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Abstract Graph neural networks (GNNs) and the attention mechanism are two of the most
significant advances in artificial intelligence methods over the past few years. The former are
neural networks able to process graph-structured data, while the latter learns to selectively focus
on those parts of the input that are more relevant for the task at hand. In this paper, we propose
a methodology for seizure localisation which combines the two approaches.

Our method is composed of several blocks. First, we represent brain states in a compact way by
computing functional networks from intracranial electroencephalography recordings, using
metrics to quantify the coupling between the activity of different brain areas. Then, we train a
GNN to correctly distinguish between functional networks associated with interictal and ictal
phases. The GNN is equipped with an attention-based layer which automatically learns to identify
those regions of the brain (associated with individual electrodes) that are most important for a
correct classification. The localisation of these regions is fully unsupervised, meaning that it does
not use any prior information regarding the seizure onset zone.

We report results both for human patients and for simulators of brain activity. We show that the
regions of interest identified by the GNN strongly correlate with the localisation of the seizure
onset zone reported by electroencephalographers. We also show that our GNN exhibits
uncertainty on those patients for which the clinical localisation was also unsuccessful,
highlighting the robustness of the proposed approach.

Introduction

Epilepsy is a neurological disorder characterised by recurrent episodes of excessive neuronal firing
(Stafstrom and Carmant, 2015). In approximately a third of the patients, epilepsy cannot be treated
with anti-seizure drugs and resective surgery can be considered as a possible treatment (Kwan and
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Brodie, 2000). The outcome of surgery is crucially dependent on the successful localisation of the
seizure onset zone (SOZ) (Burns et al., 2014; Van Mierlo et al., 2014).

Electroencephalograpy (EEG) is the mainstay for studying and diagnosing epilepsy, and it is
widely used to detect, classify, and localise seizures by recording and processing the electrical ac-
tivity of groups of neurons (Nunez et al., 2006). However, due to their low spatial resolution, scalp
EEG recordings in some cases are not informative enough to successfully localise seizures (Shah
and Mittal, 20714). In these cases, intracranial EEG recordings (iEEG), in which electrodes are placed
directly on or within the brain, provide better spatio-temporal resolution to capture the dynamics
of seizure generation and propagation (Hashiguchi et al., 2007). However, the high temporal res-
olution of iEEG and the complex functional interaction of distant brain areas, especially during
seizures, make the interpretation and processing of raw iEEG data a non-trivial task for clinicians.
For this reason, a significant branch of epilepsy research is concerned with summarising iEEG data
by considering the pairwise (statistical) dependencies between the activity of different brain ar-
eas over time (Van Mierlo et al., 2014). These dependencies are usually represented by functional
networks (FNs), in which each node represents a sensor and edges are weighted by a functional
connectivity (FC) metric (Bastos and Schoffelen, 2016).

FNs are a widespread tool to study seizure localisation, with early approaches dating back to the
1970s (Gersch and Goddard, 1970; Brazier, 1972). Seizures have been observed to affect the func-
tional organisation of brain activity at the meso-scale, both from a node-centric (Burns et al., 2014)
and an edge-centric (Khambhati et al., 2015) perspective. In particular, Burns et al. (2014) identified
sets of brain states that emerge by clustering FNs, consistent in interictal and ictal periods for in-
dividual patients. They observed that changes in node centrality in FNs accurately predict the SOZ.
Khambhati et al. (2015) observed a strengthening of FC in the SOZ during seizures, also coinciding
with a topological tightening of the connections (i.e., strong connections also become physically
closer). Khambhati et al. (2016) proposed virtual cortical resection, i.e., the removal of nodes from
FNs, in order to study changes in network synchronizability, which is a known predictor for the
spread of seizures (Schindler et al., 2008). Lopes et al. (2017) also observed that the resection of
brain areas associated to rich-club hubs in FNs is correlated with a good post-operative outcome.
Seizure localisation has also been studied in FNs obtained from functional magnetic resonance
imaging (fMRI) (Lee et al., 2014; Weaver et al., 2013) and scalp EEG (Staljanssens et al., 2017) data.
Recent work by Covert et al. (2019) introduced the use of spatio-temporal graph convolutional net-
works (ST-GCNs) (Yu et al., 2017) to perform seizure detection, and conducted an ex post analysis
similar to the one of Khambhati et al. (2016) to quantify the importance of a node by observing
the effect of its removal on the downstream detection accuracy. Gadgil et al. (2020) also proposed
a methodology based on ST-GCNs that allows identifying high-interest areas in fMRI by learning
to estimate edge importance, although they did not apply it to seizure localisation. For a more
in-depth review of approaches to seizure localisation with FNs, we refer the reader to Van Mierlo
et al. (2014).

The aim of this paper is to use the representation of brain states as FNs in order to automate
the localisation of seizures using deep learning. Advances in deep learning techniques over the
past decade have revolutionised how high-dimensional, high-volume data can be used in the con-
text of artificially intelligent systems. In particular, deep learning techniques for computer vision
have shown how artificial intelligence can be successfully adopted in clinical settings to aid human
experts in their decision making (Litjens et al., 2017). Despite these successes, traditional deep
learning methods are limited to processing regular structures like images and time series, and
cannot naturally consider the relations that exist in a complex system with multiple interacting
components, such as those described by FNs evolving over time. For this reason, recent literature
has seen the rise of Graph Neural Networks (GNNs) (Battaglia et al., 2018; Bronstein et al., 2017)
as a generalisation of deep learning techniques to process data represented as arbitrary graphs.

In this paper, we introduce a GNN-based methodology for seizure localisation, using FNs to effi-
ciently represent brain states. The core of our algorithm is a GNN equipped with an attention-based
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Figure 1. Schematic view of our GNN-based pipeline for seizure detection and localisation. Starting from raw
iEEG data, we compute a functional network to represent the spatio-temporal dynamics of the signals in a
compact way. The FN is then given as input to a GNN composed of an edge-aware message passing operation
followed by an attention-based readout to compute a graph-level embedding. The embedding is then
classified to perform seizure detection, while the attention scores are analysed to perform seizure
localisation.

readout. By training such a GNN to perform seizure detection, the readout automatically learns to
assign a higher attention to those nodes that are more important for a correct classification. Then,
we propose a simple and fast way of analysing the attention coefficients over time, so that we
obtain a ranking of the nodes based on their overall importance in detecting a seizure. Crucially,
our methodology does not require a priori information regarding the SOZ, but only weak supervi-
sion in the form of annotated seizure onsets and offsets. The localisation procedure is, therefore,
unsupervised. A schematic representation of our approach is shown in Figure 1.

We validate the proposed methodology on clinical iEEG data collected from eight human sub-
jects and show that the electrode rankings computed with our localisation procedure are highly
correlated with the true SOZs. We also validate our algorithm on simulated data, using a simple
model of seizure initiation (Benjamin et al., 2072) and a more complex brain simulator (Sanz Leon
et al., 2013) based on the Epileptor model (Jirsa et al., 2014). Our main contributions and results
are summarised as follows:

+ We presenta new algorithm for unsupervised seizure localisation based on GNNs, which uses
FNs to represent brain states in a compact form and requires no explicit supervision on the
SOZ;

+ We show that the attention coefficients learned by the GNN correlate with clinically-identified
SOZs and accurately predict the presence of ictal activity;

+ We show that, when electroencephalographers were not able to identify the SOZ from the
iEEG data, the GNN also shows uncertainty in the localisation;

+ We show that, as expected, the choice of FC metric used to estimate FNs is important for an

accurate localisation;

Finally, we show that our methodology performs well on very imbalanced datasets, achieving

a good localisation accuracy even on patients for which we observe as few as five seizures

during training.

Methods
Notation. We denote a time series x;(r) to represent the i-th iEEG channel at time 7. We define
a graph as a tuple ¢ = (V,&), where V = {v,,..., vy} represents the set of attributed nodes with

attributes v, € R”, and € = {e,_;|v,,v, € V} represents the set of attributed edges with attributes
€ RS indicating a directed edge between the i-th and the j-th node. We indicate the neighbour-
eé.

€.,
hood of node i with N'(i) = {v,[e,_, € £€}. We say that a graph is undirected ife, ., € £ < e
Note that in the text, for simplicity, we refer to nodes by means of their index, e.g., node i.

j—i
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Functional networks
Choosing a suitable FC metric to model the pairwise interaction between brain areas is a non-trivial
challenge, as there exist a large variety of methods with their own advantages and disadvantages.
FC metrics can be characterised according to several properties, including whether they are in the
time or frequency domain, whether they are directed or undirected (i.e., if they model asymmetric
or symmetric couplings), or whether they are model-free or model-based (Bastos and Schoffelen,
2016). Here, we focus on undirected FC metrics to simplify the GNN computation, and on model-
based approaches to reduce the computational costs of estimating the FC metrics directly from
data. We do, however, consider two different metrics to highlight the practical differences that
emerge between time- and frequency-domain metrics.

FNs are generated by computing a FC value for each pair of iEEG channels x,(¢) and x,(r) over a
time window of length T. For the time-domain metric, we consider Pearson’s correlation coefficient:

T
;(Xa(t) — X)(x, (1) — X,)

eaab = ebaa = 4 (1)

T T
Y(x (1) = %) 2 (x, (1) — %,)?
=1 t=1

T
where x, = % lea(t) and analogously for x,. Correlation allows to quantify symmetric linear in-
1=
teractions, it is easy to compute and, as such, it is often used in the literature. For the frequency
domain, we consider the phase-locking value (PLV) (Lachaux et al., 1999):

T

1 i(0a(D—0p®)
T 2,

t=1

€ = eb—»a = (2)

a—b

where ¢, (¢) indicates the instantaneous phase of signal x,(¢) obtained via Hilbert transform (and
similarly for ¢,(n). A significant advantage of PLV over correlation is that it is less sensitive to arti-
facts in the iEEG signals (such as those caused by the patient’'s movements). After computing the
FC metrics for each pair of channels, we sparsify the resulting FNs by removing those edges for
which [e,_;| < 0.1, i.e.,, those indicating weak coupling.

We generate a dataset of FNs for each patient, dividing the FNs into ictal and interictal classes
and proceeding in a per-seizure fashion. Let f, be the sampling rate of the iEEG signal, L the
duration of a seizure, ¢, the time indicating the seizure onset, k > 1 a subsampling factor, and T
the length of the time windows. Additionally, let y(r) € {0,1} be a binary signal indicating whether
the patient is having a seizure at time ¢ (i.e., y(r) = 1 if t > ¢, and 0 otherwise). Note that we consider
each seizure to end at time ¢, + L and we do not compute FNs for the data immediately following
a seizure offset.

Given a time window [t — T, ..., 1], we compute a FN ¢ and label it with class

L if Y yn)>T/2
0, otherwise.

y(f) -

To generate the FNs associated with seizures (class 1), we consider the data interval [7,—T /2, ..., t,+
L] and take overlapping windows of size T with a stride of 1/f,. For the interictal FNs (class 0), in-
stead, we consider a longer period preceding the seizure onset, [t, — kL, ...,7, + T /2], and we take
windows at a larger stride of k/ f,. In this work, we consider k = 10 and T = 1s for all experiments,
although other values are possible.

This procedure to generate the FNs (summarised in Figure 2) results in a balanced dataset and
has two advantages. First, it allows us to fully use all the available (and rare) ictal events. Second, it
allows us to consider a more diverse sample for the interictal class. The small differences between
consecutive FNs of the positive class, due to the small stride at which windows are taken, can be
seen as a form of sample weighting to account for the class unbalance characterising the problem.
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Figure 2. Schematic representation of the procedure used to generate FNs. For each seizure of length L
starting at ¢, (marked in red), we consider an interictal interval of length kL. Interictal FNs are generated
taking windows of length T at stride k/ f,, while ictal windows are taken with stride 1/, (in green). For each
window and each pair of electrodes i and j, we compute the FC value e;_, ; (in blue) to obtain the full FN. This
figure is only meant to represent the procedure and is not shown in any physical temporal scale.

In order to have initial node features that can be processed by the GNN, we consider dummy
attributes set to 1 for all nodes. Other choices that depend on the actual iEEG signals are possible
(e.g., the signal power or wavelet coefficients) but were not explored in this work.

Attention mechanism

Attention (Bahdanau et al., 2014; Vaswani et al., 2017) is a processing technique for neural net-
works to learn how to selectively focus on parts of the input. Originally developed for aligning
sentences in neural machine translation (Bahdanau et al., 2014; Vaswani et al., 2017), the atten-
tion mechanism has been used to achieve state-of-the-art results on different tasks like language
modelling (Brown et al., 2020), image processing (Xu et al., 2015), and even learning on graphs
(Velickovic et al., 2018).

In this paper, we focus on the concept of self-attention, which indicates a class of attention
mechanisms that learn to attend to the output of a layer using the output itself (in contrast to
classical attention, which uses the output of one layer to focus on the output of another - e.g,, the
sentence of the source language is used to focus on the target language). At its core, self-attention
consists of computing a compatibility score «;; € [0, 1] between two vectors h;,h; € R” (both part
of the same sequence, image, graph, etc.):

exp (e;;)

a,; = Softmax;(e;;) = ,
’ T X e (ew)

(4)
where

e; = a(h;, h)) (5)
and a is called an alignment model, which is usually learned end-to-end along with the other pa-
rameters of the neural network. The compatibility score is then used to compute a representation

of element i as:
z, = Za,j ;. (6)

Intuitively, the attention mechanism learns the |mportance of element j to describe element i, and
computes score «;; to quantify this importance. The alignment model can be seen as a similarity
function between the two elements, which is then normalised via the Softmax function. Different
implementations of the alignment model are possible, although often it is implemented as a multi-
layer perceptron.

Attention mechanisms are usually trained without direct supervision and automatically learn to
focus on different parts of the data according to the loss of the given task. By optimising the overall
task loss, the attention layers in a neural network learn to compute the optimal compatibility scores.
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This is a key aspect of our proposed methodology, where we use self-attention to automatically
detect those brain areas (monitored via different iEEG channels) that are important to detect a
seizure.

Graph neural networks for seizure localisation

Graph Neural Networks (GNNs) are a class of neural networks designed to perform inference on
graph-structured data (Battaglia et al., 2018). At their core, GNNs learn to represent the nodes
of a graph by propagating information between connected neighbours, whereas a global repre-
sentation of the entire graph is usually obtained by computing a readout of the nodes, like a sum,
average, or component-wise maximum vector. In this work, we focus on the family of message-
passing networks (Gilmer et al., 2017), in which the i-th layer maps the attributes h!™" € R*""" of
the i-th node to:

b =y (B, Dy d (000 e, ) ). v

where b’ € R, i’ = v,, and ¢ and y are differentiable functions equivariant to node permu-
tations, respectively called the message and update functions, while [ is a permutation-invariant
function (such as the sum or the average) to aggregate incoming messages.

Many recent papers have introduced methods for graph representation learning based on this
general scheme, with different implementations ranging from polynomial (Defferrard et al., 2016)
or rational (Bianchi et al., 2019) graph convolutional filters, to attentional mechanisms (Velickovic
et al., 2018). In most of these works the creation of messages is only dependent on the node
attributes, although some methods have been proposed that also explicitly take edge attributes
into account (Simonovsky and Komodakis, 2017; Schlichtkrull et al., 2018). In particular, the Edge-
Conditioned Convolutional (ECC) operator proposed by Simonovsky and Komodakis (Simonovsky
and Komodakis, 2017) incorporates edge attributes into the message-passing scheme by using a
kernel-generating network f@(.) that dynamically computes messages between each pair of con-
nected nodes. An ECC layer is thus defined as:

h?l) _ hﬁl—l) . Wg))m + Z h;_l—l) . f(/)(ej%i)’ (8)
JEN ()

where W e RF*""xF" is alearnable kernel applied to the root node itself and the kernel-generating

network is usually a multi-layer perceptron f® : RS — RF/™Vxr®,

Our method for seizure localisation can be summarised as follows. First, we train a GNN with
an attention-based readout to detect seizures from FNs. This is a graph-level classification problem
where a label (ictal or interictal) is assigned to each FN. Then, we analyse the compatibility scores
learned by the attentional mechanism to identify those nodes that the model consistently consid-
ers as important. Although we train the GNN to do seizure detection in a supervised way, i.e., it
requires manually-annotated seizure onsets and offsets, the localisation is fully unsupervised. This
is one of the main strengths of the proposed method, as significantly less manual work is required
to annotate the temporal boundary for each individual seizure, rather than the SOZ.

There are two main components in our GNN architecture. First, the connectivity information
is propagated to the node attributes via an edge-aware message-passing operation like ECC. A
single layer is sufficient because the input FNs are densely connected, and most nodes will receive
information from the whole graph in a single step of message passing.

Then, we use a self-attentional mechanism to compute the graph readout:

N
z = Attn-RO(h) = )’ ah; )
j=1
where
exp (h; - a)

0= (10)

> exp (hk~a)’
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h, € R™ is the embedding of the j-th node computed by the ECC layer, and a € R™ is a vector of
learnable weights. Note that, compared to Equation (6), here index i is left implicit as the attention
is only computed once for all nodes, to reduce the graph to a vector. This is also reflected in the
fact that the alignment model is a function of only one node at a time, e.g., h; -a. For a more general
way of applying attention to every possible pair of nodes (while maintaining the graph structure),
see (Velickovic et al., 2018).

Finally, a multi-layer perceptron MLP(-) with sigmoid activation computes the probability that
the input FN represents an ictal window of iEEG data.

The full architecture is written as:

= MLP(Attn-RO(ECC(G))) (11)

where G represents an input FN (cf. Figure 1).

By training the GNN to correctly distinguish the ictal FNs from the non-ictal ones, we also implic-
itly train the attentional readout Attn-RO to assign higher attention to those nodes of the FNs that
maximise the confidence in the prediction. We then analyse how the attention scores assigned
to nodes change over time, and rank the nodes according to the overall amount of attention that
they receive before and during a seizure. The localisation procedure is described in the following
section.

Localising the seizure onset zone
For each seizure in the data, we consider symmetric intervals of length 2L centred at the seizure
onset, so that the first L timesteps are pre-ictal and the remaining L cover the beginning of the
seizure. For each of the 2L timesteps, we compute a FN ¢© from a T = 1s window ending at time
t, obtaining a sequence of FNs [¢, ..., GD)] (this is equivalent to how we generate the training
datasets, except that the subsampling is set at k = 1). For each FN in the sequence, we use the
GNN to compute the attention scores over the nodes according to Equation (10). We thus compute
a sequence of attention scores [a'", ..., a*"'] for each node i.

We then sum the sequence of attention scores to obtain the overall importance of the node
over the considered time interval:

o= a", (12)

and normalise the importance scores to the [0, 1] interval as:

o — min; ¢y, a(s)
() !
s = 5 5 (13)
max; ¢y, 6, — min; ey, 0

Finally, we rank the nodes according to their importance and predict the SOZ accordingly.

Results

We report the results obtained on real iEEG data collected from eight patients. Additional results on
two brain activity simulators (a simple network model (Benjamin et al., 2012) and The Virtual Brain
simulator (Sanz Leon et al., 2013)) and all experimental details regarding the GNN are reported in
the appendix.

Data collection and pre-processing

We used iEEG data recorded from eight human subjects with medically refractory epilepsy, the
recordings obtained as part of their standard clinical pre-surgical investigations. The study was
approved by the Research Ethics Board at the University Health Network (ID number 12-0413) and
written consent for data collection was obtained from all participants. Each patient had a varying
number of recorded clinical seizures and the number of electrodes also varied from patient to
patient (¢f. Table 1). The data was recorded from subdural or intracerebral depth electrodes at
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Table 1. Summary of the patients considered for this study. The columns indicate (left-to-right): the number
of recorded seizures, the number of implanted electrodes, the presence of ictal activity (IA) marked by
electroencephalographers on one or more channels, whether the patient had surgery, and the outcome of
the surgery.

Patient Seizures Electrodes IA identified Surgery Outcome

66 15 100 Yes, low confidence No -

70 9 96 Yes Yes Seizures reduced
75 10 23 Yes No -

76 5 74 No No -

77 11 38 Yes Yes Seizures reduced
78 18 45 Yes, poorly defined  No -

85 5 45 Yes No -

87 16 69 Yes No -

f, = 500Hz over the course of several days per patient, and seizures were manually annotated by
electroencephalographers, inspecting both raw iEEG and video recordings of the patient. The iEEG
signal was notch-filtered at 60Hz and related harmonics to remove powerline trends, and then
filtered with an order-3 low-pass filter at 100Hz to remove any high-frequency noise. Then, each
electrode channel was independently re-referenced to have zero mean and rescaled to have unit
variance.

Before pre-processing, we visually inspected the raw data of each patient and each seizure to
assess the presence of bad channels: we considered symmetric windows around each labelled
seizure onset and we removed from the data any channels that exhibited abnormal (i.e., either flat
or excessive) activity in at least one seizure.

Per-patient analysis of the SOZ

This section reports the available clinical data for the patients considered in our study. For all pa-
tients, both the seizure onset time instants and the SOZ annotations were provided by electroen-
cephalographers.

Patient 66 demonstrated ictal activity in both the left and right posterior interhemispheric re-
gions (Figure 3a), with interictal epileptiform discharges recorded independently from the left an-
terior frontal and right middle frontal lobes. The patient did not undergo resective surgery due to a
low confidence in the identification of the SOZ. Patient 70 showed clear seizures originating in the
right posterior insular region (Figure 3b). The patient underwent laser interstitial thermal therapy
targeting a focal cortical dysplasia in the area. The patient continued to have some post-operative
seizures, although these were reduced in frequency and intensity, indicating that the SOZ was iden-
tified correctly. Patient 75 had seizure onsets recorded independently from both temporal lobes
and thus was not a candidate for surgery. Patient 76 had no clear ictal activity identified by elec-
troencephalographers in the iEEG recordings and was thus not a candidate for surgery, the SOZ
evidently not captured by the intracranial electrode placements. Patient 77 demonstrated ictal ac-
tivity in the left hippocampal body, and underwent a left anterior temporal resection. The patient
continued to have seizures after the surgery, but of reduced frequency and intensity, indicating a
successful localisation of the SOZ. Patient 78 had multiple seizures recorded with poorly defined,
inconsistent ictal onsets over temporoparietal sensory cortex and was deemed not a candidate
for surgical resection due to uncertainty on the SOZ. Patient 85 had seizures recorded in the left
hemisphere, with onsets involving a broad region of temporal lobe neocortex. The patient was not
subject to resection due to the epileptogenic zone being too large, and near eloquent language
cortex. Patient 87 exhibited abnormal activity in the left amygdala and hippocampus. The patient
had already undergone contralateral right anterior temporal resective surgery years prior to the

8 of 20


https://doi.org/10.1101/2020.12.03.409979
http://creativecommons.org/licenses/by-nc-nd/4.0/

bIORXIV preprlnt d0| _https //doi. 0rg/10 1101/2020 12 03.409979; this versmn posted December 3, 2020. The copyright holder for thls preprlnt

305

306

326

RPIH3 A [,

——
porme

LPIHS - WWMWWMM%WMWWMWWWWM

-8 -6 -4 -2 0 2 4 6 8
Seconds from seizure onset

(a) Patient 66

-4 -2 0 2 4
Seconds from seizure onset

(b) Patient 70

Figure 3. Examples of raw iEEG traces for patients 66 and 70. The two plots show the activity of electrodes
that were identified as SOZs by electroencephalographers. The vertical line marks the seizure onset, as
reported in the patients’ clinical records.

collection of the iEEG data and was not a candidate for further resections.

Table 1 summarises the relevant details of the eight patients. In particular, six patients had
clinically-identified, well-defined information regarding the SOZ, whereas in two patients the SOZ
could not be clearly identified in the iEEG data by electroencephalographers.

Results on seizure detection and localisation

Table 2 reports the average Area Under the Receiver Operating Characteristic Curve (ROC-AUC) and
the Area Under the Precision-Recall Curve (PR-AUC) obtained by the GNN on the seizure detection
task. We report the results obtained using both FC metrics (correlation and PLV) to generate the
FNs. We also report the detection performance of a baseline convolutional neural network for time
series classification (details in the Appendix).

The GNN achieved an average ROC-AUC score of 79.56 and an average PR-AUC of 81.24 (the av-
erage is computed over all patients) when using correlation as FC metric. These results are aligned
with the performance of the baseline, which our method slightly outperformed on average, and
indicate that 1) our choice of architecture was reasonable and 2) using graph-structured data is
an interesting direction for future research on efficient seizure detection. We also recall that the
detection task is only meant to provide a weak supervision for the more interesting challenge of
localisation, and that better detection results could be achieved by increasing the capacity of the
GNN or collecting more training data.

Tables 3 and 4 report the performance of the model on the patients with a known SOZ, respec-
tively using correlation and PLV to generate FNs. In particular, we report three main performance
measures:

(a) the average precision at K (AP@K) (Sanderson et al., 2010) obtained by the GNN when com-
puting an average ranking of the electrodes. Each electrode is re-ranked by considering five
models trained on the same data and taking the average score assigned to each electrode
over all models and all seizures. This measure quantifies the GNN's ability to correctly identify
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Table 2. Average ROC-AUC score and average PR-AUC score for seizure detection on unseen test data. These
scores represent the model’s ability to correctly classify the FNs as interictal or ictal. The last row reports the
average score over all patients. The highest ROC-AUC and PR-AUC scores are reported in bold for each
patient.

Baseline GNN Corr. GNN PLV
Patient ROC PR ROC PR ROC PR

66 62.54 225 70.06 :178 | 68.63 +1143 75.20 z1030 | 75.68 2233 77.51 204
70 80.19 155  85.96 :106 | 86.87 007 89.04 19035 | 65.36 1201 72.91 :148
75 82.32 s14a19  87.25:024 | 93.35:312 9434 :272 | 71.50:148 71.02 :163
76 67.81 +875  69.83 11312 | 60.40 1441 61.11 21482 | 53.83:66 51.67 164
77 7618 c15a1 80.42 11426 | 77.04 11198  76.39 11303 | 71.46 x121 71.45 1129
78 76.32 172 80.94 :135 | 73.72 :1714 76.02 z1453 | 63.81 2172 71.06 z124
85 76.46 1124 81.22 :765 | 85.52 :+1095 85.92:1365 | 69.32:26 65.55:1s
87 85.60 +126  89.29:107 | 90.97 :551  91.89:340 | 77.69 115 78.32 :113

AVg. 75.93 +7.06 80.62 636 79.56 1032 81.24 11037 | 68.58 :708 69.94 756

the SOZ for a patient in general, which is the most clinically relevant scenario.

(b) The mean AP@K (MAP@K) obtained by the GNN on different individual seizures. In this case,
the ranking for each seizure is compared to the ground truth independently of the others (i.e.,
without averaging the scores), and the scores are averaged a posteriori (also considering five
repetitions of the experiments). This measure quantifies the GNN's ability to correctly identify
target electrodes in a given seizure.

(c) The MAP@K obtained by the GNN on different individual seizures, but considering groups of
electrodes belonging to the same strip (implying spatial locality of the electrodes). This allows
us to evaluate the performance of the model at a coarser scale.

From the results we see that, while correlation was a clearly better metric for the task of seizure
detection, the localisation performance can vary depending on the particular FC metric used. In
particular, the localisation for patients 66 and 77 was better when using correlation networks, but
PLV yielded better results for patients 75, 85, and 87.

In general, however, we note that the (M)AP@5 score is positive for both FC metrics, for all
performance measures and for all patients, meaning that at least one SOZ-associated electrode
was ranked in the top five every time. We also note that the GNN achieves a perfect AP@2 score
(average rankings) in six out of eight cases when using PLV, indicating a high chance of localising
at least two relevant electrodes per patient.

Remarkably, we see that these results were obtained even when considering small datasets,
e.g., down to only five seizures for patient 85 (cf. Table 1).

Comparison with clinical information
Figure 5 summarises our results and provides an overview of the importance scores, their variabil-
ity across different models and seizures, and their agreement with the ground truth.

The results for patient 77 can be considered a complete success, with the highest AP@K scores
among all patients and very little uncertainty in the ranking by the GNN. Crucially, the successful
post-operative outcome confirms that the localisation of the SOZ for this patient was accurate
and points to a strong localisation ability of the GNN. For patient 70, ictal activity was evident and
well-localised on a specific depth electrode placed in the right insular complex (RINS1). The clinical
localisation of the SOZ was therefore likely accurate, even if the outcome of the surgery was not
completely successful. More importantly, we notice that the GNN was strongly aligned with the
human analysis given the same information, and similarly focused on the same electrode (which
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Table 3. Localisation performance for patients with a known SOZ, when using Pearson'’s correlation as FC
metric. We report: (a) the average precision at K for averaged rankings, which evaluates the localisation for
the patient overall; (b) the mean average precision at K for single rankings, which evaluates the localisation
for a given seizure; (c) the mean average precision at K for single rankings and groups of electrodes, which is
equivalent to (b) but at a coarser scale. We report scores for K = 2,5, 10. Bold indicates that the results are
better than the ones obtained with PLV as FC metric (cf. Table 4).

(a) AP@K - Avg. rank

(b) MAP@K - Single

(c) MAP@K - Groups

Patient | K =2 K=5 K=10 | K=2 K=5 K=10| K=2 K=5 K=10
66 50.00 20.00 12.50 2231 12.0 7.24 26.92 21.48 31.64
70 100.00 100.00 100.00 | 51.11 54.8 56.71 53.33 58.48 60.73
75 0.00 16.67 38.96 20.37 26.51 28.98 36.11 45.09 50.07
77 100.00 55.00 55.00 97.73 48.55 54.71 99.09 99.09 99.09
85 0.00 0.00 0.00 0.00 2.71 5.43 25.00 53.75 64.42
87 0.00 6.67 5.56 19.69 13.00 7.42 20.00 36.43 44.07

Table 4. Localisation performance for patients with a known SOZ, when using PLV as FC metric. Bold
indicates that the results are better than the ones obtained with correlation as FC metric (cf. Table 3).

(a) AP@K - Avg. rank

(b) MAP@K - Single

(c) MAP@K - Groups

Patient | K =2 K=5 K=10| K=2 K=5 K=10| K=2 K=5 K=10
66 0.00 5.00 5.83 8.67 5.97 4.67 16.67 18.82 31.78
70 100.00 100.00 100.00 | 50.00 54.33 56.65 50.00 58.04 60.21
75 100.00 55.00 45.46 60.00 40.82 32.58 | 66.88 45.16 51.36
77 100.00 40.00 48.57 66.82 38.28 45.27 91.82 9348 9348
85 100.00 40.00 28.29 70.00 40.40 2543 | 66.00 65.02 78.35
87 50.00 20.00 10.00 15.62 9.15 6.43 16.56 20.07 32.30
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Figure 4. Histograms of the attention scores over a 2-second window starting from a seizure onset. Each bin
represents the frequency with which the corresponding attention score is assigned to ten randomly-selected
electrodes. Figure (a) shows a patient with a known SOZ, while Figures (b) and (c) show patients without a
known SOZ. For Figure (a), the contribution to each bin of those electrodes that are part of the SOZ ground
truth are highlighted in orange. Note how the score distribution for SOZ-associated electrodes is spread out
towards higher values, while for patients with no known SOZ the scores are similar for all channels.

is ranked first using either of the FC metrics). Our methodology also confirms the conclusions
reached by electroencephalographers for patients 75, 85 and 87, although further studies would
be required to give a more precise interpretation of the results (including, possibly, the outcome of
future surgeries). The results for patient 87 are particularly uncertain, despite the GNN achieving a
good detection accuracy (cf. Table 2). In general, however, the rankings provided by the GNN show
a high agreement with the medical assessment in those cases where the SOZ was successfully
identified.

For patients with no known SOZ (76, 78) the GNN has a low detection performance and the av-
erage attention scores assigned by the GNN are uniformly distributed across all electrodes around
an average score of 0.5. On the contrary, patients with a known SOZ have a few electrodes that are
assigned a majority of the attentional budget. This difference between the two cases is more clearly
visualised in Figure 4, which shows the distribution of the scores given to different electrodes at
the seizure onset (patient 77 is taken as representative of the case in which the SOZ is known).

For patient 66, the GNN did not identify any particularly important regions despite there being
some clinical evidence of ictal activity in the posterior interhemispheric region. Two posterior inter-
hemispheric electrodes are indeed ranked in the top ten (averaged rankings) by the GNN when us-
ing correlation FNs, although with a very high uncertainty. We note, however, that the uncertainty
showed by the GNN was also reflected clinically in the electroencephalographers’ interpretations
and in the final decision to not operate this patient.

Our analysis for patients 66, 76, and 78 shows that the uncertainty of the GNN correlates with
uncertainty or inability on the part of electroencephalographers to identify the SOZ in iEEG, and
can still be useful to support their decision making (e.g., deciding to not operate a patient can be
just as valuable as a successful localisation).

Discussion
Our work introduces a methodology for automated and unsupervised seizure localisation using
graph-based machine learning. Our approach does not require any manual annotation of the SOZ
in order to work, making it cheaper to train and easier to scale to a larger number of patients. Our
method is also data-efficient: we were able to provide a good - and clinically verified - localisation
using as little as five annotated seizures per patient.

The goal of the proposed approach is to provide a support tool for clinicians to allocate pre-
cious resources in the analysis of iEEG data, and to improve the efficiency of the decision-making
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Figure 5. Top ten electrodes when considering the averaged rankings. We report the ranking obtained with

the best-performing FC metric for each patient, according to the AP@10 score for average rankings reported
in Tables 3 and 4. The two plots in red indicate those patients for which the SOZ was not identified clinically.
Bold labels indicate that the corresponding electrode was marked as a potential SOZ by

electroencephalographers.

process. Crucially, in this regard, we note that our algorithm is conservative in scoring potential
SOZ candidates. When the SOZ was not identifiable by electroencephalographers, the GNN also
showed uncertainty in the scoring (rather than making high-confidence predictions). Contrarily,
a high importance score consistently correlated with clinically-identified SOZs. With this premise,
we believe that our approach could have practical value if deployed to epilepsy monitoring units
to provide a real-time analysis of iEEG recordings.

Future work

There are several directions for future research that could stem from this work. First, we note that
by 1) increasing the capacity of the network (in terms of parameters and depth), 2) performing a
patient-specific hyperparameter search, and 3) having more seizures on which to train the model,
it is likely that both the detection and localisation performance would significantly improve. Also,
a possible extension of the proposed methodology could be to explicitly introduce a supervised
objective to train the attentional readout using the available information on the SOZ. This would
require a per-seizure annotation of every electrode (or, even better, an annotation over time), but
could lead to a more accurate localisation. An interesting application of this methodology could
also be to provide a patient-agnostic localisation, by training the GNN concurrently on seizures of
different patients.

Future work could also explore more in-depth the use of different, combined FC metrics and
their impact on the detection and localisation performance. In fact, our results show that this
choice could lead to significantly different outcomes (as we showed with correlation and PLV). A
way to identify a priori the best FC metric to build FNs for a specific patient could bring significant
benefits.

Conclusion
We presented a methodology for unsupervised seizure localisation based on GNNs with an atten-
tion mechanism. Our approach takes advantage of a compact representation of brain states as
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FNs, and uses machine learning methods for graph-structured data to automatically detect those
regions of the brain that are important for localising seizure onsets. To train the GNN, it is suf-
ficient to have seizure onset annotations, but no information regarding the SOZ is needed. We
showed the effectiveness of our method in localising the SOZ on real-world data consisting of iEEG
recordings from eight human subjects, using two different FC metrics to compute FNs. Our results
show a very high accuracy in localising the SOZ. However, we also observed that the GNN exhibits
uncertainty in those cases where human analysis was also uncertain, indicating a reliable and safe
behaviour to support decision-making.

We believe that this work represents a step towards Al-aided analysis of iEEG data and could
potentially lead to faster and more accurate treatment of epilepsy.
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Experiments on Simulated Data

Seizure generator from Benjamin et al. (2012)

In this experiment we considered a simple network model of seizure initiation presented by Ben-
jamin et al. (2012), and also used by Lopes et al. (2017, 2020) to study the effect of network structure
on the generation of seizures. The model consists of a network of N bi-stable oscillators

z=f(z)=A—-1+iwz+2z|z|* - z|z|* (14)

where z € C. Equation (14) describes a dynamical system with a stable fixed point at the origin
of the complex plane (which we consider as interictal), and an oscillating attractor with frequency
o (which we consider as ictal). Parameter A controls the location of the oscillator in phase space.
Nodes are interconnected in a graph described by adjacency matrix A with a coupling factor g, such
that the dynamic of a single node reads:

dz(0) = (F(z)+ B Y, Ay(z, — 2)) + a dW(1)
J#i
where W (1) is a stochastic Wiener process rescaled by a factor of a.

All nodes in the model are initialised at the fixed point and, due to the presence of noise and
the interaction between nodes, eventually switch to the oscillation state. We identify the activity of
the whole system as ictal if any of the nodes meets the condition |Re(z,)| > 1, and the SOZ as the
first node that escapes the fixed regime.

We consider a complete graph without self-loops to describe the interaction of the nodes. The
configuration of the parameters is summarised in Table 5. The hyperparameters used for creating
the FNs and training the GNN are the same ones that we used for the real iEEG data, and we only
report results obtained using PLV as FC metric.

Appendix 0 Table 5. Configuration used for the simulator by Benjamin et al. (2012).

Parameter | Value

N 3

w 20
A 0.5
p 0.1
a 0.05

The GNN achieves an almost perfect detection score with a ROC-AUC of 99.61 + 0.0 and a PR-
AUC of 99.69 + 0.0 (averaged over five runs, evaluated on hold-out test data). Figure 6 compares
the generated node activity with the attention scores assigned by the GNN over time. The SOZ chan-
nel (green) is assigned the highest attention since the beginning of the seizure until all nodes are
simultaneously oscillating, at which point the attention scores converge to be evenly distributed. A
similar even distribution is observed in the interictal state, indicating that the network has correctly
learned to identify the SOZ electrode without defaulting to assign a high score to just one electrode.
This behaviour is confirmed by the spikes in attention assigned to channels 0 and 1, which happen
as soon as the node dynamics escape the fixed-point attractor.

The Virtual Brain Simulator
In this experiment we use The Virtual Brain simulator (TVB) (Sanz Leon et al., 2013) to model a
patient with temporal lobe epilepsy.

We follow the same approach described in TVB's documentation to configure the simulator.’
We assign the Epileptor neural mass model (Jirsa et al., 2014) to all the controllable brain regions of

Thttps://github.com/the-virtual-brain/tvb-root/blob/master/tvb _documentation
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Appendix 0 Figure 6. Top: a clip showing the generated activity of a 3-node simulator, compared to the
attention coefficient assigned by the GNN at each node over time. Colors indicate the same node in both
plots.

TVB. We set the epileptogenicity of the right limbic areas (rHC, rPHC and rAMYG) to —1.6, the supe-
rior temporal cortex (rTCl) and the ventral temporal cortex (rTCV) to —1.8, while for all other areas
to —2.2. The remaining parameters are kept as default. The hyperparameters used for creating the
FNs and training the GNN are the same ones that we used for the real iEEG data.

We select a subset of 34 sEEG virtual sensors among the ones provided for the default subject
of TVB. Of this subset, electrode 33 shows strong epileptogenic activity, while electrodes 18, 19, and
20 show mild activity. We generate clips of roughly 1 minute at 20Hz so that there is a simulated
onset in the middle of each clip. An example of a generated clip is shown in Figure 7.

The GNN achieved an average detection ROC-AUC of 98.87 + 0.18 and an average PR-AUC of
99.18 + 0.07 (averaged over five runs, evaluated on hold-out test data). The electrode with a strong
ictal activity is consistently assigned a maximum score of 1 by all models and electrode 19 is also
ranked in the top-5 electrodes (see Figure 8).

GNN training details

We consider each patient separately and train a GNN from scratch to build patient-specific models.
The GNN architecture is the one given in Equation (11). The ECC layer has 32 output units with
ReLU activation and a kernel-generating network f(-) consisting of a two-layer MLP with 32 hidden
units and ReLU activation. All parameters of the layer are regularised with an L, penalty with a
factor of 107°.

The MLP classifier following the Attn-RO readout has 2 layers, with the hidden one having 32
units and RelU activation and with 25% dropout in-between. Both layers are regularised with an
L, penalty with factor 10-5.

The model is trained using Adam, with a learning rate of 10~ and a batch size of 32 graphs. The
model is trained to convergence with 10 epochs of patience, using the data from [0.2 - n] seizures
selected randomly (n being the overall number of available seizures) for early stopping.
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Appendix 0 Figure 7. A virtual seizure generated with TVB. The vertical line denotes the annotated seizure
onset in time.

Top-10 electrodes

33 °
231 e

4 e

224 e

19 —o—

3 -

2] ——e—

5] -—e—

1{ ———e—

0] —-e

0.00 0.25 0.50 0.75 1.00
Normalized score

Appendix 0 Figure 8. Top-10 electrodes with averaged rankings. Bold labels indicate that the corresponding
electrode showed ictal activity. As desired, electrode 33 shows strong epileptogenic activity.
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Baseline training details

The baseline is a simple 1D convolutional neural network (CNN) based on the architecture de-
scribed by Wang et al. (2077). The CNN operates directly on iEEG time series and hence does
not take into account any graph-based representation for the data. Similarly to how we create the
input-output pairs for the GNN, here we consider windows of size T taken at a stride of k/f, for
the interictal class and stride 1/ f, for the ictal class, and we associate to each window a class label
corresponding to the majority class of y(z) in the corresponding window.

In particular, we shrink the model to make it comparable in terms of number of parameters and
depth to the GNN one, and also to prevent overfitting (which we experimentally encountered as a
significant problem with the model). We consider a single convolutional layer with a kernel of size
3, 8 output channels, and ReLU activations, followed by a global average pooling and a single-layer
MLP to output the classification decision. We train the model using Adam with learning rate 0.001,
batch size of 32 and early stopping with a patience of 5 epochs.
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