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ABSTRACT 
 

Rapidly generated scRNA-seq datasets enable us to understand cellular differences and the function             
of each individual cell at single-cell resolution. Cell type classification, which aims at characterizing              
and labeling groups of cells according to their gene expression, is one of the most important steps for                  
single-cell analysis. To facilitate the manual curation process, supervised learning methods have been             
used to automatically classify cells. Most of the existing supervised learning approaches only utilize              
annotated cells in the training step while ignoring the more abundant unannotated cells. In this paper,                
we proposed scPretrain, a multi-task self-supervised learning approach that jointly considers           
annotated and unannotated cells for cell type classification. scPretrain consists of a pre-training step              
and a fine-tuning step. In the pre-training step, scPretrain uses a multi-task learning framework to               
train a feature extraction encoder based on each dataset’s pseudo-labels, where only unannotated cells              
are used. In the fine-tuning step, scPretrain fine-tunes this feature extraction encoder using the limited               
annotated cells in a new dataset. We evaluated scPretrain on 60 diverse datasets from different               
technologies, species and organs, and obtained a significant improvement on both cell type             
classification and cell clustering. Moreover, the representations obtained by scPretrain in the            
pre-training step also enhanced the performance of conventional classifiers such as random forest,             
logistic regression and support vector machines. scPretrain is able to effectively utilize the massive              
amount of unlabelled data and be applied to annotating increasingly generated scRNA-seq datasets. 
 
Keywords: ​single cell analysis, cell type classification, multi-task learning, self-supervised learning 
Availability​: ​https://github.com/ruiyi-zhang/scPretrain  

1 INTRODUCTION 

Recent breakthroughs in single cell sequencing technology have generated a large number of             
large-scale scRNA-seq datasets ​[1–10]​, which hold the promise of understanding cellular differences           
and the function of each individual cell at single-cell resolution. One of the most important steps in                 
single-cell analysis is to classify each cell into its cell type based on the gene expression profile.                 
Manually labelling cell types cannot scale to massively expanding single cell datasets and also              
requires domain knowledge for specific tissues and organs. For example, one of the existing largest               
single cell datasets was annotated by a group of 39 domain experts ​[11]​. To accelerate the               
labor-intensive manual curation, supervised learning approaches have been used to automatically           
classify cells using existing annotated cells ​[12–20]​. Despite the encouraging performance of these            
approaches, they often ignore unannotated cells, which are more abundant than annotated cells and              
contain rich information of gene activity. Moreover, limiting the analysis to annotated cells can also               
lead to overfitting and being vulnerable to batch effects ​[21–24]​, hindering progress towards            
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comprehensive cell type annotation and cellular diversity understanding. Intuitively, jointly          
leveraging both unannotated and annotated cells might collectively address these problems and thus             
advance cell type classification. 
 
Self-supervised learning (SSL) approaches have obtained the state-of-the-art results in various           
machine learning fields like natural language processing​[25]​, video analysis ​[26] and computer           
vision​[27]​. SSL often consists of a pre-training step and a fine-tuning step. In the pre-training step,                
SSL extracts high-quality feature representations using only the unannotated data. In the fine-tuning             
step, these representations are used to train a supervised model for the specific task of interests. For                 
example, BERT used masked language model and next sentence prediction to learn a feature encoder               
in the pre-training step​[25]​. After that, task-specific inputs and outputs were used to fine-tune the               
feature encoder in the fine-tuning step. These two steps collectively leverage the abundant             
unannotated data and expensive annotated data to achieve better classification performance. Unlike            
semi-supervised learning approaches ​[28–32]​, SSL does not leverage annotated data in the           
pre-training step, thus generating more robust features for downstream applications.  
 
Despite the success of SSL in other machine learning areas, pre-training on gene expression data               
remains challenging due to at least two reasons. First, different from word sequences ​[25]​, graphs ​[33]              
or images ​[34] that have explicit topological structure, gene expression feature matrix does not have              
ordered structure. This ordered structure, however, is the key element in SSL methods such as BERT                
which masks and predicts a word using nearby context. Second, single cell datasets present              
substantial batch effects due to different technologies, platforms, animals, organs and species ​[21–24]​.            
Such batch effects could prevent the feature extraction encoder from learning underlying gene             
expression patterns. These batch effects could be further amplified when we do pre-training on a large                
number of diverse datasets. Collectively, pre-training on unordered and diverse gene expression            
datasets remains challenging. 
 
In this paper, we proposed a novel multi-task self-supervised learning approach scPretrain for cell              
type classification. The key idea of scPretrain is to use a multi-task learning framework which views                
training on each dataset as a single pre-training task, thus preventing the noise from batch effects.                
Moreover, since gene expression matrix does not have any ordered structure, scPretrain first uses              
K-means to cluster unannotated cells from each dataset and then trains a feature extraction encoder by                
using cluster labels as pseudo-labels. The clustering and classification steps are performed iteratively             
to enhance the feature extraction encoder. We extensively tested scPretrain on 60 datasets and              
obtained an average improvement of 7.3% on AUPRC and 5.3% on AUROC compared against neural               
networks without pre-training. We further showed that the representations created by our model can              
also improve the performance of other off-the-shelf classifiers. scPretrain is able to effectively utilize              
the massive amount of unlabelled scRNA-seq datasets to advance cell type classification and single              
cell analysis. 

2 METHODS 

The goal of the pre-training step is to learn a feature extraction encoder, which would be used in the                   
fine-tuning step to classify new cells. We first used K-means to cluster cells in each single cell                 
dataset, resulting in a pseudo-label for each cell. After that, we exploited a multi-task learning               
framework to train a feature extraction encoder shared by different datasets, in order to alleviate batch                
effects. We then iteratively leveraged new cell representations to refine pseudo-labels, which were             
further used to retrain the multi-task learning framework. In the fine-tuning step, the pre-trained              
encoder can be used on downstream tasks like classification and clustering.  
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Fig. 1. Flowchart for scPretrain. ​In the pre-training step, scPretrain assigns a pseudo-label to each               
cell using K-means. These pseudo-labels are used to train a feature extraction encoder, which is               
shared by different datasets and different partitions in a multi-task learning framework. In the              
fine-tuning step, this encoder is used to embed cells in a new dataset to low-dimensional               
representations, which are further used in downstream tasks such as cell clustering and cell type               
classification. 
 
2.1 Problem definition 

scPretrain consists of a pre-training step and a fine-tuning step. In the pre-training step, the input is a                  
collection of unlabelled datasets, . Here, is a gene    X , , .., },  (1 )D = { 1 X2 . Xg  X i ∈ Rn ×si ≤ i ≤ g   X i     
expression matrix of cells and genes. The goal in the pre-training step is to learn a feature   ni     s             
extraction encoder that maps a high-dimensional gene expression vector of a cell to a  (x)Eθ         x∈ Rs      
low-dimensional vector , where is the dimension of the cell representation. This feature  h∈ Rr   r           
extraction encoder is shared across all unannotated datasets in the pre-training step. In the fine-tuning               
step, the input is an annotated dataset , where is the gene expression matrix       ,Z ∈ Rm×s Y ∈ Rm×k   Z       
of ​m cells and ​s genes. is the binarized cell type label matrix and is the number of cell types.      Y          k        

if the ​i​-th cell is cell type ​j ​, otherwise . The goal at the fine-tuning step is to train aY ij = 1          Y ij = 0            
cell type classifier using both the feature extraction encoder from the pre-training step and         Eθ       
annotations from . This classifier will be evaluated on another test dataset , where the goal is to  Y           Q       
predict the cell type of cells in . The feature extraction encoder is shared across all dataset in       Q      Eθ        
the pre-training and fine-tuning steps, thus forcing it to encode the common gene expression patterns               
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rather than batch effects in individual datasets. As a consequence, scPretrain is scalable to the large                
number of diverse unannotated datasets and can be rapidly used to annotate new datasets.  
 
2.2 Pre-training using pseudo-labels 

Given a gene expression matrix of ​n ​cells and ​s genes, our goal is to learn a feature     X ∈ Rn×s               
extraction encoder , which is expected to perform well on other datasets in various downstream  (x)Eθ              
tasks. Let be the labels of the training set. Let be the classifier, Y ′∈ Rn×k′         (h) (sigmoid(h))F ω = F 1     
where , ​h ​is the output of the encoder , and ​is a fully-connected neural igmoid(h)s = 1

1+e−h         Eθ   F 1      
network with output dimension . Let ​x ​be an input gene expression vector, be the    k′          (E (x))t = F ω θ    
corresponding dimension output vector and ​y be the binary label vector of ​x​, is the predicted k′              vi     
score that ​x​ belongs to class ​i​: 

.                                                                (1)v i = eti

∑
k′

j=1
etj

 

We use the cross entropy loss ​as the loss function. Therefore, we can optimize the      −L = ∑
k′

i=1
yi log vi           

following function to get :(x)Eθ  
.                                                              (2)(F (E (X)), )min

θ,ω
L ω θ Y ′  

 
However, optimizing the above loss function is unfeasible since we do not have the ground truth                
labels for cells in ​X ​. We propose to use self-supervised learning to train the feature extraction Y ′                
encoder . In particular, we use pseudo-labels as an alternative to ground truth labels. (x)Eθ              
Pseudo-label methods first create pseudo-labels directly from raw input data and then use these              
pseudo-labels to train the feature extraction encoder​[27,35]​. When real labels are available, these real              
labels are then used to fine-tune the feature extraction encoder. Pseudo-label methods assume that              
samples are from different underlying subgroups and each subgroup corresponds to a well-defined             
class. Pseudo-labels approximate these underlying groups and thus guide us to train a good feature               
extraction encoder. Notably, this process of utilizing pseudo-labels mimics the process of manual cell              
type curation, where cells are first clustered into different groups according to the gene expression               
profile, then each group is assigned with one cell type by experts ​[11,36]​. We hope to learn a good                   
feature extraction encoder by finding the underlying patterns that lead to different cell subgroups. We               
select K-means as our base clustering algorithm. In practice, we found that using other clustering               
methods (e.g. hierarchical clustering​[35]​) yielded similar performance.  
 
The pre-training step has two phases. In the first phase, formally, we define a centroid matrix ​C with                  
size , where is the input dimension, and the pseudo-label matrix with size , which k̃ × s   s          Ỹ    n × k̃   
can be regarded as the cluster assignment of each cell. We then do clustering by optimizing the                 
following loss function simultaneously on ​C ​and :Ỹ  
 

                                                      (3)|X C ||    s.t. Y 1 .min
C,Ỹ

| − Ỹ 2 ˜
k̃

= 1n  

 
We will use , but we do not use ​C​ directly. The K-means algorithm will create  centroidsỸ k̃  
optimizing formula (3). Recent unsupervised single cell clustering methods show good alignment 
between ground truth cell type labels and cell clusters ​[36]​. Likewise, each centroid obtained by 
K-means might reflect the underlying cell type and can thus be used as an alternative to ground truth 
cell types to train a good feature extraction encoder. We then learn the feature extraction encoder Eθ  
using pseudo-labels  by optimizing the following function:Ỹ  
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                                                              (4)(F (E (X)), ).min
θ,ω

L ω θ Ỹ  

 
In the first phase mentioned above, we obtain pseudo-labels by clustering on the origin gene               
expression profile. After having the first batch of pseudo-labels, we can train the feature extraction               
encoder that maps the high-dimensional gene expression profile into low-dimensional cell           
representation. Consequently, in the second phase, we obtain pseudo-labels by clustering on the             
resulting cell representations. The first phase is only performed once, whereas we iteratively perform              
clustering and classification in the second phase until convergence. This iterative process further             
enhances the feature extraction encoder by boosting the discriminative power of the extracted             
features. We still use K-means to create pseudo-labels on encoder output features: 
 

                                                 (5)|E (X) C ||    s.t. Y 1 .min
C ,Y′ ˜

| θ − Ỹ ′ 2 ˜
k̃

= 1n  

 
Here, is fixed during this clustering procedure and the size of centroid matrix becomes ,θ             C ′   k̃ × r  
where ​r ​is the encoder output dimension, and is still the pseudo-label matrix. Although clustering        Ỹ        
on encoder outputs does not add any additional information to the model, the following classification               
steps optimize encoder parameters and force the representation of each cell to be as close as possible                 
to the centroid of its cluster. The classification procedure is still the same as formula (4).  
 
2.3 Multi-task pre-training 
 
Batch effects make gene expression profiles vary largely in distribution. We use a multi-task learning               
framework to address this problem. Given ​g datasets and their pseudo-label set        X , , .., }D = { 1 X2 . Xg    

, we minimize the pseudo-label based cell type classification loss on ​g datasetsY , , .., }Ỹ = { ˜
1 Ỹ 2 . Ỹ g              

simultaneously. Specifically, each dataset uses the same encoder , but they have ​g different        Eθ       
classifiers . We use to denote the parameters in ​g classifiers. F , , .., }F = { 1 F 2 . F g    ω , ...ω }ω = { 1 ω2 g        
We estimate the parameters of the encoder  by optimizing the following problem:θ  
 

,                                                          (6)(F (E (X )), )min
θ,ω

∑
g

i=1
L i θ i Ỹ i  

 
where ​L​ is the cross entropy loss function mentioned above. This multi-task learning framework 
forces the feature extraction encoder  to map gene expression profiles to a robust representationEθ  
which is less affected by batch effects from different datasets.  
 
We implemented a two phase pre-training process similar to section 2.2 to create pseudo-labels and               
trained the encoder on them. Firstly we create the centroid matrix set ​and label            C , , .., }C = { 1 C2 . Cg    
assignment  for each dataset by optimizing the following function:Y , , .., }Ỹ = { ˜

1 Ỹ 2 . Ỹ g  
 

                                (7)|X ||    s.t. Y 1  (1 ).        min
C,Ỹ

∑
g

i=1
| i − Y C˜

i i
2 ˜

i
 

k̃ i
= 1ni

≤ i ≤ g  

 
Here each matrix in ​C​ has the shape , where  is the number of pseudo-labelC i  (1 )k̃i × s ≤ i ≤ g k̃i  
types set by the dataset quantity mentioned in section 2.2. And each dataset in has the shapeX i D  

. After we have the pseudo-labels created by formula (7), we feed these data to (1 )ni × s ≤ i ≤ g  
formula (6) and optimize that function in order to estimate the encoder . Then we start our secondEθ  
pre-training step using this encoder, which updates the pseudo-label creating function to: 
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                           (8)|E (X ) ||    s.t. Y 1  (1 ).        min
C ,Y′ ˜

∑
g

i=1
| θ i − Y C˜

i i′
2 ˜

i
 

k̃ i
= 1ni

≤ i ≤ g  

 
At this time, each centroid matrix  in  has the shape .C i′ C , ...C }C ′ = { 1′ C2′ g ′ (1 )k̃i × r ≤ i ≤ g  
Through optimizing formula (8) and (6) iteratively, we take turns to update the parameters and θ Ỹ  
on all the datasets to finally obtain the feature extraction encoder.  
 
2.4 Determining the number of clusters in each task 
 
A key hyperparameter for K-means is the number of clusters , which is empirically difficult to          k̃       
predefine. We thus use different to cluster each dataset and treat each partition as a single task in     k̃               
our multi-task learning framework. Consequently, our multi-task learning framework would have           

tasks, where ​p is the number of partitions. The intuition behind considering different here isg × p               k̃    
to force the encoder  to become insensitive to the number of clusters in a new dataset.Eθ  
 
Formally, the centroid matrix sets in the two phases now become and           C , , .., }C = { 11 C12 . Cgp

. The pseudo-label matrix set becomes . As a result,C , , .., }C ′ = { 11′ C12′ . Cgp′       Y , , .., }Ỹ = { ˜
11 Ỹ 12 . Ỹ gp     

the new clustering loss function in each of the two phases become: 
 

                  (9)|X ||    s.t.  Y 1  (1 , ).        min
C,Ỹ

∑
g

i=1
∑
p

j=1
| i − Y C˜

ij  ij
2 ˜

ij
 

k̃ ij
= 1ni

≤ i ≤ g 1 ≤ j ≤ p  

 

            (10)|E (X ) ||    s.t.  Y 1  (1 , ).        min
C ,Y′ ˜

∑
g

i=1
∑
p

j=1
| θ i  − Y C˜

ij  ij
′ 2 ˜

ij
 

k̃ ij
= 1ni

≤ i ≤ g 1 ≤ j ≤ p  

  
The classification function is similar to formula (6) by predicting . A recent study proposed to find          Ỹ        
a more robust number of clusters by using a validation set​[35]​. In contrast to this approach, we take                  
the advantage of the multi-task learning framework to thoroughly examine different . In practice,           k̃    
we set the average data point number in each cluster to be 50, 100 and 200, then calculated the related                    
three cluster numbers of each dataset as the candidates for .k̃  
 
2.5 Fine-tuning for cell type classification 

In the fine-tuning step, we fine-tuned the pre-trained feature extraction encoder on a new dataset with                
real labels. We used a deeper classifier where ​are       (h) (sigmoid(F (sigmoid(h)))),F ϕ = F 2 3  , FF 2  3   
fully-connected neural networks. In contrast, we use a less expressive neural network in the              
pre-training step in order to avoid overfitting by using pseudo-labels. We optimized the following              
function to estimate the parameters using these real labels: 
 

,                                                          (11)(F (E (Z)), )min
θ,ϕ

L ϕ θ Y  

 
where  is the real label matrix, instead of the pseudo-labels generated. If we want to use otherY  
off-the-shelf classifiers instead of neural networks, we will use the cell representation (x)h = Eθ  
instead of ​x​ as the input for other classifiers such as logistic regression and random forest. 

3 EXPERIMENTAL RESULTS 

6 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.386102doi: bioRxiv preprint 

https://paperpile.com/c/oi5Uxx/zqNe
https://doi.org/10.1101/2020.11.18.386102
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3.1 Datasets 

We obtained 60 scRNA-seq datasets from Cell BLAST​[37]​. The organ and platform selection was not               
limited to any certain type, while we only chose mouse and human datasets in our experiments. These                 
60 datasets span over 29 organs and 10 platforms, reflecting substantial batch effects among them.               
The number of genes in each dataset varied from 870 cells (Quake Smart-seq2 Diaphragm) to               
160,796 cells (Zeisel 2018) with an average number of 15,209 cells. The number of cell types in each                  
dataset was between 2 and 81, with an average of 10 cell types. To map genes across species, we first                    
unioned all the genes in datasets of each species, then found the intersection of mouse genes and                 
human genes, which contained 17,298 genes. We performed pre-training on the expression vector of              
these 17,298 genes. We used zero imputation for genes that were missing in a specific dataset. In the                  
fine-tuning step, we adjusted the weight matrix based on pre-training genes, and used random              
initialization to the parameters of those genes not included in these 17,298 genes. 
 
3.2 Experimental settings 

We performed a leave-one-dataset-out cross validation where 59 datasets were used in the             
pre-training step and the remaining one dataset was used in the fine-tuning step. This process was                
repeated 60 times. No label of these 59 datasets was used in the pre-training step. In the fine-tuning                  
step, labels of the remaining one dataset were cross-validated to evaluate the performance. We              
selected 200 as our encoder output dimension, and each layer in the classifier uses an output                
dimension that is half of the input vector. When creating pseudo-labels on the encoder output, we                
trained the encoder for 50 epochs and generated new pseudo-labels once (an iteration), largely due to                
the time consuming clustering process. We trained the model for 10 iterations, which took us 3 days                 
on a Nvidia RTX 2080 GPU. We chose 1e-4 as the learning rate for Adam optimizer during the                  
pre-training step, and used 30 as the batch size on each dataset. As for the fine-tuning step, we                  
limited the number of data points in the training data to be , where ​d was the            in(1000, 0.6 )m  × d      
number of data points. This limit allowed a fair comparison among datasets, considering these              
datasets varied a lot in quantity. In this step we set the learning rate to be 0.002, and deployed an early                     
stop mechanism based on accuracy on the validation set. We used accuracy, Cohen’s Kappa​[38]​,              
AUPRC and AUROC as metrics to evaluate model classification performance. As for the multi-class              
case, we regarded each label as a binary-classification problem and calculated AUPRC (AUROC) on              
this label, and the final result on one dataset was created by taking average AUPRC (AUROC) on all                  
the labels. The results of cell type classification using these metrics are shown below in section 3.3. 
 
In section 3.4, we used K-means to cluster cell representations generated by scPretrain​. ​We used               
Rand index​[39] to show the clustering accuracy, by calculating the consistency between real labels              
and cluster labels. In addition, we used UMAP​[40] to reduce the dimensionality of 1000 data points                
(our setting of training data number in the fine-tuning step) and then applied it on the whole test                  
dataset. Likewise, we applied K-means to the vectors obtained by UMAP and then calculated its Rand                
index, which served as the comparison method. In section 3.5, we investigate cell type classification               
using conventional classifiers. We first used PCA to reduce the dimensionality using 1000 data points               
of all datasets in order to give a fair comparison. Conventional classifiers were also trained on these                 
data points. We then applied them on the rest of the data to test their performance, which served as                   
the comparison method. In section 3.6, to analyze the performance of scPretrain, we randomly              
selected training data from the whole fine-tuning dataset and calculated AUPRC of applying neural              
networks to this selection. This selection and fine-tuning were repeated multiple times to calculate the               
variance of AUROC. This  variance was then used to measure the stability of one dataset. 
 
3.3 Cell type classification 

We first sought to investigate whether scPretrain can improve cell type classification performance. By              
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evaluating on 60 datasets, we observed significant improvement against the comparison approach that             
used the same classification method in the fine-tuning step but did not perform pre-training(​Fig. 2​).               
Overall, our method had significantly better performance on 39, 38, 47, 55 out of 60 datasets in terms                  
of accuracy, Cohen’s Kappa, AUPRC and AUROC respectively. For example, on the Quake             
Smart-seq2 Spleen dataset, scPretrain achieved 0.93 AUPRC and 0.99 AUROC, while the            
comparison approach could only get 0.65 AUPRC and 0.72 AUROC. On the Quake Smart-seq2 Heart               
dataset, scPretrain obtained 0.97 accuracy and 0.95 Kappa coefficient, which were much better than              
the 0.86 accuracy and 0.79 Cohen’s Kappa of the comparison approach. Averagely, scPretrain got              
0.939 accuracy, 0.882 Cohen’s Kappa coefficient, 0.841 AUPRC and 0.975 AUROC on 60 datasets,              
while the corresponding performance of existing methods was 0.888, 0.747, 0.784 and 0.926. Even              
though only 39 and 38 datasets achieved significantly better accuracy and Kappa, the performance of               
scPretrain on the remaining datasets were still comparable to the comparison approach (​Fig. 2a,b​).              
The substantial improvement of scPretrain on a variety of diverse datasets indicated the effectiveness              
of performing multi-task self-supervised learning, which learnt a high-quality feature extraction           
encoder and reduced batch effects across datasets. 
 

 
Fig. 2. Performance of scPretrain on 60 datasets. ​a-d, Scatter plots showing the comparison of               
scPretrain performance and the comparison approach on 60 datasets using accuracy (a), Cohen’s             
Kappa (b), AUPRC (c) and AUROC (d). Each dot in the plots represents one dataset in the                 
leave-one-dataset-out cross validation. x-axis is the performance of the comparison approach,           
whereas y-axis is the performance of scPretrain. 
 
3.4 Cell clustering using pre-trained cell representation 

We studied whether the cell representations obtained using the feature extraction encoder can be used               
to cluster cells. To this end, we clustered cells using the representations generated from scPretrain               
without fine-tuning. We found that scPretrain generated better features for cell clustering in             
comparison to the conventional dimensionality reduction method. scPretrain achieved 0.18 Rand           
index, which was higher than the 0.15 Rand index of the comparison approach (p-value<0.05). By               
further projecting cell representations into 2-D space using UMAP, we found that our pre-trained              
representations tended to form better clusters in agreement to their real cell types (​Fig. 3​). The                
improved clustering and visualization performance obtained in the pre-training step further raised our             
confidence about the quality of cell representations created by scPretrain, which was previously             
verified by the improvement on cell type classification. 
 
3.5 Cell type classification using conventional classifiers 

We examined the quality of cell representations obtained by scPretrain by using them as features to                
train other conventional classifiers, including support vector machine (SVM), random forest, and            
logistic regression. These methods were able to provide more interpretable results and thus revealed              
marker genes. We found that embeddings using scPretrain again outperformed the comparison            
approach using all three classifiers on both AUROC and AUPRC (​Fig. 4​). For example, when               
random forest was used as the classifier, scPretrain outperformed the comparison approach on 95% of               
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all datasets in terms of AUROC and 87% of all datasets in terms of AUPRC (​Fig. 4a,b)​. Likewise,                  
scPretrain outperformed the comparison approach on 85% of all datasets in terms of AUROC and               
77% of all datasets in terms of AUPRC using SVM (​Fig. 4c,d)​. Although our pre-training model was                 
mainly devised to provide the neural networks with a stable initialization, it also created robust cell                
representations that benefited other classifiers as well.  
 

 
Fig. 3. Comparison of cell clustering using scPretrain. ​a,b,c,d,e,f, Scatter plots showing UMAP             
visualization of scPretrain (a,c,e) and the comparison approach (b,d,f) on Quake 10x Kidney (a,b),              
Chen (c,d), Haber 10x FAE (e,f). 
 
3.6 Analysis of scPretrain performance 

scPretrain tended to perform well on datasets that standard neural networks were unstable to be               
trained on. We tested the variance of AUPRC of each dataset using a standard neural network without                 
pre-training and the AUPRC improvement of scPretrain against this standard neural network. We             
found that these two statistics were highly correlated, with a Pearson correlation coefficient (0.301)              
(p-value < 0.015). We further observed that the AUPRC improvement was also related to the               
clustering score improvement in terms of Rand index improvement (Wilcoxon signed-rank test            
p-value <0.017). Pre-training can be regarded as a regularization strategy by providing the initial              
parameters ​[41]​. Therefore, the performance of scPretain was more prominent on the dataset that             
conventional approaches had insatiable performance by injecting strong regularization through          
pre-training. 
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Fig. 4. Comparison of the performance using conventional classifiers. ​a,b,c,d,e,f, Scatter plots            
showing the performance of using scPretrain generated cell representations as features for random             
forest (a,b), logistic regression (c,d), and support vector machine (e,f) in terms of AUPRC (a,c,e) and                
AUROC (b,d,f). As for each plot, each dot represents one dataset. x-axis shows the performance of                
without pre-training, whereas y-axis shows the performance of scPretrain. 
 
4 CONCLUSION 
 
In this paper, we have introduced scPretrain, a novel multi-task self-supervised learning method for              
cell type classification. scPretrain uses pseudo-labels to guide pre-training of a feature extraction             
encoder using unannotated gene expression profiles. This feature extraction encoder is further            
fine-tuned using a small number of annotated samples, thus accurately embedding new cells into a               
low-dimensional space. scPretrain proposes a multi-task learning framework to alleviate batch effects            
from diverse datasets. We evaluated scPretrain on 60 scRNA-seq datasets and obtained substantial             
improvement on cell type classification and cell clustering. Also, the robust representations generated             
by scPretrain have shown to benefit other off-the-shelf classifiers.  
 
In the future, we hope to include more pre-training datasets to further provide users with more robust                 
cell representations using our framework. Pre-training methods in computer vision and natural            
language processing have been applied to more than 10 millions images and documents, and the               
performance keeps increasing as the dataset becomes larger. Currently scPretrain’s improvement           
against the comparison approach decreases when the fine-tuning dataset includes more than 10,000             
annotated cells. So by using larger pre-training datasets we hope this framework will be able to                
further enhance its classification ability on larger fine-tuning datasets. On the other hand, this              
framework is not confined to single cell expression data, but can be used on other single cell omics                  
data, such as mRNA-DNA methylation, mRNA-chromatin accessibility, and mRNA-protein​[28]​. 
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