom.ib.usp.br/), and additional exomes from 15 

individuals born in southeast Brazil, the region with the highest number of COVID-19 16 

patients in the country. Variant allele frequencies were compared with the 1000 Genomes 17 

Project phase 3 (1KGP) and the gnomAD databases. We found 395 non-synonymous 18 

variants; of these, 325 were also found in the 1000 Genome Project phase 3 (1KGP) and/or 19 

gnomAD. Six of these variants were previously reported as putatively influencing the rate 20 

of infection or clinical prognosis for COVID-19. The remaining 70 variants were identified 21 

exclusively in the Brazilian sample, with a mean allele frequency of 0.0025. In silico 22 

prediction of the impact in protein function revealed that three of these rare variants were 23 

pathogenic. Furthermore, we identified HLA alleles that were previously associated with 24 
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COVID-19 response at loci DQB1 and DRB1. Our results showed genetic variability 1 

common to other populations, but also rare and ultra-rare variants exclusively found in the 2 

Brazilian population. These findings could potentially lead to differences in the rate of 3 

infection or response to infection by SARS-CoV-2 and should be further investigated in 4 

patients with the disease.  5 

 6 

 7 
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Introduction 1 

COVID-19 disease, caused by the SARS-CoV-2 coronavirus, is currently a 2 

worldwide pandemic. To enter human lung cells, SARS-CoV-2 employs the spike protein, 3 

which is primed by the host serine protease (TMPRSS2), followed by angiotensin-4 

converting enzyme 2 (ACE2) receptor binding, and proteolysis with activation of 5 

membrane fusion within endosomes by cathepsin L (CTSL)1-4. The main feature in SARS-6 

CoV-2 infection is pre-activation of the spike protein by FURIN inside the host cell, which 7 

leads to increased SARS-CoV-2 spread into lung cells and increased virulence5. The rapid 8 

SARS-CoV-2 infection leads to an exacerbated immune reaction, and a few studies have 9 

shown that increased levels of IL-6 (an essential immune response mediator) are associated 10 

with increased inflammatory response, respiratory failure, increased probability of 11 

intubation, the presence of clinical complications, and higher mortality in patients with 12 

COVID-196-8. Additional studies found the enrichment of rare variants predicted to be loss-13 

of-function in genes related to type I interferon (IFN) immunity to influenza virus among 14 

patients with life-threatening COVID-19 pneumonia (TLR3, TICAM1, TRIF, UNC93B1, 15 

TRAF3, TBK1, IRF3, NEMO, IKBKG, IFNAR1, IFNAR2, STAT1, STAT2, IRF7, and 16 

IRF9)9.  17 

Specific variants in the ACE2 and TMPRSS2 genes have been reported among 18 

diverse populations worldwide, suggesting that different host genetic backgrounds could 19 

contribute to differences in COVID-19 infection and severity2,10. Ellinghaus et al.11 20 

performed a genome-wide association study (GWAS) including Italian and Spanish patients 21 

with confirmed COVID-19 and controls and identified six candidate genes associated with 22 

COVID-19 response on chromosome (chr) 3p21.31 (SLC6A20, LZTFL1, FYCO1, CXCR6, 23 
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XCR1, CCR9), and one on chr 9q34.2, the locus for genes encoding for the ABO blood 1 

group antigens. A subsequent, more extensive study replicated the association between the 2 

locus on chr 3p21.31 and COVID-19. It revealed a COVID-19 risk core haplotype ranging 3 

from 45,859,651bp to 45,909,024bp, which was inherited from Neanderthals and is 4 

currently carried by approximately 50% of people in South Asia and about 16% of people 5 

in Europe12. Interestingly, no evidence of association was found for the previously 6 

identified candidate genes that are potentially involved in the response to infection by 7 

SARS-CoV-2: ACE2, TMPRSS2, FURIN, and IL6.  8 

Furthermore, one significant factor modulating resistance or susceptibility to viral 9 

infections is the human leukocyte antigens (HLAs). HLA polymorphism results from a set 10 

of amino-acid substitutions in the peptide-binding groove of the HLA molecules that 11 

produce variability in the peptide epitope binding-site and presentation to T cells, which 12 

may protect against epidemic infection13. Thus, genetic variability in the HLA alleles could 13 

influence the immune response in patients with COVID-19, modulating disease severity. 14 

Indeed, in silico analysis found that HLA-B*46:01 had the fewest predicted binding sites 15 

for SARS-CoV-2 peptides, and HLA-B*15:03 showed the greatest capacity to present 16 

highly conserved shared SARS-CoV-2 peptides to immune cells14. 17 

Brazil has reported the third-highest number of COVID-19 infections worldwide 18 

(updated on September 28th 2020; https://covid19.who.int/; 19 

https://coronavirus.jhu.edu/map.html), and the highest number of cases is concentrated in 20 

the south-eastern region of the country (updated on September 28th 2020; 21 

https://covid.saude.gov.br/). Brazilian individuals feature an admixed genome, 22 

encompassing European, sub-Saharan African, and Native Americans as the three main 23 

ancestry populations15-17, and the distribution of ancestry components varies remarkably 24 
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throughout the genome18. Furthermore, it has been demonstrated that a significant 1 

proportion of genetic variability is still undiscovered in admixed Brazilians19 and that 2 

genetic variability may lead to differential response to infection20. Therefore, we aim to 3 

investigate the genetic variation present in COVID-19 related genes in the Brazilian 4 

population. 5 

 6 

Results 7 

Exome analysis 8 

We found 7,172 variants among the candidate genes analysed (Supplementary Table 9 

1). Of these, 395 variants putatively impact protein function, including 354 non-10 

synonymous variants, seven frameshift substitutions, three in-frame deletions, one in-frame 11 

insertion, 12 stop gains, two start losses, and 16 splice site variants (Supplementary Table 12 

1). Three hundred and twenty-five variants were also present in the gnomAD and/or 1000 13 

Genome Project phase 3 (1KGP) databases, including 56 common variants, with an 14 

alternative allele frequency (AAF) >0.01 and 269 rare variants (AAF<0.01) 15 

(Supplementary Data 1). Although AAF from the admixed Brazilian sample follows the 16 

distribution from NFE/EUR, AFR, and AMR in gnomAD and 1KGP databases (Fig. 1), we 17 

found differences in the AAF of these common and rare variants in the admixed Brazilian 18 

sample compared to gnomAD21 and/or 1KGP22 databases shown in Fig. 1 and 19 

Supplementary Data 1. Interestingly, we also observed some variability in the AAF among 20 

samples from different Brazilian towns and the two public databases of genomic 21 

information on the Brazilian population, BIPMed and ABraOM (Fig. 2).  22 
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More importantly, there were 70 variants which were exclusive to the Brazilian 1 

sample, including 11 variants in genes related to type I INF immunity to influenza virus9, 2 

six in candidate genes for COVID response identified by GWAS11, and five related to 3 

SARS-CoV-2 entry in lung cells and virus replication2,10. These are rare or ultra-rare 4 

variants, presenting a mean AF of 0.0025 (Supplementary Data 1). Among these, we found 5 

one in the dataset from Belo Horizonte and two in the ABraOM database for ACE2 6 

p.Arg219Cys; one in the dataset from Barretos and two in the ABraOM database for ACE2 7 

p.Leu731Phe; and the TMPRSS2 p.Val160Met variant was present in samples from all the 8 

different Brazilian towns and the two public databases (BIPMed and ABraOM), with an 9 

AAF ranging from 0.1333 in Belo Horizonte to 0.2931 in Campinas. Among the reported 10 

variants in genes influencing type I INF immunity to influenza virus9, we found three 11 

variants in the ABraOM database (one TLR3 p.Pro554Ser, one IFR3 p.Asn146Lys and one 12 

IRF7 p.Pro246Ser) (Supplementary Data1 and 2). 13 

In addition, we identified five variants (rs35044562, rs34326463, rs35508621, 14 

rs67959919, and rs35624553) which were previously described in the COVID-19 risk core 15 

haplotype and inherited from Neanderthals12. These were only present in samples from 16 

Ribeirão Preto and the BIPMed dataset (rs34326463), Campinas (rs35044562, and 17 

rs35508621), and the ABraOM dataset (rs35044562, rs35508621, rs67959919, and 18 

rs35624553) (Table 1). 19 

 20 

In silico predictions  21 

We identified seven variants that were predicted to affect protein function for the 12 22 

algorithms used: p.Phe249Ser, p.Gly164Val, and p.Leu25Pro in the SLC6A20 gene; 23 
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p.Leu96Arg in LZTFL1; p.Tyr287Ser in XCR1; and p.Gly146Ser and p.Asn414Ser in the 1 

FURIN gene (Table 2). Furthermore, the variant p.Gly146Ser in the FURIN gene was 2 

predicted to destabilise the protein (ΔΔG: -1.576 kcal/mol). We observed that the 3 

p.Phe249Ser variant is present in samples from Barretos, the BIPMed dataset, gnomAD, 4 

and 1KGP (NFE/EUR, AFR, AMR, and SAS populations), whereas the p.Gly164Val 5 

variant is present in the ABraOM dataset, gnomAD, and 1KGP (NFE/EUR populations), 6 

and the p.Gly146Ser variant is present in the ABraOM dataset, gnomAD, and 1KGP 7 

(NFE/EUR, AFR, AMR, EAS, and SAS populations). Notably, four of the variants 8 

predicted to be deleterious are found exclusively in admixed Brazilian individuals 9 

(p.Leu25Pro in Barretos; p.Leu96Arg in the ABraOM dataset; p.Tyr287Ser in Belo 10 

Horizonte; and p.Asn414Ser in the BIPMed dataset).  11 

We did not find any predicted deleterious variants in ACE2 and TMPRSS2 based on 12 

our 12 algorithm criteria. However, Hou et al.2 applied only Polyphen2 and CADD scores 13 

to variants in ACE2 and TMPRSS2 (Polyphen2 >0.96 and CADD >20 as the cut-off). 14 

Therefore, only variants defined as ‘probably damaging’ by Polyphen2 15 

(http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview) and CADD (>20) were 16 

included. We found 79 variants predicted to affect protein function, including the 17 

p.Val160Met variant in TMPRSS2 reported by Hou et al.2, and the p.Pro554Ser variant in 18 

TLR3 previously reported by Zhang et al.9 (Supplementary Data 2). 19 

 20 

HLA analysis 21 

Overall, we identified 331 different HLA alleles in the admixed Brazilian samples. 22 

Of these, three HLA alleles have been previously associated with COVID-19 response14,23. 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 6, 2020. ; https://doi.org/10.1101/2020.12.04.411736doi: bioRxiv preprint 

http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview
https://doi.org/10.1101/2020.12.04.411736
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

We compared the frequency of these HLA alleles in admixed Brazilians and in populations 1 

that occupy the top 10 positions with most cases of COVID-19 and the five populations less 2 

affected by the disease, including the United States, India, Russia, Colombia, Peru, Mexico, 3 

Spain, Argentina, South Africa, Japan, Australia, South Korea, Vietnam, and Taiwan. The 4 

frequency of these alleles is described in Supplementary Data 3. We noticed that the HLA-5 

B*46:01, HLA-B*27:07, HLA-B*15:27, and HLA-C*07:29 alleles were absent in the 6 

Brazilian samples. The HLA-C*07:29 allele was also absent from other populations and is 7 

present at a low frequency (AF = 0.0003) in the Indian population. HLA-B*15:27 was 8 

identified in Vietnam, Taiwan, Japan, with an AF >0.01 and Spain with AF <0.0001. HLA-9 

B*27:07 was detected at a low frequency in India, Colombia, Spain, and South Africa. The 10 

HLA-B*46:01 allele was detected in Russia, Mexico, Vietnam, Taiwan, and Japan. 11 

Sixty-six Brazilian individuals (17.1%) presented the HLA-DQB1*06:02 allele 12 

(AF=0.08938), 47 individuals (12.2%) carry the HLA-DRB1*15:01 allele (AF=0.06477) 13 

and 32 individuals (8.29%) have both the HLA-DRB1*15:01 and HLA-DQB1*06:02 14 

alleles. The population of other continents, except Oceania, also have these two HLA 15 

alleles (HLA-DRB1*15:01 and HLA-DQB1*06:02) with an AF >0.01. Also, 15 Brazilian 16 

individuals (3.88%) carry HLA-B*15:03 (AF = 0.02073), which is predicted to have the 17 

greatest capacity to present SARS-CoV-2 peptides to immune cells14. This allele was not 18 

found in the Asian population of Japan, South Korea, and Vietnam (Supplementary Data 3).  19 

 20 

In silico analysis of viral peptide-HLA class I and II binding affinity 21 

To verify the potential for an HLA allele type to produce an antiviral response to 22 

SARS-CoV-2, we performed HLA binding affinity analyses to the SARS-CoV-2 proteome. 23 
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We tested 42 HLA-A proteins, 77 HLA-B, 38 HLA-C, 60 HLA-DP (DPA1/DPB1), 145 1 

HLA-DQ (DQA1/DQB1), 46 HLA-DRB1, 4 DRB3, 2 DRB4, and 6 DRB5.  2 

The SARS-CoV-2 proteome was presented by a diversity of HLA alleles from 3 

classes I and II (Supplementary Table 2). The HLA proteins are predicted to bind a small 4 

proportion of all possible SARS-CoV-2 derived peptides with high affinity (on average 5 

0.5% for HLA class I and 2% for HLA class II). Also, we found a small proportion of weak 6 

binders (on average, 1.5% for HLA class I and 8.2% for class II). Most of the HLA proteins 7 

do not bind either Class I (on average >96%) or class II (on average >89%) molecules 8 

(Supplementary data 4). Supplementary Data 5 shows a list of HLA strongest binders 9 

(>300 peptides bound at high affinity) of SARS-CoV-2 peptides. These are found in loci 10 

HLA-A, -B, -C, and DQ. 11 

 12 

Discussion 13 

Accessing the genomic sequences of the general population is relevant to identify 14 

the genetic variability involved in the molecular mechanisms of infection20. Also, it is 15 

known that the admixed Brazilian population is underrepresented in large public 16 

databases21,22, and previous studies revealed variants present exclusively in Brazilian 17 

indivuduals19,24.  18 

We studied 27 human COVID-19-related genes and the HLA region in two public 19 

genomic databases of admixed Brazilians (BIPMed, www.bipmed.org19; ABraOM 20 

http://abraom.ib.usp.br/24), and additional samples from individuals born in three different 21 

towns of south-eastern Brazil. We reported the variants and HLA alleles found in these 22 

samples and compared them with worldwide populations. We also reported variants 23 
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constituting the COVID-19 risk core haplotype on locus 3p21.31, described as being 1 

inherited from Neanderthals12. 2 

Previous studies showed that the ACE2, TMPRSS2, CTSL, FURIN, and IL6 genes, 3 

as well as the HLA region, may be involved in SARS-CoV-2 infection1-5,10 and immune 4 

response6-8,14,23,25. Furthermore, variants on loci 3p21.31 and 9q34.2 (encompassing 5 

SLC6A20, LZTFL1, FYCO1, CXCR6, XCR1, CCR9, and ABO) have been associated with 6 

Spanish and Italian patients with COVID-1911, and different variants were found to affect 7 

the predisposition to life-threatening illness in patients with COVID-19 from different 8 

ancestries9.  9 

The analysis of genetic variability in candidate genes for specific populations can 10 

help to identify individuals at a higher risk of infection or severe disease by constructing 11 

risk haplotypes, which can also provide therapeutic targets for the development of more 12 

effective treatments and the control of COVID-192,10. Thus, in addition to investigating 13 

genetic variability in the 27 candidate genes, we extended our analysis to include HLA 14 

alleles, which influence immunological response to many infectious agents (updated on 15 

September 28th 2020; https://covid19.who.int/; https://coronavirus.jhu.edu/map.html). This 16 

is the first comprehensive study of genetic variability of COVID-19 genes in admixed 17 

individuals from Latin America, a hard-stricken population in the COVID-19 pandemic26, 18 

both in terms of the number of infected individuals and the severity of disease leading to 19 

increased death rates. Indeed, in the USA, remarkable disparities of SARS-CoV-2 infection 20 

by ethnicity have been shown, with Hispanic/Latino and African American individuals 21 

presenting higher SARS-CoV-2 infection rates and risk mortality than ‘non-Hispanic 22 

white’ Americans27-29. Therefore, by looking at population genomics data, one may gain 23 

insights into disease-related variants, which could be disproportionally represented in 24 
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specific populations18,30-32. Furthermore, by evaluating individuals with unknown 1 

information on SARS-CoV-2 infection, one can achieve the random distribution of these 2 

variants, allowing better estimates of the distribution of population allele frequencies.  3 

We identified small differences in AF in the 395 candidate variants identified 4 

among Brazilian samples, strengthening the hypothesis that different genetic backgrounds 5 

could influence SARS-CoV-2 infection and behaviour in human host cells2,10. Furthermore, 6 

this study and previous works2,10 identified individuals who carry unique deleterious 7 

variants, which may influence gene function and could potentially lead to different 8 

responses to SARS-CoV-2 infection on an individual scale. However, the rather similar 9 

distribution of AFs among Brazilians and their ancestry populations (NFE/EUR and AFR), 10 

as well as other admixed Americans (AMR), and the fact that the unique variants identified 11 

in the Brazilian population are rare or ultra-rare, indicates that the admixed Brazilian 12 

genetic background is not sufficient to influence SARS-CoV-2 infection on a population 13 

scale.  14 

Zeberg and Pääbo12 have shown that the major genetic risk factor for severe 15 

COVID-19 was inherited from Neanderthals12. This finding is important on a regional 16 

scale, since 4% of admixed Americans analysed by Zeberg and Pääbo12 (including 1533 17 

Brazilian controls from the BRACOVID dataset) presented the core haplotype derived from 18 

Neanderthals. Interestingly, Campinas, Ribeirão Preto, and the BIPMed dataset showed 19 

only one risk allele, while Barretos and Belo Horizonte did not present any risk allele of the 20 

Neanderthal’s core haplotype reported. Therefore, if further studies demonstrate that the 21 

Neanderthal-derived region confers a risk to COVID-19, this information should be 22 

carefully evaluated in additional admixed Brazilian samples from different geographic 23 

areas. 24 
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Currently, there is no consensus regarding a possible association of HLA alleles and 1 

susceptibility to COVID-19. Ellinghaus et al.11 did not find any evidence of an association 2 

between HLA and COVID-19. On the other hand, HLA-DRB1*15:01, HLA-DQB1*06:02, 3 

and HLA-B*27:07 alleles were associated with Italian patients affected by an extremely 4 

severe or severe form of COVID-1923, and an increased frequency of HLA-C*07:29 and 5 

HLA-B*15:27 was detected in Chinese patients with COVID-19 in comparison to the 6 

Chinese control population25. Interestingly, the HLA-C*07:29 allele is absent from the 7 

Brazilian admixed samples included in the present study and in all populations used in the 8 

comparisons, except for individuals from India, where this allele was found at a low 9 

frequency (0.0003). On the other hand, the HLA-B*15:27 allele was identified in 10 

individuals from three Asian countries (Vietnam, Taiwan and Japan) with AF >0.01, and at 11 

a low frequency in Spain (0.0001), but absent from Brazilian samples. The HLA-B*27:07 12 

allele found in Italian individuals with a severe manifestation of COVID-19 was also 13 

identified in India, Colombia, Spain, and South Africa, but not in populations from Asia 14 

and Oceania (countries that are less affected by COVID-19) and from Brazil. In contrast, 15 

the HLA-DQB1*06:02 is present in all populations surveyed in this study, including 16 

Brazilian individuals (17.1%), with the exception of individuals from Australia. Also, the 17 

HLA-DRB1*15:01 allele is present in all populations investigated in this study, including 18 

Brazilian individuals (12.2%), but not in individuals from Australia and Peru. Interestingly, 19 

8.29% of Brazilian individuals carry both the HLA-DRB1*15:01 and HLA-DQB1*06:02 20 

alleles.  21 

Furthermore, the HLA-A, -B, -C, and DQ loci show haplotypes that are strong 22 

binders of SARS-CoV-2 peptides in the Brazilian samples, especially for the HLA-A locus 23 

(20 alleles, Table 3). When comparing different populations, we found marked variability 24 
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in the frequency of the different HLA alleles putatively associated with the severe 1 

manifestation of COVID-19, such as HLA-DRB1*15:01, HLA-DQB1*06:02, and HLA-2 

B*27:07 alleles23. Overall, 10% of Brazilian individuals carried at least two of the alleles 3 

associated with the severe manifestation of COVID-19. Interestingly, the same alleles were 4 

absent from individuals from Australia. Variability in the frequency of HLA alleles 5 

previously associated with COVID-19 highlights the importance of considering ethnic and 6 

geographic origin when performing studies investigating the role of HLA alleles and 7 

disease. Thus, it seems likely that different population-specific haplotypes may be 8 

associated with an increased risk of severe disease in different populations.  9 

In conclusion, we found rare variants in three COVID-19-related genes that are 10 

present only in the Brazilian dataset and are predicted to affect protein function. 11 

Furthermore, we identified HLA alleles previously associated with COVID-19 12 

immunological response and 31 HLA alleles predicted as strong binders to SARS-CoV-2 13 

peptides at loci -A, -B, -C, and DQ, which indicates the importance of further investigation 14 

on the role of HLA haplotypes as modulators of response to infection to SARS-CoV-2. 15 

Although the variants predicted to affect protein function in COVID-19-related genes are 16 

rare in admixed Brazilians (varying from 0.0001 to 0.0032), these also emerge as 17 

candidates for modulating response to infection by the SARS-CoV-2 in the Brazilian 18 

population. Furthermore, our study suggests the utility of population genomic studies in the 19 

context of precision health to stratify risk for infection disorders. 20 

 21 
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Methods 1 

Subjects 2 

We evaluated exomes from 257 individuals from the BIPMed dataset19, 609 from 3 

the ABraOM dataset24, and an additional 88 exomes from individuals born in three towns in 4 

south-eastern Brazil: Barretos (N=30), Ribeirão Preto (N=30), located in the state of São 5 

Paulo, and Belo Horizonte (N=28) the capital of the state of Minas Gerais. Among the 6 

BIPMed individuals, 193 had information about their city of birth available. The HLA 7 

region was sequenced in 386 individuals, including the 257 from BIPMed, the 88 additional 8 

exomes, and an additional 41 individuals (22 from southeast Brazil). We signed terms of 9 

data privacy to obtain permission to use the raw data from BIPMed and ABraOM public 10 

databases and use raw data of the 88 exomes from Barretos, Ribeirão Preto, and Belo 11 

Horizonte. This study was approved by the University of Campinas Research Ethics 12 

Committee (UNICAMP, Campinas, São Paulo, Brazil). All methods were performed 13 

according to the relevant guidelines and regulations. 14 

 15 

Exome analysis 16 

Whole exome data were stored in variant call format (VCF) files built-in 17 

GRCh37/hg19 assembly. Gene regions were extracted by vcftools33 based on the position 18 

reported in Ensembl GRCh37 Release 10134 (Supplementary Table 1). Variant 19 

consequences were annotated from each gene region by ANNOVAR software (version 20 

2019Oct24)35, using the following flags: -otherinfo (to include Brazil AF); -onetranscript; -21 

buildver hg19; -remove; -protocol refGene,gnomad211_exome; ALL.sites.2015_08; 22 

EUR.sites.2015_08; AFR.sites.2015_08; AMR.sites.2015_08; EAS.sites.2015_08; 23 
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SAS.sites.2015_08; -operation g,f; and -nastring. ANNOVAR software provides allele 1 

frequency (AF) information from African/African-American (AFR/AFA), Latino/admixed 2 

American (LAT/AMR), East Asian (EAS), non-Finish European (NFE), and South Asian 3 

(SAS) populations from gnomAD exome dataset21, as well as sub-Saharan Africans (AFR), 4 

Europeans (EUR), admixed Americans (AMR), east Asians (EAS), and south Asians (SAS) 5 

from 1KGP phase 3 dataset22. In addition, we annotated variants which were not identified 6 

by ANNOVAR using Variant Effect Prediction (VEP) algorithm36, with the following 7 

parameters: --buffer_size 500; --canonical; --distance 5000; --species homo_sapiens; --8 

symbol. 9 

To evaluate whether regional variability is observed among Brazilian samples, we 10 

separated the samples based on the city in which individuals were born, including 32 11 

individuals from Campinas extracted from the BIPMed dataset. 12 

 13 

In silico prediction analysis  14 

To predict the impact on protein function of the non-synonymous variants 15 

identified, we applied the following computer algorithms, which is currently recommended 16 

by the ACMG/AMP guidelines: PANTHER37, MutationTaster38, Condel39, PROVEAN40, 17 

PolyPhen241, Sort Intolerant from tolerant (SIFT)42, Align Grantham Variation/ Grantham 18 

Difference score (GVGD)43, Combined Annotation Dependent Depletion (CADD)44, PhD-19 

SNPg45, Functional Analysis through Hidden Markov Models (FATHMM)46, SNPs&GO47, 20 

and MutPred2 (http://mutpred.mutdb.org).  21 

For Align-GVGD, we classified the variants based on the graded classifier with a 22 

cut-off of C35 or higher for deleterious classification. For CADD, we used the PHRED-like 23 

score with a cut-off of 20, below which the variants were classified as benign and otherwise 24 
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deleterious. For MutPred2, we considered a score threshold of 0.50 for pathogenicity. For 1 

all other algorithms, we considered the classification provided as an output.  2 

To access the impact of mutations on protein dynamics and stability, we used the 3 

DynaMut server (http://biosig.unimelb.edu.au/dynamut/)48. The server requires an input file 4 

of protein structure in PDB format or by providing the four-letter accession code for any 5 

entry on the Protein Data Bank database (PDB; http://wwpdb.org). The code for the FURIN 6 

gene used was 5jxg. The other proteins are not available in the PDB database to be tested. 7 

 8 

HLA analysis 9 

We sequenced 11 HLA Loci (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, 10 

HLA-DPB1, HLA-DQA1, HLA -DPA1, HLA-DRB3, HLA-DRB4, HLA-DRB5) in 298 11 

samples using NGSgo® panels (GenDx, Utrecht, The Netherlands). The DNA libraries 12 

were loaded onto a MiSeq Sequencer (Illumina Inc., San Diego, CA, USA), and the data 13 

were analysed with the NGSengine v.2.16.2 software (GenDx, Utrecht, The Netherlands). 14 

We determined the HLA alleles from the remaining 88 exomes using the HLA-HD (HLA 15 

typing from High-quality Dictionary) tool v.1.3.0 49-51. The IPD-IMGT/HLA database 16 

release 3.40.0 52 was used as a reference. Even though we obtained results with six- and 17 

eight-digit precision, we restricted the results to four-digit accuracy to compare with 18 

published data. HLA allele frequencies were calculated by Arlequin v.3.5.2.2 software 53. 19 

 20 

In silico analysis of viral peptide-HLA class I and II binding affinity 21 

We performed in silico analysis of viral peptide-HLA class I and II binding affinity 22 

across HLA proteins found in our population for the entire SARS-CoV-2 proteome. All 23 

HLA-A, -B, -C alleles were selected to assess the peptide‐binding affinity of their 24 
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corresponding proteins HLA-A, HLA-B, HLA-C, respectively. The HLA-DR is 1 

represented by HLA-DRA/DRB1 dimer. Since HLA-DRA is considered monomorphic, we 2 

just used the HLA-DRB1. The HLA-DP and DQ are represented by the HLA-DPA1/DPB1 3 

dimer and HLA-DQA1/DQB1 dimer, respectively.  4 

FASTA-formatted protein sequence data was retrieved from the National Center of 5 

Biotechnology Information (NCBI) database 6 

(https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/Sars-cov-2). The follow eleven 7 

protein viral product was used in the analyses: ORF1ab (YP_009724389.1), Surface 8 

Glycoprotein (S) (YP_009724390.1), ORF3a (YP_009724391.1), Envelope (E) 9 

(YP_009724392.1), Membrane Glycoprotein (M) (YP_009724393.1), ORF6 10 

(YP_009724394.1), ORF7a (YP_009724395.1), ORF7b (YP_009725318.1), ORF8 11 

(YP_009724396.1), Nucleocapsid (N) (YP_009724397.2), and ORF10 (YP_009725255.1).  12 

We k-merised these sequences into 8- to 12-mers to assess HLA class I-peptide 13 

binding affinity and into 15-mers to assess HLA class II binding affinity across the entire 14 

proteome. Predictions for HLA were performed using different HLA alleles found in our 15 

population with netMHCpan v4.1 for class I 54 and NetMHCIIpan - 3.2 for class II 55. 16 

 17 

HLA allele and haplotype frequencies of other populations 18 

HLA frequency data were obtained from the Allele Frequency Net Database 19 

(http://www.allelefrequencies.net/) 56 for 10 distinct populations that are most and least 20 

affected by COVID-19. We checked the HLA of the populations that occupy the top 10 21 

positions (USA, India, Brazil, Russia, Colombia, Peru, Spain, Mexico, Argentina, South 22 

Africa) and those that were less affected (Australia, Vietnam, Taiwan, Japan, and South 23 
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Korea) (accessed on 04/24/2020, https://www.worldometers.info/coronavirus/) according to 1 

the availability of this data in the Allele Frequency Net Database.  2 

 3 

Data availability 4 

BIPMed raw dataset that supports this study's findings is available in EVA 5 

repository/PRJEB39251, https://www.ebi.ac.uk/eva/?eva-study=PRJEB39251. ABraOM 6 

raw dataset that supports the results of this study is available from ABraOM 7 

(http://abraom.ib.usp.br/).  8 
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Tables 

Table 1. Alternative allele frequency (AAF) of variants encompassing the COVID-19 risk core haplotype and the alleles present in 

Neanderthal samples. 

dbSNP Chr Pos ALT Brazil AF Risk allele* Campinas Barretos Ribeirão Preto Belo Horizonte BIPMed ABraOM 

rs35044562 3 45909024 G 0.0011 G 0.0862 0.0000 0.0000 0.0000 0.0279 0.0311 

rs34326463 3 45899651 G 0.0011 G 0.0000 0.0000 0.0357 0.0000 0.0000 0.0000 

rs35508621 3 45880481 C 0.0011 C 0.0345 0.0000 0.0000 0.0000 0.0000 0.0039 

rs67959919 3 45871908 A 0.0011 A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0039 

rs35624553 3 45867440 G 0.0262 G 0.0000 0.0000 0.0000 0.0000 0.0000 0.0039 

*data extracted from Zeberg and Pääbo, 2020 (doi:10.1038/s41586-020-2818-3) 
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Table 2. Alternative allele frequency of deleterious variants according to 12 different prediction algorithms 

  
Alternative Allele Frequency 

Gene Variant Campinas Barretos Ribeirão Preto Belo Horizonte ABraOM BIPMed NFE AFR AMR EAS SAS 

SLC6A20 Phe249Ser 0 0.0167 0 0 0.0008 0.0019 0.0005 0.0615 0.0003 0 0.0084 

SLC6A20 Gly164Val 0 0 0 0 0.0008 0 0.0088 0 0 0 0 

SLC6A20 Leu25Pro 0 0.0167 0 0 0 0 0 0 0 0 0 

LZTFL1 Leu96Arg 0 0 0 0 0.0008 0 0 0 0 0 0 

XCR1 Tyr287Ser 0 0 0 0.0167 0 0 0 0 0 0 0 

FURIN Gly146Ser 0 0 0 0 0.0008 0 0.0004 0.0002 0.0005 0.0544 0.0327 

FURIN Asn414Ser 0 0 0 0 0 0.0019 0 0 0 0 0 

NFE=non-Finish European; AFR=sub-Saharan African/African American; AMR=admixed Americans/Latinos; EAS=east Asians; SAS=south Asians. 

 

https://doi.org/10.1101/2020.12.04.411736
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

 

Table 3. List of HLA strongest binders (>300 peptides bound at high affinity) of SARS-CoV-2 

peptides and frequency in the Brazilian sample. 

HLA HLA alleles Allele frequency 

HLA -A 

A*01:01 0.10233 

A*11:01 0.04145 

A*11:67 0.00130 

A*23:01 0.03756 

A*23:17 0.00389 

A*24:02 0.10104 

A*24:03 0.00259 

A*24:05 0.00130 

A*25:01 0.00389 

A*26:01 0.02979 

A*26:02 0.00130 

A*26:08 0.00130 

A*29:01 0.00259 

A*29:02 0.04534 

A*29:119 0.00130 

A*30:02 0.02591 

A*30:04 0.00259 

A*34:02 0.00777 

A*36:01 0.00389 

A*80:01 0.00130 

HLA-B 
B*15:08 0.00130 

B*15:11 0.00130 

HLA-C 

C*03:02 0.00389 

C*07:02 0.05699 

C*07:50 0.00130 

C*14:02 0.02979 

C*14:03 0.00259 

HLA-DQ 

DQA1*0201-DQB1*0402 0.00259 

DQA1*0301-DQB1*0402 0.00130 

DQA1*0303-DQB1*0401 0.00130 

DQA1*0303-DQB1*0402 0.00130 
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Figures legend 

Figure 1. Distribution of alternative allele frequency of common variants (AAF>0.01) from 

samples of admixed Brazilians and worldwide public datasets. The x-axis shows the 56 

variants found in common between the Brazil sample and the gnomAD and 1KGP dataset. (A) 

Comparison between Brazilians and gnomAD, and (B) including non-Finland Europeans (NFE), 

sub-Saharan Africans/African Americans (AFR) Venn diagrams that show the overlap between 

samples (A) and variants (B) in the WES and the SNP array datasets from BIPMed reference 

samples. 

Figure 2. Distribution of alternative allele frequency of common variants (AAF>0.01) 

separated by Brazilian cities. The x-axis shows the 56 variants found in common with gnomAD 

and 1KGP. This barplot also includes the two public Brazilian datasets (BIPMed and ABraOM) 

and the frequency of all samples combined (Brazil). 
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Figure 1 
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