

scPretrain: Multi-task self-supervised learning for cell type classification

Ruiyi Zhang​1​, Yunan Luo​2​, Jianzhu Ma​3,4​, Ming Zhang​1*​, Sheng Wang​5*

1​Department of Computer Science, School of EECS, Peking University, Beijing, China
2​Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
3​Department of Computer Science, Purdue University, West Lafayette, IN
4​Department of Biochemistry, Purdue University, West Lafayette, IN
5​Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
* Correspondence to Ming Zhang at mzhang@net.pku.edu.cn and Sheng Wang at
swang​@cs.washington.edu

ABSTRACT

Rapidly generated scRNA-seq datasets enable us to understand cellular differences and the function
of each individual cell at single-cell resolution. Cell type classification, which aims at characterizing
and labeling groups of cells according to their gene expression, is one of the most important steps for
single-cell analysis. To facilitate the manual curation process, supervised learning methods have been
used to automatically classify cells. Most of the existing supervised learning approaches only utilize
annotated cells in the training step while ignoring the more abundant unannotated cells. In this paper,
we proposed scPretrain, a multi-task self-supervised learning approach that jointly considers
annotated and unannotated cells for cell type classification. scPretrain consists of a pre-training step
and a fine-tuning step. In the pre-training step, scPretrain uses a multi-task learning framework to
train a feature extraction encoder based on each dataset’s pseudo-labels, where only unannotated cells
are used. In the fine-tuning step, scPretrain fine-tunes this feature extraction encoder using the limited
annotated cells in a new dataset. We evaluated scPretrain on 60 diverse datasets from different
technologies, species and organs, and obtained a significant improvement on both cell type
classification and cell clustering. Moreover, the representations obtained by scPretrain in the
pre-training step also enhanced the performance of conventional classifiers such as random forest,
logistic regression and support vector machines. scPretrain is able to effectively utilize the massive
amount of unlabelled data and be applied to annotating increasingly generated scRNA-seq datasets.

Keywords: ​single cell analysis, cell type classification, multi-task learning, self-supervised learning
Availability​: ​https://github.com/ruiyi-zhang/scPretrain

1 INTRODUCTION

Recent breakthroughs in single cell sequencing technology have generated a large number of
large-scale scRNA-seq datasets ​[1–10]​, which hold the promise of understanding cellular differences
and the function of each individual cell at single-cell resolution. One of the most important steps in
single-cell analysis is to classify each cell into its cell type based on the gene expression profile.
Manually labelling cell types cannot scale to massively expanding single cell datasets and also
requires domain knowledge for specific tissues and organs. For example, one of the existing largest
single cell datasets was annotated by a group of 39 domain experts ​[11]​. To accelerate the
labor-intensive manual curation, supervised learning approaches have been used to automatically
classify cells using existing annotated cells ​[12–20]​. Despite the encouraging performance of these
approaches, they often ignore unannotated cells, which are more abundant than annotated cells and
contain rich information of gene activity. Moreover, limiting the analysis to annotated cells can also
lead to overfitting and being vulnerable to batch effects ​[21–24]​, hindering progress towards

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

mailto:russ.altman@stanford.edu
https://github.com/ruiyi-zhang/scPretrain
https://paperpile.com/c/oi5Uxx/AmC6+054o+rdUi+sQFI+2Ta9+phfZ+kSvT+Uj5L+CTR9+vjyG
https://paperpile.com/c/oi5Uxx/XX3N
https://paperpile.com/c/oi5Uxx/hN8v+D2Pe+JkoP+T9Be+nvZ5+BjCo+bhas+CTt3+DDmx
https://paperpile.com/c/oi5Uxx/QEwf+FjLM+7ATY+rlnO
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

comprehensive cell type annotation and cellular diversity understanding. Intuitively, jointly
leveraging both unannotated and annotated cells might collectively address these problems and thus
advance cell type classification.

Self-supervised learning (SSL) approaches have obtained the state-of-the-art results in various
machine learning fields like natural language processing​[25]​, video analysis ​[26] and computer
vision​[27]​. SSL often consists of a pre-training step and a fine-tuning step. In the pre-training step,
SSL extracts high-quality feature representations using only the unannotated data. In the fine-tuning
step, these representations are used to train a supervised model for the specific task of interests. For
example, BERT used masked language model and next sentence prediction to learn a feature encoder
in the pre-training step​[25]​. After that, task-specific inputs and outputs were used to fine-tune the
feature encoder in the fine-tuning step. These two steps collectively leverage the abundant
unannotated data and expensive annotated data to achieve better classification performance. Unlike
semi-supervised learning approaches ​[28–32]​, SSL does not leverage annotated data in the
pre-training step, thus generating more robust features for downstream applications.

Despite the success of SSL in other machine learning areas, pre-training on gene expression data
remains challenging due to at least two reasons. First, different from word sequences ​[25]​, graphs ​[33]
or images ​[34] that have explicit topological structure, gene expression feature matrix does not have
ordered structure. This ordered structure, however, is the key element in SSL methods such as BERT
which masks and predicts a word using nearby context. Second, single cell datasets present
substantial batch effects due to different technologies, platforms, animals, organs and species ​[21–24]​.
Such batch effects could prevent the feature extraction encoder from learning underlying gene
expression patterns. These batch effects could be further amplified when we do pre-training on a large
number of diverse datasets. Collectively, pre-training on unordered and diverse gene expression
datasets remains challenging.

In this paper, we proposed a novel multi-task self-supervised learning approach scPretrain for cell
type classification. The key idea of scPretrain is to use a multi-task learning framework which views
training on each dataset as a single pre-training task, thus preventing the noise from batch effects.
Moreover, since gene expression matrix does not have any ordered structure, scPretrain first uses
K-means to cluster unannotated cells from each dataset and then trains a feature extraction encoder by
using cluster labels as pseudo-labels. The clustering and classification steps are performed iteratively
to enhance the feature extraction encoder. We extensively tested scPretrain on 60 datasets and
obtained an average improvement of 7.3% on AUPRC and 5.3% on AUROC compared against neural
networks without pre-training. We further showed that the representations created by our model can
also improve the performance of other off-the-shelf classifiers. scPretrain is able to effectively utilize
the massive amount of unlabelled scRNA-seq datasets to advance cell type classification and single
cell analysis.

2 METHODS

The goal of the pre-training step is to learn a feature extraction encoder, which would be used in the
fine-tuning step to classify new cells. We first used K-means to cluster cells in each single cell
dataset, resulting in a pseudo-label for each cell. After that, we exploited a multi-task learning
framework to train a feature extraction encoder shared by different datasets, in order to alleviate batch
effects. We then iteratively leveraged new cell representations to refine pseudo-labels, which were
further used to retrain the multi-task learning framework. In the fine-tuning step, the pre-trained
encoder can be used on downstream tasks like classification and clustering.

2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

https://paperpile.com/c/oi5Uxx/Ho4t
https://paperpile.com/c/oi5Uxx/COKu
https://paperpile.com/c/oi5Uxx/Pc2z
https://paperpile.com/c/oi5Uxx/Ho4t
https://paperpile.com/c/oi5Uxx/ukt6+XoD6+M4d9+4dAF+mk4c
https://paperpile.com/c/oi5Uxx/Ho4t
https://paperpile.com/c/oi5Uxx/EncW
https://paperpile.com/c/oi5Uxx/58Sw
https://paperpile.com/c/oi5Uxx/FjLM+QEwf+7ATY+rlnO
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 1. Flowchart for scPretrain. ​In the pre-training step, scPretrain assigns a pseudo-label to each
cell using K-means. These pseudo-labels are used to train a feature extraction encoder, which is
shared by different datasets and different partitions in a multi-task learning framework. In the
fine-tuning step, this encoder is used to embed cells in a new dataset to low-dimensional
representations, which are further used in downstream tasks such as cell clustering and cell type
classification.

2.1 Problem definition

scPretrain consists of a pre-training step and a fine-tuning step. In the pre-training step, the input is a
collection of unlabelled datasets, . Here, is a gene X , , .., }, (1)D = { 1 X2 . Xg X i ∈ Rn ×si ≤ i ≤ g X i
expression matrix of cells and genes. The goal in the pre-training step is to learn a feature ni s
extraction encoder that maps a high-dimensional gene expression vector of a cell to a (x)Eθ x∈ Rs
low-dimensional vector , where is the dimension of the cell representation. This feature h∈ Rr r
extraction encoder is shared across all unannotated datasets in the pre-training step. In the fine-tuning
step, the input is an annotated dataset , where is the gene expression matrix ,Z ∈ Rm×s Y ∈ Rm×k Z
of ​m cells and ​s genes. is the binarized cell type label matrix and is the number of cell types. Y k

if the ​i​-th cell is cell type ​j ​, otherwise . The goal at the fine-tuning step is to train aY ij = 1 Y ij = 0
cell type classifier using both the feature extraction encoder from the pre-training step and Eθ
annotations from . This classifier will be evaluated on another test dataset , where the goal is to Y Q
predict the cell type of cells in . The feature extraction encoder is shared across all dataset in Q Eθ
the pre-training and fine-tuning steps, thus forcing it to encode the common gene expression patterns

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

rather than batch effects in individual datasets. As a consequence, scPretrain is scalable to the large
number of diverse unannotated datasets and can be rapidly used to annotate new datasets.

2.2 Pre-training using pseudo-labels

Given a gene expression matrix of ​n ​cells and ​s genes, our goal is to learn a feature X ∈ Rn×s
extraction encoder , which is expected to perform well on other datasets in various downstream (x)Eθ
tasks. Let be the labels of the training set. Let be the classifier, Y ′∈ Rn×k′ (h) (sigmoid(h))F ω = F 1
where , ​h ​is the output of the encoder , and ​is a fully-connected neural igmoid(h)s = 1

1+e−h Eθ F 1
network with output dimension . Let ​x ​be an input gene expression vector, be the k′ (E (x))t = F ω θ
corresponding dimension output vector and ​y be the binary label vector of ​x​, is the predicted k′ vi
score that ​x​ belongs to class ​i​:

. (1)v i = eti

∑
k′

j=1
etj

We use the cross entropy loss ​as the loss function. Therefore, we can optimize the −L = ∑
k′

i=1
yi log vi

following function to get :(x)Eθ
. (2)(F (E (X)),)min

θ,ω
L ω θ Y ′

However, optimizing the above loss function is unfeasible since we do not have the ground truth
labels for cells in ​X ​. We propose to use self-supervised learning to train the feature extraction Y ′
encoder . In particular, we use pseudo-labels as an alternative to ground truth labels. (x)Eθ
Pseudo-label methods first create pseudo-labels directly from raw input data and then use these
pseudo-labels to train the feature extraction encoder​[27,35]​. When real labels are available, these real
labels are then used to fine-tune the feature extraction encoder. Pseudo-label methods assume that
samples are from different underlying subgroups and each subgroup corresponds to a well-defined
class. Pseudo-labels approximate these underlying groups and thus guide us to train a good feature
extraction encoder. Notably, this process of utilizing pseudo-labels mimics the process of manual cell
type curation, where cells are first clustered into different groups according to the gene expression
profile, then each group is assigned with one cell type by experts ​[11,36]​. We hope to learn a good
feature extraction encoder by finding the underlying patterns that lead to different cell subgroups. We
select K-means as our base clustering algorithm. In practice, we found that using other clustering
methods (e.g. hierarchical clustering​[35]​) yielded similar performance.

The pre-training step has two phases. In the first phase, formally, we define a centroid matrix ​C with
size , where is the input dimension, and the pseudo-label matrix with size , which k̃ × s s Ỹ n × k̃
can be regarded as the cluster assignment of each cell. We then do clustering by optimizing the
following loss function simultaneously on ​C ​and :Ỹ

 (3)|X C || s.t. Y 1 .min
C,Ỹ

| − Ỹ 2 ˜
k̃

= 1n

We will use , but we do not use ​C​ directly. The K-means algorithm will create centroidsỸ k̃
optimizing formula (3). Recent unsupervised single cell clustering methods show good alignment
between ground truth cell type labels and cell clusters ​[36]​. Likewise, each centroid obtained by
K-means might reflect the underlying cell type and can thus be used as an alternative to ground truth
cell types to train a good feature extraction encoder. We then learn the feature extraction encoder Eθ
using pseudo-labels by optimizing the following function:Ỹ

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

https://paperpile.com/c/oi5Uxx/Pc2z+zqNe
https://paperpile.com/c/oi5Uxx/HOu4+XX3N
https://paperpile.com/c/oi5Uxx/zqNe
https://paperpile.com/c/oi5Uxx/HOu4
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

 (4)(F (E (X)),).min
θ,ω

L ω θ Ỹ

In the first phase mentioned above, we obtain pseudo-labels by clustering on the origin gene
expression profile. After having the first batch of pseudo-labels, we can train the feature extraction
encoder that maps the high-dimensional gene expression profile into low-dimensional cell
representation. Consequently, in the second phase, we obtain pseudo-labels by clustering on the
resulting cell representations. The first phase is only performed once, whereas we iteratively perform
clustering and classification in the second phase until convergence. This iterative process further
enhances the feature extraction encoder by boosting the discriminative power of the extracted
features. We still use K-means to create pseudo-labels on encoder output features:

 (5)|E (X) C || s.t. Y 1 .min
C ,Y′ ˜

| θ − Ỹ ′ 2 ˜
k̃

= 1n

Here, is fixed during this clustering procedure and the size of centroid matrix becomes ,θ C ′ k̃ × r
where ​r ​is the encoder output dimension, and is still the pseudo-label matrix. Although clustering Ỹ
on encoder outputs does not add any additional information to the model, the following classification
steps optimize encoder parameters and force the representation of each cell to be as close as possible
to the centroid of its cluster. The classification procedure is still the same as formula (4).

2.3 Multi-task pre-training

Batch effects make gene expression profiles vary largely in distribution. We use a multi-task learning
framework to address this problem. Given ​g datasets and their pseudo-label set X , , .., }D = { 1 X2 . Xg

, we minimize the pseudo-label based cell type classification loss on ​g datasetsY , , .., }Ỹ = { ˜
1 Ỹ 2 . Ỹ g

simultaneously. Specifically, each dataset uses the same encoder , but they have ​g different Eθ
classifiers . We use to denote the parameters in ​g classifiers. F , , .., }F = { 1 F 2 . F g ω , ...ω }ω = { 1 ω2 g
We estimate the parameters of the encoder by optimizing the following problem:θ

, (6)(F (E (X)),)min
θ,ω

∑
g

i=1
L i θ i Ỹ i

where ​L​ is the cross entropy loss function mentioned above. This multi-task learning framework
forces the feature extraction encoder to map gene expression profiles to a robust representationEθ
which is less affected by batch effects from different datasets.

We implemented a two phase pre-training process similar to section 2.2 to create pseudo-labels and
trained the encoder on them. Firstly we create the centroid matrix set ​and label C , , .., }C = { 1 C2 . Cg
assignment for each dataset by optimizing the following function:Y , , .., }Ỹ = { ˜

1 Ỹ 2 . Ỹ g

 (7)|X || s.t. Y 1 (1). min
C,Ỹ

∑
g

i=1
| i − Y C˜

i i
2 ˜

i

k̃ i
= 1ni

≤ i ≤ g

Here each matrix in ​C​ has the shape , where is the number of pseudo-labelC i (1)k̃i × s ≤ i ≤ g k̃i
types set by the dataset quantity mentioned in section 2.2. And each dataset in has the shapeX i D

. After we have the pseudo-labels created by formula (7), we feed these data to (1)ni × s ≤ i ≤ g
formula (6) and optimize that function in order to estimate the encoder . Then we start our secondEθ
pre-training step using this encoder, which updates the pseudo-label creating function to:

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

 (8)|E (X) || s.t. Y 1 (1). min
C ,Y′ ˜

∑
g

i=1
| θ i − Y C˜

i i′
2 ˜

i

k̃ i
= 1ni

≤ i ≤ g

At this time, each centroid matrix in has the shape .C i′ C , ...C }C ′ = { 1′ C2′ g ′ (1)k̃i × r ≤ i ≤ g
Through optimizing formula (8) and (6) iteratively, we take turns to update the parameters and θ Ỹ
on all the datasets to finally obtain the feature extraction encoder.

2.4 Determining the number of clusters in each task

A key hyperparameter for K-means is the number of clusters , which is empirically difficult to k̃
predefine. We thus use different to cluster each dataset and treat each partition as a single task in k̃
our multi-task learning framework. Consequently, our multi-task learning framework would have

tasks, where ​p is the number of partitions. The intuition behind considering different here isg × p k̃
to force the encoder to become insensitive to the number of clusters in a new dataset.Eθ

Formally, the centroid matrix sets in the two phases now become and C , , .., }C = { 11 C12 . Cgp

. The pseudo-label matrix set becomes . As a result,C , , .., }C ′ = { 11′ C12′ . Cgp′ Y , , .., }Ỹ = { ˜
11 Ỹ 12 . Ỹ gp

the new clustering loss function in each of the two phases become:

 (9)|X || s.t. Y 1 (1 ,). min
C,Ỹ

∑
g

i=1
∑
p

j=1
| i − Y C˜

ij ij
2 ˜

ij

k̃ ij
= 1ni

≤ i ≤ g 1 ≤ j ≤ p

 (10)|E (X) || s.t. Y 1 (1 ,). min
C ,Y′ ˜

∑
g

i=1
∑
p

j=1
| θ i − Y C˜

ij ij
′ 2 ˜

ij

k̃ ij
= 1ni

≤ i ≤ g 1 ≤ j ≤ p

The classification function is similar to formula (6) by predicting . A recent study proposed to find Ỹ
a more robust number of clusters by using a validation set​[35]​. In contrast to this approach, we take
the advantage of the multi-task learning framework to thoroughly examine different . In practice, k̃
we set the average data point number in each cluster to be 50, 100 and 200, then calculated the related
three cluster numbers of each dataset as the candidates for .k̃

2.5 Fine-tuning for cell type classification

In the fine-tuning step, we fine-tuned the pre-trained feature extraction encoder on a new dataset with
real labels. We used a deeper classifier where ​are (h) (sigmoid(F (sigmoid(h)))),F ϕ = F 2 3 , FF 2 3
fully-connected neural networks. In contrast, we use a less expressive neural network in the
pre-training step in order to avoid overfitting by using pseudo-labels. We optimized the following
function to estimate the parameters using these real labels:

, (11)(F (E (Z)),)min
θ,ϕ

L ϕ θ Y

where is the real label matrix, instead of the pseudo-labels generated. If we want to use otherY
off-the-shelf classifiers instead of neural networks, we will use the cell representation (x)h = Eθ
instead of ​x​ as the input for other classifiers such as logistic regression and random forest.

3 EXPERIMENTAL RESULTS

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

https://paperpile.com/c/oi5Uxx/zqNe
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.1 Datasets

We obtained 60 scRNA-seq datasets from Cell BLAST​[37]​. The organ and platform selection was not
limited to any certain type, while we only chose mouse and human datasets in our experiments. These
60 datasets span over 29 organs and 10 platforms, reflecting substantial batch effects among them.
The number of genes in each dataset varied from 870 cells (Quake Smart-seq2 Diaphragm) to
160,796 cells (Zeisel 2018) with an average number of 15,209 cells. The number of cell types in each
dataset was between 2 and 81, with an average of 10 cell types. To map genes across species, we first
unioned all the genes in datasets of each species, then found the intersection of mouse genes and
human genes, which contained 17,298 genes. We performed pre-training on the expression vector of
these 17,298 genes. We used zero imputation for genes that were missing in a specific dataset. In the
fine-tuning step, we adjusted the weight matrix based on pre-training genes, and used random
initialization to the parameters of those genes not included in these 17,298 genes.

3.2 Experimental settings

We performed a leave-one-dataset-out cross validation where 59 datasets were used in the
pre-training step and the remaining one dataset was used in the fine-tuning step. This process was
repeated 60 times. No label of these 59 datasets was used in the pre-training step. In the fine-tuning
step, labels of the remaining one dataset were cross-validated to evaluate the performance. We
selected 200 as our encoder output dimension, and each layer in the classifier uses an output
dimension that is half of the input vector. When creating pseudo-labels on the encoder output, we
trained the encoder for 50 epochs and generated new pseudo-labels once (an iteration), largely due to
the time consuming clustering process. We trained the model for 10 iterations, which took us 3 days
on a Nvidia RTX 2080 GPU. We chose 1e-4 as the learning rate for Adam optimizer during the
pre-training step, and used 30 as the batch size on each dataset. As for the fine-tuning step, we
limited the number of data points in the training data to be , where ​d was the in(1000, 0.6)m × d
number of data points. This limit allowed a fair comparison among datasets, considering these
datasets varied a lot in quantity. In this step we set the learning rate to be 0.002, and deployed an early
stop mechanism based on accuracy on the validation set. We used accuracy, Cohen’s Kappa​[38]​,
AUPRC and AUROC as metrics to evaluate model classification performance. As for the multi-class
case, we regarded each label as a binary-classification problem and calculated AUPRC (AUROC) on
this label, and the final result on one dataset was created by taking average AUPRC (AUROC) on all
the labels. The results of cell type classification using these metrics are shown below in section 3.3.

In section 3.4, we used K-means to cluster cell representations generated by scPretrain​. ​We used
Rand index​[39] to show the clustering accuracy, by calculating the consistency between real labels
and cluster labels. In addition, we used UMAP​[40] to reduce the dimensionality of 1000 data points
(our setting of training data number in the fine-tuning step) and then applied it on the whole test
dataset. Likewise, we applied K-means to the vectors obtained by UMAP and then calculated its Rand
index, which served as the comparison method. In section 3.5, we investigate cell type classification
using conventional classifiers. We first used PCA to reduce the dimensionality using 1000 data points
of all datasets in order to give a fair comparison. Conventional classifiers were also trained on these
data points. We then applied them on the rest of the data to test their performance, which served as
the comparison method. In section 3.6, to analyze the performance of scPretrain, we randomly
selected training data from the whole fine-tuning dataset and calculated AUPRC of applying neural
networks to this selection. This selection and fine-tuning were repeated multiple times to calculate the
variance of AUROC. This variance was then used to measure the stability of one dataset.

3.3 Cell type classification

We first sought to investigate whether scPretrain can improve cell type classification performance. By

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

https://paperpile.com/c/oi5Uxx/zpg0
https://paperpile.com/c/oi5Uxx/yONV
https://paperpile.com/c/oi5Uxx/cAnN
https://paperpile.com/c/oi5Uxx/k3NP
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

evaluating on 60 datasets, we observed significant improvement against the comparison approach that
used the same classification method in the fine-tuning step but did not perform pre-training(​Fig. 2​).
Overall, our method had significantly better performance on 39, 38, 47, 55 out of 60 datasets in terms
of accuracy, Cohen’s Kappa, AUPRC and AUROC respectively. For example, on the Quake
Smart-seq2 Spleen dataset, scPretrain achieved 0.93 AUPRC and 0.99 AUROC, while the
comparison approach could only get 0.65 AUPRC and 0.72 AUROC. On the Quake Smart-seq2 Heart
dataset, scPretrain obtained 0.97 accuracy and 0.95 Kappa coefficient, which were much better than
the 0.86 accuracy and 0.79 Cohen’s Kappa of the comparison approach. Averagely, scPretrain got
0.939 accuracy, 0.882 Cohen’s Kappa coefficient, 0.841 AUPRC and 0.975 AUROC on 60 datasets,
while the corresponding performance of existing methods was 0.888, 0.747, 0.784 and 0.926. Even
though only 39 and 38 datasets achieved significantly better accuracy and Kappa, the performance of
scPretrain on the remaining datasets were still comparable to the comparison approach (​Fig. 2a,b​).
The substantial improvement of scPretrain on a variety of diverse datasets indicated the effectiveness
of performing multi-task self-supervised learning, which learnt a high-quality feature extraction
encoder and reduced batch effects across datasets.

Fig. 2. Performance of scPretrain on 60 datasets. ​a-d, Scatter plots showing the comparison of
scPretrain performance and the comparison approach on 60 datasets using accuracy (a), Cohen’s
Kappa (b), AUPRC (c) and AUROC (d). Each dot in the plots represents one dataset in the
leave-one-dataset-out cross validation. x-axis is the performance of the comparison approach,
whereas y-axis is the performance of scPretrain.

3.4 Cell clustering using pre-trained cell representation

We studied whether the cell representations obtained using the feature extraction encoder can be used
to cluster cells. To this end, we clustered cells using the representations generated from scPretrain
without fine-tuning. We found that scPretrain generated better features for cell clustering in
comparison to the conventional dimensionality reduction method. scPretrain achieved 0.18 Rand
index, which was higher than the 0.15 Rand index of the comparison approach (p-value<0.05). By
further projecting cell representations into 2-D space using UMAP, we found that our pre-trained
representations tended to form better clusters in agreement to their real cell types (​Fig. 3​). The
improved clustering and visualization performance obtained in the pre-training step further raised our
confidence about the quality of cell representations created by scPretrain, which was previously
verified by the improvement on cell type classification.

3.5 Cell type classification using conventional classifiers

We examined the quality of cell representations obtained by scPretrain by using them as features to
train other conventional classifiers, including support vector machine (SVM), random forest, and
logistic regression. These methods were able to provide more interpretable results and thus revealed
marker genes. We found that embeddings using scPretrain again outperformed the comparison
approach using all three classifiers on both AUROC and AUPRC (​Fig. 4​). For example, when
random forest was used as the classifier, scPretrain outperformed the comparison approach on 95% of

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

all datasets in terms of AUROC and 87% of all datasets in terms of AUPRC (​Fig. 4a,b)​. Likewise,
scPretrain outperformed the comparison approach on 85% of all datasets in terms of AUROC and
77% of all datasets in terms of AUPRC using SVM (​Fig. 4c,d)​. Although our pre-training model was
mainly devised to provide the neural networks with a stable initialization, it also created robust cell
representations that benefited other classifiers as well.

Fig. 3. Comparison of cell clustering using scPretrain. ​a,b,c,d,e,f, Scatter plots showing UMAP
visualization of scPretrain (a,c,e) and the comparison approach (b,d,f) on Quake 10x Kidney (a,b),
Chen (c,d), Haber 10x FAE (e,f).

3.6 Analysis of scPretrain performance

scPretrain tended to perform well on datasets that standard neural networks were unstable to be
trained on. We tested the variance of AUPRC of each dataset using a standard neural network without
pre-training and the AUPRC improvement of scPretrain against this standard neural network. We
found that these two statistics were highly correlated, with a Pearson correlation coefficient (0.301)
(p-value < 0.015). We further observed that the AUPRC improvement was also related to the
clustering score improvement in terms of Rand index improvement (Wilcoxon signed-rank test
p-value <0.017). Pre-training can be regarded as a regularization strategy by providing the initial
parameters ​[41]​. Therefore, the performance of scPretain was more prominent on the dataset that
conventional approaches had insatiable performance by injecting strong regularization through
pre-training.

9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

https://paperpile.com/c/oi5Uxx/nSfj
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 4. Comparison of the performance using conventional classifiers. ​a,b,c,d,e,f, Scatter plots
showing the performance of using scPretrain generated cell representations as features for random
forest (a,b), logistic regression (c,d), and support vector machine (e,f) in terms of AUPRC (a,c,e) and
AUROC (b,d,f). As for each plot, each dot represents one dataset. x-axis shows the performance of
without pre-training, whereas y-axis shows the performance of scPretrain.

4 CONCLUSION

In this paper, we have introduced scPretrain, a novel multi-task self-supervised learning method for
cell type classification. scPretrain uses pseudo-labels to guide pre-training of a feature extraction
encoder using unannotated gene expression profiles. This feature extraction encoder is further
fine-tuned using a small number of annotated samples, thus accurately embedding new cells into a
low-dimensional space. scPretrain proposes a multi-task learning framework to alleviate batch effects
from diverse datasets. We evaluated scPretrain on 60 scRNA-seq datasets and obtained substantial
improvement on cell type classification and cell clustering. Also, the robust representations generated
by scPretrain have shown to benefit other off-the-shelf classifiers.

In the future, we hope to include more pre-training datasets to further provide users with more robust
cell representations using our framework. Pre-training methods in computer vision and natural
language processing have been applied to more than 10 millions images and documents, and the
performance keeps increasing as the dataset becomes larger. Currently scPretrain’s improvement
against the comparison approach decreases when the fine-tuning dataset includes more than 10,000
annotated cells. So by using larger pre-training datasets we hope this framework will be able to
further enhance its classification ability on larger fine-tuning datasets. On the other hand, this
framework is not confined to single cell expression data, but can be used on other single cell omics
data, such as mRNA-DNA methylation, mRNA-chromatin accessibility, and mRNA-protein​[28]​.

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

https://paperpile.com/c/oi5Uxx/ukt6
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

1. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet Barcoding for

Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell. 2015;161: 1187–1201.
2. Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, et al. Resolution of cell fate decisions

revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell. 2010;18:
675–685.

3. Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection and
processing, Library preparation and sequencing, Computational data analysis, et al. Single-cell
transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018;562: 367–372.

4. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, et al. Mapping the Mouse Cell Atlas by
Microwell-Seq. Cell. 2018;173: 1307.

5. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq
whole-transcriptome analysis of a single cell. Nat Methods. 2009;6: 377–382.

6. Grün D, Muraro MJ, Boisset J-C, Wiebrands K, Lyubimova A, Dharmadhikari G, et al. De Novo
Prediction of Stem Cell Identity using Single-Cell Transcriptome Data. Cell Stem Cell. 2016;19:
266–277.

7. Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, et al. A Single-Cell
Transcriptome Atlas of the Human Pancreas. Cell Syst. 2016;3: 385–394.e3.

8. Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, et al. A Single-Cell
Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population
Structure. Cell Syst. 2016;3: 346–360.e4.

9. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel
digital transcriptional profiling of single cells. Nat Commun. 2017;8: 14049.

10. Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft Ł, et al. A Single-Cell
Transcriptome Atlas of the Aging Drosophila Brain. Cell. 2018;174: 982–998.e20.

11. Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the
mouse. Nature. 2020;583: 590–595.

12. Tan Y, Cahan P. SingleCellNet: A Computational Tool to Classify Single Cell RNA-Seq Data
Across Platforms and Across Species. Cell Syst. 2019;9: 207–213.e2.

13. Pliner HA, Shendure J, Trapnell C. Supervised classification enables rapid annotation of cell
atlases. Nat Methods. 2019;16: 983–986.

14. Ma F, Pellegrini M. ACTINN: automated identification of cell types in single cell RNA
sequencing. Bioinformatics. 2020;36: 533–538.

15. Hou R, Denisenko E, Forrest ARR. scMatch: a single-cell gene expression profile annotation
tool using reference datasets. Bioinformatics. 2019;35: 4688–4695.

16. Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, et al. A comparison of
automatic cell identification methods for single-cell RNA sequencing data. Genome Biol.
2019;20: 194.

17. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell
transcriptomics. Nat Methods. 2018;15: 1053–1058.

18. Zhang AW, O’Flanagan C, Chavez EA, Lim JLP. Probabilistic cell-type assignment of
single-cell RNA-seq for tumor microenvironment profiling. Nature. 2019. Available:
https://www.nature.com/articles/s41592-019-0529-1?elqTrackId=12c8cef68e0741ef8422778b61
588aec

19. Hu J, Li X, Hu G, Lyu Y, Susztak K, Li M. Iterative transfer learning with neural network for
clustering and cell type classification in single-cell RNA-seq analysis. Nature Machine

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

http://paperpile.com/b/oi5Uxx/AmC6
http://paperpile.com/b/oi5Uxx/AmC6
http://paperpile.com/b/oi5Uxx/054o
http://paperpile.com/b/oi5Uxx/054o
http://paperpile.com/b/oi5Uxx/054o
http://paperpile.com/b/oi5Uxx/rdUi
http://paperpile.com/b/oi5Uxx/rdUi
http://paperpile.com/b/oi5Uxx/rdUi
http://paperpile.com/b/oi5Uxx/sQFI
http://paperpile.com/b/oi5Uxx/sQFI
http://paperpile.com/b/oi5Uxx/2Ta9
http://paperpile.com/b/oi5Uxx/2Ta9
http://paperpile.com/b/oi5Uxx/phfZ
http://paperpile.com/b/oi5Uxx/phfZ
http://paperpile.com/b/oi5Uxx/phfZ
http://paperpile.com/b/oi5Uxx/kSvT
http://paperpile.com/b/oi5Uxx/kSvT
http://paperpile.com/b/oi5Uxx/Uj5L
http://paperpile.com/b/oi5Uxx/Uj5L
http://paperpile.com/b/oi5Uxx/Uj5L
http://paperpile.com/b/oi5Uxx/CTR9
http://paperpile.com/b/oi5Uxx/CTR9
http://paperpile.com/b/oi5Uxx/vjyG
http://paperpile.com/b/oi5Uxx/vjyG
http://paperpile.com/b/oi5Uxx/XX3N
http://paperpile.com/b/oi5Uxx/XX3N
http://paperpile.com/b/oi5Uxx/hN8v
http://paperpile.com/b/oi5Uxx/hN8v
http://paperpile.com/b/oi5Uxx/D2Pe
http://paperpile.com/b/oi5Uxx/D2Pe
http://paperpile.com/b/oi5Uxx/JkoP
http://paperpile.com/b/oi5Uxx/JkoP
http://paperpile.com/b/oi5Uxx/T9Be
http://paperpile.com/b/oi5Uxx/T9Be
http://paperpile.com/b/oi5Uxx/nvZ5
http://paperpile.com/b/oi5Uxx/nvZ5
http://paperpile.com/b/oi5Uxx/nvZ5
http://paperpile.com/b/oi5Uxx/BjCo
http://paperpile.com/b/oi5Uxx/BjCo
http://paperpile.com/b/oi5Uxx/bhas
http://paperpile.com/b/oi5Uxx/bhas
https://www.nature.com/articles/s41592-019-0529-1?elqTrackId=12c8cef68e0741ef8422778b61588aec
https://www.nature.com/articles/s41592-019-0529-1?elqTrackId=12c8cef68e0741ef8422778b61588aec
http://paperpile.com/b/oi5Uxx/CTt3
http://paperpile.com/b/oi5Uxx/CTt3
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

Intelligence. 2020;2: 607–618.
20. Wagner F, Yanai I. Moana: A robust and scalable cell type classification framework for

single-cell RNA-Seq data. doi:​10.1101/456129
21. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, et al. A benchmark of batch-effect

correction methods for single-cell RNA sequencing data. Genome Biol. 2020;21: 12.
22. Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch effects in single-cell RNA-sequencing

data are corrected by matching mutual nearest neighbors. Nat Biotechnol. 2018;36: 421–427.
23. Shaham U, Stanton KP, Zhao J, Li H, Raddassi K, Montgomery R, et al. Removal of batch

effects using distribution-matching residual networks. Bioinformatics. 2017;33: 2539–2546.
24. Li X, Wang K, Lyu Y, Pan H, Zhang J, Stambolian D, et al. Deep learning enables accurate

clustering with batch effect removal in single-cell RNA-seq analysis. Nat Commun. 2020;11:
2338.

25. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv [cs.CL]. 2018. Available:
http://arxiv.org/abs/1810.04805

26. Fernando B, Bilen H, Gavves E, Gould S. Self-Supervised Video Representation Learning With
Odd-One-Out Networks. arXiv [cs.CV]. 2016. Available: ​http://arxiv.org/abs/1611.06646

27. Caron M, Bojanowski P, Joulin A, Douze M. Deep Clustering for Unsupervised Learning of
Visual Features. arXiv [cs.CV]. 2018. Available: ​http://arxiv.org/abs/1807.05520

28. Zhang Z, Luo D, Zhong X, Choi JH, Ma Y, Wang S, et al. SCINA: A Semi-Supervised
Subtyping Algorithm of Single Cells and Bulk Samples. Genes . 2019;10.
doi:​10.3390/genes10070531

29. Kimmel JC, Kelley DR. scNym: Semi-supervised adversarial neural networks for single cell
classification. Cold Spring Harbor Laboratory. 2020. p. 2020.06.04.132324.
doi:​10.1101/2020.06.04.132324

30. Dong X, Chowdhury S, Victor U, Li X, Qian L. Cell Type Identification from Single-Cell
Transcriptomic Data via Semi-supervised Learning. arXiv [q-bio.GN]. 2020. Available:
http://arxiv.org/abs/2005.03994

31. Chen L, He Q, Zhai Y, Deng M. Single-cell RNA-seq data semi-supervised clustering and
annotation via structural regularized domain adaptation. Bioinformatics. 2020.
doi:​10.1093/bioinformatics/btaa908

32. Xu C, Lopez R, Mehlman E, Regier J, Jordan MI, Yosef N. Probabilistic Harmonization and
Annotation of Single-cell Transcriptomics Data with Deep Generative Models.
doi:​10.1101/532895

33. Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, et al. Strategies for Pre-training Graph
Neural Networks. arXiv [cs.LG]. 2019. Available: ​http://arxiv.org/abs/1905.12265

34. Chen M, Radford A, Child R, Wu J, Jun H, Dhariwal P, et al. Generative Pretraining from
Pixels. Proceedings of the 37th International Conference on Machine Learning. 2020. Available:
https://static.aminer.cn/storage/pdf/icml/20/6022-Paper.pdf

35. Lin Y, Dong X, Zheng L, Yan Y, Yang Y. A bottom-up clustering approach to unsupervised
person re-identification. Proc Conf AAAI Artif Intell. 2019. Available:
https://www.aaai.org/ojs/index.php/AAAI/article/view/4898

36. Kim T, Chen IR, Lin Y, Wang AY-Y, Yang JYH, Yang P. Impact of similarity metrics on
single-cell RNA-seq data clustering. Brief Bioinform. 2019;20: 2316–2326.

37. Cao Z-J, Wei L, Lu S, Yang D-C, Gao G. Searching large-scale scRNA-seq databases via
unbiased cell embedding with Cell BLAST. Nat Commun. 2020;11: 3458.

38. Cohen J. A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas. 1960;20: 37–46.

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

http://paperpile.com/b/oi5Uxx/CTt3
http://paperpile.com/b/oi5Uxx/DDmx
http://paperpile.com/b/oi5Uxx/DDmx
http://dx.doi.org/10.1101/456129
http://paperpile.com/b/oi5Uxx/QEwf
http://paperpile.com/b/oi5Uxx/QEwf
http://paperpile.com/b/oi5Uxx/FjLM
http://paperpile.com/b/oi5Uxx/FjLM
http://paperpile.com/b/oi5Uxx/7ATY
http://paperpile.com/b/oi5Uxx/7ATY
http://paperpile.com/b/oi5Uxx/rlnO
http://paperpile.com/b/oi5Uxx/rlnO
http://paperpile.com/b/oi5Uxx/rlnO
http://paperpile.com/b/oi5Uxx/Ho4t
http://paperpile.com/b/oi5Uxx/Ho4t
http://arxiv.org/abs/1810.04805
http://paperpile.com/b/oi5Uxx/COKu
http://paperpile.com/b/oi5Uxx/COKu
http://arxiv.org/abs/1611.06646
http://paperpile.com/b/oi5Uxx/Pc2z
http://paperpile.com/b/oi5Uxx/Pc2z
http://arxiv.org/abs/1807.05520
http://paperpile.com/b/oi5Uxx/ukt6
http://paperpile.com/b/oi5Uxx/ukt6
http://paperpile.com/b/oi5Uxx/ukt6
http://dx.doi.org/10.3390/genes10070531
http://paperpile.com/b/oi5Uxx/XoD6
http://paperpile.com/b/oi5Uxx/XoD6
http://paperpile.com/b/oi5Uxx/XoD6
http://dx.doi.org/10.1101/2020.06.04.132324
http://paperpile.com/b/oi5Uxx/M4d9
http://paperpile.com/b/oi5Uxx/M4d9
http://arxiv.org/abs/2005.03994
http://paperpile.com/b/oi5Uxx/4dAF
http://paperpile.com/b/oi5Uxx/4dAF
http://paperpile.com/b/oi5Uxx/4dAF
http://dx.doi.org/10.1093/bioinformatics/btaa908
http://paperpile.com/b/oi5Uxx/mk4c
http://paperpile.com/b/oi5Uxx/mk4c
http://paperpile.com/b/oi5Uxx/mk4c
http://dx.doi.org/10.1101/532895
http://paperpile.com/b/oi5Uxx/EncW
http://paperpile.com/b/oi5Uxx/EncW
http://arxiv.org/abs/1905.12265
http://paperpile.com/b/oi5Uxx/58Sw
http://paperpile.com/b/oi5Uxx/58Sw
https://static.aminer.cn/storage/pdf/icml/20/6022-Paper.pdf
http://paperpile.com/b/oi5Uxx/zqNe
http://paperpile.com/b/oi5Uxx/zqNe
https://www.aaai.org/ojs/index.php/AAAI/article/view/4898
http://paperpile.com/b/oi5Uxx/HOu4
http://paperpile.com/b/oi5Uxx/HOu4
http://paperpile.com/b/oi5Uxx/zpg0
http://paperpile.com/b/oi5Uxx/zpg0
http://paperpile.com/b/oi5Uxx/yONV
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

39. Rand WM. Objective Criteria for the Evaluation of Clustering Methods. J Am Stat Assoc.
1971;66: 846–850.

40. McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction. arXiv [stat.ML]. 2018. Available: ​http://arxiv.org/abs/1802.03426

41. Erhan D, Courville A, Bengio Y, Vincent P. Why Does Unsupervised Pre-training Help Deep
Learning? In: Teh YW, Titterington M, editors. Chia Laguna Resort, Sardinia, Italy: JMLR
Workshop and Conference Proceedings; 2010. pp. 201–208.

13

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint

http://paperpile.com/b/oi5Uxx/cAnN
http://paperpile.com/b/oi5Uxx/cAnN
http://paperpile.com/b/oi5Uxx/k3NP
http://paperpile.com/b/oi5Uxx/k3NP
http://arxiv.org/abs/1802.03426
http://paperpile.com/b/oi5Uxx/nSfj
http://paperpile.com/b/oi5Uxx/nSfj
http://paperpile.com/b/oi5Uxx/nSfj
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/

