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Abstract Graph neural networks (GNNs) and the attention mechanism are two of the most18

significant advances in artificial intelligence methods over the past few years. The former are19

neural networks able to process graph-structured data, while the latter learns to selectively focus20

on those parts of the input that are more relevant for the task at hand. In this paper, we propose21

a methodology for seizure localisation which combines the two approaches.22

Our method is composed of several blocks. First, we represent brain states in a compact way by23

computing functional networks from intracranial electroencephalography recordings, using24

metrics to quantify the coupling between the activity of different brain areas. Then, we train a25

GNN to correctly distinguish between functional networks associated with interictal and ictal26

phases. The GNN is equipped with an attention-based layer which automatically learns to identify27

those regions of the brain (associated with individual electrodes) that are most important for a28

correct classification. The localisation of these regions is fully unsupervised, meaning that it does29

not use any prior information regarding the seizure onset zone.30

We report results both for human patients and for simulators of brain activity. We show that the31

regions of interest identified by the GNN strongly correlate with the localisation of the seizure32

onset zone reported by electroencephalographers. We also show that our GNN exhibits33

uncertainty on those patients for which the clinical localisation was also unsuccessful,34

highlighting the robustness of the proposed approach.35

36

Introduction37

Epilepsy is a neurological disorder characterised by recurrent episodes of excessive neuronal firing38

(Stafstromand Carmant, 2015). In approximately a third of the patients, epilepsy cannot be treated39

with anti-seizure drugs and resective surgery can be considered as a possible treatment (Kwan and40
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Brodie, 2000). The outcome of surgery is crucially dependent on the successful localisation of the41

seizure onset zone (SOZ) (Burns et al., 2014; Van Mierlo et al., 2014).42

Electroencephalograpy (EEG) is the mainstay for studying and diagnosing epilepsy, and it is43

widely used to detect, classify, and localise seizures by recording and processing the electrical ac-44

tivity of groups of neurons (Nunez et al., 2006). However, due to their low spatial resolution, scalp45

EEG recordings in some cases are not informative enough to successfully localise seizures (Shah46

andMittal, 2014). In these cases, intracranial EEG recordings (iEEG), in which electrodes are placed47

directly on or within the brain, provide better spatio-temporal resolution to capture the dynamics48

of seizure generation and propagation (Hashiguchi et al., 2007). However, the high temporal res-49

olution of iEEG and the complex functional interaction of distant brain areas, especially during50

seizures, make the interpretation and processing of raw iEEG data a non-trivial task for clinicians.51

For this reason, a significant branch of epilepsy research is concerned with summarising iEEG data52

by considering the pairwise (statistical) dependencies between the activity of different brain ar-53

eas over time (Van Mierlo et al., 2014). These dependencies are usually represented by functional54

networks (FNs), in which each node represents a sensor and edges are weighted by a functional55

connectivity (FC) metric (Bastos and Schoffelen, 2016).56

FNs are awidespread tool to study seizure localisation, with early approaches dating back to the57

1970s (Gersch and Goddard, 1970; Brazier, 1972). Seizures have been observed to affect the func-58

tional organisation of brain activity at the meso-scale, both from a node-centric (Burns et al., 2014)59

and an edge-centric (Khambhati et al., 2015) perspective. In particular, Burns et al. (2014) identified60

sets of brain states that emerge by clustering FNs, consistent in interictal and ictal periods for in-61

dividual patients. They observed that changes in node centrality in FNs accurately predict the SOZ.62

Khambhati et al. (2015) observed a strengthening of FC in the SOZ during seizures, also coinciding63

with a topological tightening of the connections (i.e., strong connections also become physically64

closer). Khambhati et al. (2016) proposed virtual cortical resection, i.e., the removal of nodes from65

FNs, in order to study changes in network synchronizability, which is a known predictor for the66

spread of seizures (Schindler et al., 2008). Lopes et al. (2017) also observed that the resection of67

brain areas associated to rich-club hubs in FNs is correlated with a good post-operative outcome.68

Seizure localisation has also been studied in FNs obtained from functional magnetic resonance69

imaging (fMRI) (Lee et al., 2014;Weaver et al., 2013) and scalp EEG (Staljanssens et al., 2017) data.70

Recent work by Covert et al. (2019) introduced the use of spatio-temporal graph convolutional net-71

works (ST-GCNs) (Yu et al., 2017) to perform seizure detection, and conducted an ex post analysis72

similar to the one of Khambhati et al. (2016) to quantify the importance of a node by observing73

the effect of its removal on the downstream detection accuracy. Gadgil et al. (2020) also proposed74

a methodology based on ST-GCNs that allows identifying high-interest areas in fMRI by learning75

to estimate edge importance, although they did not apply it to seizure localisation. For a more76

in-depth review of approaches to seizure localisation with FNs, we refer the reader to Van Mierlo77

et al. (2014).78

The aim of this paper is to use the representation of brain states as FNs in order to automate79

the localisation of seizures using deep learning. Advances in deep learning techniques over the80

past decade have revolutionised how high-dimensional, high-volume data can be used in the con-81

text of artificially intelligent systems. In particular, deep learning techniques for computer vision82

have shown how artificial intelligence can be successfully adopted in clinical settings to aid human83

experts in their decision making (Litjens et al., 2017). Despite these successes, traditional deep84

learning methods are limited to processing regular structures like images and time series, and85

cannot naturally consider the relations that exist in a complex system with multiple interacting86

components, such as those described by FNs evolving over time. For this reason, recent literature87

has seen the rise of Graph Neural Networks (GNNs) (Battaglia et al., 2018; Bronstein et al., 2017)88

as a generalisation of deep learning techniques to process data represented as arbitrary graphs.89

In this paper, we introduce a GNN-basedmethodology for seizure localisation, using FNs to effi-90

ciently represent brain states. The core of our algorithm is a GNN equipped with an attention-based91
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Figure 1. Schematic view of our GNN-based pipeline for seizure detection and localisation. Starting from raw

iEEG data, we compute a functional network to represent the spatio-temporal dynamics of the signals in a

compact way. The FN is then given as input to a GNN composed of an edge-aware message passing operation

followed by an attention-based readout to compute a graph-level embedding. The embedding is then

classified to perform seizure detection, while the attention scores are analysed to perform seizure

localisation.

readout. By training such a GNN to perform seizure detection, the readout automatically learns to92

assign a higher attention to those nodes that are more important for a correct classification. Then,93

we propose a simple and fast way of analysing the attention coefficients over time, so that we94

obtain a ranking of the nodes based on their overall importance in detecting a seizure. Crucially,95

our methodology does not require a priori information regarding the SOZ, but only weak supervi-96

sion in the form of annotated seizure onsets and offsets. The localisation procedure is, therefore,97

unsupervised. A schematic representation of our approach is shown in Figure 1.98

We validate the proposed methodology on clinical iEEG data collected from eight human sub-99

jects and show that the electrode rankings computed with our localisation procedure are highly100

correlated with the true SOZs. We also validate our algorithm on simulated data, using a simple101

model of seizure initiation (Benjamin et al., 2012) and a more complex brain simulator (Sanz Leon102

et al., 2013) based on the Epileptor model (Jirsa et al., 2014). Our main contributions and results103

are summarised as follows:104

• Wepresent a newalgorithm for unsupervised seizure localisation based onGNNs, which uses105

FNs to represent brain states in a compact form and requires no explicit supervision on the106

SOZ;107

• We show that the attention coefficients learned by the GNN correlate with clinically-identified108

SOZs and accurately predict the presence of ictal activity;109

• We show that, when electroencephalographers were not able to identify the SOZ from the110

iEEG data, the GNN also shows uncertainty in the localisation;111

• We show that, as expected, the choice of FC metric used to estimate FNs is important for an112

accurate localisation;113

• Finally, we show that ourmethodology performs well on very imbalanced datasets, achieving114

a good localisation accuracy even on patients for which we observe as few as five seizures115

during training.116

Methods117

Notation. We denote a time series xi(t) to represent the i-th iEEG channel at time t. We define118

a graph as a tuple  = ( , ), where  = {v1,… , vN} represents the set of attributed nodes with119

attributes vi ∈ ℝ
F , and  = {ei→j|vi, vj ∈ } represents the set of attributed edges with attributes120

ei→j ∈ ℝ
S indicating a directed edge between the i-th and the j-th node. We indicate the neighbour-121

hood of node i with (i) = {vk|ek→i ∈ }. We say that a graph is undirected if ei→j ∈  ⟺ ej→i ∈  .122

Note that in the text, for simplicity, we refer to nodes by means of their index, e.g., node i.123
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Functional networks124

Choosing a suitable FCmetric tomodel the pairwise interaction between brain areas is a non-trivial125

challenge, as there exist a large variety of methods with their own advantages and disadvantages.126

FC metrics can be characterised according to several properties, including whether they are in the127

time or frequency domain, whether they are directed or undirected (i.e., if they model asymmetric128

or symmetric couplings), or whether they are model-free or model-based (Bastos and Schoffelen,129

2016). Here, we focus on undirected FC metrics to simplify the GNN computation, and on model-130

based approaches to reduce the computational costs of estimating the FC metrics directly from131

data. We do, however, consider two different metrics to highlight the practical differences that132

emerge between time- and frequency-domain metrics.133

FNs are generated by computing a FC value for each pair of iEEG channels xa(t) and xb(t) over a134

timewindowof length T . For the time-domainmetric, we consider Pearson’s correlation coefficient:135

136

ea→b = eb→a =

T∑
t=1

(xa(t) − x̄a)(xb(t) − x̄b)

√
T∑
t=1

(xa(t) − x̄a)
2

√
T∑
t=1

(xb(t) − x̄b)
2

, (1)

where x̄a =
1

T

T∑
t=1

xa(t) and analogously for x̄b. Correlation allows to quantify symmetric linear in-137

teractions, it is easy to compute and, as such, it is often used in the literature. For the frequency138

domain, we consider the phase-locking value (PLV) (Lachaux et al., 1999):139

ea→b = eb→a =

||||||
1

T

T∑
t=1

ei('a(t)−'b(t))
||||||
, (2)

where 'a(t) indicates the instantaneous phase of signal xa(t) obtained via Hilbert transform (and140

similarly for 'b(t)). A significant advantage of PLV over correlation is that it is less sensitive to arti-141

facts in the iEEG signals (such as those caused by the patient’s movements). After computing the142

FC metrics for each pair of channels, we sparsify the resulting FNs by removing those edges for143

which |ei→j| < 0.1, i.e., those indicating weak coupling.144

We generate a dataset of FNs for each patient, dividing the FNs into ictal and interictal classes145

and proceeding in a per-seizure fashion. Let fs be the sampling rate of the iEEG signal, L the146

duration of a seizure, t0 the time indicating the seizure onset, k ≥ 1 a subsampling factor, and T147

the length of the time windows. Additionally, let y(t) ∈ {0, 1} be a binary signal indicating whether148

the patient is having a seizure at time t (i.e., y(t) = 1 if t ≥ t0 and 0 otherwise). Note that we consider149

each seizure to end at time t0 + L and we do not compute FNs for the data immediately following150

a seizure offset.151

Given a time window [t − T , ..., t], we compute a FN (t) and label it with class152

 (t) =

⎧⎪⎨⎪⎩

1, if
∑�

�=t−T
y(�) > T ∕2

0, otherwise.
(3)

To generate the FNs associatedwith seizures (class 1), we consider the data interval [t0−T ∕2, ..., t0+153

L] and take overlapping windows of size T with a stride of 1∕fs. For the interictal FNs (class 0), in-154

stead, we consider a longer period preceding the seizure onset, [t0 − kL, ..., t0 + T ∕2], and we take155

windows at a larger stride of k∕fs. In this work, we consider k = 10 and T = 1s for all experiments,156

although other values are possible.157

This procedure to generate the FNs (summarised in Figure 2) results in a balanced dataset and158

has two advantages. First, it allows us to fully use all the available (and rare) ictal events. Second, it159

allows us to consider a more diverse sample for the interictal class. The small differences between160

consecutive FNs of the positive class, due to the small stride at which windows are taken, can be161

seen as a form of sample weighting to account for the class unbalance characterising the problem.162
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Figure 2. Schematic representation of the procedure used to generate FNs. For each seizure of length L

starting at t0 (marked in red), we consider an interictal interval of length kL. Interictal FNs are generated

taking windows of length T at stride k∕fs, while ictal windows are taken with stride 1∕fs (in green). For each

window and each pair of electrodes i and j, we compute the FC value ei→j (in blue) to obtain the full FN. This

figure is only meant to represent the procedure and is not shown in any physical temporal scale.

In order to have initial node features that can be processed by the GNN, we consider dummy163

attributes set to 1 for all nodes. Other choices that depend on the actual iEEG signals are possible164

(e.g., the signal power or wavelet coefficients) but were not explored in this work.165

Attention mechanism166

Attention (Bahdanau et al., 2014; Vaswani et al., 2017) is a processing technique for neural net-167

works to learn how to selectively focus on parts of the input. Originally developed for aligning168

sentences in neural machine translation (Bahdanau et al., 2014; Vaswani et al., 2017), the atten-169

tion mechanism has been used to achieve state-of-the-art results on different tasks like language170

modelling (Brown et al., 2020), image processing (Xu et al., 2015), and even learning on graphs171

(Velickovic et al., 2018).172

In this paper, we focus on the concept of self -attention, which indicates a class of attention173

mechanisms that learn to attend to the output of a layer using the output itself (in contrast to174

classical attention, which uses the output of one layer to focus on the output of another – e.g., the175

sentence of the source language is used to focus on the target language). At its core, self-attention176

consists of computing a compatibility score �ij ∈ [0, 1] between two vectors hi,hj ∈ ℝ
F (both part177

of the same sequence, image, graph, etc.):178

�ij = Softmaxj(eij) =
exp

(
eij

)
∑N

k=1
exp

(
eik

) , (4)

where179

eij = a(hi,hj) (5)

and a is called an alignment model, which is usually learned end-to-end along with the other pa-180

rameters of the neural network. The compatibility score is then used to compute a representation181

of element i as:182

zi =
∑
j

�ijhj . (6)

Intuitively, the attention mechanism learns the importance of element j to describe element i, and183

computes score �ij to quantify this importance. The alignment model can be seen as a similarity184

function between the two elements, which is then normalised via the Softmax function. Different185

implementations of the alignment model are possible, although often it is implemented as a multi-186

layer perceptron.187

Attentionmechanisms are usually trained without direct supervision and automatically learn to188

focus on different parts of the data according to the loss of the given task. By optimising the overall189

task loss, the attention layers in a neural network learn to compute the optimal compatibility scores.190

5 of 20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409979
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

This is a key aspect of our proposed methodology, where we use self-attention to automatically191

detect those brain areas (monitored via different iEEG channels) that are important to detect a192

seizure.193

Graph neural networks for seizure localisation194

Graph Neural Networks (GNNs) are a class of neural networks designed to perform inference on195

graph-structured data (Battaglia et al., 2018). At their core, GNNs learn to represent the nodes196

of a graph by propagating information between connected neighbours, whereas a global repre-197

sentation of the entire graph is usually obtained by computing a readout of the nodes, like a sum,198

average, or component-wise maximum vector. In this work, we focus on the family of message-199

passing networks (Gilmer et al., 2017), in which the l-th layer maps the attributes h(l−1)

i
∈ ℝ

F (l−1)
of200

the i-th node to:201

h
(l)

i
= 


(
h
(l−1)

i
,□j∈ (i) �

(
h
(l−1)

i
,h

(l−1)

j
, ej→i

))
, (7)

where h
(l)

i
∈ ℝ

F (l)
, h(0)

i
= vi, and � and 
 are differentiable functions equivariant to node permu-202

tations, respectively called the message and update functions, while □ is a permutation-invariant203

function (such as the sum or the average) to aggregate incoming messages.204

Many recent papers have introduced methods for graph representation learning based on this205

general scheme, with different implementations ranging from polynomial (Defferrard et al., 2016)206

or rational (Bianchi et al., 2019) graph convolutional filters, to attentional mechanisms (Velickovic207

et al., 2018). In most of these works the creation of messages is only dependent on the node208

attributes, although some methods have been proposed that also explicitly take edge attributes209

into account (Simonovsky and Komodakis, 2017; Schlichtkrull et al., 2018). In particular, the Edge-210

Conditioned Convolutional (ECC) operator proposed by Simonovsky and Komodakis (Simonovsky211

and Komodakis, 2017) incorporates edge attributes into the message-passing scheme by using a212

kernel-generating network f (l)(⋅) that dynamically computes messages between each pair of con-213

nected nodes. An ECC layer is thus defined as:214

h
(l)

i
= h

(l−1)

i
⋅W

(l)
root

+
∑

j∈ (i)

h
(l−1)

j
⋅ f (l)(ej→i), (8)

whereW(l)

root
∈ ℝ

F (l−1)×F (l)
is a learnable kernel applied to the root node itself and the kernel-generating215

network is usually a multi-layer perceptron f (l) ∶ ℝ
S
→ ℝ

F (l−1)×F (l)
.216

Our method for seizure localisation can be summarised as follows. First, we train a GNN with217

an attention-based readout to detect seizures from FNs. This is a graph-level classification problem218

where a label (ictal or interictal) is assigned to each FN. Then, we analyse the compatibility scores219

learned by the attentional mechanism to identify those nodes that the model consistently consid-220

ers as important. Although we train the GNN to do seizure detection in a supervised way, i.e., it221

requiresmanually-annotated seizure onsets and offsets, the localisation is fully unsupervised. This222

is one of the main strengths of the proposed method, as significantly less manual work is required223

to annotate the temporal boundary for each individual seizure, rather than the SOZ.224

There are two main components in our GNN architecture. First, the connectivity information225

is propagated to the node attributes via an edge-aware message-passing operation like ECC. A226

single layer is sufficient because the input FNs are densely connected, and most nodes will receive227

information from the whole graph in a single step of message passing.228

Then, we use a self-attentional mechanism to compute the graph readout:229

z = Attn-RO(h) =

N∑
j=1

�jhj (9)

where230

�j =
exp

(
hj ⋅ a

)
∑N

k=1
exp

(
hk ⋅ a

) , (10)
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hj ∈ ℝ
F out

is the embedding of the j-th node computed by the ECC layer, and a ∈ ℝ
F out

is a vector of231

learnable weights. Note that, compared to Equation (6), here index i is left implicit as the attention232

is only computed once for all nodes, to reduce the graph to a vector. This is also reflected in the233

fact that the alignment model is a function of only one node at a time, e.g., hj ⋅a. For amore general234

way of applying attention to every possible pair of nodes (while maintaining the graph structure),235

see (Velickovic et al., 2018).236

Finally, a multi-layer perceptron MLP(⋅) with sigmoid activation computes the probability that237

the input FN represents an ictal window of iEEG data.238

The full architecture is written as:239

ŷ = MLP(Attn-RO(ECC())) (11)

where  represents an input FN (cf. Figure 1).240

By training the GNN to correctly distinguish the ictal FNs from the non-ictal ones, we also implic-241

itly train the attentional readout Attn-RO to assign higher attention to those nodes of the FNs that242

maximise the confidence in the prediction. We then analyse how the attention scores assigned243

to nodes change over time, and rank the nodes according to the overall amount of attention that244

they receive before and during a seizure. The localisation procedure is described in the following245

section.246

Localising the seizure onset zone247

For each seizure in the data, we consider symmetric intervals of length 2L centred at the seizure248

onset, so that the first L timesteps are pre-ictal and the remaining L cover the beginning of the249

seizure. For each of the 2L timesteps, we compute a FN (t) from a T = 1s window ending at time250

t, obtaining a sequence of FNs [(1),… ,(2L)] (this is equivalent to how we generate the training251

datasets, except that the subsampling is set at k = 1). For each FN in the sequence, we use the252

GNN to compute the attention scores over the nodes according to Equation (10). We thus compute253

a sequence of attention scores [�(1)

i
,… , �

(2L)

i
] for each node i.254

We then sum the sequence of attention scores to obtain the overall importance of the node255

over the considered time interval:256

�i =

2L∑
t=1

�
(t)

i
, (12)

and normalise the importance scores to the [0, 1] interval as:257

s
(s)

i
=

�
(s)

i
− minj∈ �

(s)

j

maxj∈ �
(s)

j
− minj∈ �

(s)

j

. (13)

Finally, we rank the nodes according to their importance and predict the SOZ accordingly.258

Results259

We report the results obtained on real iEEG data collected fromeight patients. Additional results on260

two brain activity simulators (a simple network model (Benjamin et al., 2012) and The Virtual Brain261

simulator (Sanz Leon et al., 2013)) and all experimental details regarding the GNN are reported in262

the appendix.263

Data collection and pre-processing264

We used iEEG data recorded from eight human subjects with medically refractory epilepsy, the265

recordings obtained as part of their standard clinical pre-surgical investigations. The study was266

approved by the Research Ethics Board at the University Health Network (ID number 12-0413) and267

written consent for data collection was obtained from all participants. Each patient had a varying268

number of recorded clinical seizures and the number of electrodes also varied from patient to269

patient (cf. Table 1). The data was recorded from subdural or intracerebral depth electrodes at270
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Table 1. Summary of the patients considered for this study. The columns indicate (left-to-right): the number

of recorded seizures, the number of implanted electrodes, the presence of ictal activity (IA) marked by

electroencephalographers on one or more channels, whether the patient had surgery, and the outcome of

the surgery.

Patient Seizures Electrodes IA identified Surgery Outcome

66 15 100 Yes, low confidence No -

70 9 96 Yes Yes Seizures reduced

75 10 23 Yes No -

76 5 74 No No -

77 11 38 Yes Yes Seizures reduced

78 18 45 Yes, poorly defined No -

85 5 45 Yes No -

87 16 69 Yes No -

fs = 500Hz over the course of several days per patient, and seizures were manually annotated by271

electroencephalographers, inspecting both raw iEEG and video recordings of the patient. The iEEG272

signal was notch-filtered at 60Hz and related harmonics to remove powerline trends, and then273

filtered with an order-3 low-pass filter at 100Hz to remove any high-frequency noise. Then, each274

electrode channel was independently re-referenced to have zero mean and rescaled to have unit275

variance.276

Before pre-processing, we visually inspected the raw data of each patient and each seizure to277

assess the presence of bad channels: we considered symmetric windows around each labelled278

seizure onset and we removed from the data any channels that exhibited abnormal (i.e., either flat279

or excessive) activity in at least one seizure.280

Per-patient analysis of the SOZ281

This section reports the available clinical data for the patients considered in our study. For all pa-282

tients, both the seizure onset time instants and the SOZ annotations were provided by electroen-283

cephalographers.284

Patient 66 demonstrated ictal activity in both the left and right posterior interhemispheric re-285

gions (Figure 3a), with interictal epileptiform discharges recorded independently from the left an-286

terior frontal and right middle frontal lobes. The patient did not undergo resective surgery due to a287

low confidence in the identification of the SOZ. Patient 70 showed clear seizures originating in the288

right posterior insular region (Figure 3b). The patient underwent laser interstitial thermal therapy289

targeting a focal cortical dysplasia in the area. The patient continued to have some post-operative290

seizures, although these were reduced in frequency and intensity, indicating that the SOZwas iden-291

tified correctly. Patient 75 had seizure onsets recorded independently from both temporal lobes292

and thus was not a candidate for surgery. Patient 76 had no clear ictal activity identified by elec-293

troencephalographers in the iEEG recordings and was thus not a candidate for surgery, the SOZ294

evidently not captured by the intracranial electrode placements. Patient 77 demonstrated ictal ac-295

tivity in the left hippocampal body, and underwent a left anterior temporal resection. The patient296

continued to have seizures after the surgery, but of reduced frequency and intensity, indicating a297

successful localisation of the SOZ. Patient 78 had multiple seizures recorded with poorly defined,298

inconsistent ictal onsets over temporoparietal sensory cortex and was deemed not a candidate299

for surgical resection due to uncertainty on the SOZ. Patient 85 had seizures recorded in the left300

hemisphere, with onsets involving a broad region of temporal lobe neocortex. The patient was not301

subject to resection due to the epileptogenic zone being too large, and near eloquent language302

cortex. Patient 87 exhibited abnormal activity in the left amygdala and hippocampus. The patient303

had already undergone contralateral right anterior temporal resective surgery years prior to the304
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Figure 3. Examples of raw iEEG traces for patients 66 and 70. The two plots show the activity of electrodes

that were identified as SOZs by electroencephalographers. The vertical line marks the seizure onset, as

reported in the patients’ clinical records.

collection of the iEEG data and was not a candidate for further resections.305

Table 1 summarises the relevant details of the eight patients. In particular, six patients had306

clinically-identified, well-defined information regarding the SOZ, whereas in two patients the SOZ307

could not be clearly identified in the iEEG data by electroencephalographers.308

Results on seizure detection and localisation309

Table 2 reports the average AreaUnder the ReceiverOperating Characteristic Curve (ROC-AUC) and310

the Area Under the Precision-Recall Curve (PR-AUC) obtained by the GNN on the seizure detection311

task. We report the results obtained using both FC metrics (correlation and PLV) to generate the312

FNs. We also report the detection performance of a baseline convolutional neural network for time313

series classification (details in the Appendix).314

The GNN achieved an average ROC-AUC score of 79.56 and an average PR-AUC of 81.24 (the av-315

erage is computed over all patients) when using correlation as FCmetric. These results are aligned316

with the performance of the baseline, which our method slightly outperformed on average, and317

indicate that 1) our choice of architecture was reasonable and 2) using graph-structured data is318

an interesting direction for future research on efficient seizure detection. We also recall that the319

detection task is only meant to provide a weak supervision for the more interesting challenge of320

localisation, and that better detection results could be achieved by increasing the capacity of the321

GNN or collecting more training data.322

Tables 3 and 4 report the performance of the model on the patients with a known SOZ, respec-323

tively using correlation and PLV to generate FNs. In particular, we report three main performance324

measures:325

(a) the average precision at K (AP@K) (Sanderson et al., 2010) obtained by the GNN when com-326

puting an average ranking of the electrodes. Each electrode is re-ranked by considering five327

models trained on the same data and taking the average score assigned to each electrode328

over all models and all seizures. Thismeasure quantifies the GNN’s ability to correctly identify329
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Table 2. Average ROC-AUC score and average PR-AUC score for seizure detection on unseen test data. These

scores represent the model’s ability to correctly classify the FNs as interictal or ictal. The last row reports the

average score over all patients. The highest ROC-AUC and PR-AUC scores are reported in bold for each

patient.

Baseline GNN Corr. GNN PLV

Patient ROC PR ROC PR ROC PR

66 62.54 ± 22.5 70.06 ± 17.8 68.63 ± 11.43 75.20 ± 10.30 75.68 ± 23.3 77.51 ± 20.1

70 80.19 ± 15.5 85.96 ± 10.6 86.87 ± 9.07 89.04 ± 9.35 65.36 ± 20.1 72.91 ± 14.8

75 82.32 ± 14.19 87.25 ± 9.24 93.35 ± 3.12 94.34 ± 2.72 71.50 ± 14.8 71.02 ± 16.3

76 67.81 ± 8.75 69.83 ± 13.12 60.40 ± 14.41 61.11 ± 14.82 53.83 ± 6.6 51.67 ± 6.4

77 76.18 ± 15.41 80.42 ± 14.26 77.04 ± 11.98 76.39 ± 13.03 71.46 ± 12.1 71.45 ± 12.9

78 76.32 ± 17.2 80.94 ± 13.5 73.72 ± 17.14 76.02 ± 14.53 63.81 ± 17.2 71.06 ± 12.4

85 76.46 ± 11.24 81.22 ± 7.65 85.52 ± 10.95 85.92 ± 13.65 69.32 ± 2.6 65.55 ± 1.8

87 85.60 ± 14.6 89.29 ± 10.7 90.97 ± 5.51 91.89 ± 3.49 77.69 ± 11.5 78.32 ± 11.3

Avg. 75.93 ± 7.06 80.62 ± 6.86 79.56 ± 10.82 81.24 ± 10.37 68.58 ± 7.08 69.94 ± 7.86

the SOZ for a patient in general, which is the most clinically relevant scenario.330

(b) Themean AP@K (MAP@K) obtained by the GNN on different individual seizures. In this case,331

the ranking for each seizure is compared to the ground truth independently of the others (i.e.,332

without averaging the scores), and the scores are averaged a posteriori (also considering five333

repetitions of the experiments). Thismeasure quantifies theGNN’s ability to correctly identify334

target electrodes in a given seizure.335

(c) The MAP@K obtained by the GNN on different individual seizures, but considering groups of336

electrodes belonging to the same strip (implying spatial locality of the electrodes). This allows337

us to evaluate the performance of the model at a coarser scale.338

From the results we see that, while correlation was a clearly better metric for the task of seizure339

detection, the localisation performance can vary depending on the particular FC metric used. In340

particular, the localisation for patients 66 and 77 was better when using correlation networks, but341

PLV yielded better results for patients 75, 85, and 87.342

In general, however, we note that the (M)AP@5 score is positive for both FC metrics, for all343

performance measures and for all patients, meaning that at least one SOZ-associated electrode344

was ranked in the top five every time. We also note that the GNN achieves a perfect AP@2 score345

(average rankings) in six out of eight cases when using PLV, indicating a high chance of localising346

at least two relevant electrodes per patient.347

Remarkably, we see that these results were obtained even when considering small datasets,348

e.g., down to only five seizures for patient 85 (cf. Table 1).349

Comparison with clinical information350

Figure 5 summarises our results and provides an overview of the importance scores, their variabil-351

ity across different models and seizures, and their agreement with the ground truth.352

The results for patient 77 can be considered a complete success, with the highest AP@K scores353

among all patients and very little uncertainty in the ranking by the GNN. Crucially, the successful354

post-operative outcome confirms that the localisation of the SOZ for this patient was accurate355

and points to a strong localisation ability of the GNN. For patient 70, ictal activity was evident and356

well-localised on a specific depth electrode placed in the right insular complex (RINS1). The clinical357

localisation of the SOZ was therefore likely accurate, even if the outcome of the surgery was not358

completely successful. More importantly, we notice that the GNN was strongly aligned with the359

human analysis given the same information, and similarly focused on the same electrode (which360
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Table 3. Localisation performance for patients with a known SOZ, when using Pearson’s correlation as FC

metric. We report: (a) the average precision at K for averaged rankings, which evaluates the localisation for

the patient overall; (b) the mean average precision at K for single rankings, which evaluates the localisation

for a given seizure; (c) the mean average precision at K for single rankings and groups of electrodes, which is

equivalent to (b) but at a coarser scale. We report scores for K = 2, 5, 10. Bold indicates that the results are

better than the ones obtained with PLV as FC metric (cf. Table 4).

(a) AP@K - Avg. rank (b) MAP@K - Single (c) MAP@K - Groups

Patient K = 2 K = 5 K = 10 K = 2 K = 5 K = 10 K = 2 K = 5 K = 10

66 50.00 20.00 12.50 22.31 12.0 7.24 26.92 21.48 31.64

70 100.00 100.00 100.00 51.11 54.8 56.71 53.33 58.48 60.73

75 0.00 16.67 38.96 20.37 26.51 28.98 36.11 45.09 50.07

77 100.00 55.00 55.00 97.73 48.55 54.71 99.09 99.09 99.09

85 0.00 0.00 0.00 0.00 2.71 5.43 25.00 53.75 64.42

87 0.00 6.67 5.56 19.69 13.00 7.42 20.00 36.43 44.07

Table 4. Localisation performance for patients with a known SOZ, when using PLV as FC metric. Bold

indicates that the results are better than the ones obtained with correlation as FC metric (cf. Table 3).

(a) AP@K - Avg. rank (b) MAP@K - Single (c) MAP@K - Groups

Patient K = 2 K = 5 K = 10 K = 2 K = 5 K = 10 K = 2 K = 5 K = 10

66 0.00 5.00 5.83 8.67 5.97 4.67 16.67 18.82 31.78

70 100.00 100.00 100.00 50.00 54.33 56.65 50.00 58.04 60.21

75 100.00 55.00 45.46 60.00 40.82 32.58 66.88 45.16 51.36

77 100.00 40.00 48.57 66.82 38.28 45.27 91.82 93.48 93.48

85 100.00 40.00 28.29 70.00 40.40 25.43 66.00 65.02 78.35

87 50.00 20.00 10.00 15.62 9.15 6.43 16.56 20.07 32.30
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Figure 4. Histograms of the attention scores over a 2-second window starting from a seizure onset. Each bin

represents the frequency with which the corresponding attention score is assigned to ten randomly-selected

electrodes. Figure (a) shows a patient with a known SOZ, while Figures (b) and (c) show patients without a

known SOZ. For Figure (a), the contribution to each bin of those electrodes that are part of the SOZ ground

truth are highlighted in orange. Note how the score distribution for SOZ-associated electrodes is spread out

towards higher values, while for patients with no known SOZ the scores are similar for all channels.

is ranked first using either of the FC metrics). Our methodology also confirms the conclusions361

reached by electroencephalographers for patients 75, 85 and 87, although further studies would362

be required to give amore precise interpretation of the results (including, possibly, the outcome of363

future surgeries). The results for patient 87 are particularly uncertain, despite the GNN achieving a364

good detection accuracy (cf. Table 2). In general, however, the rankings provided by the GNN show365

a high agreement with the medical assessment in those cases where the SOZ was successfully366

identified.367

For patients with no known SOZ (76, 78) the GNN has a low detection performance and the av-368

erage attention scores assigned by the GNN are uniformly distributed across all electrodes around369

an average score of 0.5. On the contrary, patients with a known SOZ have a few electrodes that are370

assigned amajority of the attentional budget. This difference between the two cases ismore clearly371

visualised in Figure 4, which shows the distribution of the scores given to different electrodes at372

the seizure onset (patient 77 is taken as representative of the case in which the SOZ is known).373

For patient 66, the GNN did not identify any particularly important regions despite there being374

some clinical evidence of ictal activity in the posterior interhemispheric region. Two posterior inter-375

hemispheric electrodes are indeed ranked in the top ten (averaged rankings) by the GNN when us-376

ing correlation FNs, although with a very high uncertainty. We note, however, that the uncertainty377

showed by the GNN was also reflected clinically in the electroencephalographers’ interpretations378

and in the final decision to not operate this patient.379

Our analysis for patients 66, 76, and 78 shows that the uncertainty of the GNN correlates with380

uncertainty or inability on the part of electroencephalographers to identify the SOZ in iEEG, and381

can still be useful to support their decision making (e.g., deciding to not operate a patient can be382

just as valuable as a successful localisation).383

Discussion384

Our work introduces a methodology for automated and unsupervised seizure localisation using385

graph-based machine learning. Our approach does not require any manual annotation of the SOZ386

in order to work, making it cheaper to train and easier to scale to a larger number of patients. Our387

method is also data-efficient: we were able to provide a good – and clinically verified – localisation388

using as little as five annotated seizures per patient.389

The goal of the proposed approach is to provide a support tool for clinicians to allocate pre-390

cious resources in the analysis of iEEG data, and to improve the efficiency of the decision-making391
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Figure 5. Top ten electrodes when considering the averaged rankings. We report the ranking obtained with

the best-performing FC metric for each patient, according to the AP@10 score for average rankings reported

in Tables 3 and 4. The two plots in red indicate those patients for which the SOZ was not identified clinically.

Bold labels indicate that the corresponding electrode was marked as a potential SOZ by

electroencephalographers.

process. Crucially, in this regard, we note that our algorithm is conservative in scoring potential392

SOZ candidates. When the SOZ was not identifiable by electroencephalographers, the GNN also393

showed uncertainty in the scoring (rather than making high-confidence predictions). Contrarily,394

a high importance score consistently correlated with clinically-identified SOZs. With this premise,395

we believe that our approach could have practical value if deployed to epilepsy monitoring units396

to provide a real-time analysis of iEEG recordings.397

Future work398

There are several directions for future research that could stem from this work. First, we note that399

by 1) increasing the capacity of the network (in terms of parameters and depth), 2) performing a400

patient-specific hyperparameter search, and 3) having more seizures on which to train the model,401

it is likely that both the detection and localisation performance would significantly improve. Also,402

a possible extension of the proposed methodology could be to explicitly introduce a supervised403

objective to train the attentional readout using the available information on the SOZ. This would404

require a per-seizure annotation of every electrode (or, even better, an annotation over time), but405

could lead to a more accurate localisation. An interesting application of this methodology could406

also be to provide a patient-agnostic localisation, by training the GNN concurrently on seizures of407

different patients.408

Future work could also explore more in-depth the use of different, combined FC metrics and409

their impact on the detection and localisation performance. In fact, our results show that this410

choice could lead to significantly different outcomes (as we showed with correlation and PLV). A411

way to identify a priori the best FC metric to build FNs for a specific patient could bring significant412

benefits.413

Conclusion414

We presented a methodology for unsupervised seizure localisation based on GNNs with an atten-415

tion mechanism. Our approach takes advantage of a compact representation of brain states as416
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FNs, and uses machine learning methods for graph-structured data to automatically detect those417

regions of the brain that are important for localising seizure onsets. To train the GNN, it is suf-418

ficient to have seizure onset annotations, but no information regarding the SOZ is needed. We419

showed the effectiveness of our method in localising the SOZ on real-world data consisting of iEEG420

recordings from eight human subjects, using two different FC metrics to compute FNs. Our results421

show a very high accuracy in localising the SOZ. However, we also observed that the GNN exhibits422

uncertainty in those cases where human analysis was also uncertain, indicating a reliable and safe423

behaviour to support decision-making.424

We believe that this work represents a step towards AI-aided analysis of iEEG data and could425

potentially lead to faster and more accurate treatment of epilepsy.426
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Experiments on Simulated Data518

Seizure generator from Benjamin et al. (2012)519

In this experiment we considered a simple network model of seizure initiation presented by Ben-520

jamin et al. (2012), and also usedby Lopes et al. (2017, 2020) to study the effect of network structure521

on the generation of seizures. The model consists of a network of N bi-stable oscillators522

ż = f (z) = (� − 1 + i!)z + 2z|z|2 − z|z|4 (14)

where z ∈ ℂ. Equation (14) describes a dynamical system with a stable fixed point at the origin

of the complex plane (which we consider as interictal), and an oscillating attractor with frequency

! (which we consider as ictal). Parameter � controls the location of the oscillator in phase space.

Nodes are interconnected in a graph described by adjacencymatrixAwith a coupling factor �, such

that the dynamic of a single node reads:

dzi(t) =
(
f (zi) + �

∑

j≠i

Aji(zj − zi)
)
+ � dWi(t)

whereWi(t) is a stochastic Wiener process rescaled by a factor of �.523

All nodes in the model are initialised at the fixed point and, due to the presence of noise and524

the interaction between nodes, eventually switch to the oscillation state. We identify the activity of525

the whole system as ictal if any of the nodes meets the condition |Re(zi)| > 1, and the SOZ as the526

first node that escapes the fixed regime.527

We consider a complete graph without self-loops to describe the interaction of the nodes. The528

configuration of the parameters is summarised in Table 5. The hyperparameters used for creating529

the FNs and training the GNN are the same ones that we used for the real iEEG data, and we only530

report results obtained using PLV as FC metric.531

Appendix 0 Table 5. Configuration used for the simulator by Benjamin et al. (2012).

Parameter Value

N 3

! 20

� 0.5

� 0.1

� 0.05

The GNN achieves an almost perfect detection score with a ROC-AUC of 99.61 ± 0.0 and a PR-532

AUC of 99.69 ± 0.0 (averaged over five runs, evaluated on hold-out test data). Figure 6 compares533

the generated node activity with the attention scores assigned by theGNNover time. The SOZ chan-534

nel (green) is assigned the highest attention since the beginning of the seizure until all nodes are535

simultaneously oscillating, at which point the attention scores converge to be evenly distributed. A536

similar even distribution is observed in the interictal state, indicating that the network has correctly537

learned to identify the SOZ electrodewithout defaulting to assign a high score to just one electrode.538

This behaviour is confirmed by the spikes in attention assigned to channels 0 and 1, which happen539

as soon as the node dynamics escape the fixed-point attractor.540

The Virtual Brain Simulator541

In this experiment we use The Virtual Brain simulator (TVB) (Sanz Leon et al., 2013) to model a542

patient with temporal lobe epilepsy.543

We follow the same approach described in TVB’s documentation to configure the simulator.1544

We assign the Epileptor neural massmodel (Jirsa et al., 2014) to all the controllable brain regions of545

1https://github.com/the-virtual-brain/tvb-root/blob/master/tvb_documentation
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Appendix 0 Figure 6. Top: a clip showing the generated activity of a 3-node simulator, compared to the

attention coefficient assigned by the GNN at each node over time. Colors indicate the same node in both

plots.

TVB. We set the epileptogenicity of the right limbic areas (rHC, rPHC and rAMYG) to −1.6, the supe-546

rior temporal cortex (rTCI) and the ventral temporal cortex (rTCV) to −1.8, while for all other areas547

to −2.2. The remaining parameters are kept as default. The hyperparameters used for creating the548

FNs and training the GNN are the same ones that we used for the real iEEG data.549

We select a subset of 34 sEEG virtual sensors among the ones provided for the default subject550

of TVB. Of this subset, electrode 33 shows strong epileptogenic activity, while electrodes 18, 19, and551

20 show mild activity. We generate clips of roughly 1 minute at 20Hz so that there is a simulated552

onset in the middle of each clip. An example of a generated clip is shown in Figure 7.553

The GNN achieved an average detection ROC-AUC of 98.87 ± 0.18 and an average PR-AUC of554

99.18 ± 0.07 (averaged over five runs, evaluated on hold-out test data). The electrode with a strong555

ictal activity is consistently assigned a maximum score of 1 by all models and electrode 19 is also556

ranked in the top-5 electrodes (see Figure 8).557

GNN training details558

We consider each patient separately and train a GNN from scratch to build patient-specific models.559

The GNN architecture is the one given in Equation (11). The ECC layer has 32 output units with560

ReLU activation and a kernel-generating network f (⋅) consisting of a two-layer MLP with 32 hidden561

units and ReLU activation. All parameters of the layer are regularised with an L2 penalty with a562

factor of 10−5.563

The MLP classifier following the Attn-RO readout has 2 layers, with the hidden one having 32564

units and ReLU activation and with 25% dropout in-between. Both layers are regularised with an565

L2 penalty with factor 10
−5.566

Themodel is trained using Adam, with a learning rate of 10−3 and a batch size of 32 graphs. The567

model is trained to convergence with 10 epochs of patience, using the data from ⌈0.2 ⋅ n⌉ seizures568

selected randomly (n being the overall number of available seizures) for early stopping.569
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Appendix 0 Figure 7. A virtual seizure generated with TVB. The vertical line denotes the annotated seizure

onset in time.
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Appendix 0 Figure 8. Top-10 electrodes with averaged rankings. Bold labels indicate that the corresponding

electrode showed ictal activity. As desired, electrode 33 shows strong epileptogenic activity.
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Baseline training details570

The baseline is a simple 1D convolutional neural network (CNN) based on the architecture de-571

scribed by Wang et al. (2017). The CNN operates directly on iEEG time series and hence does572

not take into account any graph-based representation for the data. Similarly to how we create the573

input-output pairs for the GNN, here we consider windows of size T taken at a stride of k∕fs for574

the interictal class and stride 1∕fs for the ictal class, and we associate to each window a class label575

corresponding to the majority class of y(t) in the corresponding window.576

In particular, we shrink themodel tomake it comparable in terms of number of parameters and577

depth to the GNN one, and also to prevent overfitting (which we experimentally encountered as a578

significant problem with the model). We consider a single convolutional layer with a kernel of size579

3, 8 output channels, and ReLU activations, followed by a global average pooling and a single-layer580

MLP to output the classification decision. We train the model using Adam with learning rate 0.001,581

batch size of 32 and early stopping with a patience of 5 epochs.582
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