

1 Seeded assembly *in vitro* does not replicate the structures 2 of α -synuclein filaments from multiple system atrophy

3

4 **Sofia Lövestam¹, Manuel Schweighauser¹, Shigeo Murayama², Yuko Saito², Taisuke
5 Tomita³, Takashi Ando⁴, Kazuko Hasegawa⁵, Mari Yoshida⁶, Airi Tarutani^{3,7}, Masato
6 Hasegawa⁷, Michel Goedert^{1@}, Sjors H.W. Scheres^{1@}**

7

8 ¹ MRC Laboratory of Molecular Biology, Cambridge, UK

9 ²Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan

10 ³Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan

11 ⁴Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan

12 ⁵Division of Neurology, Sagamihara National Hospital, Sagamihara, Japan

13 ⁶Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan

14 ⁷Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science,
15 Tokyo, Japan

16 [@] These authors jointly supervised this work. Correspondence to mg@mrc-lmb.cam.ac.uk or
17 scheres@mrc-lmb.cam.ac.uk

18

19 **Abstract**

20

21 The propagation of conformational strains by templated seeding is central to the prion
22 concept. Seeded assembly of α -synuclein into filaments is believed to underlie the prion-like
23 spreading of protein inclusions in a number of human neurodegenerative diseases, including
24 Parkinson's disease, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA).
25 We previously determined the atomic structures of α -synuclein filaments from the putamen
26 of five individuals with MSA. Here, we used filament preparations from three of these brains
27 for the *in vitro* seeded assembly of recombinant human α -synuclein. We find that the
28 structures of the seeded assemblies differ from those of the seeds, suggesting that additional,
29 as yet unknown, factors play a role in the propagation of pathology. Identification of these
30 factors will be essential for understanding the prion-like spreading of α -synuclein
31 proteinopathies.

32

33 Introduction

34

35 The ordered assembly of a small number of proteins into pathological amyloid filaments
36 defines most neurodegenerative diseases, including Alzheimer disease (AD) and Parkinson
37 disease (PD) (Goedert, 2015). Diseases characterised by the assembly of α -synuclein and tau
38 are the most common proteinopathies of the human nervous system. Most cases of disease
39 are sporadic, but a small percentage is inherited.

40 The first assemblies form in a small number of cells in a given brain region, from where
41 they spread through prion-like mechanisms (Goedert, 2015). A central tenet of the prion
42 hypothesis is that proteinopathies are characterised by assemblies with specific
43 conformations that propagate from cell to cell (Goedert et al., 2010; Prusiner, 1982).
44 Spreading is consistent with staging schemes that have postulated a stereotypical progression
45 of inclusions from single sites (H. Braak & Braak, 1991; Heiko Braak et al., 2003). Decades
46 elapse between the formation of assemblies and the appearance of disease symptoms,
47 providing an important therapeutic window. Evidence for the existence of prion-like
48 mechanisms in human brain has come from the development of scattered α -synuclein
49 inclusions in foetal human midbrain neurons that were therapeutically implanted into the
50 striata of patients with advanced PD (Kordower et al., 2008; J.-Y. Li et al., 2008).

51 α -Synuclein assemblies are characteristic of PD, PD dementia, DLB, MSA, and several
52 rarer conditions, known collectively as synucleinopathies (Goedert et al., 2017). In these
53 diseases, the 140 amino acid α -synuclein assembles into a filamentous, β -sheet-rich
54 conformation. Unbranched α -synuclein filaments are 5-10 nanometres in diameter and up to
55 several micrometres in length. They are found mostly in nerve cells (Lewy bodies and
56 neurites) and, for MSA, also in glial cells, chiefly in oligodendrocytes (glial cytoplasmic
57 inclusions, GCIs, or Papp-Lantos bodies). Filamentous α -synuclein is phosphorylated and
58 exhibits additional posttranslational modifications (Fujiwara et al., 2002; Sorrentino &
59 Giasson, 2020), but it remains to be shown that these modifications are necessary for
60 assembly. Amino acids 30-100 have been reported to make up the structured part of α -
61 synuclein filaments (Miake et al., 2002). A seed of α -synuclein can trigger the assembly of
62 soluble α -synuclein (Luk et al., 2009; Yonetani et al., 2009).

63 A link between α -synuclein assembly and disease was established by the findings that
64 missense mutations in SNCA (the α -synuclein gene), and multiplications of this gene, cause
65 rare forms of inherited PD and PD dementia (Polymeropoulos et al., 1997; Singleton et al.,

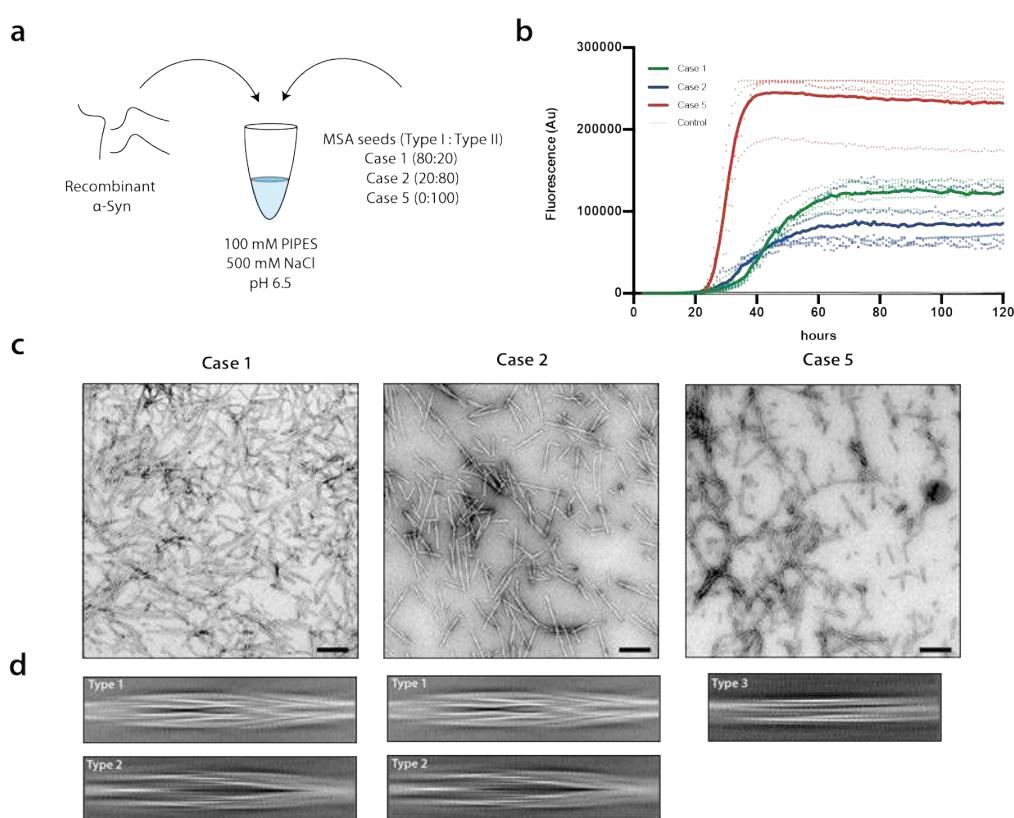
66 2003). Some SNCA mutations and gene multiplications also cause DLB. Abundant α -
67 synuclein inclusions are present in all cases of inherited disease. Sequence variation in the
68 regulatory region of SNCA is associated with increased α -synuclein expression and a
69 heightened risk of developing sporadic PD, which accounts for over 90% of cases of this
70 disease (Nalls et al., 2014). Expressed α -synuclein, wild-type or mutant, assembles into
71 filaments *in vitro* (Conway et al., 1998). Moreover, expression of human mutant α -synuclein
72 in animal models causes its aggregation and neurodegeneration (Giasson et al., 2002).

73 Experimental evidence has shown that assembled α -synuclein from MSA behaves like a
74 prion (Holec & Woerman, 2020). Intracerebral or peripheral injection of MSA brain extracts
75 into heterozygous mice transgenic for human A53T α -synuclein led to the formation of
76 abundant neuronal α -synuclein inclusions and their spreading, accompanied by motor
77 impairment (Lavenir et al., 2019; Watts et al., 2013; Woerman et al., 2015, 2018). Protein
78 misfolding cyclic amplification (PMCA) and real time-induced quaking induced conversion
79 (RT-QuIC), have been reported to discriminate between MSA and PD (Shahnawaz et al.,
80 2020).

81 Following the identification of α -synuclein filaments from DLB by negative-stain
82 immuno-electron microscopy (immuno-EM) (Spillantini et al., 1998), multiple techniques,
83 including solid-state nuclear magnetic resonance, electron diffraction, X-ray diffraction and
84 electron cryo-microscopy (cryo-EM), have been used to study the molecular structures of
85 recombinant α -synuclein filaments (Guerrero-Ferreira et al., 2018, 2019; Rodriguez et al.,
86 2015; Serpell et al., 2000; Shahwanaz et al., 2020; Strohäker et al., 2019; Tuttle et al., 2016;
87 Vilar et al., 2008). In some of these studies, filaments were also amplified by using seeds
88 from human brain and recombinant human protein as substrate.

89 We recently showed that the structures of α -synuclein filaments from MSA consist of type
90 I and type II filaments, each with two different protofilaments (Schweighauser et al., 2020).
91 By two-dimensional class averaging, filaments from the brains of individuals with MSA
92 differ from those of DLB, suggesting that distinct strains do indeed characterise synuclein
93 proteinopathies. However, as is the case of tau assemblies (Scheres et al., 2020), the
94 structures of α -synuclein filaments from brain are unlike those formed from recombinant
95 proteins. The main differences are in the extended folds of MSA protofilaments, their
96 asymmetrical packing and the presence of non-proteinaceous molecules between
97 protofilaments.

98

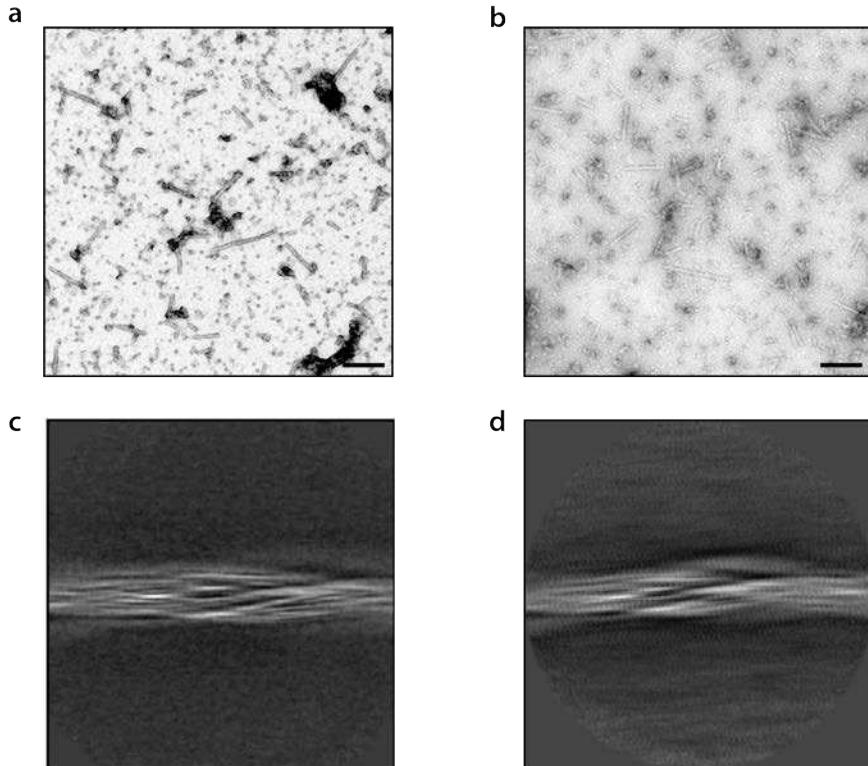

99 These findings raised the question if seeded assemblies of α -synuclein have the same
100 structures as those of brain seeds. Here, we show that the cryo-EM structures of seeded
101 recombinant α -synuclein assemblies differ from those of MSA seeds. This suggests that in
102 disease, additional molecules and/or posttranslational modifications of α -synuclein are
103 required for the faithful replication of filament structures.

104
105
106 **Results**
107

108 **Seeded assembly of α -synuclein with filament preparations from MSA brains**

109 We seeded the *in vitro* assembly of recombinant wild-type human α -synuclein with
110 filament preparations from the putamen of three cases of MSA (Materials & Methods). The
111 cryo-EM structures of the filaments from these cases are known (cases 1, 2 and 5 in
112 Schweighauser et al., 2020). They contain variable proportions of type I and type II MSA
113 filaments, with I:II ratios of 80:20 for case 1; 20:80 for case 2; and 0:100 for case 5. We
114 monitored the kinetics of aggregation using thioflavin T (Xue et al., 2017). The assembly
115 conditions were as described (Shahnawaz et al., 2020), using 100 mM piperazine-N,N'-bis(2-
116 ethanesulfonic acid) (PIPES) and 500 mM NaCl at 37° C, pH 6.5. Upon addition of seeds, we
117 observed a lag phase of 20 - 40 hrs, before fluorescence increased rapidly and plateaued
118 after 30 – 60 hrs (Figure 1b). Case 5 seeds were faster at seeding recombinant α -synuclein
119 and resulted in higher fluorescence intensities than seeds from cases 1 and 2. No increase in
120 fluorescence was observed in the absence of seeds. Negative-stain EM confirmed the
121 presence of abundant filaments after incubation with MSA seeds (Figure 1c).

122



123

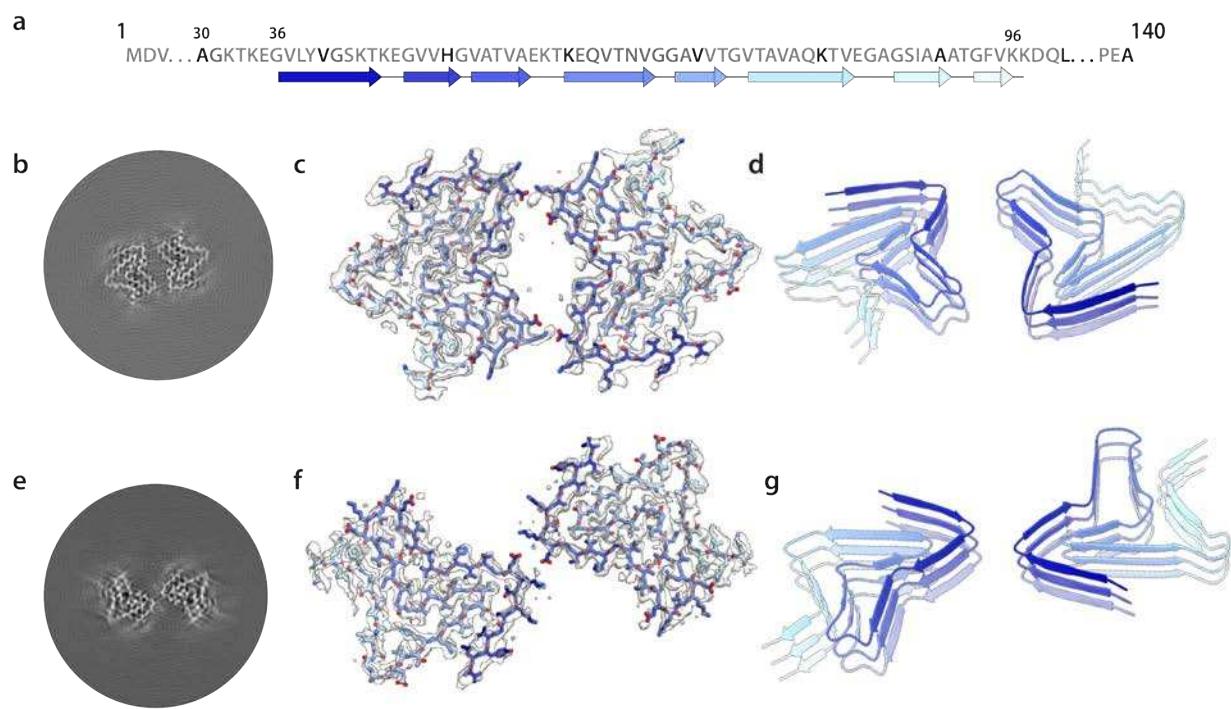
124

125 **Figure 1. Seeded assembly of recombinant α -synuclein with filament preparations from**
126 **MSA brains**

127 **(a)** Recombinant wild-type human α -synuclein was mixed with sonicated MSA seeds in 100
128 mM PIPES, 500 mM NaCl, 0.05% NaN_3 , pH 6.5. Seeds had variable ratios of type I and type
129 II filaments. **(b)** Assembly was quantitated by thioflavin T fluorescence of recombinant α -
130 synuclein in the presence of MSA seeds from case 1 (green), case 2 (blue) and case 5 (red).
131 Controls (grey) were without seeds. Curves represent the mean and dots correspond to the
132 values in each experiment, ($n=5$). **(c)** Negative stain micrographs of α -synuclein filaments
133 after seeded assembly. **(d)** Cryo-EM 2D class averages in boxes spanning 825 \AA of the types
134 of filaments. Assembly with seeds from MSA cases 1 and 2 gave rise to type 1 and type 2
135 filaments. Type 3 filaments formed when the seeds were from MSA case 5.

136

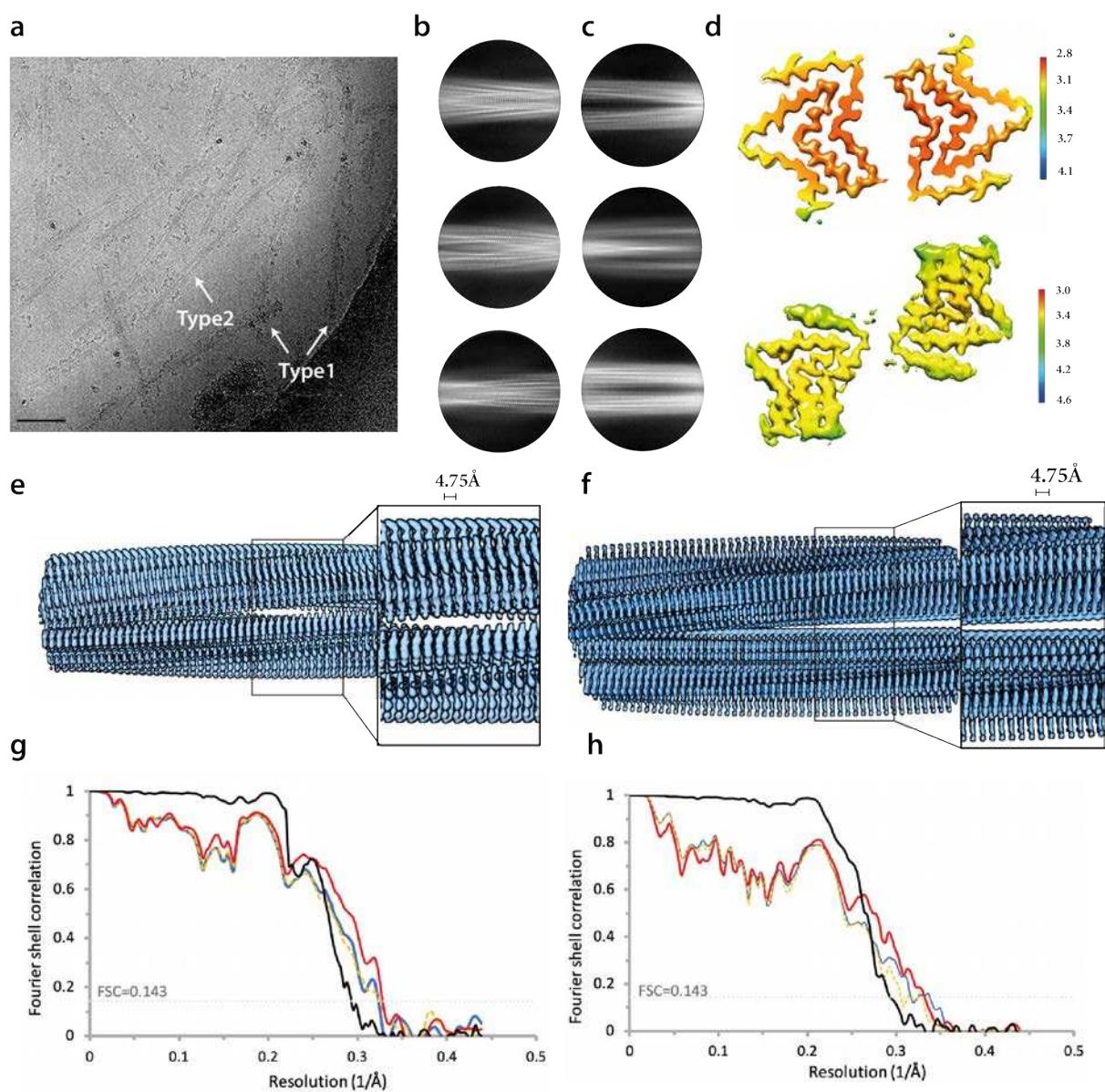
137


138 **Figure 1 – figure supplement 1. Purified filaments from MSA case 5**

139 (a) Sarkosyl insoluble pellet before sonication; and (b) after sonication (scale bar = 200 nm).
140 Cryo-EM 2D class averages of MSA case 5 purified filaments before sonication (c) and after
141 sonication (d).

142 **Cryo-EM imaging of seeded α -synuclein filaments**

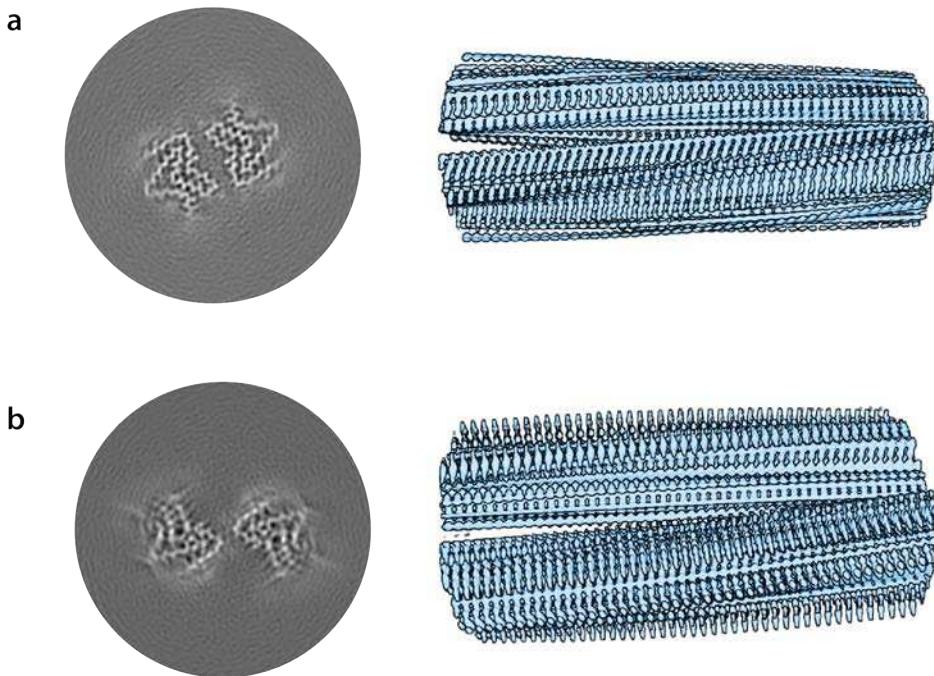
143 We used cryo-EM to image the filaments formed following incubation of recombinant α -
144 synuclein with seeds from each MSA case. Visual inspection of micrographs of filaments
145 from experiments that used seeds from MSA cases 1 and 2 indicated the presence of two
146 main filament types, which we called type 1 and type 2. Type 1 filaments have an average
147 crossover distance of 800 Å and widths of 60-130 Å; type 2 filaments have a crossover
148 distance of 900 Å and widths of 80-130 Å. We also observed straight filaments with no
149 observable twist. It is unclear if they correspond to filaments of types 1 or 2 that untwisted
150 because of sample preparation artefacts, such as interactions with the air-water interface, or if
151 they represent additional filament types. Due to the lack of twist, we were unable to solve the
152 structures of these filaments.


153 Two-dimensional classification readily separated type 1 and type 2 filaments for further
154 processing and indicated that both types are 2-fold symmetric along their helical axis (Fig.
155 1d). Further 3D classification revealed that type 1 and type 2 filaments occurred in two
156 variants in the data set of filaments that formed with seeds from MSA case 1. They are
157 characterised by small differences in protofilament folds. We called the predominant
158 protofilament ‘fold A’ and the minor protofilament ‘fold B’. We could not identify
159 protofilaments with fold B when seeds from MSA case 2 were used. Using helical
160 reconstruction in RELION (He & Scheres, 2017), we determined cryo-EM structures of type
161 1 and type 2 filaments with only protofilament fold A to 3.4 Å resolution (Figure 2; Figure 2
162 - figure supplements 1 and 2). Reconstructions of type 1 and type 2 filaments with two
163 protofilaments of fold B, or with one protofilament of fold A and another protofilament of
164 fold B, were solved to resolutions of 3.4 – 4.1 Å (Figure 3; Figure 3 - figure supplement 1).
165 Reconstructions of filaments containing protofilaments of fold B were less well defined than
166 those of filaments with two protofilaments of fold A. Assembly with seeds from MSA case 5
167 resulted almost exclusively in the formation of a different type of filament, which we called
168 type 3. Type 3 filaments were thinner, more bendy and longer than filaments of types 1 and
169 2. Type 3 filaments have a crossover of 900 Å and widths of 55-65 Å. We solved their
170 structure to 3.2 Å resolution (Figure 4; Figure 4 - figure supplements 1 and 2). A minority of
171 filaments (< 2%) comprised a doublet of the type 3 filaments. Throughout this manuscript,
172 we use blue colours for fold A and green for fold B of type 1 and type 2 filaments, and we
173 use purple for type 3 filaments.

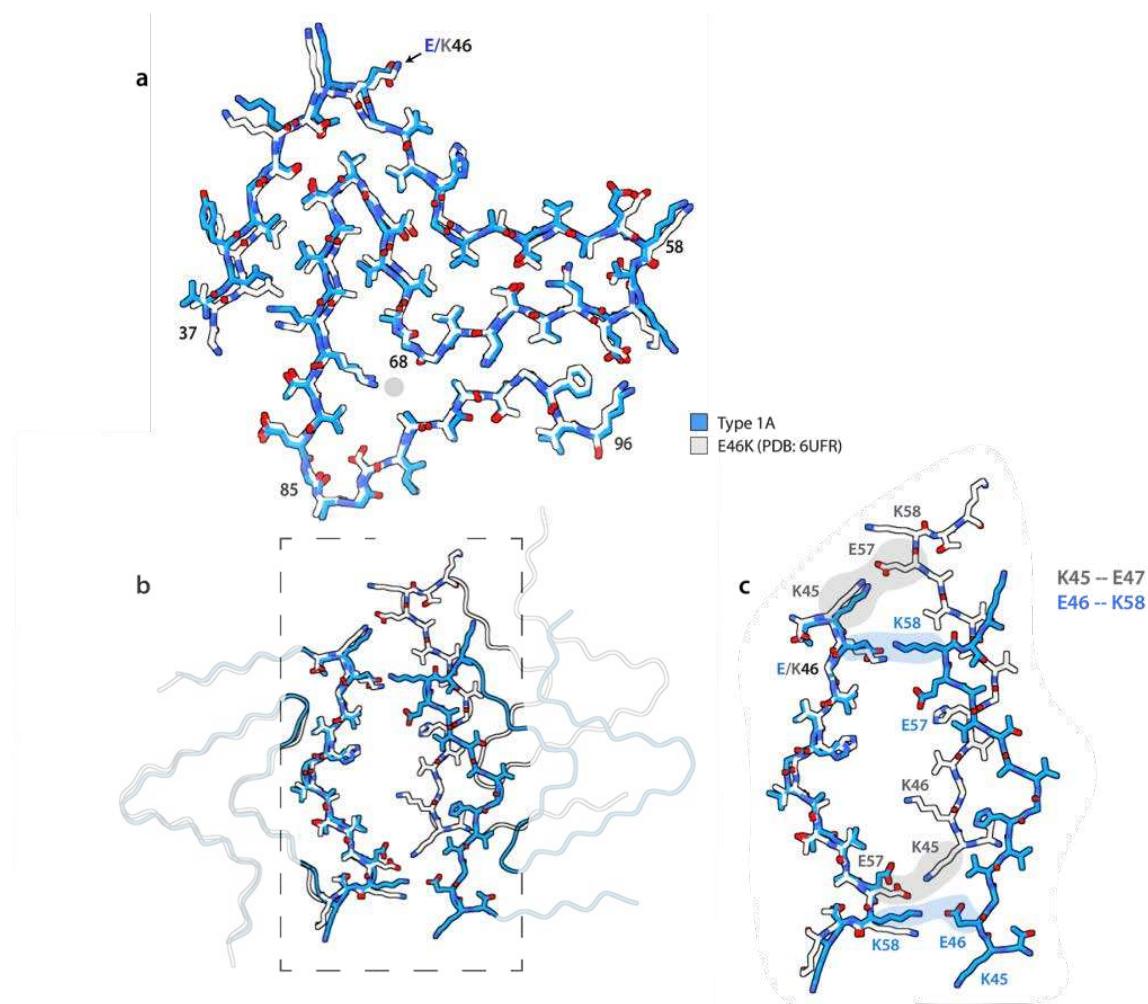
174

175 **Figure 2. Cryo-EM structures of type 1 and type 2 filaments with protofilament fold A**
176 **assembled using seeds from MSA case 2.**

177 **(a)** Primary sequence of α -synuclein with β -strands and loop regions shown from dark blue
178 (N-terminal) to light blue (C-terminal). **(b)** Central slice of the 3D map for type 1 filaments
179 with protofilament fold A. **(c)** Cryo-EM density (transparent grey) and fitted atomic model
180 (with the same colour scheme as in a) for type 1 filaments. **(d)** Cartoon view of three
181 successive rungs of the type 1 filament. **(e-g)** As (b-d), but for type 2 filaments.



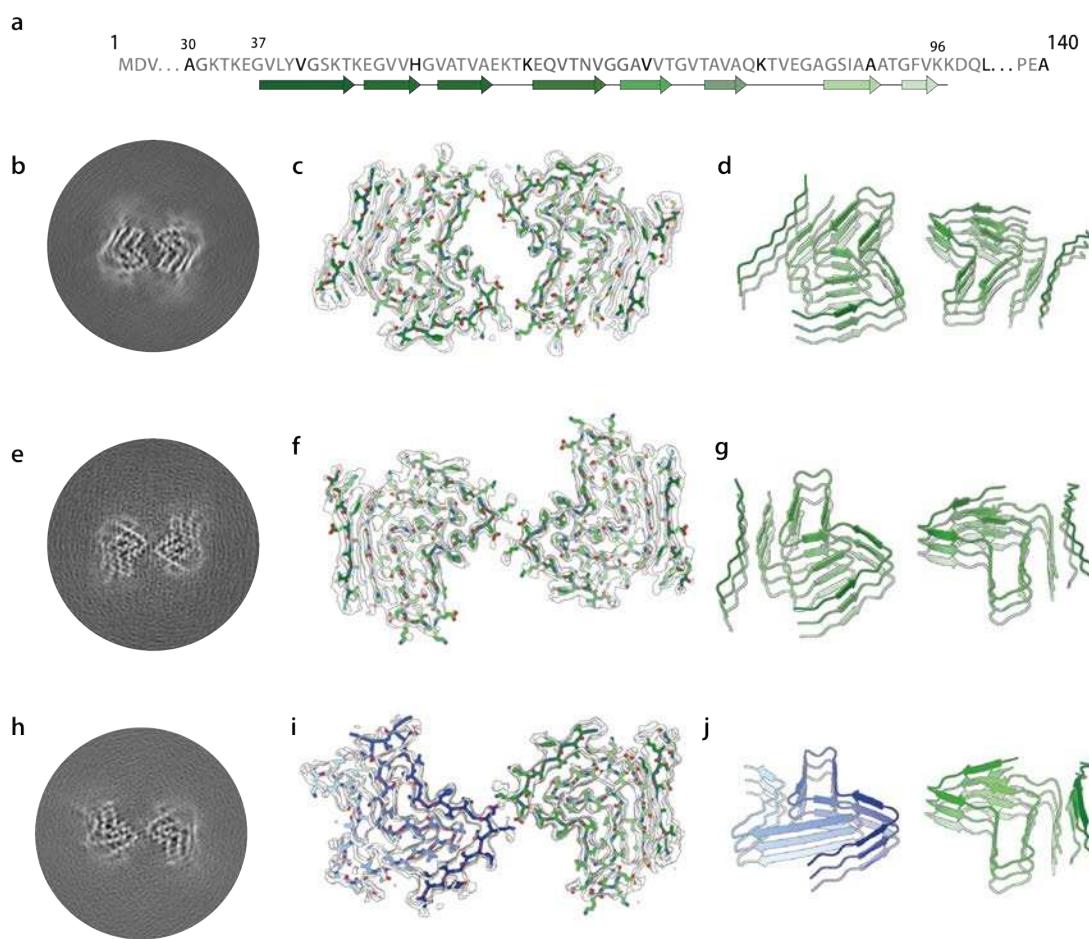
182


183 **Figure 2 - figure supplement 1. Additional cryo-EM data on type 1 and type 2 filaments**
184 **with protofilament fold A.**

185 (a), Electron micrograph of seeded assemblies using filament preparations from MSA case 2
186 as the seed. Type 1 and type 2 filaments are indicated with white arrows. Scale bar, 50 nm.
187 (b) 2D class averages of type 1 (left) and type 2 (right) filaments with two protofilaments of
188 fold A in a box spanning 280 Å. (c) Local resolution maps for type 1 (top) and type 2
189 (bottom) filaments, with the legend indicating resolutions in Å. (d) Side view of the 3D
190 reconstructions for type 1 (left) and type 2 (right) filaments, showing clear separation of β -
191 strands along the helical axis (e) FSC curves for type 1 filaments with two protofilaments of
192 fold A between two independently refined half-maps (black), of the final cryo-EM
193 reconstruction and refined atomic model (red), of the first half map and the atomic model
194 refined against the first half map (blue), and of the atomic model that was refined against the

195 first half-map against the second half-map (yellow dashed). **(f)** As (e), but for type 2
196 filaments with two protofilaments of fold A.
197

198
199 **Figure 2 - figure supplement 2. Cryo-EM structures of type 1 and type 2 filaments with**
200 **protofilament fold A assembled using seeds from MSA case 1.**
201 **(a)** Central slice of the 3D map for type 1 filaments. **(b)** Side view of the 3D reconstruction of
202 type 1 filaments. **(c-d)** As (a-b), but for type 2 filaments.
203

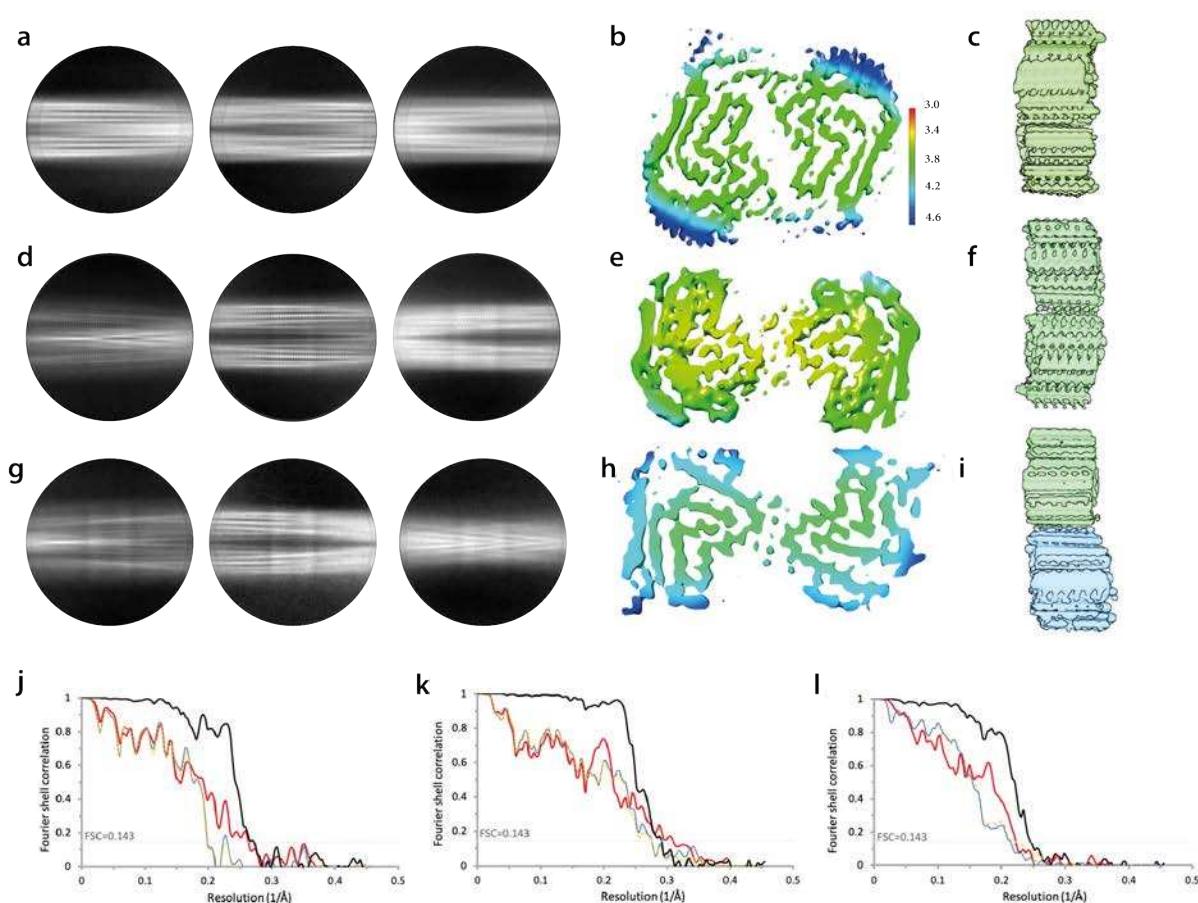


204

205 **Figure 2 - figure supplement 3. Comparison of protofilament fold A with PDB-entry**
206 **6UFR of assembled recombinant E46K α -synuclein.**

207 **(a)** Atomic model of protofilament fold A (blue) overlaid with one protofilament from PDB-
208 entry 6UFR (grey). **(b)** Comparison of the interface between two protofilaments with fold A
209 in type 1 filaments and those from PDB entry 6UFR, with the same colour scheme as in (a).
210 **(c)** Zoomed-in view of the interface, with salt bridges between K45 and E47 in PDB-entry
211 6UFR and between E46 and K58 in type 1 filaments highlighted in grey and blue,
212 respectively.

213

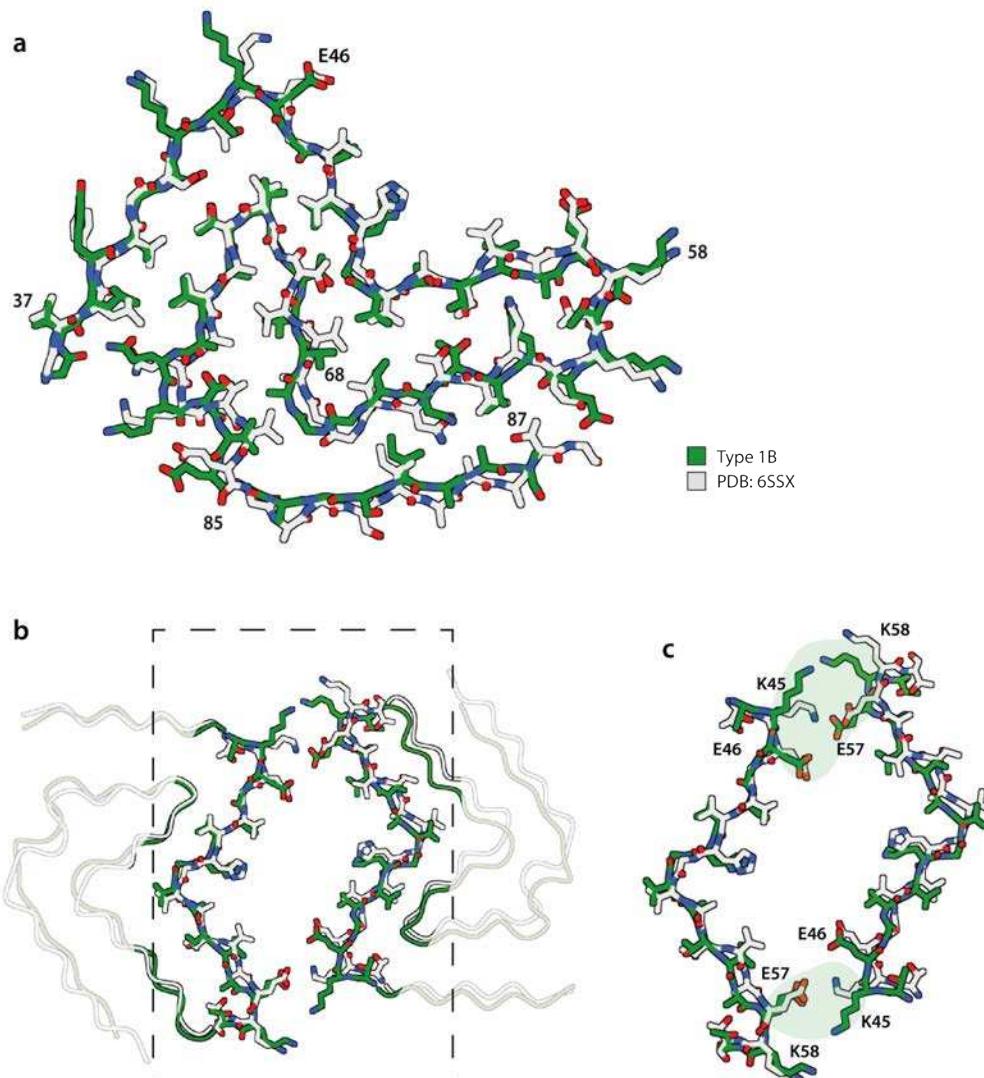


214

215 **Figure 3. Cryo-EM structures of type 1 and type 2 filaments with protofilament fold**
216 **B assembled using seeds from MSA case 1.**

217 Central slice through the reconstruction of the type 1 filament with protofilament fold B (left)
218 and an overlay of the density (in transparent grey) and the atomic model (right). **(b)** As in (a),
219 but for the type 2 filament. **(c)** As in (a), but for the putative type 2 filament that contains a
220 mixture of protofilament folds A and B.

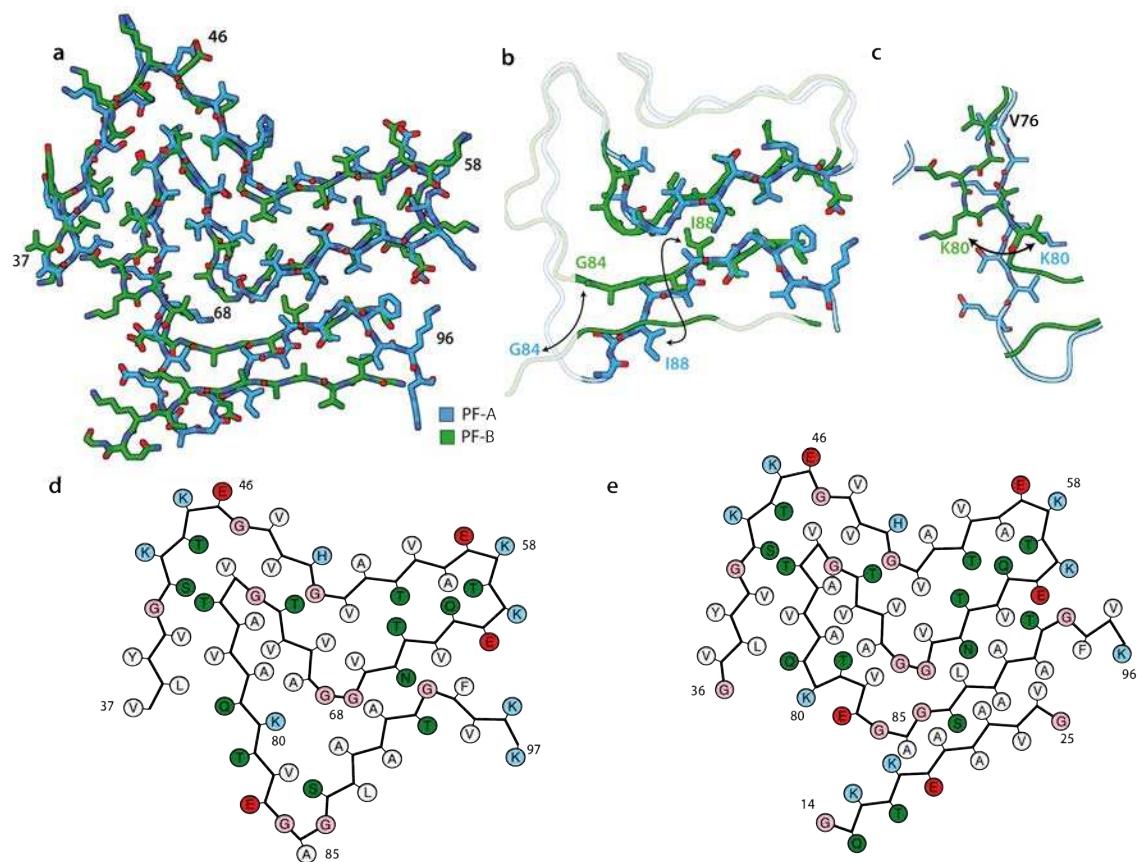
221



222

223 **Figure 3 - figure supplement 1. Additional cryo-EM data on type 1 and type 2 filaments**
224 **with protofilament fold B.**

225 (a) 2D class averages of type 1 filaments with two protofilaments of fold B (b) Local
226 resolution map for type 1 filaments with two protofilaments of fold B with the colour map
227 indicating resolutions in Å. (c) Side view of the 3D reconstructions of type 1 filaments with
228 two protofilaments of fold B. (d-f) as (a-c) but for type 2 filaments with two protofilaments
229 of fold B. (g-i) as (a-c) but for type 2 filaments with one protofilament of fold A and one
230 protofilament of fold B. (j-l) Fourier shell correlation curves for type 1 filaments with two
231 protofilaments of fold B (j), type 2 filaments with two protofilaments of fold B (k) and type 2
232 filaments with one protofilament of fold A and one protofilament of fold B (l). Fourier shell
233 correlation curves are shown between two independently refined half-maps (black) of the
234 final cryo-EM reconstruction and refined atomic model (red), of the first half map and the
235 atomic model refined against the first half map (blue), and of the atomic model that was
236 refined against the first half-map against the second half-map (yellow dashed).

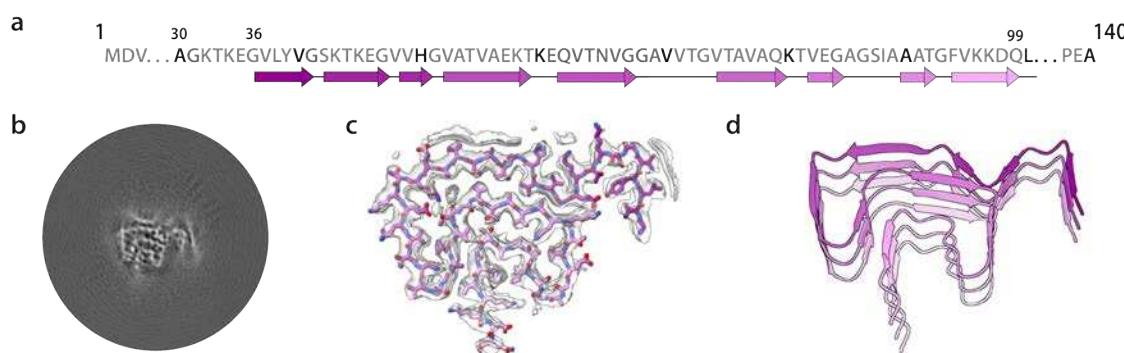

237

240 **Figure 3 - figure supplement 2. Comparison of protofilament A with PDB-entry 6SSX of**
241 **recombinant wild-type α -synuclein.**

242 (a) Atomic model of protofilament fold A (blue) overlaid with one protofilament from PDB-
243 entry 6SSX (grey). (b) Comparison of the interface between two protofilaments with fold A
244 in type 1 filaments and those from PDB entry 6UFR, with the same colour scheme as in (a).
245 (c) Zoomed-in view of the interface, with salt bridges between K45 and E47 in PDB-entry
246 6UPR and between E46 and K58 in type 1 filaments highlighted in grey and blue,
247 respectively.

248

251 **Figure 3 - figure supplement 3. Comparison of protofilament folds A and B.**

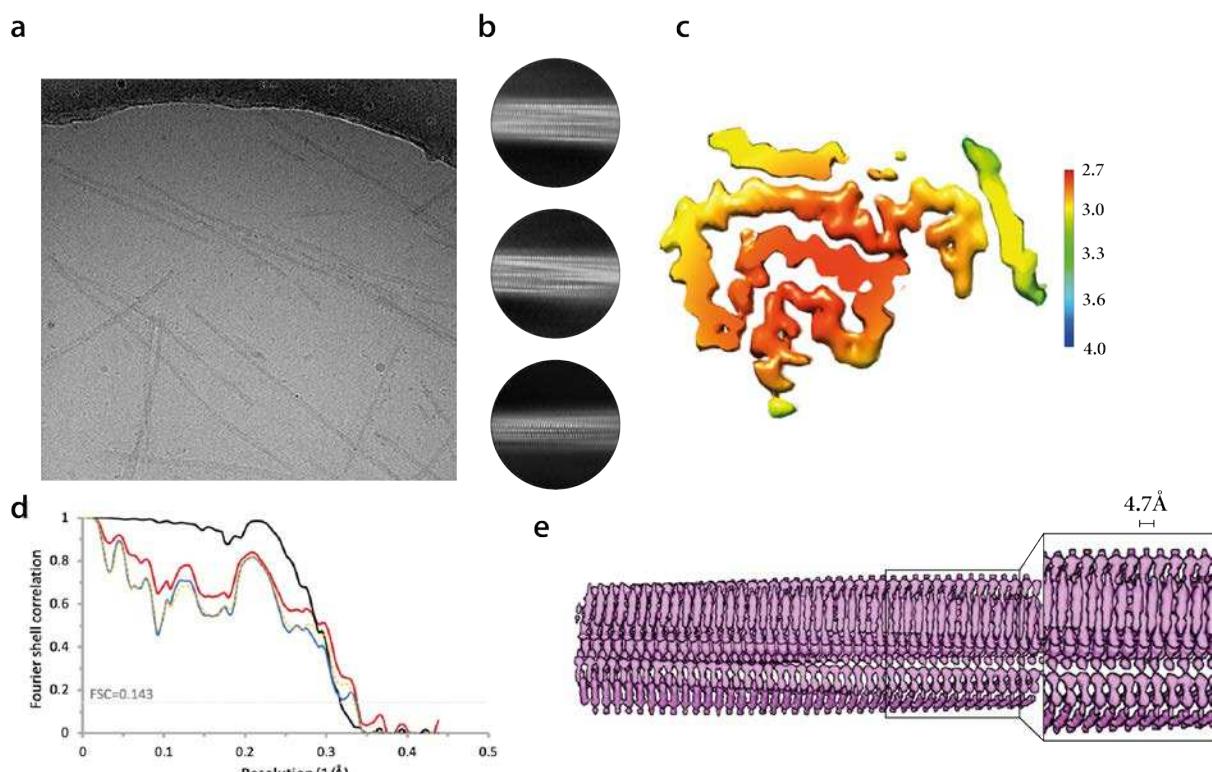

252 (a) Atomic model of protofilament fold A (blue) overlaid with protofilament fold B (green)
253 (b,c) As in (a), but showing all-atom representation for different residues. (d,e) Schematic
254 representations of protofilament folds A and B. Each amino acid residue is represented with
255 its one-letter code in a circle. Positively charged amino acids are shown in blue, negatively
256 charged ones in red, polar ones in green, hydrophobic ones in white, and glycines in pink.
257

258 **Cryo-EM structures of type 1 and type 2 α -synuclein filaments**

259 Most type 1 and type 2 filaments that formed with seeds from MSA case 1, and all the
260 filaments that formed with seeds from MSA case 2, consisted of two protofilaments of fold A
261 that were related by C2 symmetry. Filaments of types 1 and 2 differed in their inter-
262 protofilament packing (Figure 2). In type 1 filaments, two salt bridges between E46 and K58
263 held the protofilaments together, by creating a large solvent-filled channel. The inter-
264 protofilament interface in type 2 filaments was formed by two salt bridges between K45 and
265 E46 of each protofilament. The smeared reconstructed densities at the points furthest away
266 from the helical axis suggest that the inter-protofilament interface of type 2 filaments is more
267 flexible than that of type 1 filaments. Protofilament fold A consists of 8 β -sheets: β 1-6 form
268 a roughly Z-shaped hairpin-like structure, with glycines or KTK motifs between the β -
269 sheets at the bends; β 7-8 fold back against β 4, leaving a small triangular cavity between β 5,
270 β 6 and β 7. This fold is unlike any of those of the MSA type I and type II protofilaments. It is
271 almost identical to the protofilament fold that was reported for *in vitro* aggregated
272 recombinant E46K α -synuclein (Boyer et al., 2020), although the inter-protofilament
273 interface was different from the interfaces observed here for type 1 and type 2 filaments
274 (Figure 2 - figure supplement 3). A minority of type 1 and 2 filaments that formed with seeds
275 from MSA case 1 consisted of two symmetry-related copies of protofilaments with fold B.
276 Although the reconstructions of type 1 and type 2 filaments with two protofilaments of fold B
277 (Figure 3; Figure 3 - figure supplement 1) were less well defined than those for filaments
278 with two protofilaments of fold A, the maps revealed that fold B is nearly identical with the
279 structure of filaments assembled from wild-type recombinant α -synuclein (Guerrero-Ferreira
280 et al., 2019). This increased our confidence in building and refining an atomic model for the
281 protofilaments with fold B. The resulting model from the type 2 filament has a root-mean-
282 square-deviation (r.m.s.d.) of 1.38 Å with the structure of assembled wild-type α -synuclein
283 (Guerrero-Ferreira et al., 2019). Again, protofilament fold B was unlike any of the four
284 protofilaments from MSA type I and type II filaments. An asymmetric reconstruction from a
285 subset of the images suggested that asymmetric type 2 filaments may also form from one
286 protofilament with fold A and one protofilament with fold B (Figure 4c). However, we
287 cannot exclude the possibility that this reconstruction is an artefact arising from suboptimal
288 classification of filament segments. Folds A and B are almost identical at residues G36–V55,
289 and V63–A78, with some flexibility in the β -turn at residues E57–E61. However, comparing
290 the more compact fold B to fold A, a flip in K80 from the hydrophobic core towards the

291 solvent results in a sharp turn at T81 and a shift by three residues in the packing of β 4 against
292 β 7 (Figure 3 - figure supplement 3).

293

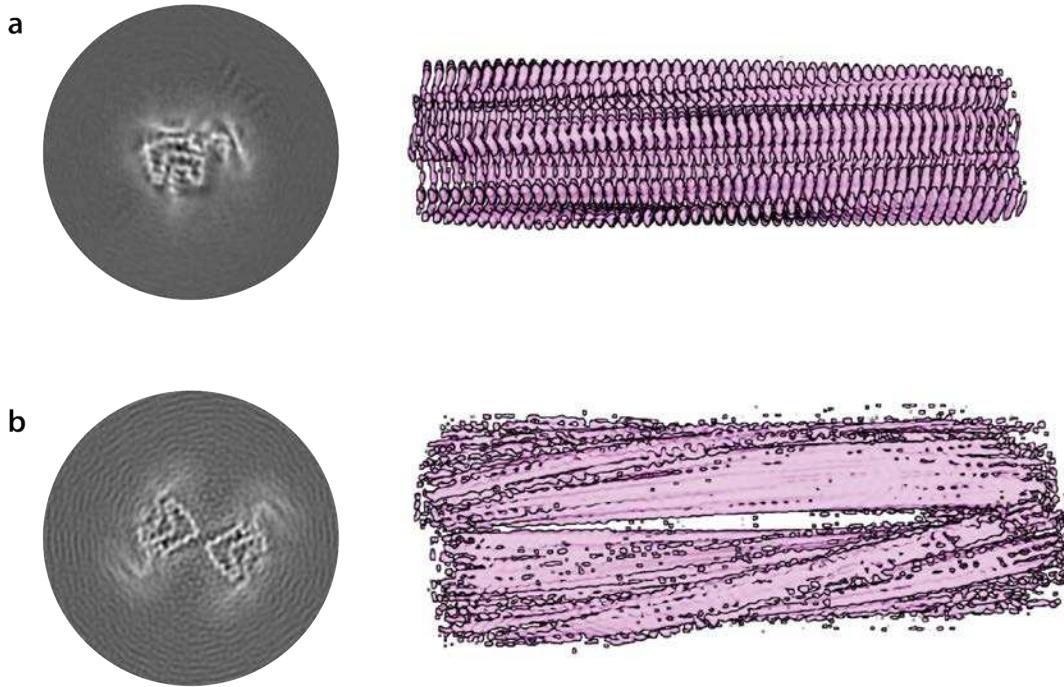


294
295 **Figure 4. Cryo-EM structure of type 3 filaments assembled using seeds from MSA case**
296 **5.**

297 **(a)** Primary sequence of α -synuclein with β -strands and loop regions shown from dark violet
298 (N-terminal) to light pink (C-terminal). **(b)** Central slice of the 3D map for the type 3
299 filament. **(c)** Cryo-EM density (transparent grey) and the fitted atomic model (with the same
300 colour scheme as in a). **(d)** Cartoon view of three successive rungs of the type 3 filament.

301

302


303

304

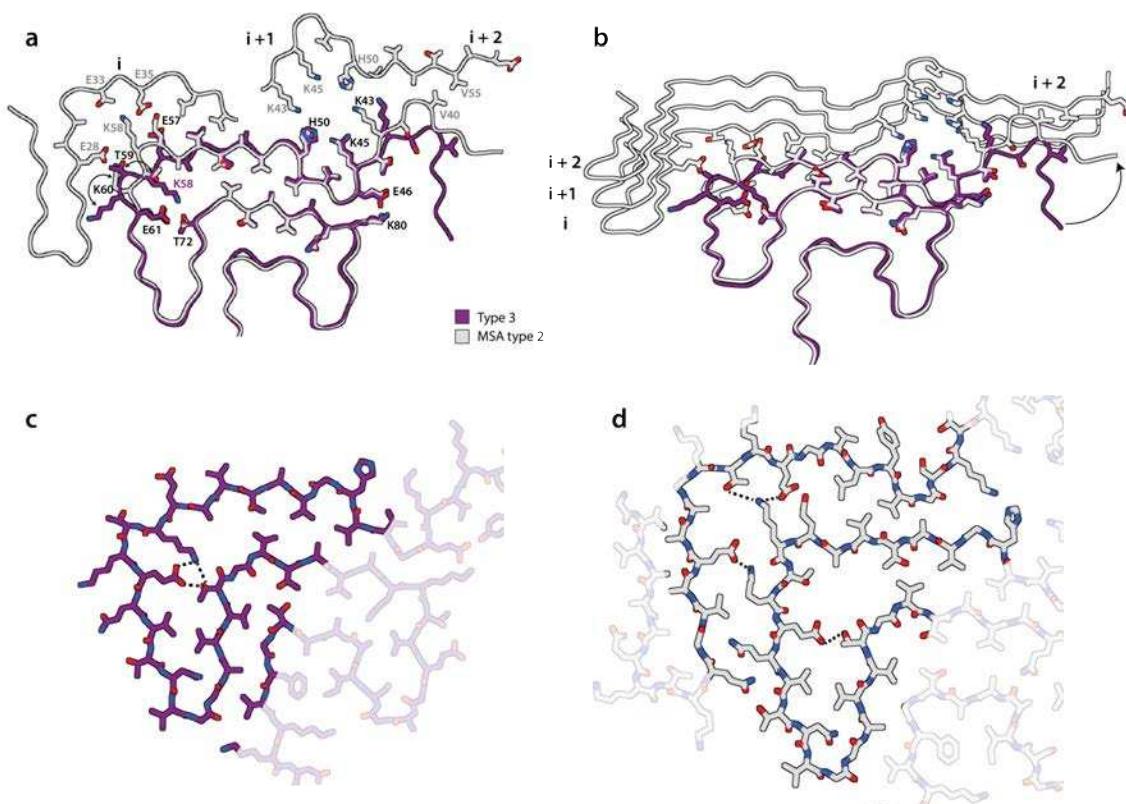
305 **Figure 4 - figure supplement 1. Additional cryo-EM data on type 3 filaments.**

306 **(a)** Electron micrograph of case 5. The scale bar indicates 50 nm. **(b)** 2D class averages of
307 type 3 filaments in a box spanning 280 Å. **(c)** Local resolution map, with the colour map
308 indicating resolutions in Å. **(d)** Fourier shell correlation curves between two independently
309 refined half-maps (black), of the final cryo-EM reconstruction and the refined atomic model
310 (red), of the first half map and the atomic model refined against the first half map (blue), and
311 of the atomic model that was refined against the first half-map against the second half-map
312 (yellow dashed). **(e)** Side view of the 3D reconstruction, showing separation of β -strands
313 along the helical axis.

314

315

316

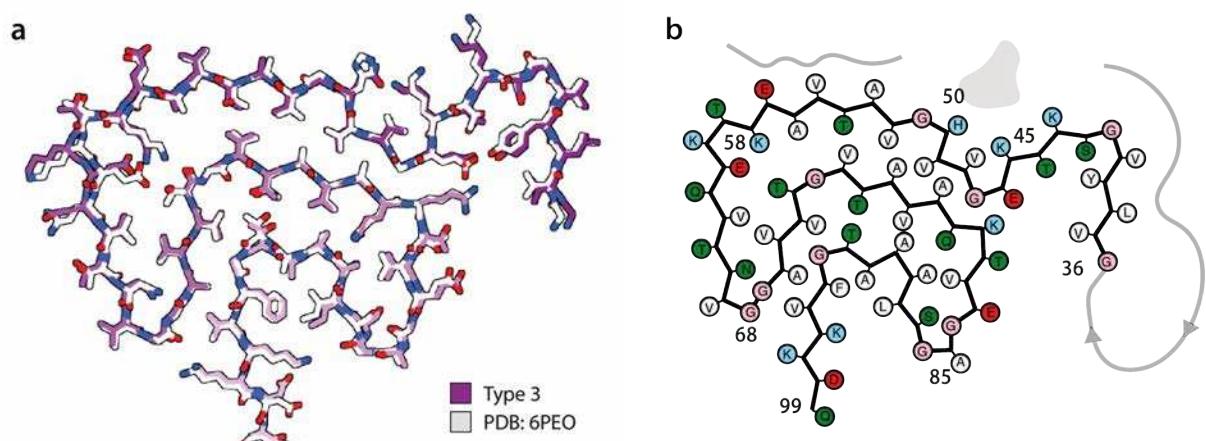

317 **Figure 4 - figure supplement 2. Second-generation type 3 filaments.**

318 **(a)** Central slice of the 3D map of the type 3 filaments from the second generation of seeding.

319 **(b)** Side view of the 3D reconstruction of the same type 3 filaments. **(c-d)** As in (a-b), but for

320 the doublets of type 3 filaments.

321



322

323 **Figure 5. Comparison of type 3 filament with protofilament IIB from MSA case 5.**

324 Atomic model of the type 3 filament (purple) overlaid with the model of protofilament IIB₂
325 from MSA case 5. The additional density at the protofilament interface of MSA type II
326 filaments is shown in orange. (b) Cartoon view of one rung of type 3 filaments overlaid with
327 one rung of protofilament IIB and three runs of protofilament IIA of MSA case 5. Residues
328 on MSA protofilament IIA that interact with the rung of protofilament IIB shown are
329 highlighted with sticks. (c) Close up all-atom view of the hydrogen-bonding network (yellow
330 dashed) between K58, E61 and T72 in type 3 filaments. (d) As in (c), but for protofilaments
331 IIA and IIB in MSA filaments.

332

340 **Cryo-EM structure of type 3 α -synuclein filaments**

341 Type 3 filaments consist of a single protofilament that extends from G36-Q99 and
342 comprises 10 β -sheets (β 1-10) (Figure 4). Residues 46-99 form a Greek key motif, as
343 described before (Tuttle et al., 2016), with a salt bridge between E46 and K80. This motif is
344 preceded by a β -arch formed by residues Y39-T44 and Y39-E46. The density between
345 residues 36 and 39 is more smeared. Two stretches of elongated, smeared densities, possibly
346 originating from parts of the N-terminus of α -synuclein, are observed in front of β 1 in the β -
347 arch and β 4 in the Greek key motif. An additional fuzzy density is observed in front of the
348 side chains of K43, K45 and H50. Whereas filament types 1 and 2 did not resemble the four
349 protofilaments observed in MSA, type 3 filaments were almost identical to protofilament
350 IIB₂, with an r.m.s.d. between atomic coordinates of 1.02 Å (Figure 5). However, in MSA
351 filaments, K58 is flipped away from the core of the protofilament to form a salt bridge with
352 T33 of the opposing protofilament, whereas K58 forms part of the protofilament core in type
353 3 filaments. Minor rearrangements occur near V40, which is also involved in inter-
354 protofilament packing in MSA filaments. Interestingly, the position of the density of the
355 unidentified co-factor at the inter-protofilament interface of type II filaments coincides with
356 the fuzzy density in front of K43, K45 and H50. Type 3 filaments are almost identical to the
357 narrow protofilament formed upon *in vitro* assembly of recombinant H50Q α -synuclein
358 (Boyer et al., 2019), with an r.m.s.d. between atomic coordinates of 0.62 Å (Figure 5 - figure
359 supplement 1).

360

361 **Cryo-EM structures of α -synuclein filaments from second-generation seeded
362 aggregation**

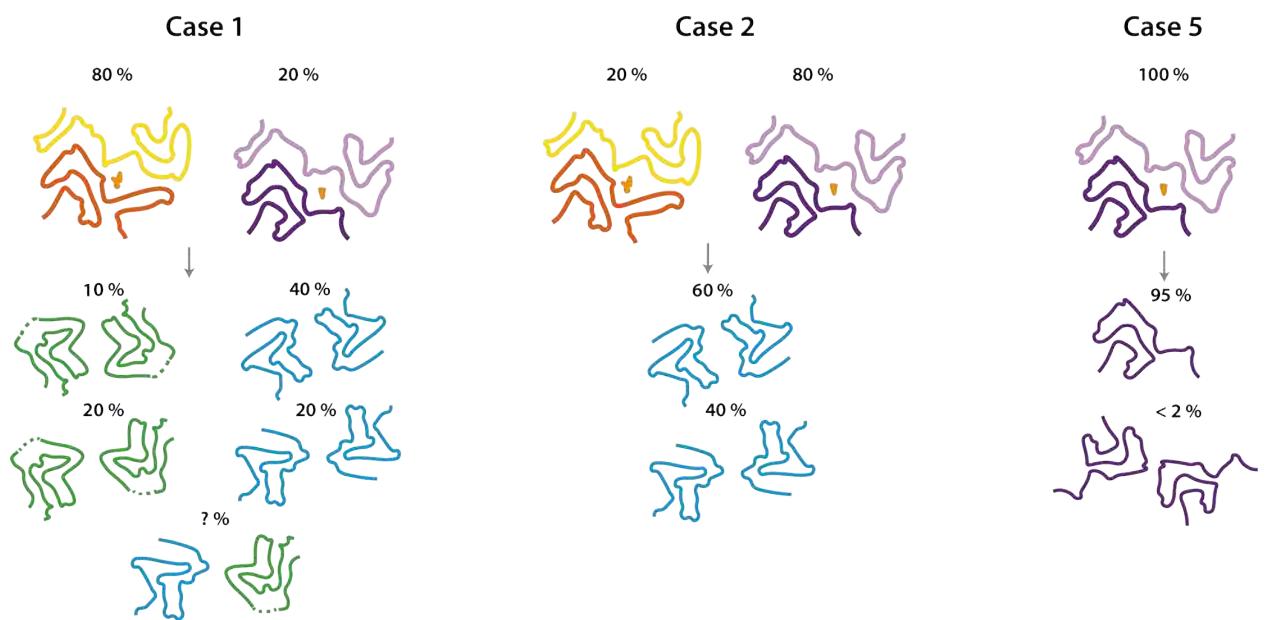
363 To further explore the effects of buffer conditions on seeded aggregation, we incubated
364 seeds from MSA case 5 with recombinant human α -synuclein in phosphate-buffered saline
365 (PBS). We previously observed that the density for the additional molecules at the interface
366 between protofilaments in our reconstructions of MSA filaments (Schweighauser et al., 2020)
367 overlaps with similar densities in reconstructions of *in vitro* aggregated recombinant α -
368 synuclein, which have been attributed to phosphate ions (Guerrero-Ferreira et al., 2018,
369 2019). Since the additional density in MSA filaments could accommodate two phosphate
370 ions, we supplemented PBS with 1 mM pyrophosphate. However, by negative-stain imaging,
371 the seeded assemblies were indistinguishable from those formed using PBS without
372 pyrophosphate. We then performed second-generation seeded assembly, in which the

373 aggregates from the assembly in PBS-pyrophosphate were used as seed. Cryo-EM structure
374 determination of the seeded assemblies confirmed the faithful propagation of type 3
375 filaments, with a larger proportion of type 3 doublet filaments (~5%) (Figure 4 - figure
376 supplement 2).

377

378

379 **Discussion**


380

381 We show here that the structures of seeded assemblies of wild-type recombinant human α -
382 synuclein differ from those of seeds that were extracted from the brains of individuals with
383 MSA (Figure 6). We used the assembly conditions of Shahnawaz et al. (2020) who reported
384 that PMCA, using cerebrospinal fluid as seed and recombinant α -synuclein as substrate, can
385 discriminate between PD and MSA. It remains to be seen if α -synuclein seeds from PD brain
386 yield structures that are different from those described here. Nevertheless, our results raise
387 important questions for the study of amyloid structures and prion processes.

388 Amyloid filaments are structurally versatile, with the same amino acid sequences being
389 able to adopt different structures (Guerrero-Ferreira et al., 2020; Scheres et al., 2020).
390 Moreover, the cryo-EM structures of tau, β -amyloid and α -synuclein filaments from human
391 brain are different from those of recombinant proteins assembled *in vitro* (Fitzpatrick et al.,
392 2017; Kollmer et al., 2019; Schweighauser et al., 2020). The present findings demonstrate
393 that, even when using brain-derived filament preparations to seed *in vitro* assembly, the
394 resulting structures are unlike those of the seeds.

395

396

397

398

399 **Figure 6. Summary of MSA seeded aggregation experiments.**

400 Cartoon illustrations show the structures of MSA type I and type II filaments and their
401 relative quantities in MSA cases 1, 2 and 5 at the top, and the products of seeded aggregation
402 underneath.

403

404
405 When using seeds from MSA cases 1 and 2, which contain a mixture of type I and type II
406 filaments, and recombinant human α -synuclein as substrate, we observed the formation of
407 type 1 and type 2 filaments. When using seeds from MSA case 5, with only type II filaments,
408 we observed the formation of filaments of type 3. These observations suggest that in seeded
409 assemblies, type I filaments overshadow type II MSA filaments, despite the observation that
410 seeds of case 5 resulted in a faster and stronger increase in thioflavin-T fluorescence
411 compared to seeds from cases 1 and 2. The possibility that different conformational strains
412 have different seeding potencies has implications for the interpretation of prion propagation
413 assays.

414 It is commonly assumed that self-propagation of strains occurs through templated
415 incorporation of monomers at the ends of amyloid filaments. Indeed, following sonication, α -
416 synuclein filaments had increased seeding potencies (Tarutani et al., 2016, 2018). However, it
417 is unclear how this could explain the formation of type 1 and type 2 filaments with markedly
418 different protofilament folds, when compared to MSA filaments. Each prion strain is believed
419 to comprise a large number of conformationally distinct assemblies (also known as clouds),
420 often with a dominant conformer that propagates under host selection (Collinge & Clarke,
421 2007; J. Li et al., 2010). Our work on tau and α -synuclein assemblies has shown the presence
422 of only one or two major filament types in the brains from patients at end-stage disease
423 (Scheres et al., 2020; Schweighauser et al., 2020). It is possible that type 1 and type 2
424 filaments were present in the filament preparations from MSA brains, but not numerous
425 enough to be detected by cryo-EM (Schweighauser et al., 2020). We previously demonstrated
426 that tau structures that only made up around 3% of filaments can be detected (Falcon et al.,
427 2019), indicating that, if present in MSA brains, type 1 and type 2 α -synuclein filaments are
428 infrequent.

429 Type 3 filaments, which assembled from MSA type II seeds, fit the model of structural
430 equivalence between seeds and seeded assemblies better than type 1 and type 2 filaments,
431 because their structure overlaps almost completely with that of type IIB protofilaments from
432 the putamen of patients with MSA. We previously attributed additional cryo-EM densities at
433 the inter-protofilament interfaces of type I and type II MSA filaments to negatively charged,
434 non-proteinaceous molecules. It is possible that the absence of these molecules in the seeded
435 assembly experiments led to the formation of a structure that represents only half of the seed

436 structures. These findings indicate that protofilament IIB, but not IIA, can form from
437 recombinant α -synuclein through seeded assembly without added cofactor.

438 Abundant GCIs in oligodendrocytes are the major neuropathological hallmark of MSA
439 (Papp et al., 1989). Thus, differences in the cellular milieu between oligodendrocytes and
440 other brain cells may play a role in the seeded aggregation of MSA filaments.
441 Oligodendrocytes have been shown to transform misfolded α -synuclein into a GCI-like strain
442 (Peng et al., 2018).

443 Besides the possible incorporation of other molecules in α -synuclein filaments from human
444 brain, it is also conceivable that recombinant α -synuclein is not able to form MSA filaments.
445 Truncation and post-translational modifications of α -synuclein may be needed (Fujiwara et
446 al., 2002; Sorrentino & Giasson, 2020). In α -synuclein filament preparations from the
447 putamen of patients with MSA, mass spectrometry identified N-terminal acetylation, C-
448 terminal truncation, ubiquitination at K6 K12, K21, acetylation at K21 K23 K32 K34 K45
449 K58 K60 K80 and K96 and phosphorylation at Y39, T59, T64, T72 and T81 (Schweighauser
450 et al., 2020). It is not known if these modifications occur prior to, during or after filament
451 assembly, and if or how they may affect filament conformations. Assembly of recombinant
452 wild-type human α -synuclein using seeds of α -synuclein phosphorylated at Y39 gave rise to
453 filaments with a different fold from that of the seeds (Zhao et al., 2020). Moreover, C-
454 terminal truncation of recombinant α -synuclein has been shown to promote filament
455 assembly *in vitro* (Crowther et al., 1998); inhibiting C-terminal truncation in transgenic
456 mouse models of MSA has been reported to reduce pathology (Bassil et al., 2016; Sorrentino
457 and Giasson, 2020). It has also been shown that interactions with lipids, DNA, RNA, iron and
458 phosphate promote α -synuclein aggregation *in vitro*, and similar interactions could be
459 important for the formation of MSA filaments in brain (Buell et al., 2014; Galvagnion et al.,
460 2016; Ostrerova-Golts et al., 2000).

461 Identification of the factors that govern the replication of conformational prion strains will
462 be essential for our understanding of propagation of the distinct proteinopathies. Meanwhile,
463 the relevance of the structures of amyloids assembled from recombinant protein seeds and the
464 results of self-propagation studies should be interpreted with care.

465

466

467 **Acknowledgements**

468 We thank the families of the patients for donating brain tissues; T. Nakane for help with
469 RELION; W. Zhang and Y. Shi for helpful discussions; T. Darling and J. Grimmett for help
470 with high-performance computing. M.G. is an Honorary Professor in the Department of
471 Clinical Neurosciences of the University of Cambridge and an Associate Member of the UK
472 Dementia Research Institute. This work was supported by the UK Medical Research Council
473 (MC-U105184291 to M.G. and MC_UP_A025_1013, to S.H.W.S.), Eli Lilly and Company
474 (to M.G.) and the Japan Agency for Medical Research and Development (JP18ek0109391
475 and JP18dm020719, to M.H.). This study was supported by the MRC-LMB electron
476 microscopy facility.

477

478 **Author contributions**

479 S.L. performed seeded aggregation and cryo-EM experiments and analysed the data, with
480 contributions from M.S., M.G. and S.H.W.S.; Y.S., S.M., T.T., T.A., K.H., M.Y., A.T. and
481 M.H. identified patients, performed neuropathology and extracted α -synuclein filaments from
482 MSA cases; S.H.W.S. and M.G. supervised the project; S.L., M.G. and S.H.W.S. wrote the
483 manuscript, with inputs from all authors.

484

485 **Ethical review processes and informed consent**

486 The procedures for the extraction of MSA filaments from human brain were approved
487 through the ethical review process at Tokyo Metropolitan Institute of Medical Science.
488 Informed consent was obtained from the patients' next of kin.

489

490

491

492 Materials and Methods

493

494 Expression and purification

495 α -Synuclein was expressed and purified, essentially as described (Morgan et al., 2020).
496 Briefly, plasmid pRK172 encoding a cDNA for full-length, wild-type human α -synuclein was
497 transformed into *E. coli* BL21(DE3)-gold (Agilent Technologies). Cells were cultured in
498 2xTY, 5mM MgCl₂ and 100 mg/l ampicillin at 37 °C until an OD₆₀₀ of 0.7 was reached; α -
499 synuclein expression was then induced with 1 mM IPTG. After 4 hrs, cells were harvested by
500 centrifugation and resuspended in buffer A [50 mM Tris-HCl, pH 7.5, 10 mM EDTA, 2.5
501 mM TCEP (Sigma-Aldrich), 0.1 mM AEBSF (Sigma-Aldrich), 40 μ g/ml DNase and 10
502 μ g/ml RNase (Sigma-Aldrich), supplemented with cOmplete EDTA-free Protease Inhibitor
503 Cocktail (Roche)]. They were lysed by sonication on ice using a Sonics VCX-750 Vibra Cell
504 Ultra Sonic Processor for 5 min (5 s on, 10 s off) at 40 % amplitude. The lysates were
505 centrifuged at 17,000 x g for 40 min at 4 °C, filtered with a 0.45 μ M cut-off filter, loaded
506 onto an anion exchange Sepharose 26/10 Q column (GE Healthcare) and eluted with a 0-1 M
507 NaCl gradient. Fractions containing α -synuclein were precipitated using ammonium sulphate
508 (0.3 g / ml) for 30 min at 4 °C and centrifuged at 16,000 g for 30 min at 4 °C. The resulting
509 pellets were resuspended in buffer B (PBS, 0.1 mM AEBSF, supplemented with cOmplete
510 EDTA-free Protease Inhibitor Cocktail), loaded onto a HiLoad 16/60 Superdex (GE
511 Healthcare) column equilibrated in buffer B and eluted using a flow rate of 1 ml/min. The
512 purity of α -synuclein was analysed by SDS-PAGE and protein concentrations determined
513 spectrophotometrically using an extinction coefficient of 5600 M⁻¹ cm⁻¹.

514

515 Extraction of MSA filament seeds

516 The filament preparations used in this study have been described (Schweighauser et al.,
517 2020). Briefly, frozen putamen from MSA cases 1, 2 and 5 was homogenised in 20 % vol
518 (w/v) extraction buffer (10 mM Tris-HCl, pH 7.5, 0.8 M NaCl, 1 mM EGTA, 10% sucrose, 2
519 % sarkosyl, pH 7.5) and incubated for 30 min at 37 °C. The homogenates were centrifuged
520 for 10 min at 10,000g at room temperature, followed by a 20 min spin of the resulting
521 supernatants at 100,000g. The pellets were resuspended in 500 μ l/g extraction buffer and
522 centrifuged at 3,000g for 5 min to remove large contaminants. The supernatants were diluted
523 in 50 mM Tris-HCl, pH 7.5, containing 150 mM NaCl, 10% sucrose and 0.2% sarkosyl, and

524 centrifuged at 166,000g for 30 min. Sarkosyl-insoluble pellets were resuspended in 50 μ l/g
525 tissue and filament concentrations estimated by negative-stain EM. Prior to seeded assembly
526 experiments, pellets were centrifuged at 2,000 g for 5 min, the resulting supernatants were
527 diluted 10-fold, and sonicated in an Eppendorf tube using a VialTweeter (Hielscher) at a
528 cumulative power of 100 W. Sonication did not alter the structure of the seeds, as suggested
529 by negative-stain EM (Figure 1 - figure supplement 1), and as confirmed by cryo-EM 2D
530 class averages of the seeds before and after sonication (Figure 1 - figure supplement 2).

531

532 **Seeded assembly**

533 Purified recombinant α -synuclein was centrifuged at 20,000 x g for 1 hr to remove potential
534 aggregates. 70 μ M recombinant α -synuclein was incubated with 2 μ M MSA seeds (as
535 assessed by negative-stain EM) in 100 mM PIPES pH 6.5, 500 mM NaCl, 0.05% NaN₃, and
536 5 μ M thioflavin-T, in a final volume of 200 μ l per experiment. Controls used buffer without
537 seeds. Seeded assembly proceeded for 120 h at 37 °C in a FLUOstar Omega (BMG Labtech)
538 microplate reader where the samples were alternatingly shaken for 1 minute at 400 rpm, and
539 left to rest for 1 minute, during which fluorescence was measured.

540 For cryo-EM, seeded assembly conditions were identical, but no thioflavin-T was added to
541 the buffer and the samples were shaken continuously for 72 hrs. Seeded assembly
542 experiments for cryo-EM were also performed in PBS buffer, supplemented with 1 mM
543 pyrophosphate and 0.05% NaN₃. The resulting filaments were pelleted, resuspended in 200 μ l
544 and sonicated as described above, and then used as seeds (2 μ M) for a second-generation
545 seeded assembly experiment with recombinant α -synuclein (70 μ M) in the same PBS buffer.

546

547 **Cryo-EM grid preparation and imaging**

548 Prior to freeze plunging, filaments were pelleted for 45 min at 100,000x g and resuspended at
549 100 μ M α -synuclein in 50 mM Tris, pH 7.5, 50 mM NaCl. Four μ l of sample was applied to
550 glow-discharged 1.2/1.3 holey carbon coated gold grids (Quantifoil AU R1.2/1.3, 300 mesh)
551 for 30s, blotted with filter paper for 3.5 s and plunge-frozen in liquid ethane using an FEI
552 Vitrobot Mark IV. Filaments were imaged on a Thermo Fischer Titan Krios microscope
553 operating at 300 kV equipped with a Gatan K2 Summit direct detector in counting mode and
554 a GIF Quantum energy filter (Gatan) with a slit width of 20 eV to remove inelastically
555 scattered electrons. Acquisition details are given in Tables 1 and 2.

556

557 **Helical reconstruction**

558 Filaments were reconstructed in RELION-3.1 (Zivanov et al., 2020) using helical
559 reconstruction (He & Scheres, 2017). Movie frames were corrected for beam-induced
560 motions and dose-weighted in RELION using its own motion-correction implementation
561 (Zivanov et al., 2018). Non-dose-weighted micrographs were used for CTF estimation with
562 CTFFIND-4.1 (Rohou & Grigorieff, 2015). Filaments were picked manually, ignoring those
563 without a clear twist. Initially, particle segments were extracted using a box size of 550 pixels
564 and an interbox distance of 14 Å and down-scaled to 225 pixels for 2D classification. For
565 filaments formed from the seeds of MSA cases 1 and 2, filament types 1 and 2 were
566 separated at this initial 2D classification stage. Crossover-distances were obtained by manual
567 measurements in the micrographs and used to calculate initial estimates for the helical twist
568 of the different filament types: -1.0° for type 1; -0.8° for type 2; and -1.5° for type 3,
569 assuming a helical rise of 4.75 Å. *De novo* 3D initial models were then constructed from 2D
570 class averages representing one whole cross-over of the different filament types using the
571 `relion_helix_inimodel2d` program (Scheres, 2020). Subsequently, segments were
572 re-extracted without down-sampling in boxes of 256×256 pixels for use in 3D auto-
573 refinements and classifications. Several rounds of refinements were performed, while
574 progressively increasing the resolution of the starting model from 10 Å to 4.5 Å and
575 switching on optimisation of the helical rise and helical twist once β-strands were separated
576 in the starting model. For filaments from seeds of MSA case 1, additional 3D classifications
577 focussed classifications on exterior regions of the filament were used to distinguish the
578 presence of minority polymorphs (with protofilament fold B as described in the main text).
579 Final reconstructions were obtained after Bayesian polishing and CTF refinement, followed
580 by 3D auto-refinement, a 3D classification step without alignment to select the segments
581 contributing to the best classes, a final round of 3D auto-refinement and standard RELION
582 post-processing with a soft solvent mask that extended to 20 % of the box height.

583

584 **Atomic modelling**

585 Atomic models of the filaments were built *de novo* in *Coot* (Emsley & Cowtan, 2004) using
586 the maps of the data set for MSA case 2 for type 1 and type 2 filaments with protofilament
587 fold A, and maps of the data set for MSA case 2 for type 1 and type 2 filaments with
588 protofilament fold B. For protofilament fold A, the atomic model with PDB-ID 6UFR of
589 E46K α-synuclein (Boyer et al., 2020) was used as guide. For type 3 filaments, the atomic

590 model with PDB-ID 6PEO (Boyer et al., 2019) of H50Q α -synuclein was used. Models
591 comprising 6 β -sheet rungs were refined in real-space using ISOLDE (Croll, 2018), with
592 interactive flexible molecular dynamics to obtain optimal β -sheet packing chemistry. The
593 resulting models were validated with MolProbity (Chen et al., 2010). Details about the
594 atomic models are described in Table 1.

595 The schematics in Figure 3 - figure supplement 3e-f and Figure 5 - figure supplement 1b
596 were made with T.Nakane's `atoms2svg.py` script, which is publicly available from
597 <https://doi.org/10.5281/zenodo.4090924>.

598

599

600 References

601 Bassil, F., Fernagut, P.-O., Bezard, E., Pruvost, A., Leste-Lasserre, T., Hoang, Q. Q., Ringe,
602 D., Petsko, G. A., & Meissner, W. G. (2016). Reducing C-terminal truncation
603 mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple
604 system atrophy. *Proceedings of the National Academy of Sciences USA*, 113(34),
605 9593–9598. <https://doi.org/10.1073/pnas.1609291113>

606 Boyer, D. R., Li, B., Sun, C., Fan, W., Sawaya, M. R., Jiang, L., & Eisenberg, D. S. (2019).
607 Structures of fibrils formed by α -synuclein hereditary disease mutant H50Q reveal
608 new polymorphs. *Nature Structural & Molecular Biology* 26(11), 1044-1052.

609 Boyer, D. R., Li, B., Sun, C., Fan, W., Zhou, K., Hughes, M. P., Sawaya, M. R., Jiang, L., &
610 Eisenberg, D. S. (2020). The α -synuclein hereditary mutation E46K unlocks a more
611 stable, pathogenic fibril structure. *Proceedings of the National Academy of Sciences*
612 *USA*, 117(7), 3592–3602. <https://doi.org/10.1073/pnas.1917914117>

613 Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes.
614 *Acta Neuropathologica*, 82(4), 239–259. <https://doi.org/10.1007/BF00308809>

615 Braak, Heiko, Tredici, K. D., Rüb, U., de Vos, R. A. I., Jansen Steur, E. N. H., & Braak, E.
616 (2003). Staging of brain pathology related to sporadic Parkinson's disease.
617 *Neurobiology of Aging*, 24(2), 197–211. [https://doi.org/10.1016/S0197-4580\(02\)00065-9](https://doi.org/10.1016/S0197-4580(02)00065-9)

619 Buell, A. K., Galvagnion, C., Gaspar, R., Sparr, E., Vendruscolo, M., Knowles, T. P. J.,
620 Linse, S., & Dobson, C. M. (2014). Solution conditions determine the relative
621 importance of nucleation and growth processes in -synuclein aggregation.
622 *Proceedings of the National Academy of Sciences USA*, 111(21), 7671–7676.
623 <https://doi.org/10.1073/pnas.1315346111>

624 Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J.,
625 Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom
626 structure validation for macromolecular crystallography. *Acta Crystallographica.*
627 *Section D, Biological Crystallography*, 66(Pt 1), 12–21.
628 <https://doi.org/10.1107/S0907444909042073>

629 Collinge, J., & Clarke, A. R. (2007). A general model of prion strains and their pathogenicity.
630 *Science*, 318(5852), 930–936. <https://doi.org/10.1126/science.1138718>

631 Conway, K. A., Harper, J. D., & Lansbury, P. T. (1998). Accelerated in vitro fibril formation
632 by a mutant α -synuclein linked to early-onset Parkinson disease. *Nature Medicine*,
633 4(11), 1318–1320. <https://doi.org/10.1038/3311>

634 Croll, T. I. (2018). ISOLDE: A physically realistic environment for model building into low-
635 resolution electron-density maps. *Acta Crystallographica Section D: Structural*
636 *Biology*, 74(6), 519–530. <https://doi.org/10.1107/S2059798318002425>

637 Crowther, R. A., Jakes, R., Spillantini, M. G., & Goedert, M. (1998). Synthetic filaments
638 assembled from C-terminally truncated α -synuclein. *FEBS Letters*, 436(3), 309–312.
639 [https://doi.org/10.1016/S0014-5793\(98\)01146-6](https://doi.org/10.1016/S0014-5793(98)01146-6)

640 Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. *Acta*
641 *Crystallographica Section D: Biological Crystallography*, 60(12), 2126–2132.
642 <https://doi.org/10.1107/S0907444904019158>

643 Falcon, B., Zivanov, J., Zhang, W., Murzin, A. G., Garringer, H. J., Vidal, R., Crowther, R.
644 A., Newell, K. L., Ghetti, B., Goedert, M., & Scheres S., (2019). Novel tau filament
645 fold in chronic traumatic encephalopathy encloses hydrophobic molecules. *Nature*,
646 568(7752), 420–423. <https://doi.org/10.1038/s41586-019-1026-5>

647 Fitzpatrick , A.W.P., Falcon, B., He, S., Murzin, A.G., Murshudov, G., Garringer, H.J.,
648
649 Crowther, R.A., Ghetti, B., Goedert M. & Scheres, S.H.W. (2017) Cryo-EM structures of tau
650

651 filaments from Alzheimer's disease. *Nature*, 547(7662), 185-190.

652

653 Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S.,

654 Shen, J., Takio, K., & Iwatsubo, T. (2002). Alpha-Synuclein is phosphorylated in

655 synucleinopathy lesions. *Nature Cell Biology*, 4(2), 160–164.

656 <https://doi.org/10.1038/ncb748>

657 Galvagnion, C., Brown, J. W. P., Ouberai, M. M., Flagmeier, P., Vendruscolo, M., Buell, A.

658 K., Sparr, E., & Dobson, C. M. (2016). Chemical properties of lipids strongly affect

659 the kinetics of the membrane-induced aggregation of α -synuclein. *Proceedings of the*

660 *National Academy of Sciences USA*, 113(26), 7065–7070.

661 <https://doi.org/10.1073/pnas.1601899113>

662 Giasson, B. I., Duda, J. E., Quinn, S. M., Zhang, B., Trojanowski, J. Q., & Lee, V. M.-Y.

663 (2002). Neuronal α -synucleinopathy with severe movement disorder in mice

664 expressing A53T human α -synuclein. *Neuron*, 34(4), 521–533.

665 [https://doi.org/10.1016/S0896-6273\(02\)00682-7](https://doi.org/10.1016/S0896-6273(02)00682-7)

666 Goedert, M. (2015). Alzheimer's and Parkinson's diseases: The prion concept in relation to

667 assembled A β , tau, and α -synuclein. *Science*, 349(6248), 1255555.

668 <https://doi.org/10.1126/science.1255555>

669 Goedert, M., Clavaguera, F., & Tolnay, M. (2010). The propagation of prion-like protein

670 inclusions in neurodegenerative diseases. *Trends in Neurosciences*, 33(7), 317–325.

671 <https://doi.org/10.1016/j.tins.2010.04.003>

672 Goedert, M., Jakes, R., & Spillantini, M.G. (2017). The Synucleinopathies: Twenty years on.

673 *Journal of Parkinson's disease*, 7 (S1), 51-69.

674 Guerrero-Ferreira, R., Kovacik, L., Ni, D., & Stahlberg, H. (2020). New insights on the

675 structure of alpha-synuclein fibrils using cryo-electron microscopy. *Current Opinion*

676 *in Neurobiology*, 61, 89–95. <https://doi.org/10.1016/j.conb.2020.01.014>

677 Guerrero-Ferreira, R., Taylor, N. M., Arteni, A.-A., Kumari, P., Mona, D., Ringler, P.,
678 Britschgi, M., Lauer, M. E., Makky, A., Verasdonck, J., Riek, R., Melki, R., Meier, B.
679 H., Böckmann, A., Bousset, L., & Stahlberg, H. (2019). Two new polymorphic
680 structures of human full-length alpha-synuclein fibrils solved by cryo-electron
681 microscopy. *ELife*, 8, e48907. <https://doi.org/10.7554/eLife.48907>

682 Guerrero-Ferreira, R., Taylor, N. M., Mona, D., Ringler, P., Lauer, M. E., Riek, R., Britschgi,
683 M., & Stahlberg, H. (2018). Cryo-EM structure of alpha-synuclein fibrils. *ELife*, 7,
684 e36402. <https://doi.org/10.7554/eLife.36402>

685 He, S., & Scheres, S. (2017). Helical reconstruction in RELION. *Journal of Structural
686 Biology*, 198(3), 163–176. <https://doi.org/10.1016/j.jsb.2017.02.003>

687 Holec, S. A. M., & Woerman, A. L. (2020). Evidence of distinct α -synuclein strains
688 underlying disease heterogeneity. *Acta Neuropathologica*.
689 <https://doi.org/10.1007/s00401-020-02163-5>

690 Kollmer, M., Close, W., Funk, L., Rasmussen, J., Bsoul, A., Schierhorn, A., Schmidt, M.,
691
692 Sigurdson, C.J., Jucker, M. & Fändrich, M. (2019) Cryo-EM structure and polymorphism of
693
694 $\text{A}\beta$ amyloid fibrils purified from Alzheimer's brain tissue. *Nature Communications*, 10:
695
696 4760.

697 Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B., & Olanow, C. W. (2008). Lewy
698 body–like pathology in long-term embryonic nigral transplants in Parkinson's disease.
699 *Nature Medicine*, 14(5), 504–506. <https://doi.org/10.1038/nm1747>

700 Lavenir, I., Passarella, D., Masuda-Suzukake, M., Curry, A., Holton, J. L., Ghetti, B., &
701
702 Goedert, M. (2019). Silver staining (Campbell-Switzer) of neuronal α -synuclein
703 assemblies induced by multiple system atrophy and Parkinson's disease brain extracts
704 in transgenic mice. *Acta Neuropathologica Communications*, 7(1), 148.
705 <https://doi.org/10.1186/s40478-019-0804-5>

706 Li, J., Browning, S., Mahal, S. P., Oelschlegel, A. M., & Weissmann, C. (2010). Darwinian
707 evolution of prions in cell culture. *Science (New York, N.Y.)*, 327(5967), 869–872.
708 <https://doi.org/10.1126/science.1183218>

709 Li, J.-Y., Englund, E., Holton, J. L., Soulet, D., Hagell, P., Lees, A. J., Lashley, T., Quinn, N.
710 P., Rehncrona, S., Björklund, A., Widner, H., Revesz, T., Lindvall, O., & Brundin, P.
711 (2008). Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest
712 host-to-graft disease propagation. *Nature Medicine*, 14(5), 501–503.
713 <https://doi.org/10.1038/nm1746>

714 Luk, K. C., Song, C., O'Brien, P., Stieber, A., Branch, J. R., Brunden, K. R., Trojanowski, J.
715 Q., & Lee, V. M.-Y. (2009). Exogenous α -synuclein fibrils seed the formation of
716 Lewy body-like intracellular inclusions in cultured cells. *Proceedings of the National
717 Academy of Sciences USA*, 106(47), 20051–20056.
718 <https://doi.org/10.1073/pnas.0908005106>

719 Miake, H., Mizusawa, H., Iwatsubo, T., & Hasegawa, M. (2002). Biochemical
720 Characterization of the core structure of α -synuclein filaments. *Journal of Biological
721 Chemistry*, 277(21), 19213–19219. <https://doi.org/10.1074/jbc.M110551200>

722 Morgan, S. A., Lavenir, I., Fan, J., Masuda-Suzukake, M., Passarella, D., DeTure, M. A.,
723 Dickson, D. W., Ghetti, B., & Goedert, M. (2020). α -Synuclein filaments from
724 transgenic mouse and human synucleinopathy-containing brains are major seed-
725 competent species. *Journal of Biological Chemistry*, 295(19), 6652–6664.
726 <https://doi.org/10.1074/jbc.RA119.012179>

727 Nalls, M. A., Pankratz, N., Lill, C. M., Do, C. B., Hernandez, D. G., Saad, M., DeStefano, A.
728 L., Kara, E., Bras, J., Sharma, M., Schulte, C., Keller, M. F., Arepalli, S., Letson, C.,
729 Edsall, C., Stefansson, H., Liu, X., Pliner, H., Lee, J. H., ... Singleton, A. B. (2014).
730 Large-scale meta-analysis of genome-wide association data identifies six new risk

731 loci for Parkinson's disease. *Nature Genetics*, 46(9), 989–993.

732 <https://doi.org/10.1038/ng.3043>

733 Ostrerova-Golts, N., Petrucelli, L., Hardy, J., Lee, J. M., Farer, M., & Wolozin, B. (2000).

734 The A53T α -synuclein mutation increases iron-dependent aggregation and toxicity.

735 *Journal of Neuroscience*, 20(16), 6048–6054.

736 <https://doi.org/10.1523/JNEUROSCI.20-16-06048.2000>

737 Papp, M. I., Kahn, J. E., & Lantos, P. L. (1989). Glial cytoplasmic inclusions in the CNS of

738 patients with multiple system atrophy (striatonigral degeneration,

739 olivopontocerebellar atrophy and Shy-Drager syndrome). *Journal of Neurological*

740 *Sciences*, 94(1), 79–100. [https://doi.org/10.1016/0022-510X\(89\)90219-0](https://doi.org/10.1016/0022-510X(89)90219-0)

741 Peng, C., Gathagan, R. J., Covell, D. J., Medellin, C., Stieber, A., Robinson, J. L., Zhang, B.,

742 Pitkin, R. M., Olufemi, M. F., Luk, K. C., Trojanowski, J. Q., & Lee, V. M.-Y.

743 (2018). Cellular milieu imparts distinct pathological α -synuclein strains in α -

744 synucleinopathies. *Nature*, 557(7706), 558–563. <https://doi.org/10.1038/s41586-018-0104-4>

745

746 Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B.,

747 Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S.,

748 Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin,

749 R. C., Iorio, G. D., Golbe, L. I., & Nussbaum, R. L. (1997). Mutation in the α -

750 synuclein gene identified in families with Parkinson's disease. *Science*, 276(5321),

751 2045–2047. <https://doi.org/10.1126/science.276.5321.2045>

752 Prusiner, S. (1982). Novel proteinaceous infectious particles cause scrapie. *Science*,

753 216(4542), 136–144. <https://doi.org/10.1126/science.6801762>

754 Rodriguez, J. A., Ivanova, M. I., Sawaya, M. R., Cascio, D., Reyes, F., Shi, D., Sangwan, S.,

755 Guenther, E. L., Johnson, L. M., Zhang, M., Jiang, L., Arbing, M. A., Nannega, B.,

756 Hattne, J., Whitelegge, J., Brewster, A. S., Messerschmidt, M., Boutet, S., Sauter, N.

757 K., ... Eisenberg, D. (2015). Structure of the toxic core of α -synuclein from invisible

758 crystals. *Nature*, 525(7570), 486–490. <https://doi.org/10.1038/nature15368>

759 Rohou, A., & Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from

760 electron micrographs. *Journal of Structural Biology*, 192(2), 216–221.

761 <https://doi.org/10.1016/j.jsb.2015.08.008>

762 Scheres, S., (2020). Amyloid structure determination in RELION-3.1. *Acta*

763 *Crystallographica Section D: Structural Biology*, 76(2), 94–101.

764 <https://doi.org/10.1107/S2059798319016577>

765 Scheres, S., Zhang, W., Falcon, B., & Goedert, M. (2020). Cryo-EM structures of tau

766 filaments. *Current Opinion in Structural Biology*, 64, 17–25.

767 <https://doi.org/10.1016/j.sbi.2020.05.011>

768 Schweighauser, M., Shi, Y., Tarutani, A., Kametani, F., Murzin, A. G., Ghetti, B., Matsubara,

769 T., Tomita, T., Ando, T., Hasegawa, K., Murayama, S., Yoshida, M., Hasegawa, M.,

770 Scheres, S., & Goedert, M. (2020). Structures of α -synuclein filaments from multiple

771 system atrophy. *Nature*, 585(7825), 464–469. <https://doi.org/10.1038/s41586-020-2317-6>

772

773 Serpell, L. C., Berriman, J., Jakes, R., Goedert, M., & Crowther, R. A. (2000). Fiber

774 diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta

775 conformation. *Proceedings of the National Academy of Sciences USA*, 97(9), 4897–

776 4902. <https://doi.org/10.1073/pnas.97.9.4897>

777 Shahnawaz, M., Mukherjee, A., Pritzkow, S., Mendez, N., Rabadia, P., Liu, X., Hu, B.,

778 Schmeichel, A., Singer, W., Wu, G., Tsai, A.-L., Shirani, H., Nilsson, K. P. R., Low,

779 P. A., & Soto, C. (2020). Discriminating α -synuclein strains in Parkinson's disease

780 and multiple system atrophy. *Nature*, 578(7794), 273–277.

781 <https://doi.org/10.1038/s41586-020-1984-7>

782 Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan,

783 M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M.,

784 Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., ...

785 Gwinn-Hardy, K. (2003). α -Synuclein locus triplication causes Parkinson's disease.

786 *Science*, 302(5646), 841–841. <https://doi.org/10.1126/science.1090278>

787 Sorrentino, Z. A., & Giasson, B. I. (2020). The emerging role of α -synuclein truncation in

788 aggregation and disease. *Journal of Biological Chemistry*, 295(30), 10224–10244.

789 <https://doi.org/10.1074/jbc.REV120.011743>

790 Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., & Goedert, M. (1998). α -

791 Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and

792 dementia with Lewy bodies. *Proceedings of the National Academy of Sciences USA*,

793 95(11), 6469–6473.

794 Strohäker, T., Jung, B. C., Liou, S.-H., Fernandez, C. O., Riedel, D., Becker, S., Halliday, G.

795 M., Bennati, M., Kim, W. S., Lee, S.-J., & Zweckstetter, M. (2019). Structural

796 heterogeneity of α -synuclein fibrils amplified from patient brain extracts. *Nature*

797 *Communications*, 10, 5535 <https://doi.org/10.1038/s41467-019-13564-w>

798 Tarutani, A., Arai, T., Murayama, S., Hisanaga, S.-I., & Hasegawa, M. (2018). Potent prion-

799 like behaviors of pathogenic α -synuclein and evaluation of inactivation methods. *Acta*

800 *Neuropathologica Communications*, 6(1), 29. <https://doi.org/10.1186/s40478-018-0532-2>

801

802 Tarutani, A., Suzuki, G., Shimozawa, A., Nonaka, T., Akiyama, H., Hisanaga, S.-I., &

803 Hasegawa, M. (2016). The effect of fragmented pathogenic α -synuclein seeds on

804 prion-like propagation. *Journal of Biological Chemistry*, 291(36), 18675–18688.

805 <https://doi.org/10.1074/jbc.M116.734707>

806 Tuttle, M. D., Comellas, G., Nieuwkoop, A. J., Covell, D. J., Berthold, D. A., Kloepper, K.

807 D., Courtney, J. M., Kim, J. K., Barclay, A. M., Kendall, A., Wan, W., Stubbs, G.,

808 Schwieters, C. D., Lee, V. M. Y., George, J. M., & Rienstra, C. M. (2016). Solid-state

809 NMR structure of a pathogenic fibril of full-length human α -synuclein. *Nature Structural & Molecular Biology*, 23(5), 409–415. <https://doi.org/10.1038/nsmb.3194>

810 Vilar, M., Chou, H.-T., Lührs, T., Maji, S. K., Riek-Loher, D., Verel, R., Manning, G.,

811 Stahlberg, H., & Riek, R. (2008). The fold of α -synuclein fibrils. *Proceedings of the National Academy of Sciences USA*, 105(25), 8637–8642.

812 <https://doi.org/10.1073/pnas.0712179105>

813 Watts, J. C., Giles, K., Oehler, A., Middleton, L., Dexter, D. T., Gentleman, S. M.,

814 DeArmond, S. J., & Prusiner, S. B. (2013). Transmission of multiple system atrophy

815 prions to transgenic mice. *Proceedings of the National Academy of Sciences USA*,

816 110(48), 19555–19560. <https://doi.org/10.1073/pnas.1318268110>

817 Woerman, A. L., Kazmi, S. A., Patel, S., Aoyagi, A., Oehler, A., Widjaja, K., Mordes, D. A.,

818 Olson, S. H., & Prusiner, S. B. (2018). Familial Parkinson's point mutation abolishes

819 multiple system atrophy prion replication. *Proceedings of the National Academy of Sciences USA*, 115(2), 409–414. <https://doi.org/10.1073/pnas.1719369115>

820 Woerman, A. L., Stöhr, J., Aoyagi, A., Rampersaud, R., Krejciova, Z., Watts, J. C., Ohyama,

821 T., Patel, S., Widjaja, K., Oehler, A., Sanders, D. W., Diamond, M. I., Seeley, W. W.,

822 Middleton, L. T., Gentleman, S. M., Mordes, D. A., Südhof, T. C., Giles, K., &

823 Prusiner, S. B. (2015). Propagation of prions causing synucleinopathies in cultured

824 cells. *Proceedings of the National Academy of Sciences USA*, 112, E4949-E4958

825 <https://doi.org/10.1073/pnas.1513426112>

829 Xue, C., Lin, T. Y., Chang, D., & Guo, Z. (2017). Thioflavin T as an amyloid dye: Fibril
830 quantification, optimal concentration and effect on aggregation. *Royal Society Open
831 Science*, 4(1). <https://doi.org/10.1098/rsos.160696>

832 Yonetani, M., Nonaka, T., Masuda, M., Inukai, Y., Oikawa, T., Hisanaga, S.-I., & Hasegawa,
833 M. (2009) Conversion of wild-type α -synuclein into mutant-type fibrils and its propagation
834 in the presence of A30P mutant. *Journal of Biological Chemistry*, 287(12), 7940-7950.
835
836 Zhang, W., Falcon, B., Murzin, A. G., Fan, J., Crowther, R. A., Goedert, M., & Scheres, S.
837
838 H. (2019). Heparin-induced tau filaments are polymorphic and differ from those in
839 Alzheimer's and Pick's diseases. *eLife*, 8, e43584.
840
841 <https://doi.org/10.7554/eLife.43584>

842 Zhao, K., Lim, Y.-J., Liu, Z., Long, H., Sun, Y., Hu, J.-J., Zhao, C., Tao, Y., Zhang, X., Li,
843 D., Li, Y.-M., & Liu, C. (2020). *Parkinson's disease-related phosphorylation at
844 Tyr39 rearranges α -synuclein amyloid fibril structure revealed by cryo-EM*.
845 Proceedings of the National Academy of Sciences USA, 117(33), 20305-20315.

846 Zivanov, J., Nakane, T., Forsberg, B. O., Kimanius, D., Hagen, W. J., Lindahl, E., & Scheres
847 S., (2018). New tools for automated high-resolution cryo-EM structure determination
848 in RELION-3. *eLife*, 7, e42166. <https://doi.org/10.7554/eLife.42166>

849 Zivanov, J., Nakane, T., & Scheres, S., (2020). Estimation of high-order aberrations and
850 anisotropic magnification from cryo-EM data sets in RELION-3.1. *IUCrJ*, 7(Pt 2),
851 253–267. <https://doi.org/10.1107/S2052252520000081>

852

Table 1. Cryo-EM data collection, refinement and validation statistics

Data collection and processing	Type 1A Case 2 (EMDB-xxxx) (PDB xxxx)	Type 2A Case 2 (EMDB-xxxx) (PDB xxxx)	Type 1B Case 1 (EMDB-xxxx) (PDB xxxx)	Type 2B Case 1 (EMDB-xxxx) (PDB xxxx)	Type 2A/B Case 1 (EMDB-xxxx) (PDB xxxx)	Type 3 Case 5 (EMDB-xxxx) (PDB xxxx)	Type 3 Case 5 Second generation	Type 3 doublet Case 5 Second generation
Magnification	X105 000	X105 000	X105 000	X105 000				
Voltage (kV)	300	300	300	300	300	300	300	300
Detector	K2	K2	K2	K2	K2	K2	K2	K2
Electron exposure (e-/Å ²)	32.6	32.6	36.7	36.7	36.7	37.5	37.0	37.0
Defocus range (μm)	-1.5 to -2.8	-1.5 to -2.8	-1.5 to -2.8	-1.5 to -2.8				
Pixel size (Å)	1.14	1.14	1.1	1.1	1.1	1.14	1.14	1.14
Micrographs	1294	1294	2172	2172	2172	1265	1317	1317
Symmetry imposed	C2	C2	C2	C2	C1	C1	C1	C2
Initial particle images (no.)	287 364	287 364	441 592	441 592	441 592	122 831	270 003	270 003
Final particle images (no.)	67 619	82 474	33 479	87092	57 358	69 490	18 691	82 474
Map resolution (FSC=0.143) (Å)	3.47	3.43	3.84	3.55	4.23	3.18	3.54	4.40
Map resolution range (Å)	2.8 – 11	3.2 – 6.3	3.5 – 10	3.3 – 18	4.0 – 14	2.7 – 5.5	NA	NA
Helical twist (°)	-1.04	-0.95	-0.86	-0.77	-0.86	-0.95	-0.95	-1.52
Helical rise (Å)	4.75	4.75	4.78	4.75	4.80	4.75	4.75	4.75
<hr/>								
Refinement								
Initial model used (PDB code)	6UFR	6UFR	6SSX	6SST	6SST/6UFR	6PEO		
Model resolution (FSC=0.5) (Å)	3.4	3.7	5.4	4.6	5.4	3.5		
Map sharpening B factor (Å ²)	-79.5	-68.3	-105.7	-81.9	-107.8	-56.6		
Model composition								
Non-hydrogen atoms	5052	5032	5496	5496	5274	2652		
Protein residues	732	732	816	816	774	384		
Ligands	0	0	0	0	0	0		
R.m.s. deviations								
Bond lengths (Å)	0.011	0.012	0.013	0.011	0.009	0.010		
Bond angles (°)	1.966	2.133	1.606	2.118	1.432	2.002		
Validation								
MolProbity score	0.88	1.12	1.03	1.12	1.06	0.97		
Clashscore	0.00	0.38	0.00	0.27	0.18	0.18		
Poor rotamers (%)	0.19	0.00	0.19	0.00	0.76	0.37		
Ramachandran plot								
Favored (%)	94.49	92.23	90.62	91.15	92.01	94.09		
Allowed (%)	5.51	7.77	9.38	8.85	7.72	5.91		
Disallowed (%)	0.00	0.00	0.00	0.00	0.27	0.00		

