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ABSTRACT [250 words  - 250 max] 
Premise of the study: Evolutionary relationships in the species-rich Orchidaceae have 
historically relied on organellar DNA sequences and limited taxon sampling. Previous studies 
provided a robust plastid-maternal phylogenetic framework, from which multiple hypotheses 
on the drivers of orchid diversification have been derived. However, the extent to which the 
maternal evolutionary history of orchids is congruent with that of the nuclear genome has 
remained uninvestigated. 
  
Methods: We inferred phylogenetic relationships from 294 low-copy nuclear genes 
sequenced/obtained using the Angiosperms353 universal probe set from 75 species 
representing 69 genera, 16 tribes and 24 subtribes. To test for topological incongruence 
between nuclear and plastid genomes, we constructed a tree from 78 plastid genes, 
representing 117 genera, 18 tribes and 28 subtribes and compared them using a co-
phylogenetic approach. The phylogenetic informativeness and support of the 
Angiosperms353 loci were compared with those of the 78 plastid genes. 
 
Key Results: Phylogenetic inferences of nuclear datasets produced highly congruent and 
robustly supported orchid relationships. Comparisons of nuclear gene trees and plastid gene 
trees using the latest co-phylogenetic tools revealed strongly supported phylogenetic 
incongruence in both shallow and deep time. Phylogenetic informativeness analyses showed 
that the Angiosperms353 genes were in general more informative than most plastid genes. 
 
Conclusions: Our study provides the first robust nuclear phylogenomic framework for 
Orchidaceae plus an assessment of intragenomic nuclear discordance, plastid-nuclear tree 
incongruence, and phylogenetic informativeness across the family. Our results also 
demonstrate what has long been known but rarely documented: nuclear and plastid 
phylogenetic trees are not fully congruent and therefore should not be considered 
interchangeable.  
 
Keywords: Multilocus phylogenetic trees, recombination, incongruence, Angiosperms353, 
nuclear-plastid discordance, Orchidaceae 
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INTRODUCTION 
 

Phylogenetic inference based on nuclear and organellar DNA sequences has 
revolutionised plant systematics and evolution (Cameron et al., 1999; Soltis et al., 2000; 
Eiserhardt et al., 2018). From species complexes (Bogarín et al., 2018; Fernández-Mazuecos 
et al., 2018; Pérez-Escobar et al., 2020) to families and beyond (Bateman et al., 2018; 
Nauheimer et al., 2018; Wan et al., 2018; Wong et al., 2020), molecular phylogenetics has 
radically shaped our understanding of plant evolution at widely varying scales and 
subsequently had a drastic effect on their classification in order to maintain monophyletic 
groups (Chase et al., 2016). Historically, Sanger-sequenced DNA markers have been widely 
used to infer phylogenies at various taxonomic levels (Baldwin, 1992; Baldwin and Markos, 
1998; Cameron et al., 1999; Soltis et al., 2000). In particular, plastid DNA loci such as rbcL, 
matK, and the trnL-trnF region, the nuclear ribosomal internal transcribed spacer (nrITS) and 
the low-copy nuclear gene Xdh have been frequently used/studied (Chase et al., 1993; 
Baldwin et al., 1995; Soltis et al., 1999; Hilu et al., 2003; Górniak et al., 2010). This is 
because of the relative ease of sequencing these DNA regions, particularly those in high-copy 
numbers (plastid regions and nrITS, but see Górniak et al. 2010).  

Recently, implementation of high-throughput DNA sequencing methods has 
expanded the number of DNA regions available for phylogenetic inference, but as with the 
earlier studies there has been a continuing focus on plastid genes (Edger et al., 2018; Li, Li, et 
al., 2019) and plastomes (Ross et al., 2016; Guo et al., 2017; Li, Yi, et al., 2019). The rapid 
growth of organellar phylogenomic studies is an evident trend in many plant families 
including Araceae (Henriquez et al., 2014), Berberidaceae: (Sun et al., 2018), Lauraceae 
(Song et al., 2020), Leguminosae (Zhang et al., 2020) and Orchidaceae (Givnish et al., 2015) 
due to the relative ease with which they are generated: parallel sequencing at shallow 
coverage (less than 1X) of genomic library preparations derived from recent or historical 
plant material can yield millions of organellar DNA sequencing reads for hundreds of 
individuals. This enables the sequencing of dozens of plastid loci at a lower cost per sample 
than when using Sanger sequencing (Straub et al., 2012; Dodsworth, 2015).  

With at least 25,000 species and 700 genera, Orchidaceae are one of two largest 
angiosperm families, distributed across most terrestrial biomes. Orchids display a wide range 
of vegetative and reproductive traits that have long captivated biologists. They exhibit 
unusual relationships with animal pollinators (Darwin, 1877; Jersáková and Malinová, 2004; 
Ramirez et al., 2011; Martins et al., 2018) and mycorrhizal fungi (Dearnaley, 2007; 
Rasmussen, 2015; Fochi et al., 2017), which have been the subject of detailed studies. Other 
unusual characters of interest include the velamen, a tissue fostering water uptake and 
protecting orchid roots in epiphytic orchids (Zotz and Winkler, 2013; Chomicki et al., 2015) 
and their mostly anemochorous (Arditti and Ghani, 2000; Barthlott et al., 2014) or sometimes 
animal-dispersed seeds (ants, bats, bees, crickets and frugivorous birds; (Suetsugu et al., 
2015; Morales-Linares et al., 2018). Their global distribution, high species-richness in the 
tropics and wide variety of functional traits and ecological interactions makes them an 
excellent model group for studying how biotic and abiotic factors affect their diversification 
(Givnish et al., 2015, 2016; Pérez-Escobar, Chomicki, Condamine, de Vos, et al., 2017; 
Pérez-Escobar, Chomicki, Condamine, Karremans, et al., 2017).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.386508doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.386508
http://creativecommons.org/licenses/by-nc-nd/4.0/


Understanding orchid relationships is essential to enable the interpretation of their 
extraordinary diversity, and as a result orchid phylogenetics have been investigated 
intensively (Dressler, 1993; Cameron et al., 1999; Freudenstein and Chase, 2015; Givnish et 
al., 2015). By including representatives of nearly all major taxa, phylogenetic trees inferred 
from the analysis of mostly organellar loci have provided a robust set of relationships for 
most orchid tribes and subtribes (reviewed in (Chase et al., 2015)). These well-supported 
organellar phylogenetic frameworks have been subsequently employed to infer relationships 
at different taxonomic levels and investigate the historical biogeography and evolution of 
selected traits for over 20 years (Neyland and Urbatsch, 1996; Cameron et al., 1999). 
However, the extent to which the evolutionary history of the uni-parentally inherited 
organellar genomes (Chang et al., 2000; Cafasso et al., 2005) track that of the bi-parentally 
inherited and recombinant nuclear genome in the orchid family has not been properly tested 
in a phylogenomic framework. In fact, there is mounting evidence of incongruence driven by 
biological phenomena including hybridization and incomplete lineage sorting across the 
angiosperms (Soltis and Kuzoff, 1995; Smith et al., 2015; Pérez-Escobar et al., 2016; Vargas 
et al., 2017; Schley et al., 2020), and the extent to which it prevails in orchids remains to be 
assessed. 

In this study, we generate a phylogenomic nuclear dataset for Orchidaceae relying on 
the universal Angiosperms353 target capture probe set (Johnson et al., 2019). For this, we 
sampled 75 species representing all the five subfamilies and the majority of the tribes. To 
assess nuclear-plastid intra- and intergenomic topological conflict, we also present a plastid 
phylogenomic tree inferred from the published sequences of 78 genes for 264 species, also 
representing all orchid subfamilies, and most of the recognised tribes (Chase et al., 2015). 
Lastly, we compared the phylogenetic informativeness of nuclear and plastid loci. We 
address the following topics: i) the extent to which the maternally inherited orchid plastid tree 
is congruent with that of the bi-parentally inherited nuclear genome and ii) how well these 
low-copy nuclear genes perform in recovering strongly supported relationships compared to 
plastid genes/genomes.    

 
MATERIALS AND METHODS 
 
Taxon sampling 

We included 75 orchid species representing 69 genera, 24 subtribes (out of 46 
currently accepted; Chase et al., 2015), 16 tribes (out of 21), and all five subfamilies. In 
addition, fourteen species from non-orchid monocot families were included as outgroup taxa 
(Appendix S1). Newly generated nuclear DNA data were produced from 62 vouchered 
accessions stored in the DNA and tissue bank of the Royal Botanic Gardens, Kew 
(https://dnabank.science.kew.org/homepage.html).  These DNA samples had been previously 
extracted from silica-dried leaves using a modified CTAB method (ref). Each sample has a 
voucher herbarium specimen hosted in the Kew herbarium (K; Appendix S1). To expand our 
taxon sampling, nuclear short Illumina sequencing reads were datamined from the Sequence 
Read Archive (SRA) using the fastq-dump software of the SRAtool-kit package (available at 
https://ncbi.github.io/sra-tools/install_config.html), and from the 1KP data repository 
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(https://sites.google.com/a/ualberta.ca/onekp/; (Wong et al., 2020) for 13 additional orchid 
species.  

 
Library preparation, targeted enrichment and sequencing   

The quality of the DNA extractions, including concentration and the distribution of 
fragment lengths, were checked using a Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, 
CA, USA) and a TapeStation 42000 system (Agilent Technologies, Santa Clara, CA, USA).  
Genomic library preparation and enrichment were conducted following the protocols of 
Johnson et al. (2019). Here, dual-indexed Illumina genomic libraries were prepared for each 
DNA sample using an insert size of ~350 bp and the Ultra II Library Prep Kit (New England 
BioLabs, Ipswich, MA, USA), following the manufacturer’s protocol. We used the 
Angiosperms353 bait-kit to enrich each genomic library in 353 low-copy nuclear genes 
(Johnson et al., 2019; https://arborbiosci.com/genomics/targeted-
sequencing/mybaits/mybaits-expert/mybaits-expert-angiosperms-353/). Sixty-two genomic 
libraries were pooled in equimolar quantities, to make a 1ug (total DNA) hybridisation 
reaction, which was subsequently cleaned and sequenced on an Illumina MiSeq v3 (600 
cycles, 300 bp paired-end reads) at the Royal Botanic Gardens, Kew to produce ca. 14.8 
Gigabase pairs (~30 million paired-end reads).  
 
Plastome phylogenomics 

To assess the performance of the Angiosperms353 nuclear loci for resolving orchid 
relationships and investigate nuclear/plastid gene tree discordance at different taxonomic 
levels, we utilized the 78-plastid-gene dataset of (Serna-sánchez et al., 2020): 264 species 
representing 117 genera, 28 subtribes and 18 tribes. The taxon sampling of nuclear and 
plastid datasets overlaps in 34 genera, 14 tribes and 22 subtribes. Detailed information on the 
completeness of this plastid DNA dataset is provided in Serna et al. (2020).  
 
DNA sequence data analysis and phylogenomic inference 
 The quality of the newly generated sequencing data was assessed using the FastQC 
software (freely available at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
Paired-end DNA sequencing reads were adapter-trimmed and quality filtered with the 
pipeline TrimGalore! v.0.6.5 (freely available at 
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) using a Phred score 
quality threshold of 30 (flag -q), a minimum read length value of 20 (flag --length) and 
retaining only read pairs that passed all quality filtering thresholds. Data obtained from the 
SRA were already adapter- and quality-filtered. For each sample, the Angiosperms353 loci 
were retrieved through the pipeline HybPiper v.1.3.1 (Johnson et al., 2016) by mapping the 
clean reads against template sequences of the 353 low copy nuclear genes (available at 
https://github.com/mossmatters/Angiosperms353) using the Burrows-Wheeler alignment 
(BWA) program v.0.7 (Li and Durbin, 2009) and then de-novo assembling mapped reads for 
each gene separately using the software SPAdes v. 3.13 (Bankevich et al., 2012), with a 
minimum coverage threshold of 8x. For each gene, homologous sequences from each species 
were combined and aligned with the software MAFFT v. 7.4 (Katoh and Standley, 2013) 
using the FFT-NS-i strategy.  
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 For each nuclear or plastid gene alignment, a Maximum Likelihood (ML) gene tree 
was computed using the software RAxML v8.0 (Stamatakis, 2014) with the GTR+GAMMA 
nucleotide substitution model, and node support was calculated using 500 bootstrap 
replicates. The same approach was used to build a nuclear species tree based on a supermatrix 
made of the 353 concatenated nuclear gene alignments, and to build a plastid species tree 
based on a supermatrix made of the 78 concatenated plastid gene alignments. To account for 
topological incongruence between gene trees, we also inferred a nuclear species tree by 
analysing the ML nuclear gene trees together under the multispecies-coalescent (MSC) 
framework implemented in the software ASTRAL-III v5.6 (Mirarab and Warnow, 2015). The 
same approach was used to produce a MSC plastid species tree based on the plastid gene 
trees. In both cases, branches with Likelihood Bootstrap Support (LBS) > 20 in the gene trees 
were first collapsed using the software Newick Utilities toolkit (REF), as recommended by 
(REF). The resulting MSC topologies were annotated with quartet support values for the 
main topology (q1), the first alternative topology (q2), and the second alternative topology 
(q3; flag -t 2). In addition, we used the software SplitsTree4 (Huson, 1998) to infer Neighbor-
net networks based on uncorrected P-distances calculated from the nuclear supermatrix. 
Neighbor-nets (also known as split-graphs) are suitable diagrams to represent evolutionary 
relationships in groups that have experienced reticulation (Rutherford et al., 2018) and are 
useful to identify relationships that exhibit some ambiguity (Solís-Lemus et al., 2017). 
 
Quantification of intragenomic and nuclear-plastid discordance 

The proportion of intragenomic discordance in nuclear and plastid datasets was 
evaluated by looking at the normalised quartet scores produced by ASTRAL III when 
inferring MSC plastid and nuclear species trees. The quartet score indicates the proportion of 
gene tree quartets that are in agreement with the species tree and its magnitude is inversely 
proportional to incongruence, where a value of 1 indicates potential absence of gene tree 
discordance.  

To assess the degree to which the evolutionary history reflected by the nucleus 
tracked that of the plastid genome, we compared Euclidean distances among terminals 
between each bootstrap replicate of each nuclear ML gene tree and each bootstrap replicate of 
the supermatrix plastid ML tree. The supermatrix plastid ML tree and their bootstrap 
replicates were chosen over individual plastid ML gene trees because of the high degree of 
intragenomic congruence observed between the topologies derived from individual plastid 
loci (see Results). The comparisons were conducted with the Procrustean Approach to 
Cophylogenetics (PACo) pipeline implemented in the R software (Balbuena et al., 2013). The 
pipeline, originally designed to investigate cophylogenetic patterns between host and 
parasites, assesses the similarities between any two given trees by comparing the Euclidean 
distances separating terminals in both via Procrustean superimposition. The efficiency of 
PACo to assess tree incongruence between nuclear-plastid associations was previously 
evaluated by (Pérez-Escobar et al., 2016), and the pipeline has been widely used in other 
plant groups including Compositae (Vargas et al., 2017), Fagaceae (Yang et al., 2018), 
Orchidaceae (Pérez-Escobar, 2016; Pérez-Escobar et al., 2016) and Rosaceae (Morales-
Briones, Romoleroux, et al., 2018). The pipeline provides the sum of squared residuals for 
each pair of terminals (i.e. association) and each pair of topologies evaluated (Balbuena et al., 
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2013). This sum of squared residuals can be interpreted as a concordance score because it is 
directly proportional to the magnitude of the topological conflict for the pair of terminal 
considered.  

Because extremely long branches can bias the comparison of phylogenetic distances 
between terminals (De Vienne et al., 2011), we conducted PACo analyses on cladograms by 
assigning a value of 1 to each branch length in each tree, using the function br.length of the 
R-package APE (Paradis et al., 2004). Differences in the position of terminals between 
nuclear and plastid trees was summarised in barplots using the R-package GGPLOT2 
(available at https://ggplot2.tidyverse.org/), for which the sum of square residuals for each 
pair of terminals across nuclear genes was classified in quartiles. Here, the magnitude of the 
discordance was assessed by the proportion of genes binned in quartiles 3 and 4 (50% and 
75%) in each terminal: the more genes binned in quartiles 3-4, the more discordant the 
terminals.  

To test for intergenomic conflicts occurring across different taxonomic levels, we 
conducted the same analysis but with trees including one representative of each genus 
sampled in our nuclear and plastid phylogenomic trees. For this, we conducted sequence 
alignments and ML inference on each nuclear gene alignment and nuclear and 78-gene 
matrices (see DNA sequence data analysis and phylogenomic inference of methods). We then 
produced subtribe and tribe-level trees by keeping one representative of each clade in our 
nuclear gene and plastid supermatrix trees following the approach of (Matzke, 2013) as 
implemented in the R-package BioGeoBEARS (script available at 
http://phylo.wikidot.com/example-biogeobears-scripts#pruning_a_tree). Here, all tips 
belonging to the same taxon are pruned except the first species in the list of taxa representing 
each clade. Terminals identified as potentially conflicting were depicted in tanglegrams using 
nuclear and plastid ML trees derived from matrices sampled to genus level as implemented in 
the function tanglegram of the R-package DENDEXTEND (Galili, 2015). For subtribe- and 
tribe-level analyses, we relied on pruned trees originally derived from the nuclear and plastid 
concatenated supermatrices sampled to genus level. 
 
Assessment of phylogenetic informativeness and support for nuclear and plastid 
datasets  
 We compared performance of the Angiosperms353 low-copy nuclear genes and of the 
78 plastid genes for resolving orchid relationships in terms of support and phylogenetic 
informativeness (PI). We first calculated the proportion of nodes across genus-level nuclear 
and plastid gene trees that fell into nine discrete LBS categories defined by an interval length 
of 10 (excluding the interval LBS [81-100]). Secondly, we estimated the PI of each single 
nuclear and plastid gene alignment with regards to all species relationships recovered in the 
nuclear and plastid ML species trees, respectively. The trees were made ultrametric by 
assigning an arbitrary age of 1 to their root and of 0 to their tips (Townsend, 2007), using the 
software PATHd8 (https://www2.math.su.se/PATHd8/) (Britton et al., 2007). Phylogenetic 
informativeness of the nuclear and plastid genes was computed in PhyDesign 
(http://phydesign.townsend.yale.edu/; (López-Giráldez and Townsend, 2011), using the 
HyPhy algorithm recommended for DNA sequences (Kosakovsky Pond et al., 2005) and the 
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ultrametric ML species trees and nuclear and plastid supermatrices with gene partition 
information as input.  
 
RESULTS 
Nuclear phylogenomics of Orchidaceae 
 Success of the target genes enrichment ranged from 5% (Neottia nidus-avis) to 87% 
(Dendrobium ellipsophyllum) gene recovery (Appendix S2, S3). The proportion of nuclear 
genes recovered from SRA and 1KP datamined accessions ranged from 16% (Phalaenopsis 
equestris) to 75% (Mexipedium xerophyticum and Paphiopedilum malipoense). After 
excluding samples with less than 15 genes retrieved and gene alignments including less than 
20 sequences (i.e. ~80% missing taxon sampling), the final nuclear dataset consisted of 294 
genes and 89 species (Appendix S3).  

Split graphs derived from the nuclear supermatrix revealed clear clustering between 
members of each orchid subfamily, tribe and subtribe (Fig. 1). However, uncertainty 
regarding the phylogenetic placement of Neottieae, Nervilieae and Xerorchideae 
representatives was reflected in an increased number of alternative splits connecting these 
groups to representatives of other subfamilies. Maximum likelihood inference of the nuclear 
supermatrix and MSC analyses converged on similar, strongly supported topologies (Fig. 2, 
Appendix S4). However, we found important differences between these analyses regarding 
the placement of Gastrodieae (represented by the fully mycoheterotrophic Gastrodia elata), 
which was placed as (Neottieae (Gastrodieae (Xerorchideae/other epidendroids))) in the 
coalescent tree, but as (Neottieae (Xerorchideae (Gastrodieae/other epidendroids))) in the ML 
results.  
 The normalised quartet score of 91% derived from coalescent inference suggests that 
the majority of gene tree quartets are in agreement with the species tree. Likewise, the quartet 
support indicated that for most nodes between 40%-96% of the gene trees agreed with the 
species tree topology. For a few nodes, the proportion of gene trees supporting the quartet 
displayed in the species tree was below 40%. This included the most recent common 
ancestors (MRCAs) of Maxillaria, Zygopetalum, Stanhopea plus Coeliopsis (36.27), Bletia/ 
Epidendreae (34.52) and Cymbidieae/Epidendreae (38.76; Fig. 2). In particular, support for 
the Neottia/Palmorchis pair was flagged by ASTRALIII as unreliable due to low numbers of 
gene trees supporting it (i.e. 12). Likelihood bootstrap support (LBS) values for the ML 
orchid tree were high, with only 15 branches displaying LBS <100, of which nine had LBS < 
85 (Appendix S4). The majority of branches with low support were located near the base of 
Epidendroideae, in line with our findings of nodes with quartet support values < 40 as 
inferred by the MSC estimation. 
 
Intragenomic conflict in nuclear and plastid datasets 
 Estimation of the proportion of gene tree quartets that agree with the species tree 
through normalised quartet scores indicated that intragenomic incongruence was low. Here, 
the proportion of gene tree quartets in agreement with the species tree was 89% in nuclear 
trees and 95% in plastid trees. The proportion of gene quartets supporting topologies other 
than the species tree (i.e. quartet supports) revealed that the majority of nodes obtained values 
between 40-95% for the main tree (q1) in MSC analyses conducted on nuclear and plastid 
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datasets (Appendix S5). Exceptions to this pattern in the nuclear dataset were a few nodes 
with quartet values supporting alternative bipartitions linked to the MRCAs of 
Vandeae/Cymbidieae (q1=38.6; q2=38.6; q3=22.69) and Gastrodia/remainder of 
epidendroids (q1=40.3; q2=45.2; q3=14). In the plastid dataset, only four nodes obtained 
quartet values robustly supporting multiple quartets. Three were in Pleurothallidinae and one 
represented the MRCA of Podochilieae/Collabieae plus remainder of Epidendroideae 
(Appendix S5). 

A similar trend was found in the proportion of gene trees supporting the species tree 
or alternative topologies in the nuclear dataset sampled to genus level (Appendix S6), in 
which the proportion of gene tree topologies congruent with the MSC species-tree nodes 
ranged from 15% to 75% and was often dominant over the proportion of gene trees 
supporting alternative topologies. Three notable exceptions to this pattern were the MRCA of 
Cymbidieae/Vandeae and two early divergent nodes in Epidendroideae: MRCA of 
Nervilieae/remainder of Epidendroideae and Malaxideae/remainder of Epidendroideae. Here, 
gene trees supporting a second most common topology were dominant over the species-tree 
topology (Appendix S6). Overall, the proportion of gene trees supporting the species-tree 
topology in early divergent nodes in the Epidendroideae was low (from 21-50) but dominant 
over the proportion of gene trees supporting the second most common topology and any 
other.  
  
Nuclear-plastid phylogenetic discordance  
 The incongruence analysis conducted in PACo on nuclear and plastid trees suggested 
ten terminals as potentially conflicting (i.e. terminals with ~50% of their squared residual 
values falling into quartiles 3-4; see Methods; Fig. 3, Appendix S7, S8). The square residual 
values of these terminals computed individually for each nuclear gene tree assigned to 
quartiles 3-4 were overall higher compared with non-conflicting terminals (Fig. 3; Appendix 
S8). After inspecting the position of these terminals in nuclear and plastid ML and MSC 
trees, Cattleya, Coelia, Calypso and Earina appeared to be conflicting with moderate-strong 
(LBS 85-100) to weak-strong support (LBS 40-98) in the nuclear and plastid ML trees, 
respectively (Appendix S8, S9). These terminals were further linked to nodes with quartet 1 
(q1) values > 40 < 76 in the coalescent tree inferred from the nuclear dataset (Fig. 3, 
Appendix S5, S8). In the plastid dataset however, the coalescent tree did not recover the 
same topology as did ML, placing Earina and Coelia as the sister terminals to Epidendreae 
with q1> 50 (Appendix S5), Calypso as sister to Changnienia (q1= 60), and Cattleya as 
sister to Pleurothallidinae (q1=73). Five other terminals identified as potentially conflicting 
(i.e. Angraecum, Catasetum, Eulophia, Phalaenopsis and Vanda) were found in discordant 
positions with strong support in nuclear and plastid ML and coalescent trees (LBS > 88; q1 > 
48 < 76; Fig. 3, Appendix S5, S8, S9). 

Comparisons of nuclear and plastid trees (subtribe level) revealed 13 terminals were 
potentially conflicting (Appendix S10). As in the genus level analysis, the square residual 
values of terminals computed for each nuclear tree were overall higher for these taxa than the 
remainder of the tips (Appendix S10). However, only the placements of Catasetinae, 
Eulophiinae, Angraecinae, Aeridinae, Tropidieae and Nervilieae were found to be conflicting 
with strong support in both nuclear and plastid ML and coalescent trees (Fig. 3; Appendix 
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S11). Lastly, incongruence assessments conducted between trees sampled to tribe level 
revealed that Cymbidieae, Epidendreae, Nervilieae, Tropidieae and Vandeae were potentially 
conflicting (Appendix S12). The phylogenetic positions of Cymbidieae, Epidendreae, 
Nervilieae, Tropidieae and Vandeae were found to be conflicting with moderate to strong 
support (Fig. 3, Appendix S12, S13) in nuclear and plastid ML trees. Quartet support for the 
MRCA of Epidendreae/Cymbidieae in the nuclear dataset revealed almost equal support for 
three alternative bipartitions (q1=38.6; q2=38.6; q3=22.69; Appendix S5). 
 
Phylogenetic Informativeness and support of plastid and nuclear relationships 
 Profiles of phylogenetic informativeness (PI) for the nuclear and plastid datasets are 
shown in Appendix S14. Net and per-site PIs were in general higher in nuclear than plastid 
datasets, with average values of 82 and 0.192 versus 56 and 0.058 for nuclear and plastid 
datasets, respectively. The highest net PI values in nuclear alignments were attained between 
0.2 and 0.6 in an arbitrary time scale t of 0 (tips) to 1 (root; see Methods), broadly 
corresponding to the initial diversification of the Vanilloideae, Orchidoideae and 
Epidendroideae. In contrast, the highest per-site PI occurred at t[0.4-0.1], coinciding with the 
divergence times of most generic clades. Net PI values of plastid datasets overall attained 
uniform values from root to tips, with a notable decrease between t[0.4-0] and t[0.2-0] with 
plastid ycf1 as an exception to this pattern (Appendix S14). Per-site PI of plastid datasets 
presented a broadly similar distribution pattern to the nuclear PI per-site values, attaining 
their highest values at time intervals of t[0.4-.01]. 
 The distribution of LBP across gene tree branches strongly contrasted between 
nuclear and plastid datasets (Appendix S4). A similar distribution pattern of LBS values 
across the interval t20 (LBS > 10 ≦ 20) and t80 (LBS > 70 ≦ 80) was observed in nuclear 
and plastid datasets, with t10 (LBS ≦ 10) and t100 (LBS > 80) scoring the largest values. The 
number of gene tree branches receiving LBS ≧ 80 (t100) in the nuclear dataset was 1600 (vs. 
800 in the plastid dataset), whereas the interval t10 scored 1400 branches (vs. 3100 in the 
plastid dataset). 
 
DISCUSSION 
Limitations of plastid-only analyses   

With few exceptions (Bateman et al., 2018; Bogarín et al., 2018; Unruh et al., 2018; 
Brandrud et al., 2020; Pérez-Escobar et al., 2020), previous orchid studies (Cameron et al., 
1999; Salazar et al., 2003; Neubig et al., 2012; Givnish et al., 2015; Li, Li, et al., 2019; Serna-
sánchez et al., 2020) have relied almost exclusively on plastid datasets. This is because 
nuclear orchid trees have mostly been inferred from the low-copy Xdh (Górniak et al., 2010) 
and ribosomal ITS (nrITS) region (Freudenstein and Chase, 2015). Historically nuclear genes 
have been difficult to sequence due to a combination of inefficient amplification (due to 
degradation of DNA samples and/or large intronic regions), the need to clone amplified 
products due to paralogy or allelic diversity, and lack of universal PCR primers. 

High-throughput sequencing has revolutionised our ability to sequence DNA regions 
at a genomic scale, and thus enhanced our understanding of phylogenetic relationships by 
utilising different approaches to gain more sequence data per taxon sampled. One of the most 
commonly used methods is genome skimming (Straub et al., 2012; Dodsworth, 2015), which 
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focuses on sequencing high-copy genomic partitions because these are present even in low-
coverage genomic sequencing. Most notably, this includes the plastid genome, which has 
been used extensively for phylogenetics. The ease of this method has meant that it has surged 
in popularity over recent years, in many organisms, but also in angiosperms and orchids 
specifically (Parks et al., 2009; Edger et al., 2018; Li, Yi, et al., 2019; Kim et al., 2020; 
Zavala-Páez et al., 2020). This has perpetuated the plastid-marker bias in phylogenetic 
studies of orchids but also greatly improved the results from these analyses. Nevertheless, it 
has long been acknowledged that without an assessment of nuclear genes, it would be 
impossible to evaluate a number of important biological phenomena that have shaped 
angiosperm evolution and diversification, including hybridisation and polyploidisation, 
population structure, gene flow and introgression (Rieseberg et al., 1996; Vargas et al., 2017; 
Schley et al., 2020). Given the reliance on plastid analyses, not just as the basis for 
classification/taxonomy, but also for studying diversification rates, biogeography and trait 
evolution, it is important to ask to what degree such results reflect organismal evolution. In 
fact, choosing nuclear over plastid phylogenetic frameworks to investigate characters across 
time can radically affect our understanding of the mode and tempo of their evolution. An 
epidendroid example involves the gains and losses of deceit pollination, a trait thought to be 
linked with increased speciation and extinction rates in orchids (Givnish et al., 2015): using a 
plastid tree of the orchid subtribes as a framework, the character appeared to have evolved 
independently in both Laeliinae and Pleurothallidinae (Givnish et al., 2015). If the same 
character is optimised on our nuclear tree (Fig. 2), deceit pollination would be inferred to 
have evolved only once at the MRCA of these two subtribes, but this could be a reflection of 
the sparse taxonomic sampling of our study.  

 
Are nuclear and plastid evolutionary histories broadly congruent in orchids? 

 Our comparative phylogenomic analyses provide, for the first time, a solid 
evolutionary framework for the orchid family inferred from hundreds of low-copy nuclear 
genes and a detailed assessment on how much these relationships depart from those 
previously estimated from plastid DNA. An overview of our current understanding of the 
phylogenetic relationships of orchids was produced by Chase et al. (2015). The topology 
provided in this review is highly congruent with studies conducted on entire coding plastid 
and mitochondrial genomes (Givnish et al., 2015; Li et al., 2019; Serna-Sánchez et al., 2019) 
as well as with that of low-copy nuclear Xdh (Górniak et al., 2010). Overall, our quantitative 
comparisons of our much larger plastid and nuclear datasets support this view, revealing that 
there is a high degree of congruence between nuclear and organellar phylogenetic trees in 
orchids, including the monophyly of the five subfamilies and many of the tribal, subtribal and 
generic relationships (Fig. 3).  

Nevertheless, the topological test for quantification of incongruence conducted here 
reveals that the positions of a few Epidendroideae groups are potentially conflicting. One 
particular case is the incongruence of Coelia and Earina, which fall into moderately to well 
supported conflicting positions in nuclear ML and MSC analyses (Appendix S5). The plastid 
tree of Givnish et al. (2015) placed these genera as sister (LBS 90), a pattern also recovered 
in our ML plastid phylogeny albeit with lower support (LBS 40). The MSC analysis in 
contrast robustly places both genera as successively sister to the rest of Epidendreae, but with 
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Earina recovering support for an alternative position supported by 25% of the gene quartets 
(vs 65% of gene quartets supporting the species tree depicted in Appendix S5). Earina is 
often used for calibration in molecular clock analyses, as it is one of the three orchid 
macrofossils that has been unambiguously identified (Conran et al., 2009), raising the 
possibility of problems in estimating ages for the orchid tree of life. 

Another notable exception to the general plastid-nuclear congruence include the inter-
relationships of Epidendreae, Cymbidieae and Vandeae. These three clades account for 
nearly a third of the known orchid species diversity worldwide and are thought to be derived 
from multiple rapid diversifications (Givnish et al., 2015; Pérez-Escobar, Chomicki, 
Condamine, Karremans, et al., 2017). Previous plastid phylogenomic studies and our own 
reconstruction place Epidendreae as sister to Cymbidieae/Vandeae with maximum (Givnish 
et al., 2015; Li, Li, et al., 2019) to moderate support by (Fig. 3, Appendix S5, S12, S13), 
respectively. In contrast, our nuclear tree places Vandeae as sister to 
Cymbidieae/Epidendreae with strong LBS (Fig. 3, Appendix S13). However, we must be 
cautious to which extent the entire nuclear genome agrees with such a branching pattern. The 
quartet support generated for the MRCA of Cymbidieae and Epidendreae indicate that an 
equal proportion of gene quartets support this and an alternative topology (Fig. 3, Appendix 
S5), which could suggest that nuclear gene tree discordance might be responsible for the 
equally plausible topologies in the Epidendreae(Cymbidieae/Vandeae) situation. Biological 
phenomena responsible for gene tree incongruence include incomplete lineage sorting (ILS) 
and gene flow (Rieseberg et al., 1996; van der Niet and Peter Linder, 2008; Schley et al., 
2020). Teasing apart the signal that these phenomena leave on a topology is methodologically 
challenging (Morales-Briones, Liston, et al., 2018; Morales-Briones, Romoleroux, et al., 
2018). Given the overall low proportion of genes supporting the main and alternative 
topologies (Appendix S5, S6), we suggest that increasing the number of genes representing 
this particular node could help determine if there is a dominant branching pattern overall, as 
well as the relative influence of ILS and reticulation (Nute et al., 2018). 

 
Potential of conserved low-copy nuclear genes for orchid phylogenetics 

Due to the important caveats of plastid-only analyses, phylogenetics based on nuclear 
genes has started to become increasingly important over the past ten years. Previously it has 
been difficult to sequence more than a handful of low-copy genes in any plant group 
(Dodsworth et al., 2018) but genome complexity-reduction methods such as target 
enrichment have proven to be efficient for sequencing many nuclear loci (Bogarín et al., 
2018; Brewer et al., 2019; Dodsworth et al., 2019; Johnson et al., 2019). This approach 
enables the capture of hundreds of nuclear genes simultaneously, and these loci are highly 
variable in their levels of conservation, making them useful across all phylogenetic levels.  
 Our comparative analyses conducted on the per-gene informativeness and support 
offered by plastid coding datasets and the Angiosperms353 nuclear bait kit (Johnson et al., 
2019) strongly points towards the higher performance of low-copy nuclear genes for 
resolving phylogenetic relationships in both shallow and deep time. These include the recent 
divergence of epidendroids and clades that experienced rapid radiations such as 
Epidendreae/Laeliinae and Arethuseae/remainder of the epidendroids. Groups that remain 
problematic are those located towards the epidendroid MRCA and those that have been 
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historically difficult to place, including Gastrodieae, Neottieae and Nervilieae (Chase et al., 
2016), which proved difficult to sequence in our study (gene recovery was poor; Appendix 
S2). Finding a robust result for such clades will require an increase in their taxonomic 
representation as well as the number of genes included. 
 
CONCLUSIONS  

We present the first comprehensive assessment of the congruence of nuclear and 
plastid evolutionary histories of the orchid family and provide a generally robust nuclear 
phylogenomic framework for the family. Comparative analyses of the performance of 
hundreds of low-copy nuclear genes versus plastid genes reliably demonstrated that the 
Angiosperms353 genes in general contain more informative loci and resolve more 
relationships with higher support. We also discovered that, although the plastid genome 
largely tracks the evolution of the orchid family as reflected by the similarity of its 
phylogenetic reconstruction to that produced by our analysis of the nuclear genome, there are 
a few instances of incongruence at varying taxonomic levels that require further study. This is 
a clear indication that in spite of the overall congruence between nuclear and plastid data, 
they are not interchangeable, particularly when it comes to the study of character and trait 
evolution through time. Both trees are providing insights into orchid phylogeny, and the task 
before us is not to eliminate one as “flawed”, but rather to seek to integrate them to provide 
the best possible inferences about the evolution of this vast family. Our study also highlights 
the benefits of nuclear datasets for assessing the influence of hybridisation and incomplete 
lineage sorting on patterns of diversification. Here, we found that nuclear gene tree 
discordance is limited, but nonetheless present and linked to key nodes for understanding the 
diversification of the orchids and its timing. We predict that our study will lead to research 
addressing the extent of orchid topological discordance both within the nuclear genome as 
well as between genomic compartments and the phenomena driving this incongruence.  
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FIGURE LEGENDS 
Figure 1. Split network of the Orchidaceae computed from uncorrected P-distances and a 
concatenated supermatrix of 292 low copy nuclear genes and 75 species. Splits are color-
coded by orchid subfamilies (see Legend). Inset box: Taxonomic representation of orchid 
genera, tribes and subtribes sampled by nuclear gene datasets in this study.  
 
Figure 2. Species-coalescence tree of the orchid family inferred from 292 Maximum 
Likelihood (ML) gene trees. Pie diagrams at nodes represent quartet support values, with q1 
(deep blue portion) representing the proportion of gene tree quartets that support the main 
(depicted) branch, q2 (blue portion) representing the proportion of quartets supporting the 
first alternative branch and q3 (grey portion) representing the proportion of quartets 
supporting the second alternative branch (an explanation of how the quartet values are 
computed is available at https://github.com/smirarab/ASTRAL/blob/master/astral-
tutorial.md). (Inset): ML phylogeny derived from a concatenated supermatrix of 292 low 
copy nuclear genes. Terminal names with alternative positions to those obtained by the 
species-tree coalescence analysis are highlighted in bold and red. A detailed version of the 
phylogeny is presented in Figure S2. 
 
Figure 3. Summary of nuclear-plastid phylogenomic incongruence based on PACo analysis 
across different taxonomic levels between lineages of the Epidendroideae subfamily depicted 
based on nuclear and plastid ML trees. Conflicting positions between orchid A) genera, B) 
subtribes and C) tribes. Association of terminals found to be incongruent and placed with 
robust support in nuclear and plastid phylogenies are highlighted in bold and red. Pie 
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diagramas at nodes represent quartet support values. Likelihood Bootstrap Support (LBS) 
values at nodes are 100 unless shown otherwise (LBS < 85 are highlighted in red). (Inset): 
Three representatives of groups deemed to be conflicting in the orchid family 
(Pleurothallidinae: Pleurothallis perryi.; Laeliinae: Chysis bracteata; Angraecinae: 
Angraecum eburneum). Photos: O. Pérez. 
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ONLINE SUPPLEMENTARY MATERIAL 
Appendix S1. Species names, taxonomic and voucher information (including herbarium 
specimens whenever available) for material used in this study. The number of 
Angiosperms353 low copy nuclear genes sampled in phylogenetic estimations and missing 
data per sample are also provided. 
 
Appendix S2. Target enrichment success of de-novo sequenced accessions. A) Heatmap 
denoting the proportion the gene sequence length recovered for each sequenced accession.  
 
Appendix S3. Number of reads produced for de-novo sequenced accessions. The number of 
reads mapped and proportion of target gene sequenced are also provided. 
 
Appendix S4.  Maximum likelihood tree derived from a supermatrix of 292 low-copy 
nuclear genes. Likelihood Bootstrap Support (LB) is 100 unless shown otherwise (LBS <85 
in red). A) Number of branches per LBS interval derived from 292 ML nuclear gene trees. B) 
Number of branches per LBS interval derived from 78 ML plastid gene tree. 
 
Appendix S5. Multispecies Coalescent (MSC) trees inferred from 292 ML nuclear gene trees 
(A) and 78 ML plastid gene trees (B). Pie diagrams at nodes represent quartet support, with 
q1 (deep blue portion) representing the proportion of gene tree quartets that support the 
depicted branch, q2 (blue portion) representing the proportion of quartets supporting the first 
alternative and q3 (grey portion) representing the proportion of quartets supporting the 
second alternative. Tribes follow the classification of Chase et al. (2015). 
 
Appendix S6. MSC trees inferred from 292 ML nuclear gene trees. Pie diagrams at nodes 
represent quartet support, with q1 (deep blue portion) representing the proportion of gene tree 
quartets that support the depicted branch, q2 (blue portion) representing the proportion of 
quartets supporting the first alternative and q3 (grey portion) representing the proportion of 
quartets supporting the second alternative. Tribes follow the classification of Chase et al. 
(2015). 
  
Appendix S7. Experimental design of nuclear-plastid incongruence analyses. The maximum 
number of terminals sampled in genus, subtribe and tribe-level analyses of incongruence are 
provided together with the corresponding number of nuclear-plastid terminal associations 
analysed and those deemed potentially conflicting. 
  
Appendix S8. A) Conflicting phylogenetic positions between nuclear and plastid trees, 
depicted on ML trees. Tip names and their corresponding connections are taxa flagged as 
conflicting. Terminals highlighted in red are placed with strong branch support whole those 
in grey are weakly supported in either the nuclear or plastid tree.  Pie diagrams at nodes are 
provided only for branches with conflicting terminals. They represent quartet support, with 
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q1 (deep blue portion) representing the proportion of gene tree quartets that support the 
depicted branch, q2 (blue portion) representing the proportion of quartets supporting the first 
alternative and q3 (grey portion) representing the proportion of quartets supporting the 
second alternative. All quartet support values are provided in Appendix S5. LBS values are 
100 unless shown otherwise (LBS <85 in red). B) Proportion of genes with summary of 
square residual values binned in quartiles 1-4 for each nuclear-plastid association. Terminals 
with elevated numbers of genes binned in Q3-4 were deemed potentially conflicting (labelled 
with an asterisk). Terminal names highlighted in bold and red denote those found to be 
conflicting with strong support in nuclear and plastid tree. 
 
Appendix S9. A) ML phylogeny derived from a concatenated supermatrix of 292 low copy 
nuclear genes and B) 78-coding plastid genes. LBS are 100 unless shown otherwise (LBS < 
85 in red). The color of branches connected to internal nodes denote LBSs. 
 
Appendix S10. A) Conflicting phylogenetic positions between nuclear and plastid 
phylogenies sampled to subtribe level, depicted on trimmed ML trees derived from 
concatenated supermatrices sampled to genus level. Tip names and their corresponding 
connections are taxa flagged as conflicting. Terminals highlighted in red are placed with 
strong branch support whole those in grey are weakly supported in either the nuclear or 
plastid tree. Pie diagrams at nodes are provided only for branches interacting with conflicting 
terminals. They represent quartet support values, with q1 (deep blue portion) representing the 
proportion of gene tree quartets that support the main (depicted) branch, q2 (blue portion) 
representing the proportion of quartets supporting the first alternative branch and q3 (grey 
portion) representing the proportion of quartets supporting the second alternative branch. All 
quartet support values are provided in Appendix S7. Experimental design of nuclear-plastid 
incongruence analyses. The maximum number of terminals sampled in genus, subtribe and 
tribe-level analyses of incongruence are provided together with the corresponding number of 
nuclear-plastid terminal associations analysed and those deemed potentially conflicting. LBS 
values are nodes are 100 unless shown otherwise (LBS < 85 are highlighted in red). B) 
Proportion of genes with summary of square residual values binned in quartiles 1-4 for each 
nuclear-plastid association. Terminals with elevated numbers of genes binned in Q3-4 were 
deemed potentially conflicting (labelled with a black asterisk). Terminal names highlighted in 
bold and red denote tips found to be conflicting with strong support in nuclear and plastid 
phylogenies. 
 
Appendix S11. A)  A subtribe-level trimmed ML phylogeny derived from a concatenated 
supermatrix of 292 low copy nuclear genes and B) 78-coding plastid genes sampled to genus 
level. Likelihood Bootstrap Support (LBS) values are nodes are 100 unless shown otherwise 
(LBS < 85 are highlighted in red). The color of branches connected to internal nodes denote 
LBS values. 
 
Appendix S12. A) Conflicting phylogenetic positions between nuclear and plastid 
phylogenies sampled to tribe level, depicted on trimmed ML trees derived from concatenated 
supermatrices sampled to genus level. Tip names and their corresponding connections are 
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taxa flagged as conflicting. Terminals highlighted in red are placed with strong branch 
support whole those in grey are weakly supported in either the nuclear or plastid tree. Pie 
diagrams at nodes are provided only for branches interacting with conflicting terminals. They 
represent quartet support values, with q1 (deep blue portion) representing the proportion of 
gene tree quartets that support the main (depicted) branch, q2 (blue portion) representing the 
proportion of quartets supporting the first alternative branch and q3 (grey portion) 
representing the proportion of quartets supporting the second alternative branch. All quartet 
support values are provided in Appendix S7. LBS values are nodes are 100 unless shown 
otherwise (LBS < 85 are highlighted in red). B) Proportion of genes with summary of square 
residual values binned in quartiles 1-4 for each nuclear-plastid association. Terminals with 
elevated numbers of genes binned in Q3-4 were deemed potentially conflicting (labelled with 
a black asterisk). Terminal names highlighted in bold and red denote tips found to be 
conflicting with strong support in nuclear and plastid phylogenies. 
 
Appendix S13. A)  A tribe-level trimmed ML phylogeny derived from a concatenated 
supermatrix of 292 low copy nuclear genes and B) 78-coding plastid genes sampled to genus 
level. Likelihood Bootstrap Support (LBS) values are nodes are 100 unless shown otherwise 
(LBS < 85 are highlighted in red). The color of branches connected to internal nodes denote 
LBS values. 
 
Appendix S14. Net and per-site phylogenetic informativeness analyses inferred from 
concatenated A) 292-low-copy nuclear and B) 78-coding plastid gene supermatrices sampled 
to genus level. 
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