

1 André O. Agostinis^{1,2,a}, Giorgi Dal Pont^{2,a}, Alexandre Borio¹, Aline Horodesky^{1,2,3}, Ana Paula da
2 Silva Bertão², Otto Samuel Mäder Netto^{3,5}, Thiago Luis Zanin⁴, Antonio Ostrensky² & Marcio
3 R. Pie^{1*}

4

5 **An experimental assessment of the distribution of environmental DNA along the water**

6 **column**

7

8 ¹Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, Curitiba, PR
9 81531-980, Brazil

10 ²Grupo Integrado de Aquicultura e Estudos Ambientais, Departamento de Zootecnia,
11 Universidade Federal do Paraná, Curitiba, PR 80035-050, Brazil

12 ³ATGC - Genética Ambiental Ltda, Curitiba, PR, 80035-050, Brazil.

13 ⁴COPEL Geração e Transmissão S/A, GeT/SGE/DPEG/VECM, Brazil.

14 ⁵Aliança Prestadora de Serviços Ltda, Av. Sete de Setembro, 5402 CJ 41, Curitiba, PR, 80.240-
15 000, Brazil

16 ^aThese authors contributed equally to this work.

17 *Corresponding author: marcio.pie@gmail.com

18

19 ORCID ID: André O. Agostinis 0000-0002-0205-5465

20 ORCID ID: Giorgi Dal Pont 0000-0002-0306-5075

21 ORDIC ID: Alexandre Borio 0000-0003-4316-7495

22 ORCID ID: Aline Horodesky 0000-0002-5745-7090

23 ORCID ID: Ana Paula da Silva Bertão 0000-0001-7078-0848

24 ORCID ID: Otto Samuel Mäder Neto 0000-0003-2513-1683

25 ORCID ID: Antonio Ostrensky 0000-0001-8858-7552

26 ORDIC ID: Marcio R. Pie 0000-0002-2949-4871

27

28 **Keywords**

29 Freshwater; eDNA, Free DNA; DNA distribution; biodiversity monitoring.

30 **Abstract**

31 The study of environmental DNA (eDNA) is increasingly becoming a valuable tool to survey
32 and monitor aquatic communities. However, there are important gaps in our understanding of the
33 dynamics governing the distribution of eDNA under natural conditions. In this report we carry
34 out controlled experiments to assess the extent and timing of eDNA distribution along the water
35 column. A sample of known eDNA concentration was placed at the bottom of a 5-m high tube
36 (20 cm in diameter and total volume of 160 L), and water samples were obtained at different
37 depths over an 8 h-period. The presence of the target eDNA was assessed by qPCR analysis.
38 This sampling protocol allowed for assessing the timescale for the diffusion of eDNA while
39 minimizing the influence of turbulence. We demonstrate that, after a time-period of as little as 30
40 min, the eDNA had spread across the entire container. The implications of these results for
41 eDNA sampling protocols in the field are discussed.

42

43

44

45

46

47

48

49 **Introduction**

50 Environmental DNA (eDNA) is a method based on the detection of trace genetic material
51 shed from organisms into their surroundings (Barnes and Turner 2016). Environmental DNA is
52 composed by a range of particles, such as free DNA, organelles, cells, tissue fragments and
53 metabolic waste (Turner et al. 2014; Wilcox et al. 2015). When suspended in an aquatic
54 environment, this material can be sampled together with the water, extracted, and detected
55 through molecular biology techniques (Ficetola et al. 2008). Surveillance and monitoring of
56 aquatic species through eDNA is widely applied with advantages over traditional methods. This
57 strategy, for example, can detect single or multiple species in one environmental sample (Harper
58 et al. 2018), and the results can quantify relative biomass (Pilliod et al. 2014; Takahara et al.
59 2012). The main advantages of this approach are the shorter time requirements, increased cost-
60 effectiveness, increased taxonomic resolution and non-invasive sampling (Eiler et al. 2018;
61 Hunter et al. 2015; Thomsen et al. 2012). Several studies applied this method for aquatic
62 organisms, such as fish (Miya et al. 2015), mussels and snails (Goldberg et al. 2013; Marshall
63 and Stepien 2019), jellyfish (Minamoto et al. 2017), sharks (Bakker et al. 2017), amphibians
64 (Pope et al. 2020) and arthropods (Toju and Baba 2018).

65 Although eDNA is a powerful technique, it is far from being standardized, as several
66 methods are applied to capture and analyze field samples (Hinlo et al. 2017). Water samples,
67 methods consist mostly of sampling the water column or the sediment (Buxton et al. 2017;
68 Katano et al. 2017; Wittwer et al. 2018). However, studies rarely sample more than one depth,
69 and when they do, the only parameter to compare them is detection rates or biodiversity
70 (Andruszkiewicz et al. 2017; Yamamoto et al. 2016). Spread of eDNA horizontally was recently
71 explored by studying flow from rivers (Jo et al. 2019; Pont et al. 2018; Sansom and Sassoubre

72 2017; Villacorta-Rath et al. 2020) but the vertical distribution is still fairly explored from a
73 functional perspective. Vertical zoning is the structuring of communities through layers of
74 species and communities across depths, which can potentially change dramatically in a matter of
75 meters (Chappuis et al. 2014). eDNA concentration, composition and spatial distribution is then
76 expected to vary as communities change through depth due to vertical zoning. While some
77 studies conclude that there is a negligible impact on the detection and composition (Cordier et al.
78 2019; Currier et al. 2018; Eichmiller et al. 2014; Harper et al. 2020; Lafferty et al. 2020) others
79 report differences (Andruszkiewicz et al. 2017; Cordier et al. 2019; Hänfling et al. 2016; Jeunen
80 et al. 2020; Kuehne et al. 2020; Lacoursière-Roussel et al. 2018; Lor et al. 2020; Minamoto et al.
81 2017; Moyer et al. 2014; Murakami et al. 2019; Sigsgaard et al. 2020; Uthicke et al. 2018;
82 Yamamoto et al. 2016; Zhang et al. 2020). These studies, however, vary significantly between
83 the water body architecture, water composition, depth sampled, sampling strategy, target
84 organism, detecting technique, extraction protocol and molecular marker. This leads to an
85 inconsistent pattern that can be interpreted as detection relies more on the organism's biology
86 than depth (Minamoto et al. 2017). However, these studies do not consider how eDNA moves
87 through the column as both (a) the sources of biological material are still in the water body,
88 releasing particles, at the same time that the particles that are still in the water are being degraded
89 and moved horizontally, and (b) they do not consider time as one of their variables, only depth.

90 Water bodies are complex systems with varied hydraulic dynamics. Studying the vertical
91 aspects of eDNA in a natural system is a difficult task due to many factors acting in the water
92 column at once (Jane et al. 2015). Flow, hyporheic exchanges, streambeds, surface-subsurface
93 exchange, sediment and colloidal interactions are some of these factors that contribute to this
94 complexity (Shogren et al. 2016; Shogren et al. 2019). Controlling these variables in a field

95 experiment to understand how they affect the vertical dynamics of eDNA is not logistically
96 viable, so they must be studied individually in a controlled environment.

97 In this study, we aim to understand how free DNA behaves in a controlled water column. To
98 this end, we built a 5-m high and 20-cm diameter PVC tube, injected DNA at the bottom and
99 monitored how it spread through the water column for 8 hours. Understanding how eDNA
100 behaves in the water column is important to interpret species distribution in a water body and
101 improve sampling strategies. A controlled environment is ideal for this because one can
102 introduce variables as our understanding of these dynamics improves.

103 **Materials and Methods**

104 Experimental setup

105 We build an experimental apparatus to emulate the water column of lentic, freshwater
106 conditions using a 5-m high polyvinyl chloride (PVC) pipe (20 cm in diameter). We placed
107 chromatographic septa at six depths (*i.e.* 0, 1, 2, 3, 4, and 5 m) to allow water sampling by the
108 external side of the cylinder by using a medical sterile 1-mL syringes and thus minimizing the
109 generation of turbulence in the water column inside the cylinder. Prior to each experiment, the
110 entire apparatus was decontaminated in a two-step process. First, we used a dichloroisocyanurate
111 solution (0.06 g L⁻¹) to thoroughly wash the pipe. We then rinsed away the chlorine with
112 previously treated DNA-free water. This treatment consisted of decontaminating the water with a
113 10% sodium hypochlorite solution (0.2 mL L⁻¹), followed by chlorine neutralization using a 50%
114 sodium thiosulfate solution (0.1 mL L⁻¹). The second step was repeated three times in order to
115 ensure that there was no leftover chlorine in the system, coupled with a colorimetric method to
116 detect chlorine after each washing (Zall et al. 1956).

117 We generated a test solution of eDNA by amplifying a ~100 bp fragment of the COI gene
118 from a genomic sample of the golden mussel *Limnoperna fortunei* (Mytilidae), which is an
119 organism commonly known for its biofouling impacts on hydraulic systems (Darrigran and
120 Damborenea 2011). Each assay was run in a 25 μ L final volume reaction, with concentrations:
121 100 μ M each primer, 0.25 mM dNTP mix, 1 U Platinum Taq DNA Polymerase, 1 X Platinum
122 Taq buffer and 2 mM MgCl₂; Thermocycling conditions followed: 1 min at 95 °C for initial
123 denaturation, followed by 40 cycles of denaturation at 95 °C for 1 min, annealing at 60 °C for 30
124 sec. and at 70 °C for 30 sec. To obtain a high DNA concentration for the stock test solution, we
125 carried several independent PCRs and the resulting products were pooled, quantified using Qubit
126 4 fluorometer, and frozen at -80 °C. Immediately before the beginning of the experiments, the
127 DNA solution thawed at room temperature, and each experiment used a 1 mL aliquot (2000 ng
128 of target DNA).

129 Each experiment began by filling the entire apparatus with DNA-free water up to 5 m,
130 followed by a 15 min period to allow for the water movement to subside. At this point, 1 mL
131 water samples were then collected from each depth using disposable, DNA-free syringes to serve
132 as negative controls. The experimental solution aliquot was then injected at the base of the pipe
133 (5 m depth), and immediately, 1 mL samples were collected from all depths using disposable
134 syringes. Sampling was then repeated at 30 min, 1, 2, 4 and 8 hours after the injection. The entire
135 experiment was run in triplicate. Water samples were then stored at 2 mL decontaminated
136 microtubes, and frozen at -20 °C until analysis.

137 eDNA amplification and quantification

138 Each water sample from the experimental apparatus was processed for DNA extraction
139 using a Solid Phase Reversible Immobilization (SPRI) protocol (DeAngelis et al. 1995). First, 1
140 mL of collected sample was incubated with a final concentration of 12.5% weight/volume PEG-
141 8000, 0.7 M NaCl and 0.02 mg/mL carboxylated magnetic beads at room temperature for 10 min
142 to condense DNA and bind it onto the magnetic beads. Samples were then magnetized using a
143 neodymium rare earth permanent magnets (NEB), and the supernatant was carefully removed
144 using a micropipette. Samples were dried at room temperature, eluted into 100 μ L of TE Buffer
145 and gently mixed. After unbinding DNA from the magnetic beads, samples were magnetized
146 again and the supernatant containing DNA was removed and stored in individual vials.

147 After extraction, samples were quantified using rtPCR with a hydrolysis probe (TaqMan)
148 targeting the 100 bp fragment previously amplified COI fragment (Pie et al. 2017). Each assay
149 was run in a 10 μ L final volume, with concentrations as follows: 75 μ M each primer, 25 μ M
150 probe and 1 X QuantiNova Probe PCR Kit (Qiagen). Each sample was run in triplicate, with 3
151 μ L of extract being used in each reaction. Cycling conditions were: 2 min at 95 °C for enzyme
152 activation, followed by 50 cycles of denaturation at 95 °C for 5 s, and combined annealing and
153 extension at 60 °C for 5 sec. Assay was run in RotorGeneQ 5plex+HRM (Qiagen). For
154 quantification, a standard curve was built by running a six-order serial dilution of the stock
155 solution previously quantified using Qubit, also performed in triplicate. Each run was analyzed
156 using RotorGeneQ Series Software (Qiagen), with Quantification analysis. Threshold was
157 calculated with automatic option, with a 0.35 upper bound limit, and quantification was done
158 with slope correct mode.

159 Analyses

160 We used two approaches to assess the vertical distribution of eDNA over time. First, we
161 tested the relationship between depth and concentration using linear regressions for each
162 experimental period and determined the time until this relationship became nonsignificant (i.e.
163 DNA concentrations were homogeneous between depths) as an indication of non-homogeneous
164 distribution of eDNA across the apparatus. Second, we fit cubic smoothing splines to each
165 dataset (degrees of freedom = 4). Given that the final concentrations are unlikely to become
166 precisely equal due to measurement error, we compared the observed data to re-sampled splines
167 in which concentrations and depths were randomly shuffled (N=1000 pseudo-replicates). This
168 procedure allowed for the generation of a visual expectation of the expected variation in
169 concentration estimates given the inherent variability of the environmental setup used in our
170 study. All analyses were carried out using R 4.0.2 (R Core Team 2020).

171

172 **Results**

173 The vertical distribution of experimental DNA at different time periods is shown in Figure 1.
174 There was a significant relationship between depths and Ct immediately after the beginning of
175 the experiments ($t = 2.99$, $p = 0.008$) and after 30 min ($t = 5.36$, $p = 6.32e-05$), but that
176 relationship became non-significant after 1 h ($p = 0.48 - 0.98$). This difference was accompanied
177 by an increase in the DNA concentration across all depths in a manner consistent with the
178 homogenization of DNA concentration throughout the entire apparatus. These results were
179 consistent with the comparison between the splines fit to the observed data and those obtained
180 from shuffled samples. The only two time periods that were outside the simulated data were

181 immediately after and 30 min after the beginning of the experiments. Interestingly, in the latter,
182 the DNA distribution was midway between the state at t=0 and the complete homogenization
183 found at the end of the experiments, with higher-than-expected concentrations up to 3 m from the
184 origin of the DNA.

185

186 **Discussion**

187 As eDNA studies become increasingly used to monitor different components of the aquatic
188 biota, it is crucial to understand the factors determining the distribution of eDNA in the water
189 column. In our study, we demonstrate that the diffusion of DNA along the water column takes
190 place rapidly, in the time scale of minutes, even in the absence of turbulence. This result is
191 important given that, under field conditions, the water currents would tend to accelerate the
192 homogenization process. Thus, there does not seem to be “an optimal location” to obtain water
193 samples for eDNA analyses in a lentic system, as DNA tends to not accumulate in a specific part
194 of the water column. These results are intriguing, given that previous studies suggested a
195 differential accumulation of eDNA on either the surface (e.g. (Murakami et al. 2019) or the
196 bottom (e.g. (Moyer et al. 2014), or even near the layer that the organism lives (e.g. (Minamoto
197 et al. 2017)).

198 It is important to note that, although we used free DNA molecules in our experiment, eDNA
199 is not a monodisperse phase in nature (Turner et al. 2014; Wilcox et al. 2015). It is composed of
200 particles ranging from single DNA molecules to tissue fragments (e.g. between 0.2 and 180 μm ,
201 but mostly between 1-10 μm (Turner et al. 2014)). Particle size composition also plays an
202 important role in how studies comparing different depths report due to how they interact with

203 filter pore size. Although this distribution range seems to be constant between close-related taxa
204 (such as fish, (Barnes et al. 2020)), it seems to vary between different taxa (such as water fleas)
205 (Moushomi et al. 2019). This distribution also changes with time, as bigger particles tend to
206 break down into smaller particles (Murakami et al. 2019). As the sampling and processing
207 methods (volume used, filtration technique, time between sampling and water composition
208 measurements) in these comparative studies are not standardized, it is expected that particle size
209 distribution will play a major role in the results. The behavior of different particle sizes on the
210 water column is unknown. This is a potential source of bias on the sampling, as the captured
211 eDNA can differ significantly from true eDNA source amount on a determined sampling point,
212 because of pore size and volume configuration, and this error can vary between sampling points.

213 We also expect that the solubility of these different particles influences how they behave in
214 the water column. While most of the eDNA particles tend to have a hydrophilic nature, some are
215 hydrophobic. When considering colloidal particles in the water, eDNA particles can bind to it
216 and behave differently from how they would if they were suspended, mostly due to weight
217 changes. This can lead to accumulation in certain parts of the water column, or changing speed
218 of diffusion (Cai et al. 2006a; Cai et al. 2006b). When bound particles are too dense, it can also
219 promote deposition and accumulation of eDNA in the substrate (Zhai et al. 2019). Size of
220 suspended particles also influences this dynamic, as finer substrates tend to capture more eDNA
221 due to smaller pores (Shogren et al. 2016). This can lead to an effect of accidentally re-
222 suspending trapped eDNA into the water column while sampling, which can cause a sampling
223 bias where capturing water near the bottom is actually capturing the substrate (Turner et al. 2014;
224 Turner 2004). Hydrogeomorphic features of the system being studied should be assessed in order

225 to evaluate slopes (which influence depth variations) and adsorption sites (which can sequester
226 eDNA) (Fremier et al. 2019).

227 It is also important to emphasize that our results only pertain to a specific aspect of DNA
228 distribution, namely the vertical diffusion process over time in the absence of water currents. The
229 movement of water in lotic conditions might provide qualitatively different conditions, given that
230 water velocity varies with depth. For instance, under laminar flow, water near the surface might
231 include eDNA from farther upstream than those near the bottom (Curtis et al. 2020). However, as
232 water speed becomes faster, the onset of turbulent flow might lead to homogenization of bottom
233 and top water layers (Mächler et al. 2020). Water flow and stratification are also important
234 factors that can create different degrading zones in the water column (Curtis et al. 2020). Liquid
235 flow is known to degrade eDNA due to mechanical forces (Levy et al. 1999). When hyporheic
236 exchanges (water from the main river flow being exchanged with water kept in porous
237 substrates) are considered, we would expect it to create less intense flow zones. These islands
238 could potentially serve as less degrading spaces, where it would be more advantageous to sample
239 near porous substrates both due to sequester of eDNA and due to irreversible sorption to bed
240 sediment (Foppen et al. 2013). Little is known about the dynamic of these spaces regarding
241 eDNA particles and their distribution. In another scenario, when there's permanent water column
242 stratification (such as in the sea), depth becomes an important sampling factor (Jeunen et al.
243 2020). It is unknown if eDNA can pass these barriers (i.e. if convection is enough to break these
244 barriers and homogenize eDNA). It's also unknown if there are clines through the same zones,
245 causing in-between convection to cycle the water and homogenize the water in each water break.

246 While our results show the behavior of a monodisperse phase of eDNA particles in a
247 relatively small water column, it highlights how this system would behave without interference.

248 With so many factors acting at once in a complex water body system, it is important to break
249 down its components and understand how they behave separately, so we can build a better model
250 that can be incorporated in realistic field conditions. Understanding the interplay between
251 turbulence, colloidal particles and eDNA transport is a particularly important frontier of eDNA
252 research.

253

254 **Acknowledgements**

255

256 This paper presents part of the results of the P&D project, code PD-06491-0383/2015,
257 executed by the Federal University of Paraná and Aliança Prestadora de Serviços Ltda and
258 funded by COPEL Geração e Transmissão SA, under the Research and Technological
259 Development Program of Electricity Sector, regulated by the National Electric Energy Agency
260 (Aneel). The authors declare that they have no conflict of interest.

261

262 **References**

263 Andruszkiewicz, E. A., L. M. Sassoubre & A. B. Boehm, 2017. Persistence of marine fish
264 environmental DNA and the influence of sunlight. PLoS One 12(9):e0185043.
265 Aneel, A. N. d. E. E., 2016. Plano de Dados Abertos, Informações Gerenciais – Tópico: Geração.
266 Bakker, J., O. S. Wangensteen, D. D. Chapman, G. Boussarie, D. Buddo, T. L. Guttridge, H.
267 Hertler, D. Mouillot, L. Vigliola & S. Mariani, 2017. Environmental DNA reveals
268 tropical shark diversity in contrasting levels of anthropogenic impact. Scientific reports
269 7(1):1-11.

270 Barnes, M. A., W. L. Chadderton, C. L. Jerde, A. R. Mahon, C. R. Turner & D. M. Lodge, 2020.

271 Environmental conditions influence eDNA particle size distribution in aquatic systems.

272 Environmental DNA.

273 Barnes, M. A. & C. R. Turner, 2016. The ecology of environmental DNA and implications for

274 conservation genetics. *Conservation Genetics* 17(1):1-17.

275 BONACICH, E. M., John, 1980. The economic basis of ethnic solidarity: Small business in the

276 Japanese American community. Univ of California Press.

277 Buxton, A. S., J. J. Groombridge, N. B. Zakaria & R. A. Griffiths, 2017. Seasonal variation in

278 environmental DNA in relation to population size and environmental factors. *Scientific*

279 *reports* 7(1):1-9.

280 Cai, P., Q.-Y. Huang & X.-W. Zhang, 2006a. Interactions of DNA with clay minerals and soil

281 colloidal particles and protection against degradation by DNase. *Environmental science*

282 & technology

283 Cai, P., Q. Huang, X. Zhang & H. Chen, 2006b. Adsorption of DNA on clay minerals and

284 various colloidal particles from an Alfisol. *Soil Biology and Biochemistry* 38(3):471-476.

285 Chappuis, E., M. Terradas, M. E. Cefali, S. Mariani & E. Ballesteros, 2014. Vertical zonation is

286 the main distribution pattern of littoral assemblages on rocky shores at a regional scale.

287 *Estuarine, Coastal and Shelf Science* 147:113-122.

288 Cordier, T., F. Frontalini, K. Cermakova, L. Apothéloz-Perret-Gentil, M. Treglia, E.

289 Scantamburlo, V. Bonamin & J. Pawlowski, 2019. Multi-marker eDNA metabarcoding

290 survey to assess the environmental impact of three offshore gas platforms in the North

291 Adriatic Sea (Italy). *Marine environmental research* 146:24-34.

292 Currier, C. A., T. J. Morris, C. C. Wilson & J. R. Freeland, 2018. Validation of environmental
293 DNA (eDNA) as a detection tool for at-risk freshwater pearly mussel species (Bivalvia:
294 Unionidae). *Aquatic Conservation: Marine and Freshwater Ecosystems* 28(3):545-558.

295 Curtis, A. N., J. S. Tiemann, S. A. Douglass, M. A. Davis & E. R. Larson, 2020. High stream
296 flows dilute environmental DNA (eDNA) concentrations and reduce detectability.
297 Diversity and Distributions.

298 Darrigran, G. & C. Damborenea, 2011. Ecosystem engineering impact of *Limnoperna fortunei* in
299 South America. *Zoological science* 28(1):1-7.

300 DeAngelis, M. M., D. G. Wang & T. L. Hawkins, 1995. Solid-phase reversible immobilization
301 for the isolation of PCR products. *Nucleic acids research* 23(22):4742.

302 Eichmiller, J. J., P. G. Bajer & P. W. Sorensen, 2014. The relationship between the distribution
303 of common carp and their environmental DNA in a small lake. *PloS one* 9(11):e112611.

304 Eiler, A., A. Löfgren, O. Hjerne, S. Nordén & P. Saetre, 2018. Environmental DNA (eDNA)
305 detects the pool frog (*Pelophylax lessonae*) at times when traditional monitoring methods
306 are insensitive. *Scientific reports* 8(1):1-9.

307 Ficetola, G. F., C. Miaud, F. Pompanon & P. Taberlet, 2008. Species detection using
308 environmental DNA from water samples. *Biology letters* 4(4):423-425.

309 Foppen, J. W., J. Seopa, N. Bakobie & T. Bogaard, 2013. Development of a methodology for the
310 application of synthetic DNA in stream tracer injection experiments. *Water resources
311 research* 49(9):5369-5380.

312 Fremier, A. K., K. M. Strickler, J. Parzych, S. Powers & C. S. Goldberg, 2019. Stream transport
313 and retention of environmental DNA pulse releases in relation to hydrogeomorphic
314 scaling factors. *Environmental science & technology* 53(12):6640-6649.

315 Goldberg, C. S., A. Sepulveda, A. Ray, J. Baumgardt & L. P. Waits, 2013. Environmental DNA
316 as a new method for early detection of New Zealand mudsnails (*Potamopyrgus*
317 *antipodarum*). *Freshwater Science* 32(3):792-800.

318 Häfling, B., L. Lawson Handley, D. S. Read, C. Hahn, J. Li, P. Nichols, R. C. Blackman, A.
319 Oliver & I. J. Winfield, 2016. Environmental DNA metabarcoding of lake fish
320 communities reflects long-term data from established survey methods. *Molecular ecology*
321 25(13):3101-3119.

322 Harper, K. J., K. D. Goodwin, L. R. Harper, E. L. LaCasella, A. Frey & P. H. Dutton, 2020.
323 Finding Crush: environmental DNA analysis as a tool for tracking the green sea turtle
324 *Chelonia mydas* in a marine estuary. *Frontiers in Marine Science* 6:810.

325 Harper, L. R., L. Lawson Handley, C. Hahn, N. Boonham, H. C. Rees, K. C. Gough, E. Lewis, I.
326 P. Adams, P. Brotherton & S. Phillips, 2018. Needle in a haystack? A comparison of
327 eDNA metabarcoding and targeted qPCR for detection of the great crested newt (*Triturus*
328 *cristatus*). *Ecology and evolution* 8(12):6330-6341.

329 Hinlo, R., D. Gleeson, M. Lintemanns & E. Furlan, 2017. Methods to maximise recovery of
330 environmental DNA from water samples. *PloS one* 12(6):e0179251.

331 Hunter, M. E., S. J. Oyler-McCance, R. M. Dorazio, J. A. Fike, B. J. Smith, C. T. Hunter, R. N.
332 Reed & K. M. Hart, 2015. Environmental DNA (eDNA) sampling improves occurrence
333 and detection estimates of invasive Burmese pythons. *PloS one* 10(4):e0121655.

334 Jane, S. F., T. M. Wilcox, K. S. McKelvey, M. K. Young, M. K. Schwartz, W. H. Lowe, B. H.
335 Letcher & A. R. Whiteley, 2015. Distance, flow and PCR inhibition: eDNA dynamics in
336 two headwater streams. *Molecular ecology resources* 15(1):216-227.

337 Jeunen, G. J., M. D. Lamare, M. Knapp, H. G. Spencer, H. R. Taylor, M. Stat, M. Bunce & N. J.
338 Gemmell, 2020. Water stratification in the marine biome restricts vertical environmental
339 DNA (eDNA) signal dispersal. *Environmental DNA* 2(1):99-111.
340 Jo, T., H. Murakami, S. Yamamoto, R. Masuda & T. Minamoto, 2019. Effect of water
341 temperature and fish biomass on environmental DNA shedding, degradation, and size
342 distribution. *Ecology and evolution* 9(3):1135-1146.
343 Katano, I., K. Harada, H. Doi, R. Souma & T. Minamoto, 2017. Environmental DNA method for
344 estimating salamander distribution in headwater streams, and a comparison of water
345 sampling methods. *PLoS One* 12(5):e0176541.
346 Kuehne, L. M., C. O. Ostberg, D. M. Chase, J. J. Duda & J. D. Olden, 2020. Use of
347 environmental DNA to detect the invasive aquatic plants *Myriophyllum spicatum* and
348 *Egeria densa* in lakes. *Freshwater Science* 39(3):521-533.
349 Lacoursière-Roussel, A., K. Howland, E. Normandeau, E. K. Grey, P. Archambault, K. Deiner,
350 D. M. Lodge, C. Hernandez, N. Leduc & L. Bernatchez, 2018. eDNA metabarcoding as a
351 new surveillance approach for coastal Arctic biodiversity. *Ecology and evolution*
352 8(16):7763-7777.
353 Lafferty, K. D., A. E. Garcia-Vedrenne, J. P. McLaughlin, J. N. Childress, M. F. Morse & C. L.
354 Jerde, 2020. At Palmyra Atoll, the fish-community environmental DNA signal changes
355 across habitats but not with tides. *Journal of Fish Biology*.
356 Levy, M., I. Collins, S. Yim, J. Ward, N. Titchener-Hooker, P. A. Shamlou & P. Dunnill, 1999.
357 Effect of shear on plasmid DNA in solution. *Bioprocess Engineering* 20(1):7-13.

358 Lor, Y., T. M. Schreier, D. L. Waller & C. M. Merkes, 2020. Using environmental DNA (eDNA)
359 to detect the endangered Spectaclecase Mussel (*Margaritifera monodonta*). Freshwater
360 Science 39(4):000-000.

361 Mächler, E., A. Salyani, J.-C. Walser, A. Larsen, B. Schaeffli, F. Altermatt & N. Ceperley, 2020.
362 Environmental DNA simultaneously informs hydrological and biodiversity
363 characterization of an Alpine catchment. Hydrology and Earth System Sciences
364 Discussions:1-30.

365 Marshall, N. T. & C. A. Stepien, 2019. Invasion genetics from eDNA and thousands of larvae: A
366 targeted metabarcoding assay that distinguishes species and population variation of zebra
367 and quagga mussels. Ecology and evolution 9(6):3515-3538.

368 Minamoto, T., M. Fukuda, K. R. Katsuhara, A. Fujiwara, S. Hidaka, S. Yamamoto, K. Takahashi
369 & R. Masuda, 2017. Environmental DNA reflects spatial and temporal jellyfish
370 distribution. PLoS One 12(2):e0173073.

371 Miya, M., Y. Sato, T. Fukunaga, T. Sado, J. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H.
372 Yamanaka & H. Araki, 2015. MiFish, a set of universal PCR primers for metabarcoding
373 environmental DNA from fishes: detection of more than 230 subtropical marine species.
374 Royal Society open science 2(7):150088.

375 Moushomi, R., G. Wilgar, G. Carvalho, S. Creer & M. Seymour, 2019. Environmental DNA size
376 sorting and degradation experiment indicates the state of *Daphnia magna* mitochondrial
377 and nuclear eDNA is subcellular. Scientific reports 9(1):1-9.

378 Moyer, G. R., E. Diaz-Ferguson, J. E. Hill & C. Shea, 2014. Assessing environmental DNA
379 detection in controlled lentic systems. PloS one 9(7):e103767.

380 Murakami, H., S. Yoon, A. Kasai, T. Minamoto, S. Yamamoto, M. K. Sakata, T. Horiuchi, H.

381 Sawada, M. Kondoh & Y. Yamashita, 2019. Dispersion and degradation of

382 environmental DNA from caged fish in a marine environment. *Fisheries science*

383 85(2):327-337.

384 Pie, M. R., P. R. STRÖHER, A. O. Agostinis, R. Belmonte-Lopes, M. Z. Tadra-Sfeir & A.

385 Ostrensky, 2017. Development of a real-time PCR assay for the detection of the golden

386 mussel (*Limnoperna fortunei*, Mytilidae) in environmental samples. *Anais da Academia*

387 *Brasileira de Ciências* 89(2):1041-1045.

388 Pilliod, D. S., C. S. Goldberg, R. S. Arkle & L. P. Waits, 2014. Factors influencing detection of

389 eDNA from a stream-dwelling amphibian. *Molecular Ecology Resources* 14(1):109-116.

390 Pont, D., M. Rocle, A. Valentini, R. Civade, P. Jean, A. Maire, N. Roset, M. Schabuss, H. Zornig

391 & T. Dejean, 2018. Environmental DNA reveals quantitative patterns of fish biodiversity

392 in large rivers despite its downstream transportation. *Scientific reports* 8(1):1-13.

393 Pope, K. L., C. S. Goldberg, N. L. Nelson, A. K. Cummings, T. Seaborn & J. Piovia-Scott, 2020.

394 Designing environmental DNA surveys in complex aquatic systems: Backpack sampling

395 for rare amphibians in Sierra Nevada meadows. *Aquatic Conservation: Marine and*

396 *Freshwater Ecosystems* 30(10):1975-1987.

397 Sansom, B. J. & L. M. Sassoubre, 2017. Environmental DNA (eDNA) shedding and decay rates

398 to model freshwater mussel eDNA transport in a river. *Environmental Science &*

399 *Technology* 51(24):14244-14253.

400 Shogren, A. J., J. L. Tank, E. A. Andruszkiewicz, B. Olds, C. Jerde & D. Bolster, 2016.

401 Modelling the transport of environmental DNA through a porous substrate using

402 continuous flow-through column experiments. *Journal of the Royal Society Interface*
403 13(119):20160290.

404 Shogren, A. J., J. L. Tank, S. P. Egan, D. Bolster & T. Riis, 2019. Riverine distribution of mussel
405 environmental DNA reflects a balance among density, transport, and removal processes.
406 *Freshwater Biology* 64(8):1467-1479.

407 Sigsgaard, E. E., M. R. Jensen, I. E. Winkelmann, P. R. Møller, M. M. Hansen & P. F. Thomsen,
408 2020. Population-level inferences from environmental DNA—Current status and future
409 perspectives. *Evolutionary Applications* 13(2):245-262.

410 Takahara, T., T. Minamoto, H. Yamanaka, H. Doi & Z. i. Kawabata, 2012. Estimation of fish
411 biomass using environmental DNA. *PloS one* 7(4):e35868.

412 Team, 2020. R: A Language and Environment for Statistical Computing, version 4.0. 2. Vienna,
413 Austria: R Foundation for Statistical Computing. Verfügbar unter <https://www> R-project
414 org.

415 Thomsen, P. F., J. Kielgast, L. L. Iversen, C. Wiuf, M. Rasmussen, M. T. P. Gilbert, L. Orlando
416 & E. Willerslev, 2012. Monitoring endangered freshwater biodiversity using
417 environmental DNA. *Molecular ecology* 21(11):2565-2573.

418 Toju, H. & Y. G. Baba, 2018. DNA metabarcoding of spiders, insects, and springtails for
419 exploring potential linkage between above-and below-ground food webs. *Zoological*
420 *letters* 4(1):1-12.

421 Turner, C. R., M. A. Barnes, C. C. Xu, S. E. Jones, C. L. Jerde & D. M. Lodge, 2014. Particle
422 size distribution and optimal capture of aqueous microbial eDNA. *Methods in Ecology*
423 and Evolution

424 Turner, D., 2004. Effects of sedimentation on the structure of a phaeophycean dominated
425 macroalgal community.

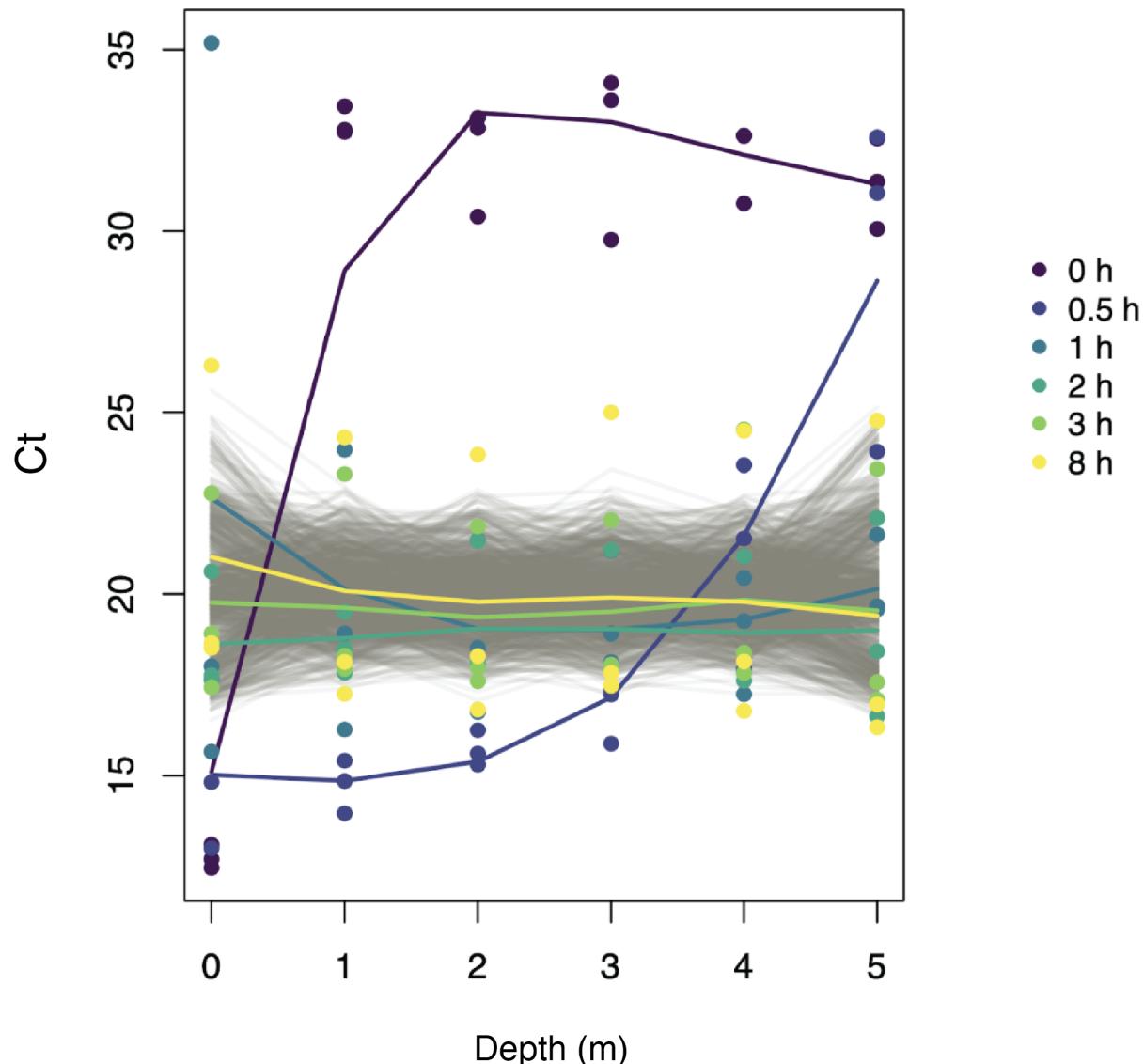
426 Uthicke, S., M. Lamare & J. R. Doyle, 2018. eDNA detection of corallivorous seastar
427 (Acanthaster cf. solaris) outbreaks on the Great Barrier Reef using digital droplet PCR.
428 Coral Reefs 37(4):1229-1239.

429 Villacorta-Rath, C., C. Hoskin, J. Strugnell & D. Burrows, 2020. Long distance (> 20 km)
430 downstream detection of endangered stream frogs suggests an important role for eDNA
431 in surveying for remnant amphibian populations. Authorea Preprints.

432 Wilcox, T. M., K. S. McKelvey, M. K. Young, W. H. Lowe & M. K. Schwartz, 2015.
433 Environmental DNA particle size distribution from Brook Trout (*Salvelinus fontinalis*).
434 Conservation Genetics Resources 7(3):639-641.

435 Wittwer, C., C. Nowak, D. A. Strand, T. Vrålstad, M. Thines & S. Stoll, 2018. Comparison of
436 two water sampling approaches for eDNA-based crayfish plague detection. Limnologica
437 70:1-9.

438 Yamamoto, S., K. Minami, K. Fukaya, K. Takahashi, H. Sawada, H. Murakami, S. Tsuji, H.
439 Hashizume, S. Kubonaga & T. Horiuchi, 2016. Environmental DNA as a ‘snapshot’ of
440 fish distribution: A case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan.
441 PLoS One 11(3):e0149786.


442 Zall, D. M., D. Fisher & M. Q. Garner, 1956. Photometric determination of chlorides in water.
443 Analytical Chemistry 28(11):1665-1668.

444 Zhai, H., L. Wang & C. V. Putnis, 2019. Molecular-scale investigations reveal noncovalent
445 bonding underlying the adsorption of environmental DNA on mica. Environmental
446 science & technology 53(19):11251-11259.

447 Zhang, Y., M. Pavlovska, E. Stoica, I. Prekrasna, J. Yang, J. Slobodnik, X. Zhang & E. Dykyi,
448 2020. Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding
449 approach: From bacteria to marine mammals. *Environment International* 135:105307.
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

470 **Figure**

471 **Fig. 1**

472

473

474

475

476

477

478

479 **Figure caption**

480

481 **Fig. 1.** Variation in threshold cycle (C_t) in our experiments from immediately after the addition
482 of DNA (t = 0 h) to eight hours later. Colored lines show cubic splines across the three replicates
483 of each experimental group (see legend). Gray lines indicate 1000 similar splines with datasets in
484 which concentration and depth data were randomly shuffled.