

1 **Human iPSC-derived astrocytes transplanted into the mouse brain display three**
2 **morphological responses to amyloid- β plaques**

3 Pranav Preman^{1 2 +}, Julia TCW^{3 4 +}, Sara Calafate^{1 2}, An Snellinx^{1 2}, Maria Alfonso-Triguero⁵,
4 Nikky Corthout^{1 2 6}, Sebastian Munck^{1 2 6}, Dietmar Rudolf Thal⁷, Alison M Goate^{3 4 8}, Bart De
5 Strooper^{1 2 9 *} and Amaia M Arranz^{1 2 5 10 *}

6

7 ¹ VIB Center for Brain & Disease Research, Leuven, Belgium.

8 ² Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences,
9 Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.

10 ³ Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount
11 Sinai, New York, NY, United States of America.

12 ⁴ Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai,
13 New York, NY, United States of America.

14 ⁵ Achucarro Basque Center for Neuroscience, Leioa, Spain.

15 ⁶ VIB Bio Imaging Core, Campus Gasthuisberg, 3000, Leuven, Belgium.

16 ⁷ Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute
17 (LBI), KU Leuven (University of Leuven); and Department of Pathology, University Hospital
18 Leuven, Leuven, Belgium.

19 ⁸ Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale
20 Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.

21 ⁹ UK Dementia Research Institute, University College London, London, UK.

22 ¹⁰ Ikerbasque Basque Foundation for Science, Bilbao, Spain.

23

24 +These authors contributed equally.

25 * Correspondence: bart.destrooper@vib.be, amaia.arranz@achucarro.org

26

27

28 **ABSTRACT**

29 **Background:** Increasing evidence for a direct contribution of astrocytes to neuroinflammatory
30 and neurodegenerative processes causing Alzheimer's disease comes from molecular studies
31 in rodent models. However, these models may not fully recapitulate human disease as human
32 and rodent astrocytes differ considerably in morphology, functionality, and gene expression.

33 **Methods:** To address these challenges, we established an approach to study human astroglia
34 within the context of the mouse brain by transplanting human induced pluripotent stem cell
35 (hiPSC)-derived glia progenitors into neonatal brains of immunodeficient mice.

36 **Results:** Xenografted (hiPSC)-derived glia progenitors differentiate into astrocytes that
37 integrate functionally within the mouse host brain and mature in a cell-autonomous way
38 retaining human-specific morphologies, unique features and physiological properties. In
39 Alzheimer's chimeric brains, transplanted hiPSC-derived astrocytes respond to the presence
40 of amyloid plaques with various morphological changes that seem independent of the *APOE*
41 allelic background.

42 **Conclusion:** In sum, this chimeric model has great potential to analyze the role of patient-
43 derived and genetically modified astroglia in Alzheimer's disease.

44 **Keywords:** human induced pluripotent stem cells (hiPSCs), astrocytes, chimeric mouse
45 models, Alzheimer's disease, amyloid plaques, *APOE*

46

47

48

49

50

51

52

53 **BACKGROUND**

54 Astrocytes are essential to maintain the homeostasis of the brain, provide trophic support,
55 stimulate synaptogenesis and neurotransmission, and regulate blood-brain-barrier
56 permeability (1,2). Impaired astroglial function contributes to neurological and
57 neurodegenerative disorders including Alzheimer's disease (AD) (3–8). Genome-wide
58 association studies (9,10) show that genetic risk of AD is also associated with genes mainly
59 expressed in astroglia such as Clusterin (*CLU*), Fermitin family member 2 (*FERMT2*) and
60 Apolipoprotein E (*APOE*) (11), highlighting the potential importance of these cells in the
61 disease. Different types of astroglial pathology have been described in the AD brain (12–14).
62 Among those, hypertrophic (15), quiescent and degenerating morphologies (16,17) were
63 found.

64

65 Transgenic models have provided invaluable tools to study the role of astroglia in AD (18–21).
66 However, these models of AD might insufficiently mimic the human disease, as there are major
67 differences between rodent and human astrocytes. Morphologically, human astrocytes are
68 larger and more complex, having around 10 times more processes than their rodent
69 counterparts (22). Molecularly, human astrocytes and mouse astrocytes display different,
70 although overlapping, gene expression profiles (11). Functionally, human astrocytes propagate
71 calcium waves four-fold faster than rodent ones (11,22,23), and human and mouse astrocytes
72 show very different responses when exposed to inflammatory stimuli (24,25).

73

74 The ability to generate induced pluripotent stem cells (iPSCs) from patients and differentiate
75 them into astrocytes and other CNS cell types has generated exciting opportunities to examine
76 AD associated phenotypes *in vitro* (39) and unravel the contribution of astroglial risk genes to
77 AD (26–29). Yet, human iPSC (hiPSC)-derived astrocytes grown in culture lack essential
78 components present in the brain which can induce altered phenotypes and gene expression
79 signatures significantly different from that of primary resting astroglia in the brain (11,30).

80 Therefore, it has proved challenging to advance understanding of human astroglial function in
81 AD.

82

83 To address these challenges, we aimed at developing a chimeric model that allows studying
84 hiPSC-derived astrocytes in an *in vivo* AD context. We and others have generated chimeric
85 models to study AD by transplanting human PSC-derived neurons or microglia into the brains
86 of immunodeficient AD mice and wild-type littermates (31–33). These models revealed that
87 human neurons and microglia transplanted into the mouse brain respond to pathology
88 differently than their murine counterparts, showing specific vulnerability and transcriptional
89 signatures when exposed to amyloid- β (A β) (31,32). Moreover, human glia chimeric mice have
90 been generated by Goldman and collaborators to investigate the function of engrafted human
91 glia, mainly NG2 cells and lower proportions of oligodendrocytes and astrocytes, in disease
92 relevant conditions such as Huntington disease, Schizophrenia or hypomyelination (34–36).
93 Yet, to date no studies have analyzed the phenotype and functional responses of xenografted
94 human astrocytes exposed to A β and AD-associated pathology *in vivo*.

95

96 We established here a chimeric model to investigate survival, integration, properties and
97 responses to A β species of human astrocytes expressing *APOE* ϵ 3 (E3) vs *APOE* ϵ 4 (E4)
98 variants. We document here engraftment of astrocytes that integrate in a functional way in the
99 mouse host brain and display human-specific morphologies and properties. When transplanted
100 human astrocytes are exposed to A β plaques, they display hypertrophic and atrophic
101 responses similar to the ones seen in AD patients' brains (12,16,17). Our results validate the
102 use of chimeric mice as a potential powerful tool for studying astrocyte contribution to AD. We
103 also discuss one of the major hurdles to fully capture the strength of this approach, which is,
104 in our hands, the variable and often low degree of chimerism obtained with human astrocytes
105 from different hiPSC lines after several months of transplantation.

106

107 **METHODS**

108 **Generation of isogenic CRISPR/Cas9 gene-edited hiPSCs**

109 Eight hiPSC lines were generated from three *APOE* ε4 carriers diagnosed with AD (Table 1)
110 as described previously by the ‘CORRECT’ scarless gene-editing method (37). The correct
111 *APOE* sgRNA sequence orientation was confirmed by Sanger sequencing and CRISPR/Cas9-
112 *APOE* sgRNA plasmid cleavage efficiency was determined using the Surveyor mutation
113 detection kit in 293T cells. The single-strand oligo-deoxynucleotide (ssODN) was designed to
114 convert *APOE* ε4 to *APOE* ε3 with a protospacer adjacent motif (PAM) silent mutation to
115 prevent recurrent Cas9 editing. hiPSCs (70-80% confluent) dissociated by Accutase
116 supplemented with 10 μM Thiazovivin (Tzv) (Millipore), were harvested (200 x g, 3 min), and
117 electroporated (Neon®, ThermoFisher) according to the manufacturer’s instructions. In brief,
118 cells resuspended in 10μl Neon Resuspension Buffer R, 1μg CRISPR/Cas9-*APOE* sgRNA
119 plasmid and 1μl of 10μM of ssODN were electroporated plated on Matrigel-coated plates in
120 mTeSR media with 10 μM Tzv for 72h. GFP-expressing hiPSC were isolated by FACS (BD
121 FACSaria). Sorted single cells were suspended in mTeSR with Tzv and plated into 96 well
122 plates containing MEFs (4,000 cells/well). Clones were expanded and transferred to a replicate
123 plate for gDNA isolation and Sanger sequencing to identify genome edited clones.

124

125 **Table 1. Information on the hiPSC lines.**

hiPSC line	hiPSC name	Ethnicity	Gender	Age of onset	Age at biopsy	Disease status (CDR at biopsy)	APOE genotype	Genetic modification
1	TCW1E33-1F1	Caucasian	F	64	72	AD (2)	E4/E4	E3/E3
2	TCW1E44-2C2	Caucasian	F	64	72	AD (2)	E4/E4	E4/E4
3	TCW2E33-3D11	Caucasian	M	77	80	AD (0.5)	E4/E4	E3/E3
4	TCW2E44-4B12	Caucasian	M	77	80	AD (0.5)	E4/E4	E4/E4
5	TCW2E33-2E3	Caucasian	M	77	80	AD (0.5)	E4/E4	E3/E3

6	TCW2E44-4B1	Caucasian	M	77	80	AD (0.5)	E4/E4	E4/E4
7	TCW3E33-H-2	Caucasian	M	80	83	AD (0.5)	E4/E4	E3/E3
8	TCW3E44-F-2	Caucasian	M	80	83	AD (0.5)	E4/E4	E4/E4

126

127 The table shows hiPSC name, patient ethnicity, gender, age of onset, age at skin biopsy,
128 disease status (CDR at biopsy), original *APOE* genotype and genetic modification. F female,
129 M male, AD Alzheimer's disease, APOE apolipoprotein, CDR clinical dementia rating, hiPSC
130 human induced pluripotent stem cells. These cells were previously generated and
131 characterized by (29).

132

133 **Karyotyping**

134 Karyotyping was performed by Wicell Cytogenetics (Madison, WI). Karyotypes are shown in
135 Additional file 2, Figure S1.

136

137 **Generation of reporter hiPSC-astrocytes**

138 The consent for reprogramming human somatic cells to hiPSC was carried out on ESCRO
139 protocol 19-04 at Mount Sinai (J.TCW.). hiPSCs maintained on Matrigel (Corning) in mTeSR1
140 (StemCell Technologies) supplemented with 10 ng/ml FGF2 StemBeads (StemCultures) were
141 differentiated to neural progenitor cells (NPCs) by dual SMAD inhibition (0.1µM LDN193189
142 and 10µM SB431542) in embryoid bodies (EB) media (DMEM/F12 (Invitrogen, 10565), 1x N2
143 (Invitrogen, 17502-048), and 1x B27-RA (Invitrogen, 12587-010)). Rosettes were selected at
144 14 DIV by Rosette Selection Reagent (StemCell Technologies) and patterned to forebrain
145 NPCs with EB media containing 20ng/ml FGF2 (Invitrogen). NPCs (CD271⁺/CD133⁺) were
146 enriched by magnetic activated cell sorting (Miltenyi Biotec) (38) and validated
147 immunocytochemically using SOX2, PAX6, FoxP2 and Nestin (Additional file 1, Table S1).
148 Dissociated single cell forebrain NPCs were plated 1,000,000 cells/well on 12 well plates and
149 transfected with lentiGuide-tdTomato (Addgene #99376) plasmid and selected by

150 hygromycine. Pure fluorescent expressing NPCs were plated at low density (15,000 cells/cm²)
151 on matrigel coated plates and differentiated to astrocytes in astrocyte medium (ScienCell,
152 1801) as described (39). Cells were cultured and harvested as astroglia progenitors at DIV 40-
153 44, validated immunocytochemically and/or by FACS for the astrocyte-specific markers and
154 used for subsequent experiments.

155

156 **AD and WT Immunodeficient Mice**

157 Mice were generated as described previously (31). Briefly, APP PS1 tg/wt mice (expressing
158 KM670/671NL mutated APP and L166P mutated PS1 under the control of the Thy1.2
159 promoter1.1) (40) were crossed with the immunodeficient NOD-SCID mice (NOD.CB17-
160 Prkdc^{scid}) that carry a single point mutation in the Prkdc gene (41). APP PS1 tg/wt Prkdc^{scid/+}
161 mice from the F1 generation were crossed with NOD-SCID mice to generate APP PS1 tg/wt
162 Prkdc^{scid/scid} immunodeficient mice. APP PS1 tg/wt Prkdc^{scid/scid} mice were subsequently
163 crossed with NOD-SCID mice to generate either APP PS1 tg/wt Prkdc^{scid/scid} (AD mice) or APP
164 PS1 wt/wt Prkdc^{scid/scid} (WT mice) used for transplantations. Mice were housed in IVC cages in
165 a SPF facility; light/dark cycle and temperature were always monitored. After weaning, no more
166 than five animals of the same gender were kept per cage. Genotyping was done as previously
167 described (31). Transplantation experiments were performed in both male and female
168 littermates at P0-P4. Mouse work was performed in accordance with institutional and national
169 guidelines and regulations, and following approval of the Ethical Committee of the KUL. All
170 experiments conform to the relevant regulatory standards.

171

172 **Intracerebral Grafting**

173 Grafting experiments of hiPSC-derived glial progenitors using neonatal APP PS1 tg/wt NOD-
174 SCID (AD mice) and APP PS1 wt/wt NOD-SCID (WT mice) at postnatal days P0-P4 were
175 performed as described previously (31) with some modifications. Briefly, hiPSC-derived glia
176 progenitor cells at DIV 44 were enzymatically dissociated, supplemented with HB-EGF (100-

177 47, Peprotech) and RevitaCell (A2644501, ThermoFisher) and injected into the frontal cortex
178 of AD or WT mice. The pups were anesthetized by hypothermia and about 200,000 cells were
179 injected with Hamilton syringes into the forebrain at two locations: 1 mm posterior Bregma, 1.5
180 mm bilaterally from the midline and 1.2 mm from the pial surface. Transplanted pups were
181 returned to their home cages until weaning age.

182

183 **Electrophysiological Characterization of Human Glia in Chimeric Mice**

184 Four to five month-old WT mice were anesthetized with isoflurane and decapitated. Acute 300
185 μ m-thick coronal slices were cut on a Leica VT1200 vibratome in a sucrose-based cutting
186 solution consisting of (mM): 87 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 10 glucose, 25 NaHCO₃, 0.5
187 CaCl₂, 7 MgCl₂, 75 sucrose, 1 kynurenic acid, 5 ascorbic acid, 3 pyruvic acid (pH 7.4 with 5%
188 CO₂/ 95% O₂). Slices were allowed to recover at 34°C for 45 minutes and maintained at room
189 temperature (RT) in the same solution for at least 30 minutes before using. During recordings,
190 slices were submerged in a chamber (Warner Instruments) perfused with 3-4mL/min artificial
191 cerebrospinal fluid (ACSF) consisting of (mM): 119 NaCl, 2.5 KCl, 1 NaH₂PO₄, 26 NaHCO₃,
192 4 MgCl₂, 4 M CaCl₂, 11 glucose at pH 7.4 with 5% CO₂/ 95% O₂. Recordings were done at
193 34°C. hiPSC-astrocytes were identified based on the td-Tomato fluorescence with a 40x
194 objective in an epifluorescent microscope (Zeiss Axio Examiner.A1). Whole-cell current clamp
195 recordings were made from 17 hiPSC-astrocytes (hiPSC lines #1 to #4, n=6 mice) with
196 borosilicate glass recording pipettes (resistance 3-6M Ω). Pipettes were pulled on a horizontal
197 micropipette puller (Sutter P-1000) and filled with a K-gluconate based internal medium
198 consisting of (mM): 135 K-Gluconate, 4 KCl, 2 NaCl, 10 HEPES, 4 EGTA, 4 MgATP, 0.3
199 NaATP (pH 7.25). To post-hoc identify the patched astrocyte and analyze its potential to form
200 gap-junctions, 40 μ M Alexa Fluor hydrazide dye 488 (Invitrogen) was included in the internal
201 medium. Current steps of incrementing 20 pA were injected starting from 50 pA up to 150 pA.
202 Resting membrane potential was calculated using Clampfit 10.7 (Axon Instruments). Currents
203 were sampled at 20 kHz and stored after 3 kHz low-pass Bessel filtering. The data was low-
204 pass filtered at 1 kHz (Molecular devices DigiData 1440A and Multiclamp 700B). Pipette series

205 resistance and membrane holding current were monitored throughout all recordings to ensure
206 stability of the recording.

207

208 **Immunofluorescence (IF) in Chimeric Mice**

209 For IF analysis, mice were anesthetized with CO₂ and perfused with phosphate-buffered saline
210 followed by 4% paraformaldehyde solution. The brain was then removed, post-fixed in the
211 same fixative overnight to 48 hr and cut into 40 μ m slices on a Leica VT1000S vibratome. IF
212 on grafted brains was performed as described previously (31) using primary and secondary
213 antibodies (Additional file 1, Table S1). Antigen retrieval was performed by microwave boiling
214 the slides in 10mM tri-Sodium Citrate buffer pH 6.0 (VWR). A β plaques were detected by
215 staining with Thioflavin (SIGMA). Briefly, for Thioflavin staining brain sections were incubated
216 with a filtered 0.05% aqueous Thioflavin-S (SIGMA) solution in 50% ethanol for 5 min at RT
217 and rinsed gradually with 70%, 95% ethanol and water. Nuclei staining was performed using
218 a specific anti-human Nuclear Antigen antibody (hNuclei) (Additional file1, Table S1), the pan-
219 nuclear staining TOPRO3 (Invitrogen), or DAPI (SIGMA). The sections were mounted with
220 Glycergel (DAKO). Confocal images were obtained using a Nikon Ti-E inverted microscope
221 equipped with an A1R confocal unit driven by NIS (4.30) software. The confocal was outfitted
222 with 20x (0.75 NA), 40x oil (1.4 NA) and 60x oil (1.4 NA) objectives lenses. For excitation 405
223 nm, 488 nm, 561 nm, 638 nm laser lines were used.

224

225 **Quantification and Statistical Analysis**

226 Morphometry and measurements were performed with Fiji/ImageJ software on animals at five
227 months after transplantation. At least 4-5 different coronal brain sections comprising the
228 transplanted astrocytes and the mouse host tissue were included per animal.
229 Immunofluorescence (IF) sections were imaged by confocal microscopy (Nikon Ti-E inverted
230 microscope) using a 20x (0.75 NA) objective lens to image Z-stacks (8-10 optical sections with
231 a spacing of 1 μ m). All images were acquired using identical acquisition parameters as 16-bit,

232 1024x1024 arrays. Maximum intensity projections and threshold were applied using
233 Fiji/ImageJ to isolate specific fluorescence signals.

234 For analyses of **cell integration**, brains were sectioned and stained with the antibodies against
235 RFP and hNuclei (human Nuclear antigen). The number of hNuclei+ and RFP+ cells was
236 counted manually on IF images of astrocytes derived from the eight hiPSC lines used on the
237 study (#1 to #8, Table 1). Final counts were corrected for series number (1:6) to get an estimate
238 of the total number of hNuclei+ and RFP+ cells per animal (Additional file 2, Figure S1d).

239 For analyses of **cell identity**, brains were sectioned and stained with the following antibodies:
240 RFP and hNuclei (human Nuclear antigen), GFAP (astroglia marker), NeuN (neuronal marker)
241 or APC (marker of oligodendrocytes). Results are shown for four hiPSC lines (#1, #2, #7 and
242 #8, Table 1). Total percentages of RFP+ cells co-localizing with GFAP (n=14 mice), hNuclei
243 (n=15 mice), NeuN or APC (n=9 mice each) were manually determined on IF images using
244 Fiji/ImageJ. Data are represented as mean \pm SEM. Statistical analyses were done with
245 Student's t test (Fig. 1 and Additional file 3, Figure S2).

246 To analyze the **morphological subtypes of hiPSC-astrocytes**, brains were sectioned and
247 stained with antibodies against RFP and hNuclei (human Nuclear antigen) and morphometry
248 analyses were manually performed on IF images using Fiji/ImageJ. Results are shown for two
249 hiPSC lines (#1 and #2, Table1) in WT mice (n=9). Data are represented as mean \pm SEM (Fig.
250 3).

251 For quantification of the average **cell area**, brains were stained with RFP and GFAP, and the
252 NIS-elements software was used (version 5.21.01 build 1483, Nikon Instruments). All the z-
253 stacks were first denoised (denoise.ai tool) and then projected on a 2D image using an
254 extended focus operation (EDF, zero-based, balanced). The resulting 2D image was used for
255 further quantification with a General Analysis (GA3) protocol. In short, to count the number of
256 cells, a spot detection approach was used (average size 11 μm). For detection of the cell area,
257 we first applied a rolling ball filter (6 μm) and, consequently, a thresholding step. Both the
258 settings for the threshold and the spot detection were adjusted per image to compensate for
259 differences in intensity due to a change of acquisition parameters. Results are shown for four

260 hiPSC lines (#1, #2, #3 and #4, Table1) in WT mice (n=12). Data are represented as mean ±
261 SEM. Statistical analysis was done with Student's t test (Fig. 3).
262 To analyze the **morphological responses to A β plaques**, brains were sectioned and stained
263 with RFP and Thioflavin and morphometry analyses were manually performed on IF images
264 using Fiji/ImageJ. Results are shown for two hiPSC lines (#1 and #2, Table1) in AD mice (n=7).
265 Data are represented as mean ± SEM. Statistical analysis was performed with Chi-square t
266 test (Fig. 5).

267

268 **Neuropathology on Human Brain Samples**

269 Brain tissue samples from 4 AD, 5 pre-AD and 3 non-demented control patients were included
270 in this study (Table 2). The autopsies were performed with informed consent in accordance
271 with the applicable laws in Belgium (UZ Leuven) and Germany (Ulm, Bonn and Offenbach).
272 The use of human tissue samples for this study was approved by the UZ Leuven ethical
273 committee (Leuven, Belgium). Brain tissues were collected as described in previous studies
274 (42) with an average post-mortem interval (PMI) of 48 h. Briefly, after autopsy, the brains were
275 fixed in 4% aqueous solution of formaldehyde for 2–4 weeks. Samples of the anterior
276 entorhinal cortex and hippocampus were dissected coronally, dehydrated and embedded in
277 paraffin. The paraffin blocks were microtomed at 10 μ m, mounted on Flex IHC adhesive
278 microscope slides (Dako), and dried at 55 °C before storing. For neuropathological analysis,
279 sections from all blocks were stained with anti-pTau (AT8), anti-A β (4G8) (Additional file 1,
280 Table S1), and with the Gallyas and the Campbell-Switzer silver techniques for detection of
281 neurofibrillary changes and amyloid deposits (43).

282 The post-mortem diagnosis of AD pathology was based upon the standardized clinico-
283 pathological criteria, including the topographical distribution of A β plaques in the medial
284 temporal lobe (A β MTL phase) based on A β immunohistochemistry (43), and the Braak
285 neurofibrillary tangle (NFT) stage based on pTau immunohistochemistry (44). The study
286 comprised 12 cases with an average age of 77 years and a female to male ratio of 4:8. The

287 cases were divided in three groups based on the clinical and neuropathological diagnosis: (1)
288 AD = high-intermediate degree of AD pathology and signs of cognitive decline during life (CDR
289 ≥ 0.5); (2) p-preAD = cases with intermediate-low degrees of AD pathology lacking clinical
290 signs of cognitive decline (CDR = 0); (3) non-AD = low-no pathological signs of AD pathology
291 (CDR = 0).

292

293 **Table 2. Details of Human Cases.**

Case number	Age	Gender	A β phase	Braak stage	PMI	Neuropathological Diagnosis	Type of dementia
1	82	M	5	3	72	AD	AD
2	81	F	5	5	48	AD, CAA, I	AD
3	85	M	5	3	48	AD, CAA, MI	AD-VaD
4	83	M	5	5	24	AD, CAA, I, B	AD-VaD
5	83	F	4	4	24	p-preAD, AGD, CM	0
6	85	F	4	3	24	p-preAD	0
7	87	M	4	3	96	p-preAD, CAA	0
8	72	M	2	3	72	p-preAD, I	0
9	66	F	0	0	48	non-AD control, AGD	0
10	62	M	0	0	48	non-AD control	0
11	75	M	1	2	48	non-AD control, AGD	0
12	64	M	0	0	24	non-AD control	0

294

295 The table shows the human subjects studied for histology of astrocytes. Indicated are: the age
296 in years, the gender, the A β -MTL phase representing the distribution of A β deposits in the
297 subfields of the MTL (43), the stage of neurofibrillary tangle pathology according to Braak and
298 Braak (44) (NFT stage), PMI, neuropathological diagnosis and type of dementia. F female, M
299 male, AD Alzheimer's disease, AD-VaD Alzheimer's disease plus signs of vascular dementia,
300 p-preAD preclinical AD, non-AD non-demented control, AGD argyrophilic grain disease, B

301 bleeding, CAA cerebrovascular angiopathy, CM carcinoma metastasis, I infarction, MI
302 microinfarction, MTL medial temporal lobe, NFT neurofibrillary tangle, PMI post-mortem
303 interval.

304

305 **Immunohistochemistry and Immunofluorescence on Human Samples**

306 The distribution of astrocytes and A β deposits was examined in human samples of the
307 entorhinal cortex and hippocampus using immunohistochemical and immunofluorescence
308 techniques. Immunohistochemical detection of A β deposits and astrocytes was performed
309 after formic acid pretreatment. For double-labeling, a monoclonal anti-A β ₁₇₋₂₄ antibody (4G8,
310 Additional file 1, Table S1) was subsequently combined with a polyclonal anti-GFAP (DAKO,
311 Additional file 1, Table S1) as described previously (43). The anti-A β ₁₇₋₂₄ antibody was
312 detected with biotinylated secondary antibodies and ABC, and visualized with
313 3,3'-diaminobenzidine-HCl. After peroxidase blocking, the anti-GFAP was applied, detected
314 with biotinylated secondary antibodies, and ABC, and visualized with the Vector peroxidase kit
315 SG (blue staining). Microscopy analysis was performed using a light Leica DM2000 LED
316 microscope (Leica Microsystems) and images were captured with a Leica DFC7000 T camera
317 (Leica Microsystems).

318 For double-labeling immunofluorescence, sections were pre-treated as mentioned above and
319 incubated with formic acid for 3 min, when required. Immunostainings were performed with an
320 antibody cocktail and primary antibodies were detected with species-specific fluorescent-
321 conjugated secondary antibodies (Additional file 1, Table S1). Images were captured via Nikon
322 NIS-Elements software using a Nikon A1R laser scanning confocal system coupled to a Nikon
323 Eclipse Ti inverted microscope (Nikon Instruments, Inc.). Acquired data were further processed
324 using ImageJ software (National Institutes of Health).

325

326 **RESULTS**

327 **Human iPSC-Derived Glial Progenitors Engraft the Mouse Brain and Differentiate into**
328 **Astrocytes**

329 To generate human-mouse astroglia chimeras, we differentiated human iPSCs (hiPSCs) into
330 glial progenitor cells (hGPCs) *in vitro* (39) (Fig. 1a). After 44 days in culture, td-Tomato
331 expressing hGPCs, which expressed several astroglia markers (Additional file 2, Figure S1b),
332 were xenografted into the brains of newborn mice (Fig. 1a). We used transgenic Tg (Thy1-
333 APPSw,Thy1-PSEN1*L166P) 21Jckr, also called APP/PS1-21 mice (40) crossed with
334 immunodeficient NOD.CB17-Prkdc^{scid}/J, further called NOD-SCID mice (41), to generate AD
335 mice or wild-type (WT) littermates suitable for grafting experiments (31). We transplanted
336 hiPSC lines from AD patients carrying the *APOE E4/E4* alleles and the corresponding
337 corrected *APOE E3/E3* isogenic lines (Table 1).

338 Five months after transplantation, immunofluorescence (IF) analysis revealed engraftment of
339 human cells throughout the forebrain (Fig. 1b, Additional file 2, Figure S1c). Human cells were
340 identified based on the expression of the td-Tomato marker RFP and of the human nuclear
341 antigen hNuclei. RFP+ cells infiltrate the cortex, corpus callosum and subcortical areas such
342 as the hippocampus, striatum, thalamus or hypothalamus (Fig. 1c-e). Assessment of the
343 engraftment capacity revealed considerable variation across cell lines (Additional file 2, Figure
344 S1d): we show here examples of robust engraftment, with RFP+ cells both in clusters as well
345 as integrated individually within the mouse brain (Fig. 1b, c), but these results were variable
346 with often lower engraftment capacity at 5 months after transplantation (Additional file 2, Figure
347 S1c, d). Variation was independent of the *APOE* genetic background or the patient (overview
348 in Additional file 2, Figure S1d).

349 Further analyses revealed that at this stage, human RFP+ cells strongly express the astroglia
350 markers GFAP, S100b, Vimentin and Aquaporin-4 (Fig. 1f-i), the latter largely concentrated at
351 the astrocytic end-feet along the blood vessels (Figure 1i). Staining with human specific GFAP
352 antibody (hGFAP), confirms the human origin of the cells (Additional file 3, Figure S2a).
353 Quantification showed that 93% of the RFP+ hiPSC-cells express the astroglia marker GFAP

354 (Fig. 1j) and 95% of the hNuclei+ hiPSC-cells co-express RFP (Fig. 1k). Thus, the RFP marker
355 is not downregulated, and most of the transplanted cells indeed differentiated into human
356 astroglia. This was further confirmed as no or only minimal expression (less than 3%) of
357 neuronal or oligodendroglial markers was observed in RFP+ cells (Fig. 1l, Additional file 3,
358 Figure S2b, c). No differences were observed between *APOE E4/E4* and *APOE E3/E3* lines
359 (Additional file 3, Figure S2d-f). A subset of RFP+ cells identified by their distinct radial glia-
360 like morphology and not expressing GFAP (Additional file 3, Figure S2g-i) often coexisted with
361 RFP+ cells with more complex structures and expressing main astroglia markers. These cells
362 are likely in a progenitor state which was also described previously (23,45).

363 **Transplanted iPSC-Derived Astrocytes Integrate Functionally Within the Mouse Brain**

364 We assessed morphological and electrophysiological features of individual hiPSC-derived
365 astrocytes in the chimeric brain. We observed hiPSC-astrocytes extending processes that
366 terminated in end-feet contacting mouse host vasculature in the chimeric brains (Fig. 2a)
367 similar to human astrocytes in the human brain (Fig. 2b). Moreover, hiPSC-astrocytes strongly
368 expressed the gap-junction marker Connexin-43 in their processes (Fig. 2c). The gap junctions
369 were functioning, as the Alexa488 dye loaded through the patch clamp pipette on RFP+
370 astrocytes diffused into neighboring mouse host cells (Fig. 2d-h). Electrophysiological
371 analyses on acute brain slices of chimeric mice at 4-5 months showed that transplanted RFP+
372 astrocytes displayed properties resembling human astrocytes (46). Specifically, their non-
373 excitable responses to stimulations with current injection in current clamp mode (Fig. 2i),
374 resting membrane potentials (Fig. 2j), and linear current to voltage (I/V) curves (Fig. 2k).
375 Human iPSC-astrocytes do not replace the endogenous murine astrocytes and both cell types
376 are found in the chimeric mouse brains (Additional file 3, Figure S2j). These data reveal that
377 the transplanted hiPSC-astrocytes are able to integrate functionally within the mouse host
378 brain, show human-like physiological features and co-exist with endogenous mouse
379 counterparts.

380 **Human iPSC-Derived Astrocytes Acquire Human-Specific Morphologies and Features**

381 **In Vivo**

382 An advantage of low engraftment capacity is that it favors the assessment of morphological
383 details of the transplanted astrocytes. Five months after transplantation, four main
384 morphological subtypes of hiPSC-derived astrocytes were identified in the chimeric brains of
385 the control animals. RFP+ interlaminar astrocytes were frequently observed in superficial
386 layers of the cortex and close to the ventricles, with their small and round cell bodies near the
387 pial surface and their long, unbranched and sometimes tortuous processes descending into
388 deeper layers (Fig. 3a-c). Varicose-projection astrocytes were relatively sparse but easily
389 identified by their bushy appearance and the presence of long processes with regularly spaced
390 beads or varicosities (Fig. 3d, e). Protoplasmic astrocytes were found in deeper layers of the
391 brain and showed the characteristic star-shaped morphology and shorter processes extending
392 in all directions and often contacting the vasculature (Fig. 3f, g). Fibrous astrocytes were found
393 in white matter tracts and presented the typical morphology with small soma and fine, straight
394 and radially oriented processes (Fig. 3h-j). Interlaminar astrocytes were the most abundant
395 subtype of hiPSC-astrocytes in the mouse brain, summing up to 62% of the RFP+ cells, and
396 similar proportions of fibrous and protoplasmic astrocytes were found (16% and 13% of the
397 RFP+ cells respectively). The varicose-projection astrocytes are the less frequent subtype,
398 constituting 9% of RFP+ cells found in the host brain (Fig. 3k). Interestingly, we found the same
399 astroglia subtypes in the human entorhinal cortex and white matter tracts of various control
400 individuals (Table 2, subjects 10-12), when staining with the astrocyte marker GFAP: subpial
401 interlaminar astrocytes with their soma in superficial layers of the cortex (molecular layer to
402 pre- α) and long processes extending into deeper layers (Fig. 4a-c), protoplasmic (Fig. 4a, d)
403 and varicose-projection astrocytes (Fig. 4e-f) in deeper layers of the cortex (pri- α to pri- γ), and
404 fibrous astrocytes in white matter tracts (Fig. 4g-i). Of note, hiPSC-astrocytes covered about
405 15-fold larger areas than mouse astrocytes and displayed more complex structures (Fig. 3l-m,
406 Additional file 3, Figure S2j). Thus, transplanted hiPSC-astrocytes were able to keep their

407 intrinsic properties and develop in a cell-autonomous way adopting human-specific features
408 and morphologies within the mouse host brain.

409 **Human Astroglia Display Differential Morphological Responses to Amyloid- β Plaques**

410 Interestingly, transplanted hiPSC-astrocytes adopt three clearly distinct morphologies in the
411 brains of chimeric AD mice five months after transplantation, when the A β load is high.
412 Immunofluorescence analyses with RFP revealed that about 25% of the astrocytes became
413 hypertrophic and showed thicker processes that surround A β deposits (Fig. 5a-c and 5a'-c',
414 Fig. 5g). 62% of the astrocytes seemed not to be morphologically affected at all, even when in
415 close contact with the A β plaques (Fig. 5d, 5d', 5g). Finally, about 13% of astrocytes showed
416 atrophic features, displaying thinner processes that sometimes even looked degenerating (Fig.
417 5e-f and 5e'-f', Fig. 5g). *APOE* E3/E3 or *APOE* E4/E4 genotype did not affect these proportions
418 (Fig. 5h). Hypertrophic, atrophic and quiescent phenotypes were also found in human
419 astrocytes in close proximity to A β deposits in the entorhinal cortex and hippocampus of
420 patients with AD (Table 2, subjects 1-4), both by immunohistochemistry (Fig. 6) and
421 immunofluorescence (Fig. 7).

422 In conclusion: engrafted hiPSC-astrocytes show differential morphological responses to A β
423 plaques that resemble that of human astrocytes in AD patients' brains. The potential of
424 astrocytes to become hyper- or atrophic, or remain in a quiescent state, does not seem to be
425 influenced by the *APOE* genetic background.

426

427 **DISCUSSION**

428 A major challenge to model astroglia function in AD is the difference between mouse and
429 human astrocytes. A powerful approach to overcome this challenge is the use of hiPSC-
430 derived astrocytes to generate chimeric mice.

431 We investigate in the current study the potential of such experiments using patient derived
432 iPSC lines and isogenic counterparts (Table1). We include AD mice and control littermates.

433 We demonstrate integration of human glia into the mouse brain and differentiation of the
434 majority of cells into four main subtypes of astrocytes expressing main astroglial markers and
435 showing human-specific large, complex morphologies and electrophysiological properties.
436 Additionally, hiPSC-astrocytes contact blood vessels and couple via gap-junctions with mouse
437 cells, demonstrating functional integration in the host brain. In contrast to other glia chimeric
438 models (35), we do not see replacement of the endogenous murine counterparts.

439 hiPSC-astrocytes respond robustly to A β pathology showing hypertrophic, atrophic or
440 unaffected morphologies that are very similar to the morphological changes observed in
441 astrocytes in AD patients' brains (15–17). Such responses are not dependent on the *APOE*
442 genetic background. Further work is however needed to understand whether the different
443 *APOE* variants influence the molecular and functional states of human astrocytes surrounding
444 A β plaques.

445 While human astrocytes were consistently detected in every injected brain, the number of
446 engrafted cells varied largely from a few hundreds or thousands to >50,000 cells (Additional
447 file 2, Figure S1d). This, combined with the difficulty of recovering the engrafted cells from the
448 mouse brain for single-cell analysis, made further molecular analyses of the cellular
449 phenotypes, unfortunately, not possible at this moment.

450 Others have also observed variations in transplantation efficiencies of hiPSC-derived microglia
451 and neurons (47,48). While many successful reports on "glia" chimeric mice have been
452 reported (23,34–36,49), these glia chimeras develop, in addition to human astrocytes, a large
453 number of human NG2 cells and oligodendrocytes, whose relative ratios varied considerably
454 across different brain regions and animals (23,34,49). This suggests that in these other
455 experiments a different glia precursor state has been transplanted which maintains more 'stem
456 cell like' properties allowing these cells to spread over the brain and to compete with mouse
457 glia as shown before (49). We speculate that in our experimental conditions we have
458 transplanted more differentiated cells which are closer to a final astrocyte phenotype and
459 therefore not able to proliferate once they were injected in the brain of the host mice. It will now
460 be critical to define the optimal window for transplantation of differentiating hiPSCs in order to

461 maximize astrocyte colonization of the mouse brain. In other experiments we succeeded
462 already to determine this for microglia using the Migrate protocol (Fattorelli et al, 2020). In the
463 Migrate protocol there is a very critical window during the cell differentiation *in vitro* that results
464 in 60-80% chimerism. One week longer in culture results in < 5% chimerism although the cells
465 before transplantation look morphologically identical to the more efficiently transplanted ones.
466 Other possible improvements would be the use of RAG2^{-/-} mice which can be maintained for
467 a much longer time period than the NOD-SCID mice we use here.

468

469 **CONCLUSIONS**

470 In conclusion, despite some intrinsic limitations, the approach to transplant human astroglia
471 into mouse brain to study astrocyte pathophysiology in AD is promising. We recapitulated here
472 typical morphological responses of human astrocytes to amyloid plaques *in vivo*. Moreover,
473 the combination of the model with isogenic *APOE* lines points out the potential use of this
474 approach to analyze the impact of patient-derived and genetically modified astroglia on human
475 CNS disease.

476

477 **LIST OF ABBREVIATIONS**

478 5 M: 5 months of age; AD: Alzheimer's disease; A β : amyloid- β ; APOE: Apolipoprotein E; CDR:
479 clinical dementia rating, DIV: days *in vitro*; EB: embryoid bodies; GPCs: glia progenitor cells;
480 hiPSCs: human induced pluripotent stem cells; IF: immunofluorescence; IVC: individually
481 ventilated cages; NFT: neurofibrillary tangles; NPCs: neural progenitor cells; PAM: protospacer
482 adjacent motif; PMI: post-mortem interval; RFP: red fluorescent protein; RT: room temperature;
483 SPF: specific pathogen free; ssODN: single-strand oligo-deoxynucleotide; Tzv: Thiazovivin;
484 WT: Wild-type.

485

486 **DECLARATIONS**

487

488 **Ethics approval and consent to participate**

489 All animal experiments were conducted according to protocols approved by the local Ethical
490 Committee of Laboratory Animals of the KU Leuven (governmental licence LA1210591)
491 following governmental and EU guidelines. All experiments conform to the relevant regulatory
492 standards. The consent for reprogramming human somatic cells to hiPSCs was carried out on
493 ESCRO protocol 19-04 at Mount Sinai (J.TCW.). The autopsies were performed with informed
494 consent in accordance with the applicable laws in Belgium (UZ Leuven) and Germany (Ulm,
495 Bonn and Offenbach). The use of human brain tissue samples for this study was approved by
496 the ethical committees of Leuven University and UZ Leuven.

497

498 **Consent for publication**

499 Not applicable.

500

501 **Availability of data and materials**

502 The datasets used and/or analyzed during the current study are available from the
503 corresponding authors on reasonable request.

504

505 **Competing interests**

506 BDS is a consultant for Eisai. PP, JTCW, AS, SC, MAT, NC, SM, DRT, AMG and AMA declare
507 that they have no competing interests.

508

509 **Funding**

510 This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO) grant
511 G0D9817N to BDS and AMA, the Alzheimer's Association Zenith grant ZEN-17-441253 to
512 BDS and AMA, the European Research Council ERC-CELLPHASE_AD834682 (EU), the UCB
513 grant of the Geneeskundige Stichting Koningin Elisabeth (Belgium), the Bax-Vanluffelen chair
514 for Alzheimer disease (Belgium), a Methusalem grant from KU Leuven (Belgium), the

515 FEDER/Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación grant RTI2018-
516 101850-A-I00 to AMA (Spain), start-up grant from the Basque Foundation of Science
517 (IKERBASQUE) to AMA, the NIA K01AG062683 to JTCW., and the JPB foundation to JTCW
518 and AMG.

519

520 **Authors' contributions**

521 AMA and BDS conceived the study and planned experiments. AMA, PP, JTCW, AS, SC, MAT,
522 NC, and SM performed the experiments. All authors interpreted data. AMA and BDS wrote the
523 first version of the manuscript. All authors contributed to and approved the final version.

524

525 **Acknowledgments**

526 We thank Veronique Hendrickx and Jonas Verwaeren for help with the mouse colonies and
527 Alicja Ronisz for technical assistance. Mouse experiments were supported by Inframouse (KU
528 Leuven and VIB). Confocal microscopy was performed in the VIB Bio Imaging Core (LiMoNe
529 and EMoNe facilities).

530

531 **REFERENCES**

- 532 1. Ferrer I (2018) Astroglialopathy in Tauopathies. *Neuroglia* 1:126–150. doi:
533 10.3390/neuroglia1010010
- 534 2. Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. *Physiol Rev* 98:239–389.
535 doi: 10.1152/physrev.00042.2016
- 536 3. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett
537 ML, Münch AE, Chung W-S, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar
538 M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017)
539 Neurotoxic reactive astrocytes are induced by activated microglia. *Nature* 541:481-487. doi:
540 10.1038/nature21029

541 4. Ouali Alami N, Schurr C, Olde Heuvel F, Tang L, Li Q, Tasdogan A, Kimbara A,
542 Nettekoven M, Ottaviani G, Raposo C, Röver S, Rogers-Evans M, Rothenhäusler B, Ullmer C,
543 Fingerle J, Grether U, Knuesel I, Boeckers TM, Ludolph A, Wirth T, Roselli F, Baumann B
544 (2018) NF-κB activation in astrocytes drives a stage-specific beneficial neuroimmunological
545 response in ALS. *EMBO J.* 37:e98697. doi: 10.15252/embj.201798697

546 5. Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao C, Ardura-fabregat A, Lima
547 KA De, Gutiérrez-vázquez C, Hewson P, Staszewski O, Blain M, Healy L, Neziraj T, Borio M,
548 Wheeler M, Dragin LL, Laplaud DA, Antel J, Alvarez JI, Prinz M, Quintana FJ (2018) Microglial
549 control of astrocytes in response to microbial metabolites. *Nature* 557:724-728. doi:
550 10.1038/s41586-018-0119-x

551 6. Yun SP, Kam T, Panicker N, Kim S, Oh Y, Park J, Kwon S, Park YJ, Karuppagounder
552 SS, Park H, Kim S, Oh N, Kim NA, Lee S, Brahmachari S, Mao X, Lee JH, Kumar M, An D,
553 Kang S, Lee Y, Lee KC, Na DH, Kim D, Lee SH, Roschke V V, Liddelow SA, Mari Z, Barres
554 BA, Dawson VL, Lee S (2018) Block of A1 astrocyte conversion by microglia is neuroprotective
555 in models of Parkinson ' s disease. *Nat Med.* 24:931-938. doi: 10.1038/s41591-018-0051-5

556 7. Wheeler MA, Clark IC, Tjon EC, Li Z, Zandee SEJ, Couturier CP, Watson BR, Scalisi
557 G, Alkwai S, Rothhammer V, Rotem A, Heyman JA, Thaploo S, Sanmarco LM, Ragoussis J,
558 Weitz DA, Petrecca K, Moffitt JR, Becher B, Antel JP, Prat A, Quintana FJ (2020) MAFG-driven
559 astrocytes promote CNS inflammation. *Nature* 578:593–599. doi: 10.1038/s41586-020-1999-
560 0

561 8. Arranz AM, De Strooper B (2019) The role of astroglia in Alzheimer's disease:
562 pathophysiology and clinical implications. *Lancet Neurol* 18:406–414. doi: 10.1016/S1474-
563 4422(18)30490-3

564 9. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al.
565 (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's
566 disease. *Nat Genet* 45:1452–8. doi: 10.1038/ng.2802

567 10. Verheijen J, Sleegers K (2018) Understanding Alzheimer Disease at the Interface
568 between Genetics and Transcriptomics. *Trends Genet* 34:434–447. doi:
569 10.1016/j.tig.2018.02.007

570 11. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H,
571 Steinberg GK, Edwards MSB, Li G, Duncan JA, Cheshier SH, Shuer LM, Chang EF, Grant
572 GA, Gephart MGH, Barres BA (2016) Purification and Characterization of Progenitor and
573 Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse.
574 *Neuron* 89:37-53. doi: 10.1016/j.neuron.2015.11.013

575 12. Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E (2000) Amyloid β -
576 protein (A β)-containing astrocytes are located preferentially near N-terminal-truncated A β
577 deposits in the human entorhinal cortex. *Acta Neuropathol* 100:608–617. doi:
578 10.1007/s004010000242

579 13. Thal DR (2012) The role of astrocytes in amyloid β -protein toxicity and clearance. *Exp*
580 *Neurol* 236:1–5. doi: 10.1016/j.expneurol.2012.04.021

581 14. Mulder SD, Veerhuis R, Blankenstein MA, Nielsen HM (2012) The effect of amyloid
582 associated proteins on the expression of genes involved in amyloid- β clearance by adult
583 human astrocytes. *Exp Neurol* 233:373–379. doi: 10.1016/j.expneurol.2011.11.001

584 15. Pike CJ, Cummings BJ, Cotman CW (1995) Early association of reactive astrocytes
585 with senile plaques in Alzheimer's disease. *Exp Neurol* 132:172–179. doi: 10.1016/0014-
586 4886(95)90022-5

587 16. Colombo JA, Quinn B, Puissant V (2002) Disruption of astroglial interlaminar processes
588 in Alzheimer's disease. *Brain Res Bull* 58:235–242. doi: 10.1016/S0361-9230(02)00785-2

589 17. Hsu ET, Gangolli M, Su S, Holleran L, Stein TD, Alvarez VE (2018) Astrocytic
590 degeneration in chronic traumatic encephalopathy. *Acta Neuropathol.* 136:955-972. doi:
591 10.1007/s00401-018-1902-3

592 18. Orre M, Kamphuis W, Osborn LM, Jansen AHP, Kooijman L, Bossers K, Hol EM (2014)
593 Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction. *Neurobiol Aging*.
594 35:2746-2760. doi: 10.1016/j.neurobiolaging.2014.06.004

595 19. Lian H, Yang L, Cole A, Sun L, Chiang ACA, Fowler SW, Shim DJ, Rodriguez-Rivera
596 J, Taglialatela G, Jankowsky JL, Lu HC, Zheng H (2015) NF κ B-Activated Astroglial Release
597 of Complement C3 Compromises Neuronal Morphology and Function Associated with
598 Alzheimer's Disease. *Neuron* 85:101-115. doi: 10.1016/j.neuron.2014.11.018

599 20. Lian H, Litvinchuk A, Chiang AC-A, Aithmitti N, Jankowsky JL, Zheng H (2016)
600 Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology
601 in Mouse Models of Alzheimer's Disease. *J Neurosci* 36:577–589. doi:
602 10.1523/JNEUROSCI.2117-15.2016

603 21. Diniz LP, Tortelli V, Matias XI, Morgado J, Be AP, Melo XHM, Seixas XGS, Alves-leon
604 XS V, Souza XJM De, Ferreira XST, Felice XFG De, Gomes A (2017) Astrocyte Transforming
605 Growth Factor Beta 1 Protects Synapses against A β Oligomers in Alzheimer's Disease Model.
606 *Journal of Neuroscience* 37:6797–6809. doi: 10.1523/JNEUROSCI.3351-16.2017

607 22. Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, Xu Q, Wyatt JD, Pilcher W,
608 Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely Hominid Features of
609 Adult Human Astrocytes. *J Neurosci*. 29:3276-87. doi: 10.1523/JNEUROSCI.4707-08.2009

610 23. Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu Q, Oberheim NA, Bekar
611 L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M (2013) Forebrain engraftment
612 by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. *Cell*
613 *Stem Cell* 12(3):342–53. doi: 10.1016/j.stem.2012.12.015

614 24. Tarassishin L, Suh HS, Lee SC (2014) LPS and IL-1 differentially activate mouse and
615 human astrocytes: Role of CD14. *Glia* 62:999–1013. doi: 10.1002/glia.22657

616 25. Lundin A, Delsing L, Clausen M, Ricchiuto P, Sanchez J, Sabirsh A, Ding M,
617 Synnergren J, Zetterberg H, Brolén G, Hicks R, Herland A, Falk A (2018) Human iPS-Derived
618 Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with
619 Conventional Astrocytic Models. Stem Cell Reports 10:1030–1045. doi:
620 10.1016/j.stemcr.2018.01.021

621 26. Zhao J, Davis MD, Martens YA, Shinohara M, Graff-radford NR, Younkin SG, Wszolek
622 ZK, Kanekiyo T, Bu G (2017) APOE e 4 / e 4 diminishes neurotrophic function of human iPSC-
623 derived astrocytes. Hum. Mol. Genetics. 26:2690–2700. doi: 10.1093/hmg/ddx155

624 27. Oksanen M, Petersen AJ, Naumenko N, Puttonen K, Lehtonen Š, Gubert Olivé M,
625 Shakirzyanova A, Leskelä S, Sarajärvi T, Viitanen M, Rinne JO, Hiltunen M, Haapasalo A,
626 Giniatullin R, Tavi P, Zhang SC, Kanninen KM, Hämäläinen RH, Koistinaho J (2017) PSEN1
627 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer's Disease.
628 Stem Cell Reports 9:1885–1897. doi: 10.1016/j.stemcr.2017.10.016

629 28. Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, Cam HP, Gjoneska E, Raja
630 WK, Cheng J, Rueda R, Kritskiy O, Abdurrob F, Peng Z, Milo B, Yu CJ, Elmsaouri S, Dey D,
631 Ko T, Yankner BA, Tsai LH (2018) APOE4 Causes Widespread Molecular and Cellular
632 Alterations Associated with Alzheimer's Disease Phenotypes in Human iPSC-Derived Brain
633 Cell Types. Neuron 98:1141-1154.e7. doi: 10.1016/j.neuron.2018.05.008

634 29. TCW J, Liang SA, Qian L, Pipalia NH, Chao MJ, Bertelsen SE, Kapoor M, Marcora E,
635 Sikora E, Holtzman D, Maxfield FR, Zhang B, Wang M, Poon WW, Goate AM (2019)
636 Cholesterol and Matrisome Pathways Dysregulated in Human APOE ε4 Glia. bioRxiv. 713362.
637 doi: 10.2139/ssrn.3435267

638 30. Perriot S, Mathias A, Perriard G, Canales M, Jonkmans N, Merienne N, Meunier C, El
639 Kassar L, Perrier AL, Laplaud DA, Schluep M, Déglon N, Du Pasquier R (2018) Human
640 Induced Pluripotent Stem Cell-Derived Astrocytes Are Differentially Activated by Multiple

641 Sclerosis-Associated Cytokines. Stem Cell Reports 11:1199–1210. doi:
642 10.1016/j.stemcr.2018.09.015

643 31. Espuny-Camacho I, Arranz AM, Fiers M, Snellinx A, Ando K, Munck S, Bonnefont J,
644 Lambot L, Corthout N, Omodho L, Vanden Eynden E, Radaelli E, Tesseur I, Wray S, Ebneth
645 A, Hardy J, Leroy K, Brion JP, Vanderhaeghen P, De Strooper B (2017) Hallmarks of
646 Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain.
647 Neuron 93:1066–1081.e8. doi: 10.1016/j.neuron.2017.02.001

648 32. Mancuso R, Van Den Daele J, Fattorelli N, Wolfs L, Balusu S, Burton O, Liston A,
649 Sierksma A, Fourne Y, Poovathingal S, Arranz-Mendiguren A, Sala Frigerio C, Claes C,
650 Serneels L, Theys T, Perry VH, Verfaillie C, Fiers M, De Strooper B (2019) Stem-cell-derived
651 human microglia transplanted in mouse brain to study human disease. Nat Neurosci. 22:2111–
652 2116. doi: 10.1038/s41593-019-0525-x

653 33. Hasselmann J, Coburn MA, England W, Figueroa Velez DX, Kiani Shabestari S, Tu
654 CH, McQuade A, Kolahdouzan M, Echeverria K, Claes C, Nakayama T, Azevedo R, Coufal
655 NG, Han CZ, Cummings BJ, Davtyan H, Glass CK, Healy LM, Gandhi SP, Spitale RC, Blurton-
656 Jones M (2019) Development of a Chimeric Model to Study and Manipulate Human Microglia
657 In Vivo. Neuron 103:1016–1033.e10. doi: 10.1016/j.neuron.2019.07.002

658 34. Benraiss A, Wang S, Herrlinger S, Li X, Chandler-Militello D, Mauceri J, Burn HB, Toner
659 M, Osipovitch M, Jim Xu Q, Ding F, Wang F, Kang N, Kang J, Curtin PC, Brunner D, Windrem
660 MS, Munoz-Sanjuan I, Nedergaard M, Goldman SA (2016) Human glia can both induce and
661 rescue aspects of disease phenotype in Huntington disease. Nat Commun. 7:11758. doi:
662 10.1038/ncomms11758

663 35. Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy
664 NS, Nedergaard M, Havton LA, Wang S, Goldman SA (2008) Neonatal Chimerization with
665 Human Glial Progenitor Cells Can Both Remyelinate and Rescue the Otherwise Lethally
666 Hypomyelinated Shiverer Mouse. Cell Stem Cell. 2:553-565. doi: 10.1016/j.stem.2008.03.020

667 36. Windrem MS, Osipovitch M, Liu Z, Bates J, Chandler-Militello D, Zou L, Munir J, Schanz
668 S, McCoy K, Miller RH, Wang S, Nedergaard M, Findling RL, Tesar PJ, Goldman SA (2017)
669 Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. *Cell Stem
670 Cell* 21:195–208.e6. doi: 10.1016/j.stem.2017.06.012

671 37. Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S,
672 Tessier-Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous
673 mutations using CRISPR/Cas9. *Nature* 533:125–129. doi: 10.1038/nature17664

674 38. Bowles KR, Julia TCW, Qian L, Jadow BM, Goate AM (2019) Reduced variability of
675 neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell
676 sorting. *PLoS One* 14:1–18. doi: 10.1371/journal.pone.0213374

677 39. TCW J, Wang M, Pimenova AA, Bowles KR, Hartley BJ, Lacin E, Machlovi SI, Abdelaal
678 R, Karch CM, Phatnani H, Slesinger PA, Zhang B, Goate AM, Brennand KJ (2017) An Efficient
679 Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells. *Stem Cell
680 Reports* 9:600–614. doi: 10.1016/j.stemcr.2017.06.018

681 40. Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME,
682 Jäggi F, Wolburg H, Gengler S, Haass C, Ghetti B, Czech C, Hölscher C, Mathews PM, Jucker
683 M (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust
684 pathology. *EMBO Rep* 7:940–6. doi: 10.1038/sj.embor.7400784

685 41. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B,
686 McKenna S, Mobraaten L, Rajan T V, Greiner DL (1995) Multiple defects in innate and adaptive
687 immunologic function in NOD/LtSz-scid mice. *J Immunol* 154:180–91

688 42. Koper MJ, Van Schoor E, Ospitalieri S, Vandenberghe R, Vandenbulcke M, von Arnim
689 CAF, Tousseyen T, Balusu S, De Strooper B, Thal DR (2020) Necosome complex detected in
690 granulovacuolar degeneration is associated with neuronal loss in Alzheimer's disease. *Acta
691 Neuropathol* 139:463–484. doi: 10.1007/s00401-019-02103-y

692 43. Thal DR, Rüb U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K, Braak E, Braak
693 H (2000) Sequence of A β -protein deposition in the human medial temporal lobe. *J Neuropathol*
694 *Exp Neurol* 59:733–748. doi: 10.1093/jnen/59.8.733

695 44. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Tredici K (2006) Staging of Alzheimer
696 disease-associated neurofibrillary pathology using paraffin sections and
697 immunocytochemistry. *Acta Neuropathol* 112:389–404. doi: 10.1007/s00401-006-0127-z

698 45. Chen H, Qian K, Chen W, Hu B, Blackbourn LW, Du Z, Ma L, Liu H, Knobel KM, Ayala
699 M, Zhang SC (2015) Human-derived neural progenitors functionally replace astrocytes in adult
700 mice. *J Clin Invest* 125:1033–1042. doi: 10.1172/JCI69097

701 46. Sosunov AA, Wu X, Tsankova NM, Guilfoyle E, McKhann GM, Goldman JE (2014)
702 Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human
703 brain. *J Neurosci* 34:2285–2298. doi: 10.1523/JNEUROSCI.4037-13.2014

704 47. Xu R, Li X, Boreland AJ, Posyton A, Kwan K, Hart RP, Jiang P (2020) Human iPSC-
705 derived mature microglia retain their identity and functionally integrate in the chimeric mouse
706 brain. *Nat Commun* 11: 1577. doi: 10.1038/s41467-020-15411-9

707 48. Kirkeby A, Nolbrant S, Tiklova K, Heuer A, Kee N, Cardoso T, Ottosson DR, Lelos MJ,
708 Rifes P, Dunnett SB, Grealish S, Perlmann T, Parmar M (2017) Predictive Markers Guide
709 Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for
710 Parkinson's Disease. *Cell Stem Cell* 20:135–148. doi: 10.1016/j.stem.2016.09.004

711 49. Windrem MS, Schanz SJ, Morrow C, Munir J, Chandler-Militello D, Wang S, Goldman
712 SA (2014) A Competitive Advantage by Neonatally Engrafted Human Glial Progenitors Yields
713 Mice Whose Brains Are Chimeric for Human Glia. *J Neurosci.* 34:16153–16161. doi:
714 10.1523/JNEUROSCI.1510-14.2014

715

716

717 **TABLES AND FIGURE LEGENDS**

718 **Table 1. Information on the hiPSC lines.** The table shows hiPSC name, patient ethnicity,
719 gender, age of onset, age at skin biopsy, disease status (CDR at biopsy), original *APOE*
720 genotype and genetic modification. F female, M male, AD Alzheimer's disease, *APOE*
721 apolipoprotein, CDR clinical dementia rating, hiPSC human induced pluripotent stem cells.
722 These cells were previously generated and characterized by [37].

723 **Table 2. Details of the Human Cohort.** The table shows the human subjects studied for
724 histology of astrocytes. Indicated are: the age in years, the gender, the A β -MTL phase
725 representing the distribution of A β deposits in the subfields of the MTL (43), the stage of
726 neurofibrillary tangle pathology according to Braak and Braak (44) (NFT stage), PMI,
727 neuropathological diagnosis and type of dementia. F female, M male, AD Alzheimer's disease,
728 AD-VaD Alzheimer's disease plus signs of vascular dementia, p-preAD preclinical AD, non-AD
729 non-demented control, AGD argyrophilic grain disease, B bleeding, CAA cerebrovascular
730 angiopathy, CM carcinoma metastasis, I infarction, MI microinfarction, MTL medial temporal
731 lobe, NFT neurofibrillary tangle, PMI post-mortem interval.

732 **Fig. 1 hiPSC-glia progenitors engraft the mouse brain and differentiate into astrocytes.**
733 **(a)** Schematics of the differentiation and transplantation procedures. hiPSCs: human induced
734 pluripotent stem cells, NPCs: neural progenitor cells, GPCs: glia progenitor cells, SB:
735 SB431542, LDN: LDN193189, FGF2: fibroblast growth factor 2, AGS: astrocyte growth
736 supplement. Scale bars: 100 μ m. **(b)** RFP staining (red) shows the distribution of hiPSC-
737 derived astrocytes on a coronal brain section of a chimeric mouse at five months after
738 transplantation. Scale bar: 200 μ m. **(c)** Dot map displaying the widespread distribution of the
739 hiPSC-derived astrocytes (RFP, red) in four coronal sections of this mouse brain. **(d-e)** RFP
740 (red) and hNuclei (green) expressing hiPSC-astrocytes depict a complex fine structure in the
741 cortex (CTX) and corpus callosum (CC) of chimeric mice. Scale bars: 50 μ m (d), 25 μ m (e).
742 **(d'-e')** Enlarged images of the inserts in d and e. **(f-i)** Engrafted hiPSC-astrocytes (RFP+, red)
743 express GFAP (f), S100b (g), Vimentin (h) and AQP4 (i) (green) five months after

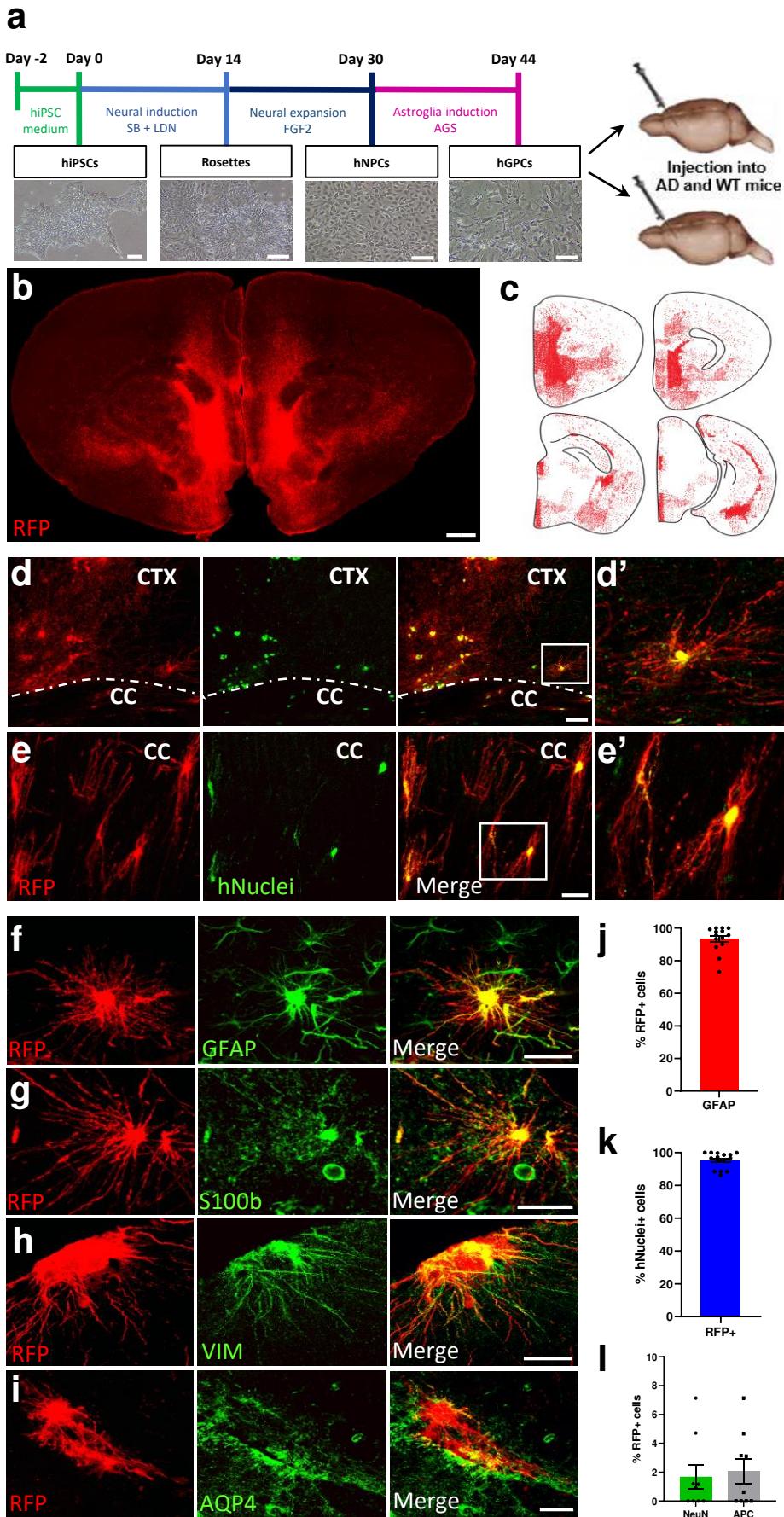
744 transplantation. Scale bars: 25 μ m. (j) Percentage of RFP+ cells expressing GFAP (n=14
745 mice). (k) Percentage of hNuclei+ cells expressing RFP (n=15 mice). (l) Percentage of RFP+
746 cells expressing NeuN and APC (n=9 mice). Data are represented as mean \pm SEM

747 **Fig. 2 hiPSC-astrocytes integrate functionally within the mouse brain. (a-b)** A xenografted
748 hiPSC-astrocyte in the chimeric mouse brain (a, red) and a GFAP+ cortical astrocyte in the
749 human brain (b, brown) contacting blood vessels with their end-feet. Scale bars: 25 μ m. (c)
750 hiPSC-astrocyte processes (RFP, red) express the gap junction marker Cx43 (green, arrows).
751 Scale bar: 2 μ m. (d) The gap-junction dye Alexa488 loaded on a hiPSC-astrocyte (RFP+, red)
752 diffuses into RFP- neighboring host cells. Scale bar: 25 μ m. (e-h) Enlarged views of the area
753 selected in d. (e) RFP+ hiPSC-astrocyte, (f) Alexa488 dye, (g) Nuclei stained with DAPI, (h)
754 Overlay. Arrows point to Alexa488+ RFP- host cells. (i-k) Representative traces of current
755 injection steps of 20mV (i), resting membrane potentials (j) and current-voltage (I/V) curves (k)
756 of hiPSC-astrocytes in the host brain (n=17 cells from 6 mice). Data are represented as mean
757 \pm SEM

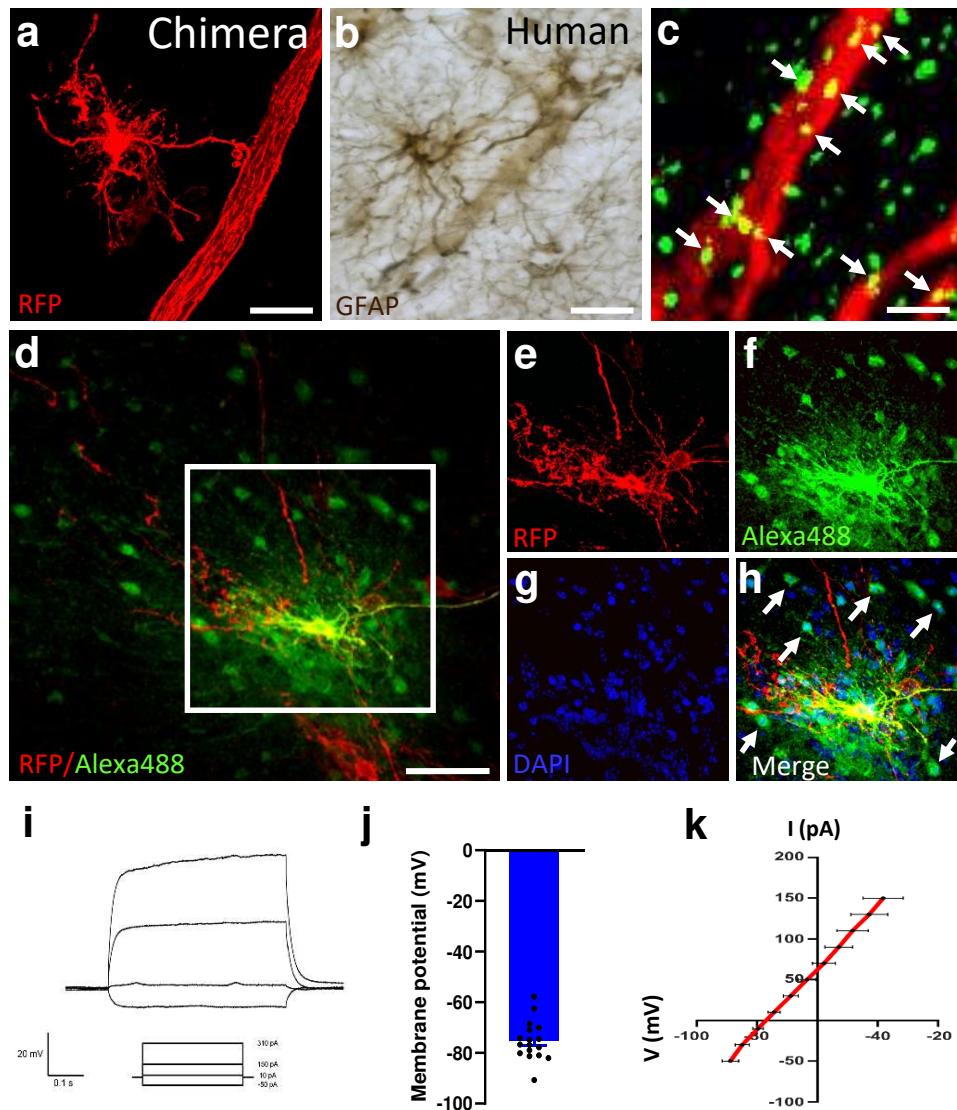
758 **Fig. 3 hiPSC-astrocytes recapitulate human morphological subtypes and retain human
759 specific features within the mouse brain. (a-j)** Representative images of RFP+ (white)
760 interlaminar (a-c), varicose-projection (d-e), protoplasmic (f-g) and fibrous astrocytes (h-j) in
761 the brain of wild-type mice five months after transplantation. Scale bars: 25 μ m. (k) Histogram
762 showing the percentage of RFP+ cells of each astroglial subtype on the mouse brain (n=9
763 mice). Data are represented as mean \pm SEM. (l) Representative image showing mouse (green,
764 arrows) and hiPSC-astrocytes (red) on a chimeric mouse brain five months after
765 transplantation. Scale bar: 25 μ m. (m) Histogram plotting the size of hiPSC-derived astrocytes
766 vs mouse astrocytes on the host brain (n=12 mice). Data are represented as mean \pm SEM,
767 Student's t test: ****p<0.0001

768 **Fig. 4 Four subtypes of morphologically defined GFAP+ astrocytes in the human
769 entorhinal cortex and white matter. (a)** Overview of human entorhinal cortex layers stained
770 with GFAP (brown) to detect astrocytes. Layers molecular to lamina dissecans are mainly

771 composed of subpial interlaminar astrocytes, while layers pri- α to pri- γ are rich in protoplasmic
772 astrocytes (arrows). **(b-f)** Representative images of subpial interlaminar astrocytes (b) and
773 their tortuous processes (c), protoplasmic astrocytes (d), varicose-projection astrocytes (e) and
774 their beaded processes (f). **(g-i)** Overview of human white matter (g) and GFAP+ fibrous
775 astrocytes (h-i). mol: molecular layer, diss: lamina dissecans. Scale bars: 50 μ m in (a) and (g);
776 25 μ m in (b) and (h); 10 μ m in (c-f) and (i)


777 **Fig. 5 hiPSC-astrocytes show differential morphological responses to A β plaques within**
778 **the chimeric mouse brain. (a-f, a'-f')** hiPSC-astrocytes (RFP+, red) exposed to A β plaques
779 (Thioflavin, green) show hypertrophic (a-c, a'-c'), quiescent (d, d') and atrophic (e-f, e'-f')
780 morphologies in AD chimeric mice five months after transplantation. Scale bars: 25 μ m. **(g-h)**
781 Percentage of hiPSC-astrocytes showing differential morphologies as a group (g, n=7 mice)
782 and per ApoE genotype (h, n=3 mice for APOE3/3; n=4 mice for APOE4/4) five months post-
783 transplantation. Data are represented as mean \pm SEM, Chi-square test: n.s., non-significant

784 **Fig. 6 Astrocytes display differential responses to A β in the human AD-patient brain. (a-**
785 **f)** Representative immunohistochemistry images of GFAP+ astrocytes (brown) around
786 amyloid-deposits (blue, dashed lines) in the cortex and hippocampus of AD-patient brains. **(a-**
787 **d)** Overviews (a, b) and enlarged views (c, d) of the insets in a, b respectively. **(c-f)** GFAP+
788 hypertrophic (red arrows) and quiescent or atrophic (green arrows) astrocytes around amyloid-
789 deposits. Scale bars: 25 μ m in (a, b); 10 μ m in (c-f)


790 **Fig. 7 Hypertrophic, quiescent and atrophic astrocytes close to amyloid deposits in the**
791 **human AD-patient brain. (a-l)** Representative immunofluorescence images of GFAP+
792 astrocytes (red) around amyloid-deposits (4G8, green) in the cortex and hippocampus of AD
793 patient brains. **(c-l)** GFAP+ astrocytes (red) show hypertrophic (d-e, i-j), quiescent (f, k) and
794 atrophic (g, l) morphologies close to amyloid deposits. (d-g, i-l) Enlarged views of the insets in
795 c and h respectively. Scale bars: 50 μ m in (a, b) and 25 μ m in (c, h)

796

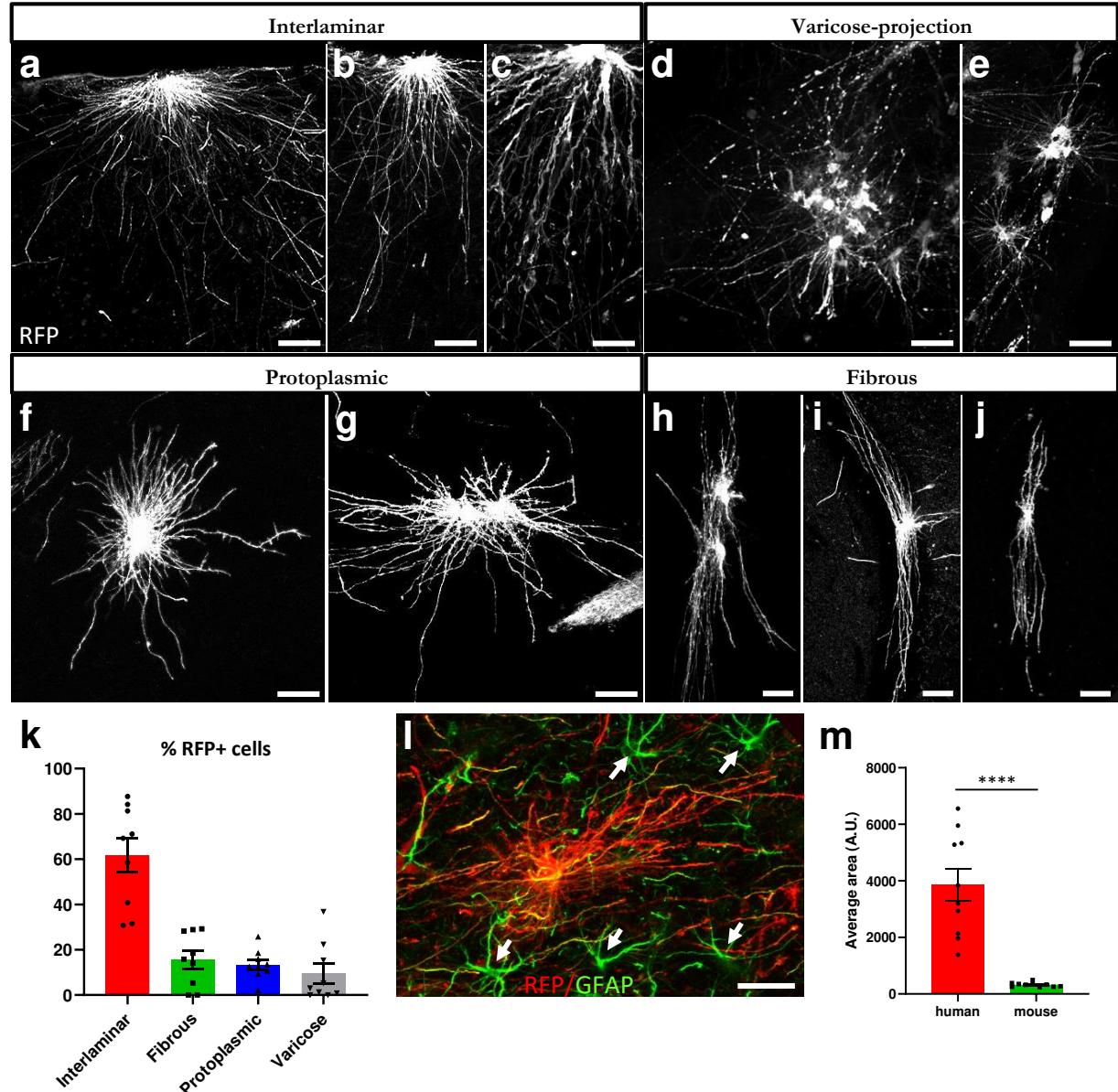
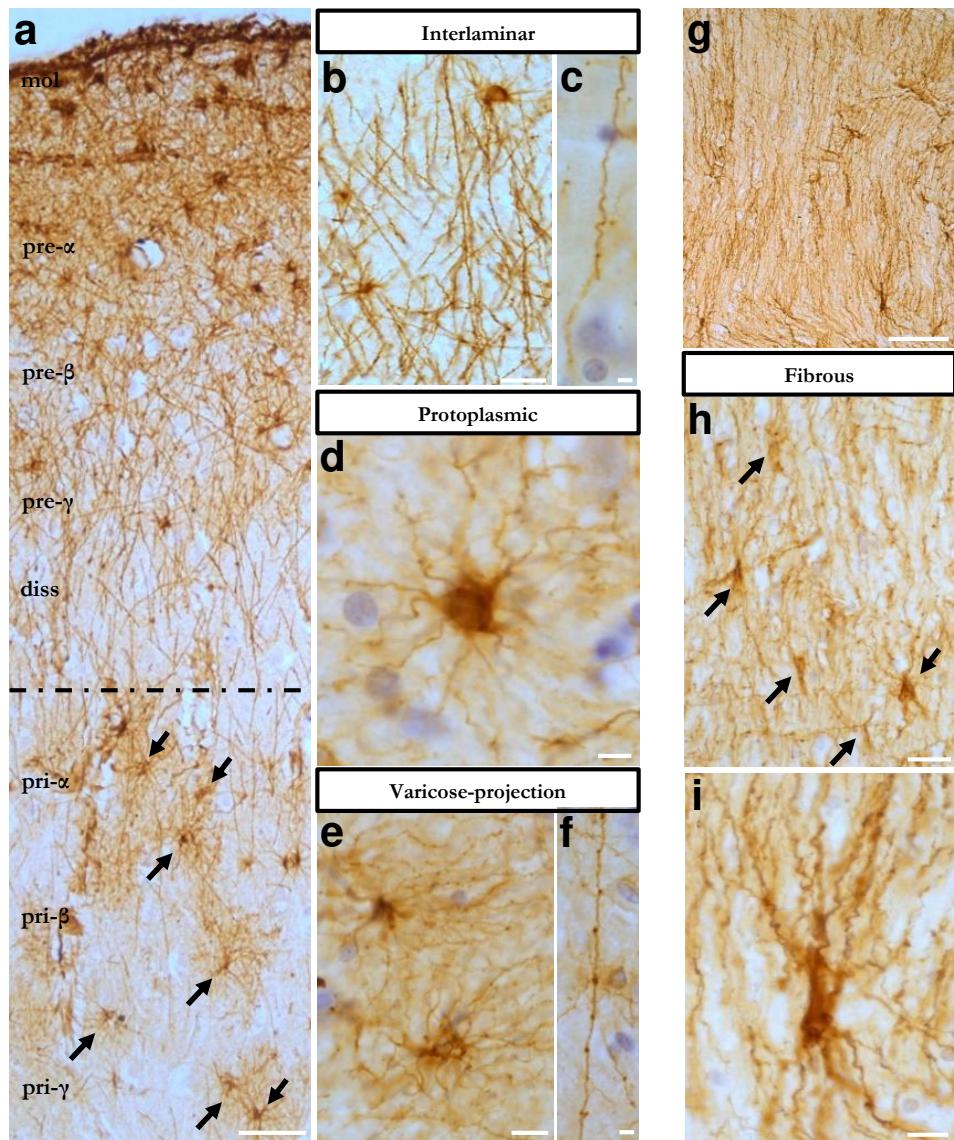

797

Figure 1


Figure 2

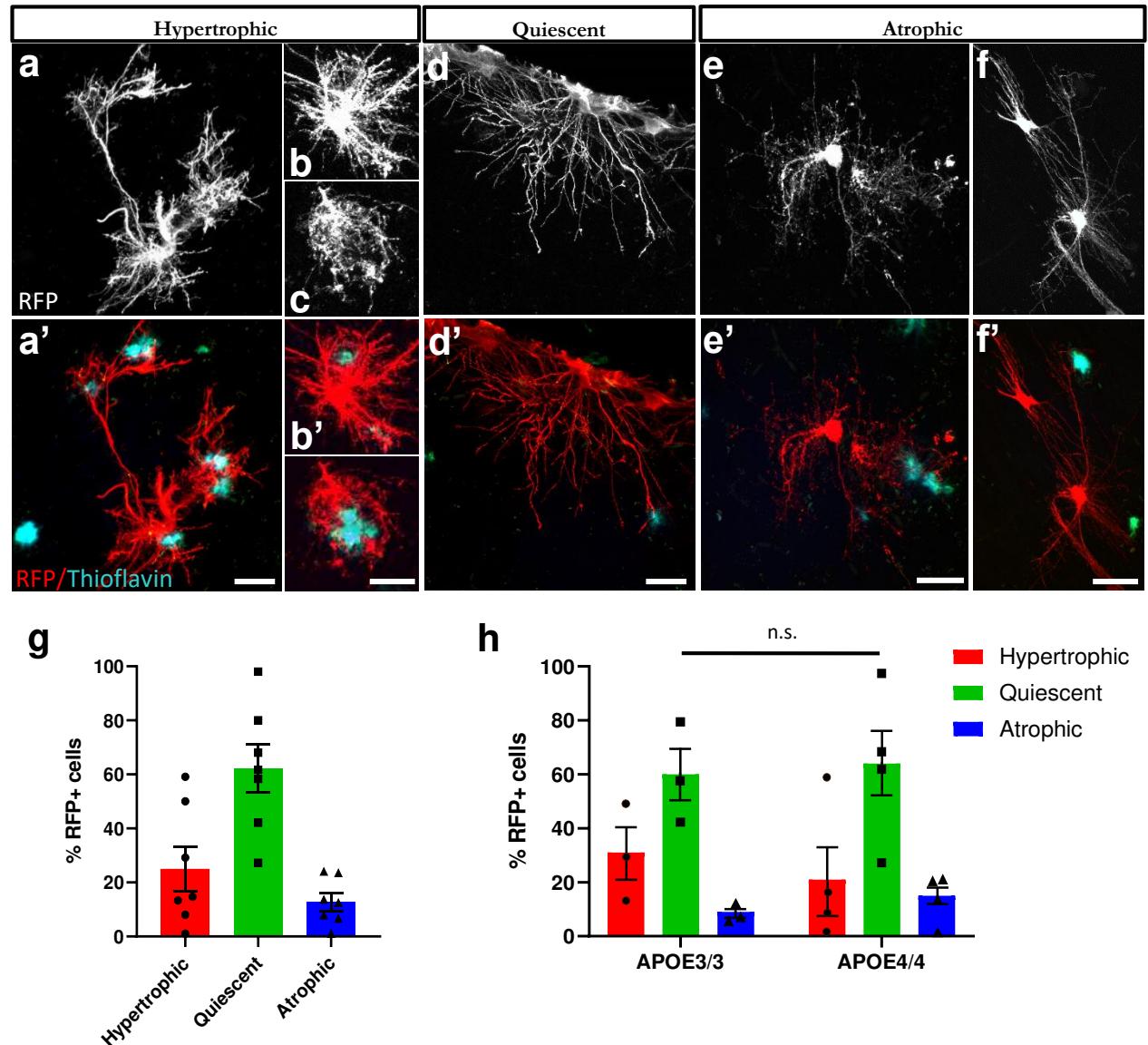


Figure 3

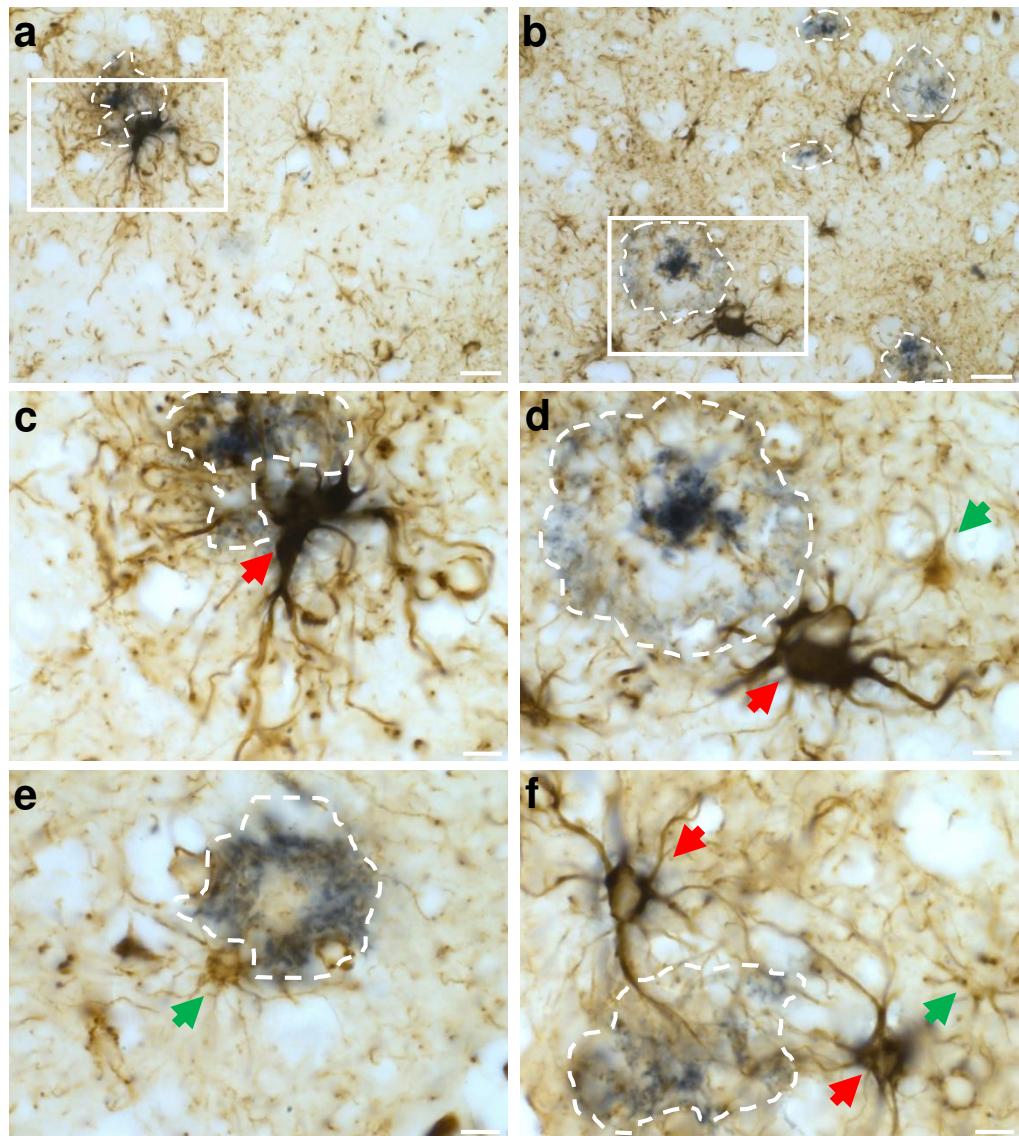


Figure 4

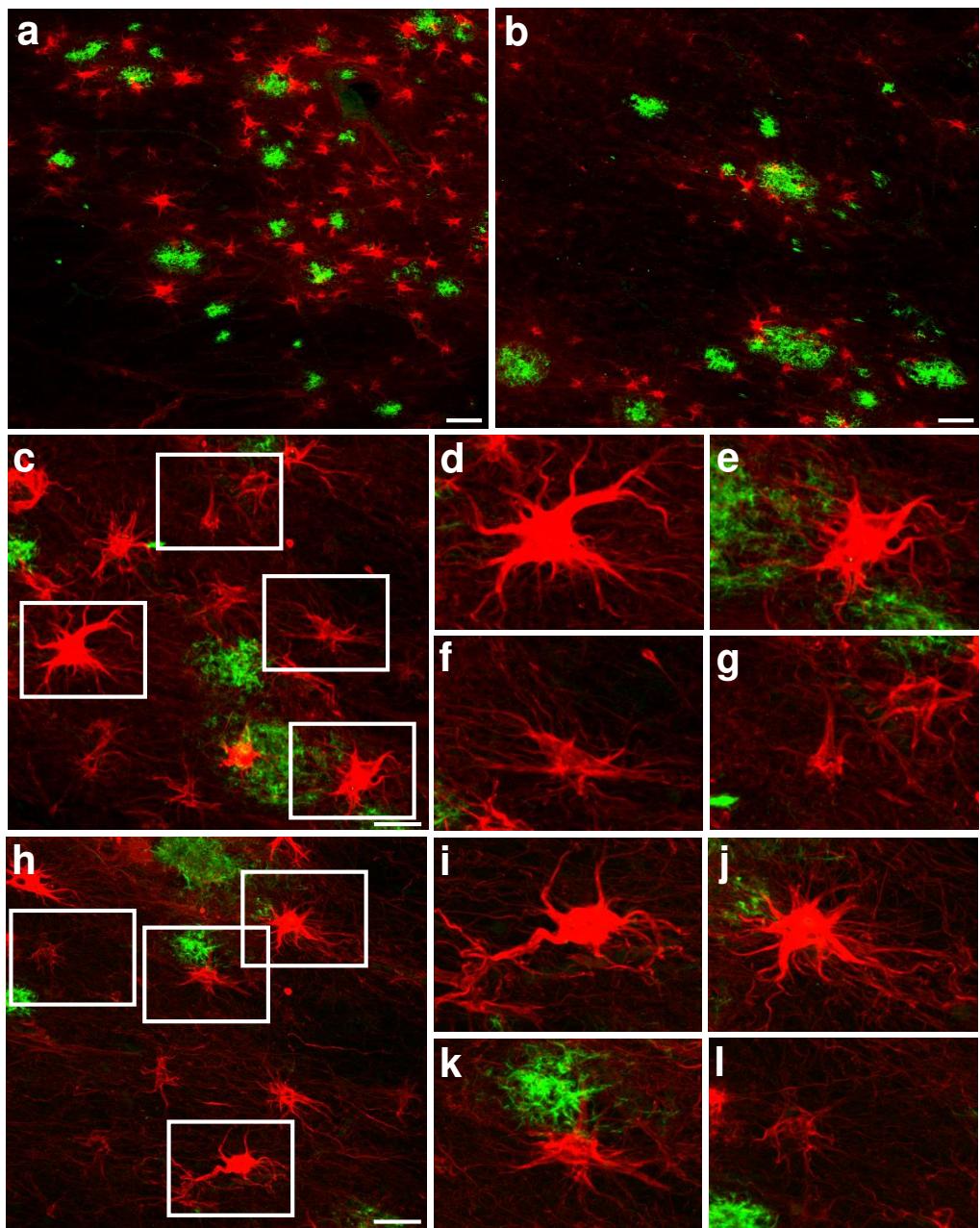


Figure 5

Figure 6

Figure 7

