

## **The *C. elegans* homolog of *TMEM132D*, a human panic-disorder and anxiety risk gene, modulates neuronal morphogenesis through the WAVE-regulatory complex**

Xin Wang<sup>1,2</sup>†, Wei Jiang<sup>1,3</sup>†, Shuo Luo<sup>1</sup>, Xiaoyu Yang<sup>4</sup>, Changnan Wang<sup>1</sup>, Bingying Wang<sup>1</sup>, Yongjun Dang<sup>3</sup>, Yin Shen<sup>4</sup>, Dengke K. Ma<sup>1, 5,\*</sup>

<sup>1</sup>Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA

<sup>2</sup>State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming Yunnan 650091, China.

<sup>3</sup>Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College Fudan University, Shanghai, 200032, China

<sup>4</sup>Institute for Human Genetics, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA

†These authors contributed equally to this work

<sup>5</sup>Lead contact

\* Correspondence: [Dengke.Ma@ucsf.edu](mailto:Dengke.Ma@ucsf.edu)

1 **SUMMARY**

2

3 ***TMEM132D* is a human gene identified with multiple risk alleles for panic disorders,**  
4 **anxiety and major depressive disorders. Belonging to a conserved family of**  
5 **transmembrane proteins, *TMEM132D* and its homologs are still of unknown molecular**  
6 **functions. By generating loss-of-function mutants of the sole *TMEM132* ortholog in *C.***  
7 ***elegans*, we identify abnormal morphologic phenotypes in the dopaminergic PDE**  
8 **neurons. Using a yeast two-hybrid screen, we find that NAP1 directly interacts with the**  
9 **cytoplasmic domain of human *TMEM132D*, and mutations in *C. elegans tmem-132* that**  
10 **disrupt the interaction with NAP1 cause similar morphologic defects in the PDE neurons.**

11 **NAP1 is a component of the WAVE regulatory complex (WRC) that controls F-actin**  
12 **cytoskeletal dynamics. Decreasing activity of WRC rescues the PDE defects in *tmem-132***  
13 **mutants, whereas gain-of-function of *TMEM132D* in mammalian cells inhibits WRC,**  
14 **leading to decreased abundance of selective WRC components, impaired actin**  
15 **nucleation and cell motility. We propose that metazoan *TMEM132* family proteins play**  
16 **evolutionarily conserved roles in regulating NAP1 protein homologs to restrict**  
17 **inappropriate WRC activity, cytoskeletal and morphologic changes in the cell.**

18

19 **INTRODUCTION**

20 Despite decades of genetic and molecular analyses, the genome of the common model  
21 organism *C. elegans* still comprises many functionally uncharacterized genes (*C. elegans*  
22 Sequencing Consortium, 1998; Hillier et al., 2005; Kim et al., 2018; Pandey et al., 2014). One  
23 such example is the *C. elegans* gene *Y71H2AM.10*, an ortholog of the evolutionarily conserved  
24 *TMEM132* gene family (Kim et al., 2018; Sanchez-Pulido and Ponting, 2018). This family

25 encodes single-pass transmembrane proteins present in metazoans but remains functionally  
26 uncharacterized in any organisms. The human genome encodes 5 paralogs (*TMEM132A-E*),  
27 genetic variants of which have been identified as risk alleles of many human diseases, including  
28 those associated with panic disorder and anxiety severity in *TMEM132D* (Erhardt et al., 2011,  
29 2012; Hodgson et al., 2016; Howe et al., 2016; Inoue et al., 2015; Quast et al., 2012; Shimada-  
30 Sugimoto et al., 2016). Risk variants of *TMEM132D* have been shown to correlate with altered  
31 mRNA levels of *TMEM132D* in anxiety-related brain regions and psychiatric syndromes (Erhardt  
32 et al., 2011; Howe et al., 2016). In addition, the *TMEM132D* locus in cattle appears to have  
33 undergone an evolutionary selective sweep during domestication, along with reduced  
34 fearfulness in cattle's behaviors (Qanbari et al., 2014). The expression of *TMEM132* family  
35 genes is also highly enriched in the nervous system of diverse animals, including *C. elegans*  
36 and humans (Cao et al., 2017; Fagerberg et al., 2014). However, it remains unknown how  
37 *TMEM132* family proteins regulate neuronal structure and function and how their abnormal  
38 function and regulation may contribute to various neurological and psychiatric diseases.

39 Neuronal morphological changes are driven primarily by actin cytoskeletal dynamics  
40 under the control of the WAVE-regulatory complex (WRC). WRC promotes actin nucleation to  
41 form filamentous actin (F-actin) by stimulating activity of the Arp2/3 complex in response to  
42 biochemical signals originating from a variety of neuronal membrane receptors (Chen et al.,  
43 2014; Chia et al., 2014; Eden et al., 2002). WRC is a multi-subunit complex comprising SRA1,  
44 HSPC300, ABI1/2, WAVE1/2/3 and NAP1 (also known as NCKAP1) proteins. *NAP1* was initially  
45 identified as a gene with strongly decreased expression in the brain of patients with sporadic  
46 Alzheimer's disease (Suzuki et al., 2000). deleterious *NAP1* variants were also identified in  
47 human patients with autism and intellectual disability (Anazi et al., 2017; Freed and Pevsner,  
48 2016). Among other components in the WRC, the SRA and ABI proteins form an evolutionarily  
49 conserved binding interface for diverse WRC ligands that commonly contain the WRC-

50 interacting receptor sequence (WIRS) motif (Chen et al., 2014; Chia et al., 2014). Whether  
51 NAP1 directly interacts with any neuronal membrane receptors to affect WRC signaling and  
52 actin cytoskeletal changes has not been reported. It has also been unclear how abundance of  
53 WRC components is regulated in cell compartments where actin nucleation needs to be limited  
54 in morphologically complex cells, including neurons.

55 To elucidate biological functions and mechanisms of action of TMEM132 family proteins,  
56 we generated and characterized *C. elegans* loss-of-function (LOF) mutations in *Y71H2AM.10*,  
57 the sole ortholog of the *TMEM132* gene family. *tmem-132* mutants exhibit striking morphological  
58 defects in the dopaminergic PDE neurons. We further identified human NAP1 as a TMEM132D  
59 interactor and show that the *C. elegans* homologs also interact with each other. Genetic  
60 interactions between *tmem-132* and WRC-encoding genes in regulating PDE morphology, the  
61 LOF phenotype of *tmem-132* mutants and gain-of-function (GOF) phenotype of *TMEM132D* in  
62 mammalian cells collectively suggest that TMEM132 family proteins regulate NAP1 levels in  
63 WRC to finely modulate actin nucleation, cellular cytoskeletal and morphological changes.

64

## 65 **RESULTS**

### 66 **The *C. elegans* TMEM-132 localizes to neurons and regulates the dopaminergic PDE 67 neuron morphology**

68 Protein homology and motif analysis identified the Pfam16070 domain characteristic of  
69 both human TMEM132D and *C. elegans* TMEM-132, classifying both to the evolutionarily  
70 conserved TMEM132 protein superfamily (Figure 1A; Figure S1). Interestingly, a translational  
71 reporter that fuses *tmem-132* with GFP revealed enriched expression of *C. elegans* *tmem-132*  
72 in neurons (Figure 1B-D), implicating a specific role of TMEM-132 in the nervous system. Lack  
73 of mammalian loss-of-function models and potential genetic redundancy among the

74 TMEM132A-E family members precluded us from analyzing the physiological function of  
75 TMEM132D *in vivo*. Thus, we sought to address this issue in *C. elegans*, which encodes *tmem-*  
76 132 as the sole ortholog of the gene family and has served as excellent model to study neuronal  
77 cell biology (Inberg et al., 2019; Richardson and Shen, 2019; Tang and Jin, 2018). We used  
78 CRISPR-Cas9 techniques to generate a series of *C. elegans* mutants, including multiple  
79 independently-derived deletions, an early stop-codon mutant and a genetic P784T knock-in  
80 mutant, in which the highly conserved proline residue became threonine, corresponding to the  
81 human disease risk allele for anxiety and panic disorders (Figures 1E and 1F). We generated  
82 such multiple independent mutations to seek convergent phenotype and outcrossed all mutants  
83 to eliminate potential interference of phenotype by background mutations.

84 Given the exclusive localization of TMEM-132 in neurons, we subjected *tmem-132*  
85 mutants to a variety of neuronal phenotypic analyses. We did not observe gross behavioral  
86 defects under normal conditions. We next crossed the mutants to various established GFP  
87 reporters to examine neurons of stereotyped morphology, including ciliated sensory AWC  
88 neurons, hermaphrodite-specific HSN neurons, mechanosensory PVD, ADE and PDE neurons  
89 (Figure S2). Among the neurons examined, the dopaminergic neuron PDE exhibited the most  
90 severe defect, thus in this study we focused on PDE, which is marked by the *osm-6p::GFP*  
91 reporter in addition to other ciliated and dopaminergic neurons. Although dense GFP signals  
92 prevented us from analyzing the anterior group of ciliated and dopaminergic neurons, close  
93 confocal microscopic analysis of the posterior, anatomically isolated PDE neurons revealed  
94 striking abnormal morphologies in a large fraction of *tmem-132* mutants (Figures 2A-D). We  
95 categorized the mutant phenotype into several classes, including those with irregular soma  
96 outlines, ectopic dendrites, ectopic axon branches, and axon misguidance as similarly described  
97 previously (Shakir et al., 2008; Sulston et al., 1975). Although the phenotypic defects of PDE  
98 are diverse, all mutants show similar profiles in distribution of different categories of phenotypic

99 defects (Figures 2E and 2F). *tmem-132* LOF mutants also exhibited morphological defects in the  
100 ADE and PVD but not morphologically less complex AWC neurons (Figure S2). Neuronal  
101 morphogenesis critically depends on neuronal interactions with glia and epithelia in *C. elegans*  
102 (Inberg et al., 2019; Lamkin and Heiman, 2017; Singhvi and Shaham, 2019). Importantly,  
103 transgenic expression of *tmem-132* driven by the *osm-6* promoter rescued the morphologic  
104 defect of *tmem-132* mutants, indicating a causal and cell-autonomous role of TMEM-132 for  
105 ensuring normal PDE neuronal morphology (Figure 2F).

106

## 107 **Human TMEM132D interacts with the WRC component NAP1**

108 To begin to understand molecular functions of this conserved protein superfamily, we  
109 used yeast-two-hybrid (Y2H) screens to identify protein interactors of human TMEM132D. The  
110 predicted intracellular C-terminus of TMEM132D contains cytoplasmic motifs likely related to  
111 actin cytoskeletal dynamics (Chen et al., 2014; Sanchez-Pulido and Ponting, 2018). We thus  
112 constructed a yeast bait vector expressing its C-terminal domain and used the bait to screen for  
113 interactors from a human-cDNA prey library. We also constructed a bait vector that contains the  
114 homologous C-terminus of *C. elegans* *tmem-132* and focused on identified screen hits whose  
115 homologs can interact with human and *C. elegans* baits, respectively. From 117 independent  
116 cDNA clones isolated and identified by Sanger sequencing (Table S1), we found that the protein  
117 NAP1 encoded by *NCKAP1* showed robust interaction with TMEM132D in Y2H assays (Figure  
118 3A). NAP1 is an integral component of the WAVE regulatory complex that regulates actin  
119 nucleation and cytoskeletal changes in the cell through the ARP2/3 complex (Chen et al., 2014,  
120 2010; Eden et al., 2002; Welch and Mullins, 2002). We found that GEX-3, the *C. elegans*  
121 ortholog of NAP1, also interacts with the C-terminus of *C. elegans* TMEM-132 (Figure 3A).

122 In addition to NAP1, the WRC also contains three other major proteins SRA1, ABI1/2  
123 and WAVE1/2/3, with corresponding orthologs *gex-2*, *abi-1* and *wve-1* in *C. elegans* (Figure 3B)  
124 (Chia et al., 2014; Shakir et al., 2008; Soto et al., 2002). We verified the biochemical interaction  
125 between full-length NAP1 and TMEM132D in mammalian cells by co-immunoprecipitation  
126 (CoIP) assays. GFP-tagged NAP1, when expressed in heterologous HEK293 cells with V5  
127 epitope-tagged TMEM132D, was able to pull down TMEM132D in CoIP (Figure 3C). Another  
128 component of WRC, SRA1, is structurally similar to NAP1 and together with NAP1 forms a  
129 heterodimeric sub-complex in WRC (Chen et al., 2010). GFP-tagged SRA1 also pulled down  
130 TMEM132D, although we did not observe apparent association of TMEM132D with other  
131 components of WRC. When co-expressed in fully differentiated human neurons derived from  
132 induced pluripotent stem cells (iPSC), GFP-tagged TMEM132D markedly co-localized with  
133 mCherry-tagged NAP1 (Figure 3D). Collectively, these genetic, biochemical and cellular  
134 imaging results identify NAP1 as a protein interactor of TMEM132D and indicate that such  
135 interaction is evolutionarily conserved also for *C. elegans* counterparts.

136

137 **The C-terminal domain and the conserved P784 are required for the interactions between**  
138 **TMEM132 and WRC components**

139 We used Y2H and CoIP assays to further define the C-terminal domain of human  
140 TMEM132D or *C. elegans* TMEM-132 that is crucial for interacting with C-termini of NAP1  
141 homologs. To examine interaction between GEX-3 (*C. elegans* NAP1 homolog) and TMEM-132,  
142 we generated transgenic strains in which HA epitope-tagged GEX-3 and mCherry-tagged  
143 TMEM-132 Ct are co-induced by heat shock promoters (Figure 4A). Using the mCherry  
144 nanobody-Trap CoIP assay, we found that mCherry-tagged TMEM-132 Ct specifically pulled  
145 down HA epitope-tagged GEX-3, compared with heat shock-induced mCherry only as control  
146 (Figure 4A). We also confirmed interaction between GEX-3 Ct and TMEM-132 Ct in Y2H

147 assays, in which the most C-terminal 60 a.a. of GEX-3 was sufficient to mediate the interaction  
148 (Figure 4B). In the C-terminus homologous to the WIRS-containing TMEM132D, mutation of a  
149 WIRS-like motif attenuated TMEM-132 interaction with GEX-3 (Figure 4B). Furthermore, we  
150 generated mutations to convert the conserved proline 784 to alanine or threonine (to model  
151 psychiatric disorder-associated risk allele in humans, see Figure 1F) in TMEM-132 and found  
152 that both mutations abolished the interaction with GEX-3 (Figure 4C).

153 Previous studies revealed that the WIRS of diverse transmembrane proteins in  
154 mammals mediates binding to an interaction surface of WRC (Chen et al., 2014). As  
155 TMEM132D contains such a motif at its C-terminus, we performed mutation analysis in Co-IP  
156 assays and found that deletion of the entire cytoplasmic portion, deletion of the 120 a.a. C-  
157 terminus or mutation of the WIRS-like motif in TMEM132D markedly attenuated its interaction  
158 with Nap1 (Figure 5A). Deletion of the C-terminal 60 a.a. of TMEM132D did not appear to affect  
159 the interaction, indicating that additional sites beyond the 60 a.a. may interact with WIRS and  
160 contribute to interaction with Nap1. We made similar observations for Sra1 (Figure 5B),  
161 consistent with previous structural findings that Nap1 and Sra1 form an integral heterodimeric  
162 sub-complex of WRC (Chen et al., 2010). Systematic deletion mutation analysis using Co-IP  
163 and Y2H assays underscored the importance of C termini of TMEM132 family proteins from  
164 both *C. elegans* and humans in interacting with Nap homologs (Figure 5C). Since canonical  
165 WIRS binds to a composite surface formed by Sra and Abi but not Nap (Chen et al., 2014), our  
166 results suggest that TMEM132 differs from certain canonical WRC ligands, such as PCDH10, in  
167 specific interaction with WRC components, consistent with the idea that TMEM132 acts to  
168 sequester selective components of WRC rather than to recruit or activate WRC.

169

170 **WRC acts downstream of TMEM-132 to regulate morphology of the PDE neurons**

171 Since *C. elegans* TMEM-132 binds to GEX-3 as human TMEM132D binds to NAP1, we  
172 next addressed whether TMEM-132 regulates neuronal morphology via WRC in *C. elegans*. We  
173 generated an integrated transgenic reporter with neuronal specific expression of the WRC  
174 component ABI-1 fused to GFP. We found that ABI-1::GFP in the nerve ring, along with the  
175 ganglia of the head and tail in *C. elegans*, is weakly fluorescent in wild type animals but strongly  
176 up-regulated in *tmem-132* mutants (Figures 6A-C). Close microscopic analysis of ABI-1::GFP  
177 specifically in PDE neurons revealed that ABI-1::GFP forms puncta, numbers of which decrease  
178 from the larval to adult stages in wild type animals (Figure 6D). By contrast, numbers of ABI-  
179 1::GFP puncta in *tmem-132* mutants remain high in both larval and adult stages. Increased  
180 abundance of ABI-1::GFP in *tmem-132* mutants were confirmed by both whole-animal Western  
181 blot and quantitative phenotypic penetrance analysis (Figures 6A-E). To assess whether  
182 abnormally high ABI-1::GFP abundance in *tmem-132* mutants is responsible for morphologic  
183 defects of PDE neurons, we fed *tmem-132* mutants with bacteria expressing double-stranded  
184 RNAi against *abi-1* and found that morphologic defects of PDE neurons were largely normalized  
185 (Figures 6F and S3). RNAi by feeding produces weaker loss-of-function effects in neurons than  
186 by genetic deletion of WRC component-encoding genes, which by itself can cause strong PDE  
187 morphologic defects (Shakir et al., 2008). RNAi against genes encoding other components of  
188 WRC, including *brk-1* and *wve-1*, also normalized defects of PDE neurons (Figure 6G),  
189 supporting that abnormally high WRC activity in *tmem-132* mutants caused PDE defects.  
190 Together, these results indicate that TMEM-132 ensures normal PDE morphology by regulating  
191 the neuronal abundance of ABI-1 and restricting WRC activity in the PDE neuron. Interestingly,  
192 the CRISPR-mediated P784T substitution in the endogenous TMEM-132 locus caused  
193 abnormal neuronal morphology of the PDE neurons in *C. elegans* (Figure 2F), supporting the  
194 notion that functional roles of TMEM-132 in regulating F-actin and cell morphological changes  
195 are mediated by its C-terminal interaction with GEX-3 and thereby interference of WRC and  
196 actin nucleation.

197

198 **Ectopic TMEM132D expression decreases the abundance of select WRC components in**  
199 **mammalian cells**

200 We next examined functional consequences of ectopic TMEM132D expression in  
201 mammalian cells. While WRC is present in most metazoan cell types, expression of  
202 endogenous *TMEM132D* appears to be limited to the nervous system, based on RNA profiling  
203 of various mammalian tissues (Figure S4). Similarly, we found that expression of *C. elegans*  
204 *tmem-132* localizes mostly, if not exclusively, in neurons (Figure 1B-D). We thus established a  
205 heterologous HEK293 cell line that stably expresses exogenous V5 epitope-tagged TMEM132D  
206 to assess how ectopic expression of TMEM132D affects abundance of WRC components, actin  
207 cytoskeletal dynamics and cell motility. Quantified fluorescence signal and Western blot  
208 analyses revealed that TMEM132D-expressing cell lines markedly decreased the abundance of  
209 ABI1::GFP and WAVE2::GFP while not apparently affecting that of NAP1::GFP or SRA1::GFP,  
210 after being transfected as GFP fusion constructs in control and TMEM132D cell lines (Figures  
211 7A and 7B). NAP1 and SRA1 are essential for WRC stability and preventing other WRC  
212 components from degradation in the cell (Davidson et al., 2013; Eden et al., 2002; Kunda et al.,  
213 2003). Specific down-regulation of ABI1::GFP and WAVE2::GFP but not NAP1::GFP or  
214 SRA1::GFP suggests that TMEM132D likely acts to sequester NAP1 and SRA1 in a sub-  
215 complex from WRC, leading to disintegration and thus decreased activity of WRC.

216 To test the prediction of the idea that TMEM132D inhibits WRC, we used the LifeAct  
217 reporter and a wound-recovery assay to examine effects of *TMEM132D* expression on actin  
218 nucleation and cell motility, respectively. LifeAct is a 17-amino-acid polypeptide that labels  
219 filamentous actin (F-actin) structures; its fusion with GFP allows visualization and quantification  
220 of actin nucleation in eukaryotic cells (Riedl et al., 2008a). We found that expression of epitope-  
tagged *TMEM132D* in HEK293T cells led to cell surface localization and markedly reduced the

222 abundance of LifeAct::GFP (Figures 7C, 7D and S5). This was the case even under the  
223 condition of serum starvation, which can increase LifeAct::GFP abundance compared with the  
224 serum-containing condition (Figure 7C). Since a constitutive CMV promoter drove the  
225 expression of LifeAct::GFP, altered abundance of LifeAct::GFP likely reflects endogenous F-  
226 actin levels as unbound LifeAct::GFP is unstable and likely degraded (Kumari et al., 2020; Riedl  
227 et al., 2008b). TMEM132D did not affect overall actin abundance based on Western blot  
228 analysis using a pan-actin antibody, indicating specific inhibitory effects of *TMEM132D*  
229 expression on F-actin but not actin monomers. In addition to overall abundance, quantitative cell  
230 population-level analysis revealed that TMEM132D also reduced the percentage of cells with  
231 strong LifeAct::GFP fluorescence while not affecting the percentage of cells with control GFP  
232 fluorescence (Figure 7D). Furthermore, a wound-recovery assay showed that ectopic  
233 *TMEM132D*-expressing cells exhibited strongly reduced motility during the 24 and 48 hrs  
234 recovery phases after scratching-induced wounding in cultured cells (Figures 7E and 7F).  
235 Together, these results indicate that ectopic *TMEM132D* expression decreases actin nucleation  
236 and cell motility, supporting TMEM132D as a NAP1-binding and WRC-inhibiting protein.

237

## 238 **DISCUSSION**

239 Bioinformatic analysis predicted a non-canonical cellular adhesion function for  
240 TMEM132 family proteins, connecting extracellular matrix with intracellular actin cytoskeleton  
241 (Sanchez-Pulido and Ponting, 2018). We provide experimental evidence to support this  
242 prediction and demonstrate that two members of the TMEM132 protein family from humans and  
243 *C. elegans* regulate cell motility and neuronal morphology, respectively, via inhibition of WRC  
244 and actin nucleation. Together, our data support a model in which TMEM132 family proteins via  
245 their C-termini bind to and sequester Nap/Sra away from WRC, leading to disintegration and  
246 decreased abundance/activity of WRC components such as Abi/Wave, and eventually reduced

247 level of actin nucleation in the cell (Figure 8). Consequently, the high abundance of TMEM132  
248 at local cell surface compartments in wild-type cells likely endows cells, including neurons, with  
249 restricted cell motility or morphogenesis, while deficiency of TMEM132 proteins may lead to  
250 development of inappropriate cell motility or ectopic morphogenesis. The extracellular part of  
251 TMEM132 family proteins contain three tandem immunoglobulin domains and a cohesin domain  
252 homolog with roles implicated in cellular adhesion (Sanchez-Pulido and Ponting, 2018). How  
253 TMEM132 proteins are regulated under physiological and pathological conditions, potentially  
254 through modulation by unidentified extracellular ligands, warrants further investigation.

255 While major cell morphogenetic events occur during development, both human  
256 *TMEM132D* and *C. elegans tmem-132* are also highly expressed in mature neurons of the adult  
257 nervous system (Figures 1B-D and S4). Expression of the mouse homolog of *TMEM132D* is  
258 particularly high in the anterior cingulate cortex and claustral neurons, characteristic of long-  
259 range connectivity and cellular morphologic complexity (Erhardt et al., 2011; Saunders et al.,  
260 2018). Similarly, PDE neurons in *C. elegans* at the lateral side of the posterior body send long-  
261 range and bifurcated axons to the anterior and posterior nerve ganglia. Neurons form synaptic  
262 connections in circuits, in which neuronal activity dynamics can induce local F-actin-dependent  
263 changes of neuronal morphology and connectivity (Bertling and Hotulainen, 2017; Dillon and  
264 Goda, 2005; Luo, 2002). Such local changes are highly regulated while most surface  
265 compartments of mature neurons remain morphologically stable, mechanically resilient and  
266 maintained by large repertoires of cell adhesion molecules (Diz-Muñoz et al., 2018; Shapiro et  
267 al., 2007; Zipursky and Sanes, 2010). Correspondingly, enrichment of F-actin and actin-  
268 nucleating activity are also highly localized and differentially regulated along specific areas of  
269 cell processes and neuronal extensions, including dendritic spines, axonal synaptic termini,  
270 sensory cilia and microvilli ends (Balasanyan et al., 2017; Bertling and Hotulainen, 2017; Dillon  
271 and Goda, 2005; Drummond et al., 2018; Luo, 2002; Willig et al., 2014). We propose that

272 TMEM132 family proteins act to restrict excessive WRC and actin nucleation activities,  
273 spatiotemporally necessary for cellular/neuronal morphological plasticity and maintenance.  
274 Dysfunction or dysregulation of TMEM132D may lead to abnormal neuronal structure and  
275 dynamics, contributing to heightened risks for depression, anxiety and panic disorders.

276

## 277 **Materials and Methods**

### 278 ***C. elegans* strains**

279 *C. elegans* strains were maintained with standard procedures unless otherwise specified. The  
280 N2 Bristol strain was used as the reference wild type. The genetic and transgenic alleles  
281 described in this study include Chr. III: *tmem-132(dma313)*, *tmem-132(dma317)*, *tmem-*  
282 *132(dma318)*, *tmem-132(dma319)*, *tmem-132(dma348)*; *dmaEx471* [*tmem-132p::tmem-*  
283 *132fl::GFP*]; *lqls2* [*osm-6::GFP*]; *dmaEx452* [*osm-6p::abi-1::GFP*; *unc-54p::mCherry*]; *dmals65*  
284 [*rab-3p::abi-1::GFP*; *unc-54p::mCherry*]; *dmals86* [*osm-6p::abi-1::GFP*; *unc-54p::mCherry*];  
285 *dmals91* [*osm-6p::tmem-132::GFP*]; *wyls592* [*ser-2p3::myr-GFP*; *odr-1p::mCherry*]; *otls181*  
286 [*dat-1::mCherry* + *tx-3::mCherry*]; *kyls140* [*str-2::GFP* + *lin-15(+)*].

### 287 **Yeast two hybrid assay and screen**

288 The cDNA coding sequence of the C-terminal domain of human TMEM132D was cloned into  
289 the pGBK7 vector and screened with a normalized universal human cDNA library (Clontech,  
290 630481) in pGADT7 Vector, following instructions in the Matchmaker® Gold Yeast Two-Hybrid  
291 System (Clontech, 630489). Verification of positive colonies was achieved by co-transformation  
292 of extracted bait and prey plasmids following the instruction of YeastMaker™ Yeast  
293 Transformation System 2 (Clontech, 630439) and by bait/prey plasmids with re-cloned cDNA.

### 294 **Co-immunoprecipitation and Western blot**

295 HEK293T cells transfected with mammalian expression plasmids were pelleted by  
296 centrifugation, washed once with ice-cold PBS and lysed on ice for 30 min in lysis buffer (50 mM  
297 Tris HCl pH 8, 150 mM NaCl, 0.75% NP-40, 0.5% sodium deoxycholate) or Cell Lysis Buffer  
298 (Cell Signaling Technology, 9803S) supplemented with protease inhibitor cocktail (Sigma,  
299 11836153001) and phosphatase inhibitor cocktail (Bimake, B15001). Following centrifugation at  
300 12,000 rpm at 4°C for 15 min, supernatants were recovered. 10% volume of whole cell lysates  
301 were collected as input. Lysates were incubated with control (Chromotek) or rabbit IgG beads  
302 (Fisher Scientific, 88802) for preclear at 4°C for 45 min. Supernatants were recovered and  
303 incubated with mCherry-Trap, GFP-Trap (Chromotek) or V5 magnetic beads (MBL International,  
304 M167-11) at 4°C for 2 hrs. The beads were washed five times by lysis buffer and boiled with  
305 SDS sample buffer (Bio-rad, 1610747), then separated on 4-15% SDS-PAGE gel (Bio-Rad,  
306 4561086) together with input. The proteins were transferred to a nitrocellulose membrane (Bio-  
307 Rad, 1620167) and detected using the GFP (Santa Cruz Biotechnology, sc-9996) or V5 (EMD  
308 Millipore, AB3792) antibody.

309 **Confocal and epifluorescence microscopic imaging**

310 SPE confocal (Leica) and digital automated epifluorescence microscopes (EVOS, Life  
311 Technologies) were used to capture fluorescence images. Animals were randomly picked at the  
312 same stage and treated with 1 mM Levamisole sodium Azide in M9 solution (31742-250MG,  
313 Sigma-Aldrich), aligned on an 4% agar pad on a slide for imaging. Identical setting and  
314 conditions were used to compare experimental groups with control. For quantification of GFP  
315 fluorescence animals were outlined and quantified by measuring gray values using the ImageJ  
316 software. The data were plotted and analyzed by using GraphPad Prism7.

317 **Mammalian cell culture and wound recovery assay**

318 U2OS and HEK293T cells were cultured in DMEM (Thermo Fisher Scientific, MT-10-013-CV),  
319 supplemented with 10% fetal bovine serum (FBS, Gemini Bio-Products, 900-208) and 1%  
320 penicillin/streptomycin in a humidified 5% CO<sub>2</sub> incubator at 37°C. Stably expressing  
321 TMEM132D::V5 or the control U2OS cells were constructed for wound recovery assay  
322 according to the reported protocol (Liang et al., 2007). Cells were plated onto the 6-well plate  
323 and grew for 16 hrs to create a confluent monolayer, then cells were washed once by DMEM  
324 and cultured in scratch medium (DMEM supplemented with 0.5% FBS and 1%  
325 penicillin/streptomycin) for 24 hrs. The cell monolayer was scraped in a straight line to create a  
326 “scratch” with a P200 pipet tip. The debris was removed by washing the cells three times with  
327 DMEM medium (0 hr). The cells were then cultured for 24 hrs in scratch medium and imaged at  
328 0 hr, 24 hrs and 48 hrs. Human excitatory neurons were derived from inducible neurogenin-  
329 2(Ngn2) iPSC (i3N iPSCs) as described previously(Wang et al., 2017). Briefly, i3N iPSCs were  
330 pre-differentiated in KnockOut DMEM/F12 complemented with 2 mg/ml doxycycline, 1 mg/ml  
331 mouse Laminin, 10 ng/ml BDNF, 10 ng/ml NT3, 1x N-2 and 1x NEAA for 3 days. Media was  
332 changed daily with 10 mM Rock inhibitor added only for the first day. After that, the pre-  
333 differentiated precursor cells were disassociated with accutase and re-plated into poly-L-lysine  
334 coated plates in maturation media which is composed of DMEM/F12: Neurobasal-A/1:1, 2  
335 mg/ml doxycycline, 1 mg/ml mouse Laminin, 10 ng/ml BDNF, 10 ng/ml NT3, 0.5x N-2, 0.5x B-  
336 27, 0.5x GlutaMax and 1x NEAA. Half of the media was replaced every week thereafter without  
337 doxycycline supplemented. Human excitatory neurons were infected with lenti-virus (MOI=1) for  
338 24 hours on day 2 of pre-differentiation step. The precursor cells were then re-plated onto  
339 coverslips for differentiation into mature neurons and sample replicates were fixed every 3 days  
340 for immunohistochemistry.

341 **Statistical analysis**

342 Data are presented as means  $\pm$  S.D. with p values calculated by one-way or two-way ANOVA.

343 Data with non-normal distribution, including gene expression and phenotypic penetrance

344 results, were assessed by nonparametric Mann-Whitney and Fisher's exact test, respectively.

345

346 **Acknowledgements**

347 We thank the *Caenorhabditis* Genetics Center and the Bargmann, Hobert, Sengupta and Shen

348 laboratories for various *C. elegans* strains, Dr. Orion Weiner's laboratory at UCSF for WRC

349 fluorescent reporter constructs, and Dr. Li Gan's laboratory at the Gladstone Institute and UCSF

350 for iPSC lines. The work was supported by NIH grants R01GM117461, Pew Scholar Award,

351 Packard Fellowship in Science and Engineering (D.K.M), a fellowship from National Natural

352 Science Foundation of China (X.W.) and a China Postdoctoral Foundation fellowship (W.J.).

353 Author contributions: D.M., Y.S., Y.D. served as scientific advisors. X.W., W.J., S.L., B.W., X.Y.,

354 C.W. collected, analyzed and presented data. X.W., D.M., S.L., B.W. participated in writing and

355 technical editing of the manuscript.

356

357 **References**

358 Anazi, S., Maddirevula, S., Salpietro, V., Asi, Y.T., Alsahli, S., Alhashem, A., Shamseldin, H.E.,  
359 AlZahrani, F., Patel, N., Ibrahim, N., et al. (2017). Expanding the genetic heterogeneity of  
360 intellectual disability. *Hum. Genet.* *136*, 1419–1429.

361 Balasanyan, V., Watanabe, K., Dempsey, W.P., Lewis, T.L., Trinh, L.A., and Arnold, D.B.  
362 (2017). Structure and Function of an Actin-Based Filter in the Proximal Axon. *Cell Rep.* *21*,  
363 2696–2705.

364 Bertling, E., and Hotulainen, P. (2017). New waves in dendritic spine actin cytoskeleton: From  
365 branches and bundles to rings, from actin binding proteins to post-translational modifications.  
366 *Mol. Cell. Neurosci.* *84*, 77–84.

367 C. elegans Sequencing Consortium (1998). Genome sequence of the nematode *C. elegans*: a  
368 platform for investigating biology. *Science* *282*, 2012–2018.

369 Cao, J., Packer, J.S., Ramani, V., Cusanovich, D.A., Huynh, C., Daza, R., Qiu, X., Lee, C.,  
370 Furlan, S.N., Steemers, F.J., et al. (2017). Comprehensive single-cell transcriptional profiling of  
371 a multicellular organism. *Science* *357*, 661–667.

372 Chen, B., Brinkmann, K., Chen, Z., Pak, C.W., Liao, Y., Shi, S., Henry, L., Grishin, N.V.,  
373 Bogdan, S., and Rosen, M.K. (2014). The WAVE regulatory complex links diverse receptors to  
374 the actin cytoskeleton. *Cell* *156*, 195–207.

375 Chen, Z., Borek, D., Padrick, S.B., Gomez, T.S., Metlagel, Z., Ismail, A.M., Umetani, J.,  
376 Billadeau, D.D., Otwinowski, Z., and Rosen, M.K. (2010). Structure and control of the actin  
377 regulatory WAVE complex. *Nature* *468*, 533–538.

378 Chia, P.H., Chen, B., Li, P., Rosen, M.K., and Shen, K. (2014). Local F-actin network links  
379 synapse formation and axon branching. *Cell* *156*, 208–220.

380 Davidson, A.J., Ura, S., Thomason, P.A., Kalna, G., and Insall, R.H. (2013). Abi is required for  
381 modulation and stability but not localization or activation of the SCAR/WAVE complex. *Eukaryot.*  
382 *Cell* *12*, 1509–1516.

383 Dillon, C., and Goda, Y. (2005). The actin cytoskeleton: integrating form and function at the  
384 synapse. *Annu. Rev. Neurosci.* *28*, 25–55.

385 Diz-Muñoz, A., Weiner, O.D., and Fletcher, D.A. (2018). In pursuit of the mechanics that shape  
386 cell surfaces. *Nat. Phys.* *14*, 648–652.

387 Drummond, M.L., Li, M., Tarapore, E., Nguyen, T.T.L., Barouni, B.J., Cruz, S., Tan, K.C., Oro,  
388 A.E., and Atwood, S.X. (2018). Actin polymerization controls cilia-mediated signaling. *J. Cell*  
389 *Biol.* *217*, 3255–3266.

390 Eden, S., Rohatgi, R., Podtelejnikov, A.V., Mann, M., and Kirschner, M.W. (2002). Mechanism  
391 of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. *Nature* *418*, 790–793.

392 Erhardt, A., Czibere, L., Roeske, D., Lucae, S., Unschuld, P.G., Ripke, S., Specht, M., Kohli,  
393 M.A., Kloiber, S., Ising, M., et al. (2011). TMEM132D, a new candidate for anxiety phenotypes:  
394 evidence from human and mouse studies. *Mol. Psychiatry* *16*, 647–663.

395 Erhardt, A., Akula, N., Schumacher, J., Czamara, D., Karbalai, N., Müller-Myhsok, B., Mors, O.,  
396 Borglum, A., Kristensen, A.S., Woldbye, D.P.D., et al. (2012). Replication and meta-analysis of  
397 TMEM132D gene variants in panic disorder. *Transl. Psychiatry* *2*, e156.

398 Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka,  
399 M., Tahmasebpoor, S., Danielsson, A., Edlund, K., et al. (2014). Analysis of the human tissue-  
400 specific expression by genome-wide integration of transcriptomics and antibody-based  
401 proteomics. *Mol. Cell. Proteomics MCP* *13*, 397–406.

402 Freed, D., and Pevsner, J. (2016). The Contribution of Mosaic Variants to Autism Spectrum  
403 Disorder. *PLoS Genet.* *12*, e1006245.

404 Hillier, L.W., Coulson, A., Murray, J.I., Bao, Z., Sulston, J.E., and Waterston, R.H. (2005).  
405 Genomics in *C. elegans*: so many genes, such a little worm. *Genome Res.* *15*, 1651–1660.

406 Hodgson, K., Almasy, L., Knowles, E.E.M., Kent, J.W., Curran, J.E., Dyer, T.D., Göring, H.H.H.,  
407 Olvera, R.L., Fox, P.T., Pearlson, G.D., et al. (2016). Genome-wide significant loci for addiction  
408 and anxiety. *Eur. Psychiatry J. Assoc. Eur. Psychiatr.* *36*, 47–54.

409 Howe, A.S., Buttenschøn, H.N., Bani-Fatemi, A., Maron, E., Otowa, T., Erhardt, A., Binder, E.B.,  
410 Gregersen, N.O., Mors, O., Woldbye, D.P., et al. (2016). Candidate genes in panic disorder:  
411 meta-analyses of 23 common variants in major anxiogenic pathways. *Mol. Psychiatry* *21*, 665–  
412 679.

413 Inberg, S., Meledin, A., Kravtsov, V., Iosilevskii, Y., Oren-Suissa, M., and Podbilewicz, B.  
414 (2019). Lessons from Worm Dendritic Patterning. *Annu. Rev. Neurosci.*

415 Inoue, A., Akiyoshi, J., Muronaga, M., Masuda, K., Aizawa, S., Hirakawa, H., Ishitobi, Y.,  
416 Higuma, H., Maruyama, Y., Ninomiya, T., et al. (2015). Association of TMEM132D, COMT, and  
417 GABRA6 genotypes with cingulate, frontal cortex and hippocampal emotional processing in  
418 panic and major depressive disorder. *Int. J. Psychiatry Clin. Pract.* *19*, 192–200.

419 Kim, W., Underwood, R.S., Greenwald, I., and Shaye, D.D. (2018). OrthoList 2: A New  
420 Comparative Genomic Analysis of Human and *Caenorhabditis elegans* Genes. *Genetics* *210*,  
421 445–461.

422 Kumari, A., Kesarwani, S., Javoor, M.G., Vinothkumar, K.R., and Sirajuddin, M. (2020).  
423 Structural insights into actin filament recognition by commonly used cellular actin markers.  
424 *EMBO J.* *39*, e104006.

425 Kunda, P., Craig, G., Dominguez, V., and Baum, B. (2003). Abi, Sra1, and Kette control the  
426 stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions.  
427 *Curr. Biol. CB* *13*, 1867–1875.

428 Lamkin, E.R., and Heiman, M.G. (2017). Coordinated morphogenesis of neurons and glia. *Curr.*  
429 *Opin. Neurobiol.* *47*, 58–64.

430 Liang, C.-C., Park, A.Y., and Guan, J.-L. (2007). In vitro scratch assay: a convenient and  
431 inexpensive method for analysis of cell migration in vitro. *Nat. Protoc.* *2*, 329–333.

432 Luo, L. (2002). Actin cytoskeleton regulation in neuronal morphogenesis and structural  
433 plasticity. *Annu. Rev. Cell Dev. Biol.* *18*, 601–635.

434 Pandey, A.K., Lu, L., Wang, X., Homayouni, R., and Williams, R.W. (2014). Functionally  
435 enigmatic genes: a case study of the brain ignorome. *PLoS One* *9*, e88889.

436 Qanbari, S., Pausch, H., Jansen, S., Somel, M., Strom, T.M., Fries, R., Nielsen, R., and  
437 Simianer, H. (2014). Classic Selective Sweeps Revealed by Massive Sequencing in Cattle.  
438 *PLOS Genet.* *10*, e1004148.

439 Quast, C., Altmann, A., Weber, P., Arloth, J., Bader, D., Heck, A., Pfister, H., Müller-Myhsok, B.,  
440 Erhardt, A., and Binder, E.B. (2012). Rare variants in TMEM132D in a case-control sample for  
441 panic disorder. *Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr.*  
442 *Genet.* *159B*, 896–907.

443 Richardson, C.E., and Shen, K. (2019). Neurite Development and Repair in Worms and Flies.  
444 *Annu. Rev. Neurosci.*

445 Riedl, J., Crevenna, A.H., Kessenbrock, K., Yu, J.H., Neukirchen, D., Bista, M., Bradke, F.,  
446 Jenne, D., Holak, T.A., Werb, Z., et al. (2008a). Lifeact: a versatile marker to visualize F-actin.  
447 *Nat. Methods* 5, 605–607.

448 Riedl, J., Crevenna, A.H., Kessenbrock, K., Yu, J.H., Neukirchen, D., Bista, M., Bradke, F.,  
449 Jenne, D., Holak, T.A., Werb, Z., et al. (2008b). Lifeact: a versatile marker to visualize F-actin.  
450 *Nat. Methods* 5, 605–607.

451 Sanchez-Pulido, L., and Ponting, C.P. (2018). TMEM132: an ancient architecture of cohesin  
452 and immunoglobulin domains define a new family of neural adhesion molecules. *Bioinforma.*  
453 *Oxf. Engl.* 34, 721–724.

454 Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., de Rivera, H., Bien, E.,  
455 Baum, M., Bortolin, L., Wang, S., et al. (2018). Molecular Diversity and Specializations among  
456 the Cells of the Adult Mouse Brain. *Cell* 174, 1015–1030.e16.

457 Shakir, M.A., Jiang, K., Struckhoff, E.C., Demarco, R.S., Patel, F.B., Soto, M.C., and Lundquist,  
458 E.A. (2008). The Arp2/3 activators WAVE and WASP have distinct genetic interactions with Rac  
459 GTPases in *Caenorhabditis elegans* axon guidance. *Genetics* 179, 1957–1971.

460 Shapiro, L., Love, J., and Colman, D.R. (2007). Adhesion molecules in the nervous system:  
461 structural insights into function and diversity. *Annu. Rev. Neurosci.* 30, 451–474.

462 Shimada-Sugimoto, M., Otowa, T., Miyagawa, T., Khor, S.-S., Omae, Y., Toyo-Oka, L., Sugaya,  
463 N., Kawamura, Y., Umekage, T., Miyashita, A., et al. (2016). Polymorphisms in the TMEM132D  
464 region are associated with panic disorder in HLA-DRB1\*13:02-negative individuals of a  
465 Japanese population. *Hum. Genome Var.* 3, 16001.

466 Singhvi, A., and Shaham, S. (2019). Glia-Neuron Interactions in *Caenorhabditis elegans*. *Annu.*  
467 *Rev. Neurosci.*

468 Soto, M.C., Qadota, H., Kasuya, K., Inoue, M., Tsuboi, D., Mello, C.C., and Kaibuchi, K. (2002).  
469 The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in *C.*  
470 *elegans*. *Genes Dev.* 16, 620–632.

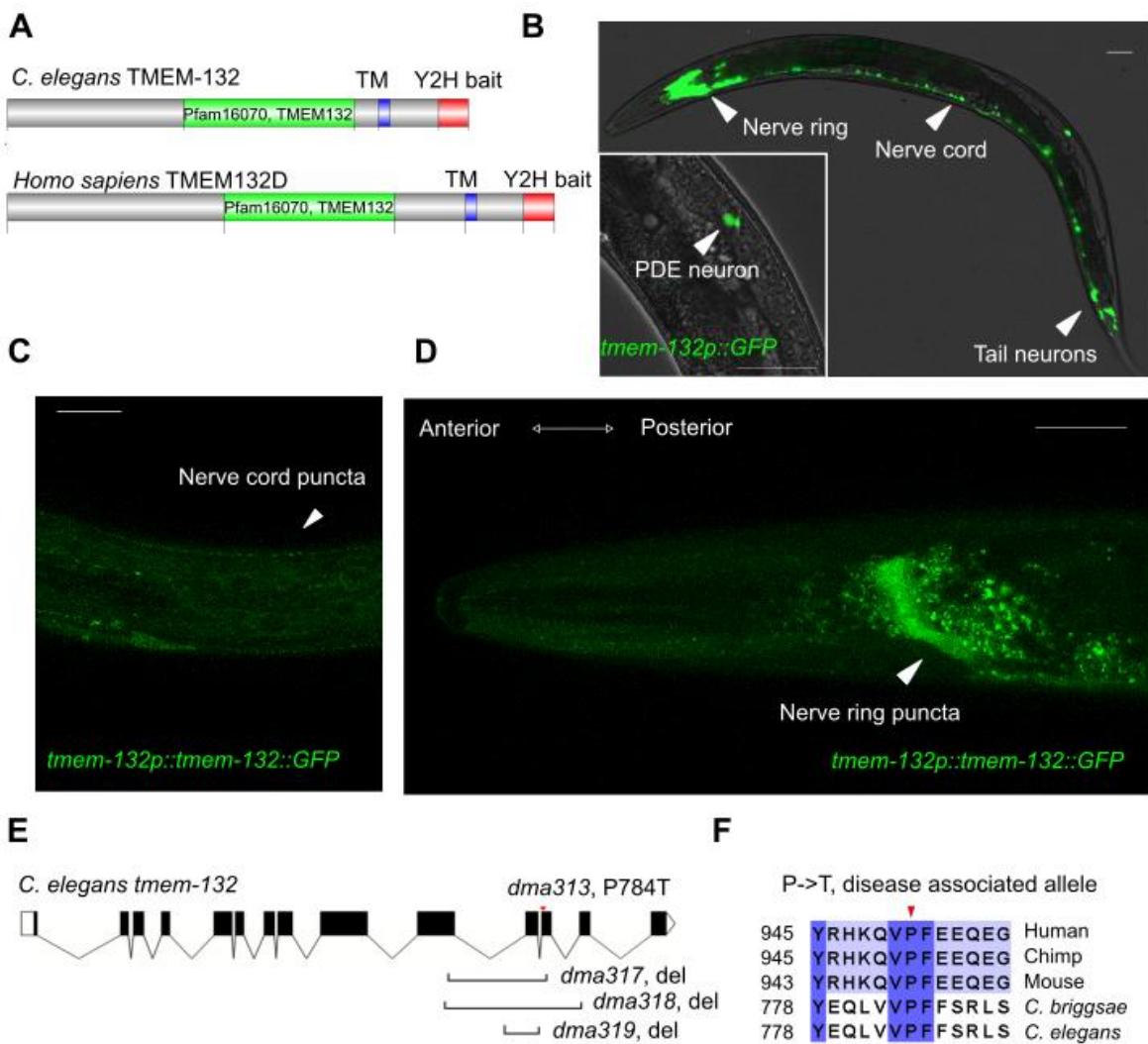
471 Sulston, J., Dew, M., and Brenner, S. (1975). Dopaminergic neurons in the nematode  
472 *Caenorhabditis elegans*. *J. Comp. Neurol.* 163, 215–226.

473 Suzuki, T., Nishiyama, K., Yamamoto, A., Inazawa, J., Iwaki, T., Yamada, T., Kanazawa, I., and  
474 Sakaki, Y. (2000). Molecular cloning of a novel apoptosis-related gene, human Nap1  
475 (NCKAP1), and its possible relation to Alzheimer disease. *Genomics* 63, 246–254.

476 Tang, N.H., and Jin, Y. (2018). Shaping neurodevelopment: distinct contributions of cytoskeletal  
477 proteins. *Curr. Opin. Neurobiol.* 51, 111–118.

478 Wang, C., Ward, M.E., Chen, R., Liu, K., Tracy, T.E., Chen, X., Xie, M., Sohn, P.D., Ludwig, C.,  
479 Meyer-Franke, A., et al. (2017). Scalable Production of iPSC-Derived Human Neurons to  
480 Identify Tau-Lowering Compounds by High-Content Screening. *Stem Cell Rep.* 9, 1221–1233.

481 Welch, M.D., and Mullins, R.D. (2002). Cellular control of actin nucleation. *Annu. Rev. Cell Dev.*  
482 *Biol.* 18, 247–288.


483 Willig, K.I., Steffens, H., Gregor, C., Herholt, A., Rossner, M.J., and Hell, S.W. (2014).  
484 Nanoscopy of filamentous actin in cortical dendrites of a living mouse. *Biophys. J.* 106, L01-03.

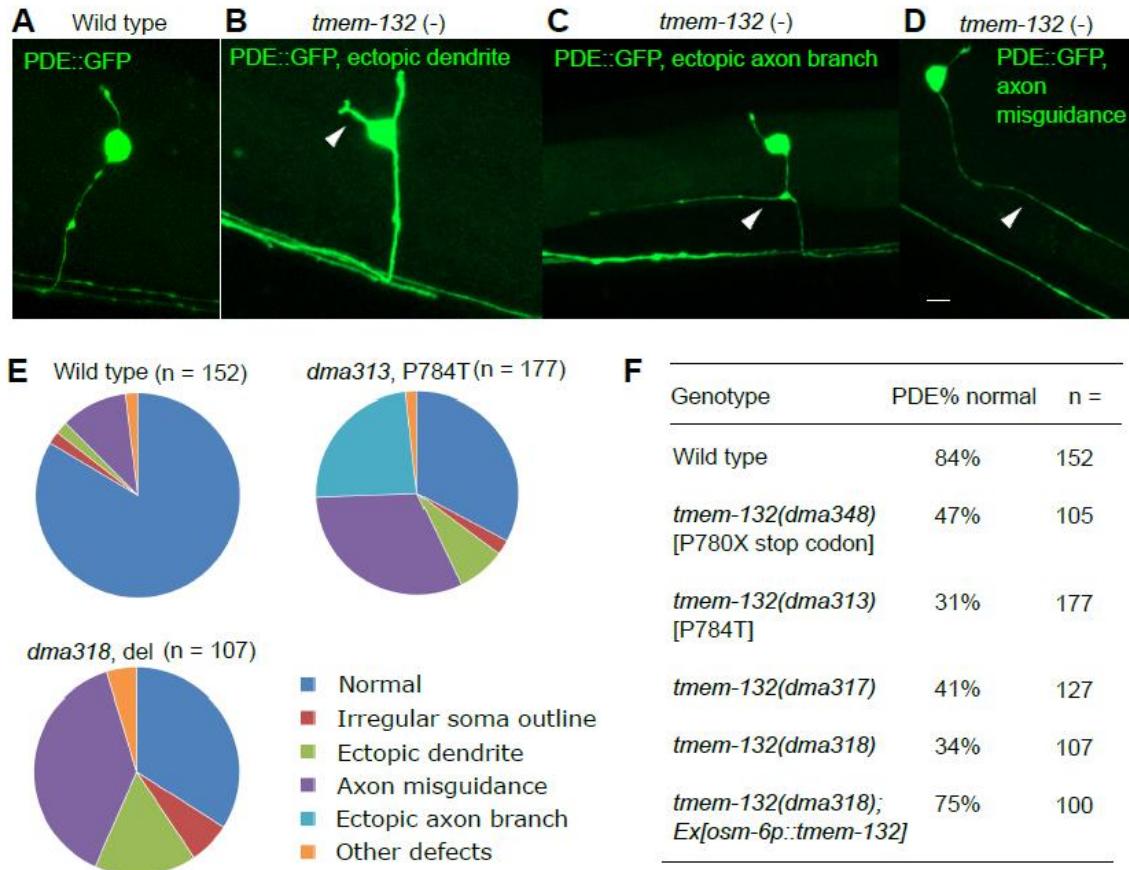
485 Zipursky, S.L., and Sanes, J.R. (2010). Chemoaffinity revisited: dscams, protocadherins, and  
486 neural circuit assembly. *Cell* 143, 343–353.

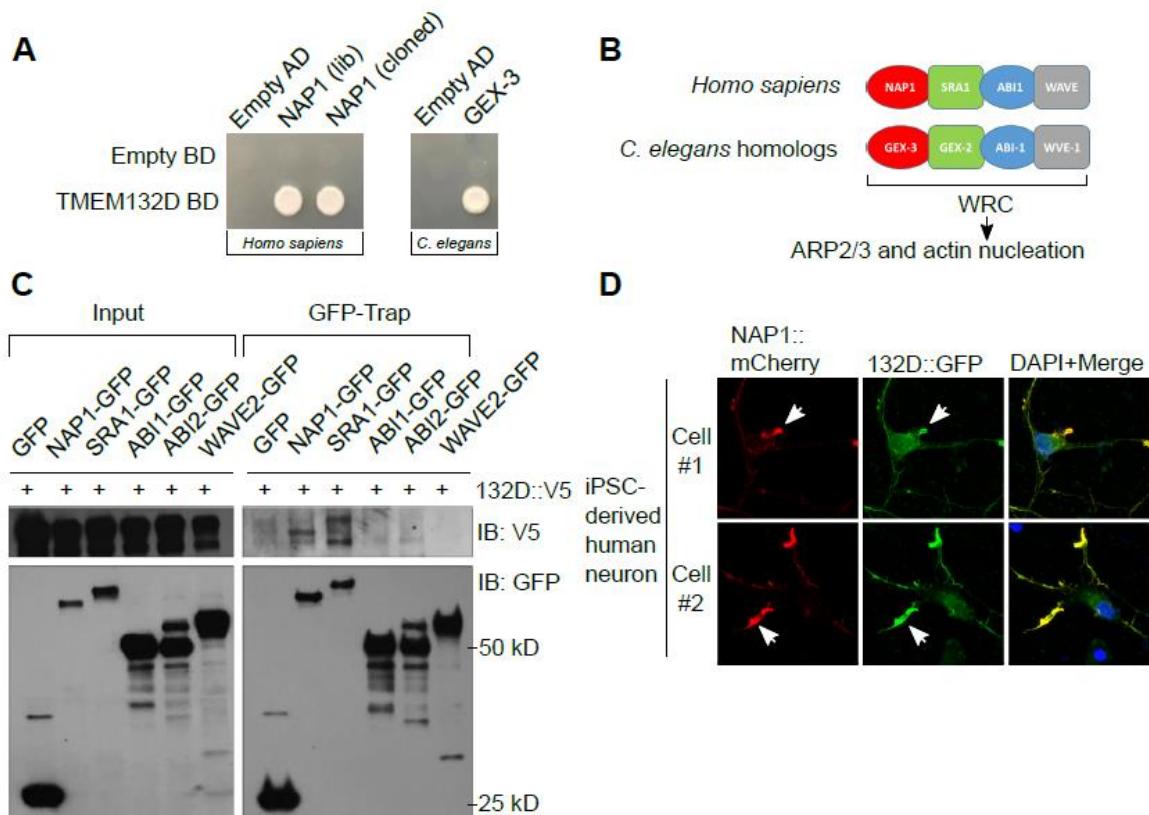
487

488

489 **Figures**




490


491 **Figure 1 *C. elegans* TMEM-132 specifically localizes to the nervous system. (A)** Schematic  
492 of human TMEM132D and *C. elegans* TMEM-132 protein domains. The Pfam16070 conserved  
493 domain (yellow) characterizes both proteins, with additional transmembrane domains (TM, blue)  
494 and C-terminal regions (red) used for yeast-two-hybrid assays. **(B)** Exemplar confocal  
495 fluorescence image showing expression of *tmem-132* promoter-driven GFP in the nervous  
496 system. Inset, exemplar confocal fluorescence image showing expression of *tmem-132*  
497 promoter-driven GFP specifically in the PDE neuron. **(C)** Exemplar confocal fluorescence image

498 showing the puncta pattern of *tmem-132* promoter-driven TMEM-132::GFP expression in the  
499 ventral nerve cord. **(D)** Exemplar confocal fluorescence image showing the puncta pattern of  
500 *tmem-132* promoter-driven TMEM-132::GFP expression in the nerve ring. Scale bar: 50  $\mu$ m. **(E)**  
501 Schematic of *tmem-132* gene structure showing positions of alleles generated by CRISPR-  
502 mediated editing including deletion alleles *dma317*, *dma318*, *dma319* and point mutation  
503 *dma313* that converts proline 784 to threonine. **(F)** Multiple sequence alignment (generated by  
504 ClustalOmega and visualized by Jalview) of TMEM132 protein family from indicated metazoan  
505 species showing high levels of amino acid sequence conservation around the P784 position.  
506 P784T is one of the non-synonymous variants identified as risk alleles for panic disorder and  
507 anxiety.

508

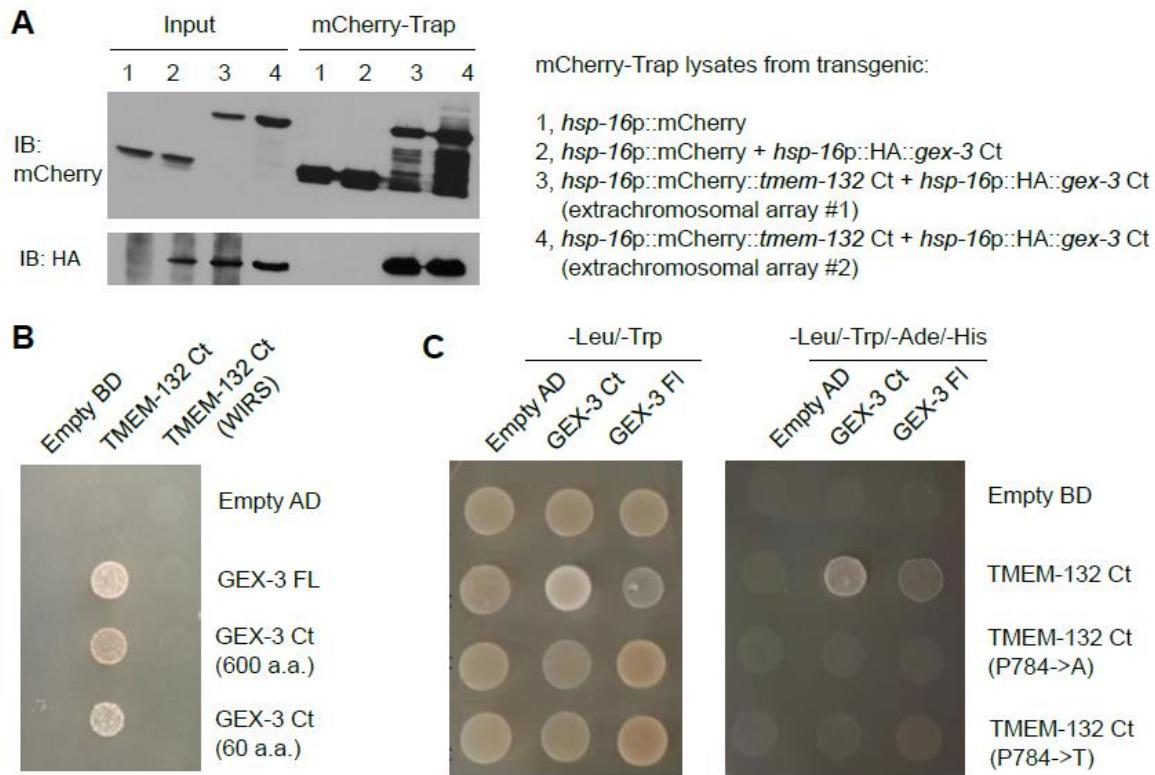
509





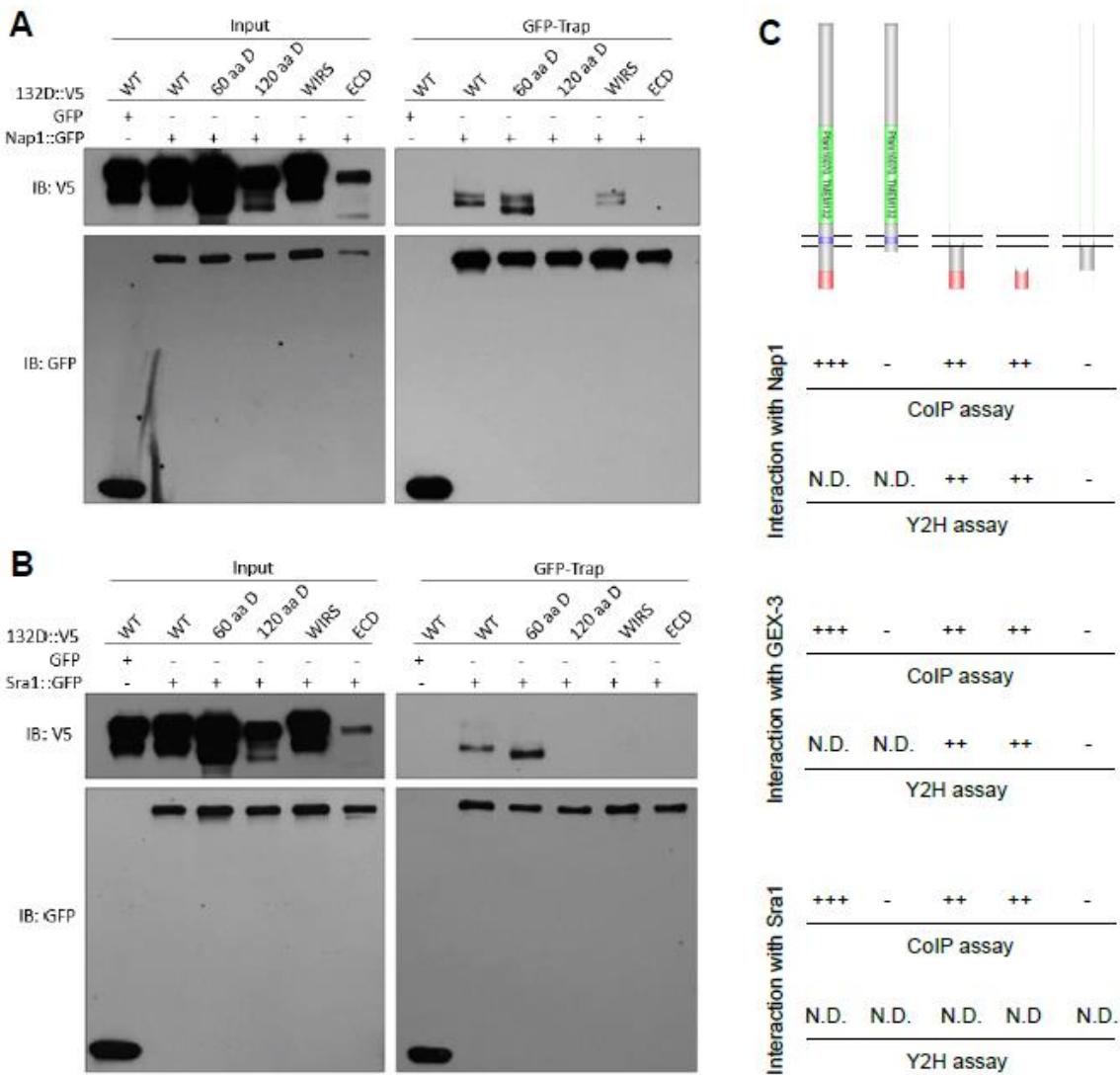
521

522 **Figure 3. Conserved interactions between TMEM132 and WRC in human and *C. elegans*.**


523 **(A)** Yeast colony growth indicating interaction between protein C-termini from human  
524 TMEM132D and NAP1, as well as *C. elegans* TMEM-132 and GEX-3. Both library-derived and  
525 re-cloned NAP1 cDNAs showed specific interaction with TMEM132D. BD and AD refer to  
526 bait/prey vectors as controls. **(B)** Schematic of human and *C. elegans* homologs encoding  
527 various major components of WRC that controls actin nucleation via the ARP2/3 complex. **(C)**  
528 Exemplar Western blot showing biochemical interaction between V5-tagged TMEM132D and  
529 GFP-tagged NAP1 in CoIP assay. Mammalian expression vectors encoding TMEM132D-V5  
530 and GFP-tagged WRC components were co-transfected to HEK293 cells followed by GFP-Trap  
531 CoIP and blotting with antibodies against V5. Only NAP1 and SRA1 showed robust interaction  
532 with TMEM132D. **(D)** Exemplar confocal immunofluorescence images showing co-localization of

533 GFP-tagged TMEM132D and mCherry-tagged NAP1 in iPSC-derived human neurons

534 transfected with both fluorescence reporters. Scale bar, 10  $\mu$ m.

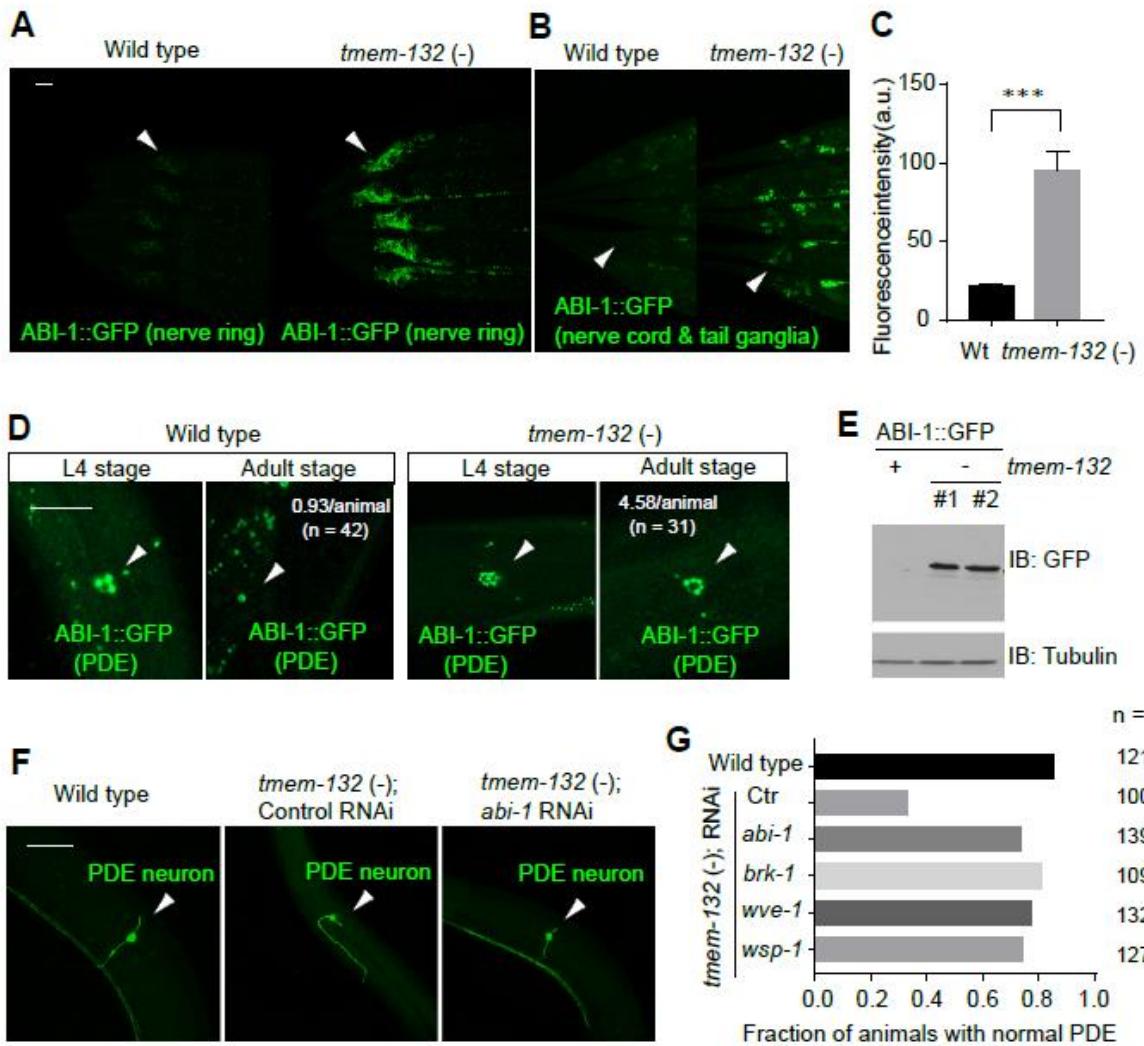

535

536



537

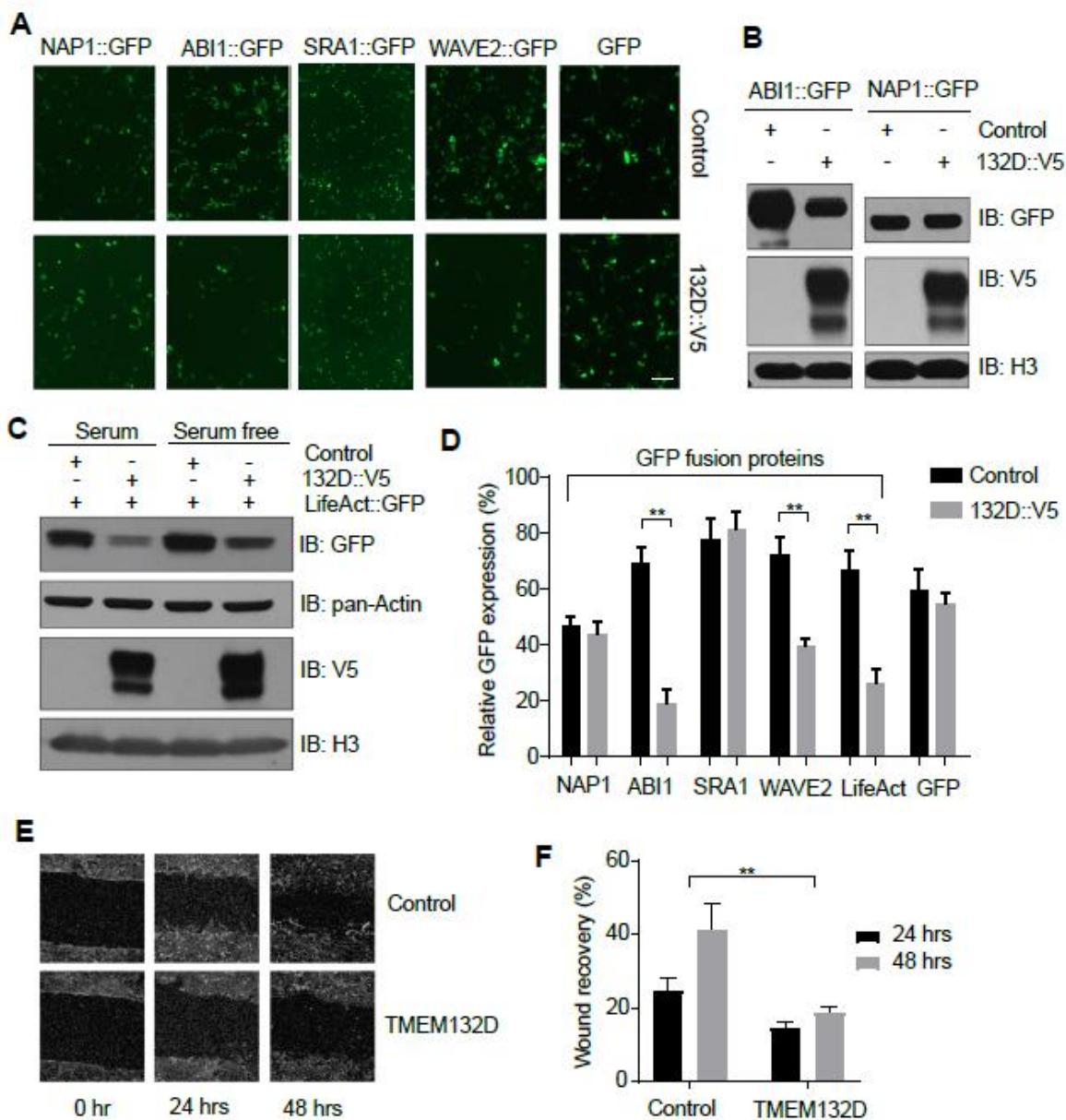
538 **Figure 4 *C. elegans* TMEM-132 interaction with GEX-3 requires C-terminal domains**  
539 **involving key amino acid residues. (A)** Exemplar Western blot showing CoIP of *C. elegans*  
540 TMEM-132 (mCherry-tagged) and GEX-3 (HA-tagged) C terminal domains. Transgenic  
541 expression was driven by *hsp-16* promoters that are heat shock inducible by placing transgenic  
542 animals at 32 °C for 2 hrs followed by recovery at 20 °C for 4 hrs. **(B)** Yeast growth colonies  
543 showing interaction of *C. elegans* TMEM-132 Ct and a mutant with a putative WIRS-like motif  
544 converted to alanine residues, with GEX-3 full length, mutants with C-terminal 600 a.a. and 60  
545 a.a. fragments. **(C)** Yeast growth colonies showing interaction of *C. elegans* GEX-3 full length,  
546 mutants with C-terminal 600 a.a. fragments with TMEM-132 Ct and mutants with substitutions of  
547 proline 784 to alanine or threonine, respectively. Double dropout -Leu/-Trp yielded colonies  
548 without apparent differences, indicating that these mutations do not affect protein levels.




549

550 **Figure 5 Human TMEM132D interacts with Nap/Sra via C-terminal domains. (A) Exemplar**  
 551 Western blot showing CoIP of various human TMEM132D (V5-tagged) mutants and NAP1  
 552 (GFP-tagged). Expression was driven by constitutive CMV promoters in HEK293 cells and  
 553 lysates were used for GFP-trap and blot with antibodies against GFP and V5. (B) Exemplar  
 554 Western blot showing CoIP of various human TMEM132D (V5-tagged) mutants and SRA1  
 555 (GFP-tagged). 60 a.a. D, TMEM132D with deletion of the last 60 a.a. sequence. 120 a.a. D,  
 556 TMEM132D with deletion of the last 120 a.a. sequence. WIRS, TMEM132D with the WIRS-like

557 motif (KFTTFTAV) mutated to alanine residues. ECD, TMEM132D with only extracellular  
558 domain and transmembrane domain. Results represent three independently repeated  
559 experiments. **(C)** Schematic showing human TMEM132D or *C. elegans* TMEM-132 with various  
560 domain genetic deletions and a summary of their interaction with Nap homologs (human NAP1  
561 and *C. elegans* GEX-3) from both CoIP and Y2H assays.


562

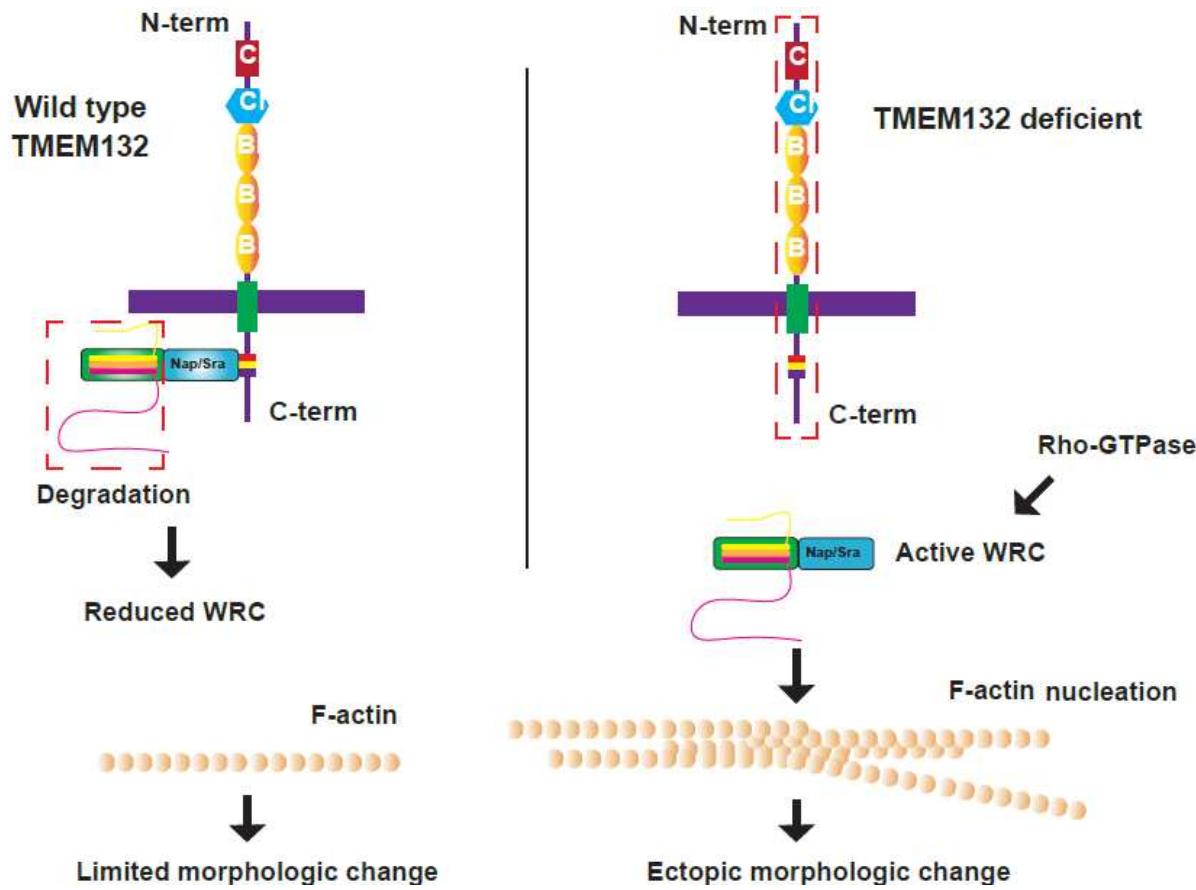


563  
564 **Figure 6 *C. elegans* TMEM-132 acts through WRC to regulate neuronal morphology. (A)**  
565 **(B)** Exemplar confocal fluorescent images showing increased abundance of neuronal ABI-  
566 1::GFP in *tmem-132* deficient *C. elegans*. The *rab-3* promoter-driven expression of *abi-1*::GFP  
567 was prominent in both nerve ring (arrow head in A) and tail ganglia (arrow head in B) areas of  
568 *tmem-132* null animals but not wild type. **(C)** Quantification of fluorescence intensity of ABI-  
569 1::GFP in *tmem-132* null and wild-type animals. **(D)** Exemplar confocal fluorescent images  
570 showing increased abundance of ABI-1::GFP in the PDE neurons of *tmem-132* null, compared  
571 with wild type animals. Up-regulation of ABI-1::GFP in PDE was particularly prominent in young

572 adult stage animals, compared with larval L4 stage animals. The average number of ABI-1::GFP  
573 puncta were noted for adult stages. **(E)** Exemplar Western blot showing increased abundance of  
574 ABI-1::GFP in total lysate of *tmem-132* null animals, compared with wild type. Two independent  
575 deletions (#1, *dma317*; #2, *dma318*) produced similar effects. **(F)** Exemplar confocal  
576 fluorescence images showing abnormal PDE morphology in *tmem-132* nulls, and rescued PDE  
577 morphology in *tmem-132* nulls with treatment of *abi-1* RNAi. **(G)** Quantification of fraction of  
578 animals with normal PDE morphology under indicated genetic conditions. *abi-1*, *brk-1*, *wsp-1*  
579 and *wve-1* encode components of WAVE or WAVE-like complex and their reduction-of-function  
580 by RNAi partially rescued abnormal PDE morphology of *tmem-132* null animals. Scale bars: 50  
581  $\mu$ m. \*\*\* indicates  $P < 0.001$  ( $n = 5$ , repeated in at least three independent experiments).

582




583

584 **Figure 7 TMEM132D decreases abundance of selective WAVE components. (A)** Exemplar  
585 epifluorescence images showing effects of TMEM132D overexpression on abundance of GFP-  
586 tagged WAVE components in HEK293 cells. Expression constructs encoding TMEM132D and  
587 individual components of WRCs or GFP only control were co-transfected for expression and  
588 imaging at 48 hrs post transfection, followed by quantification of percentage of GFP+ cells as

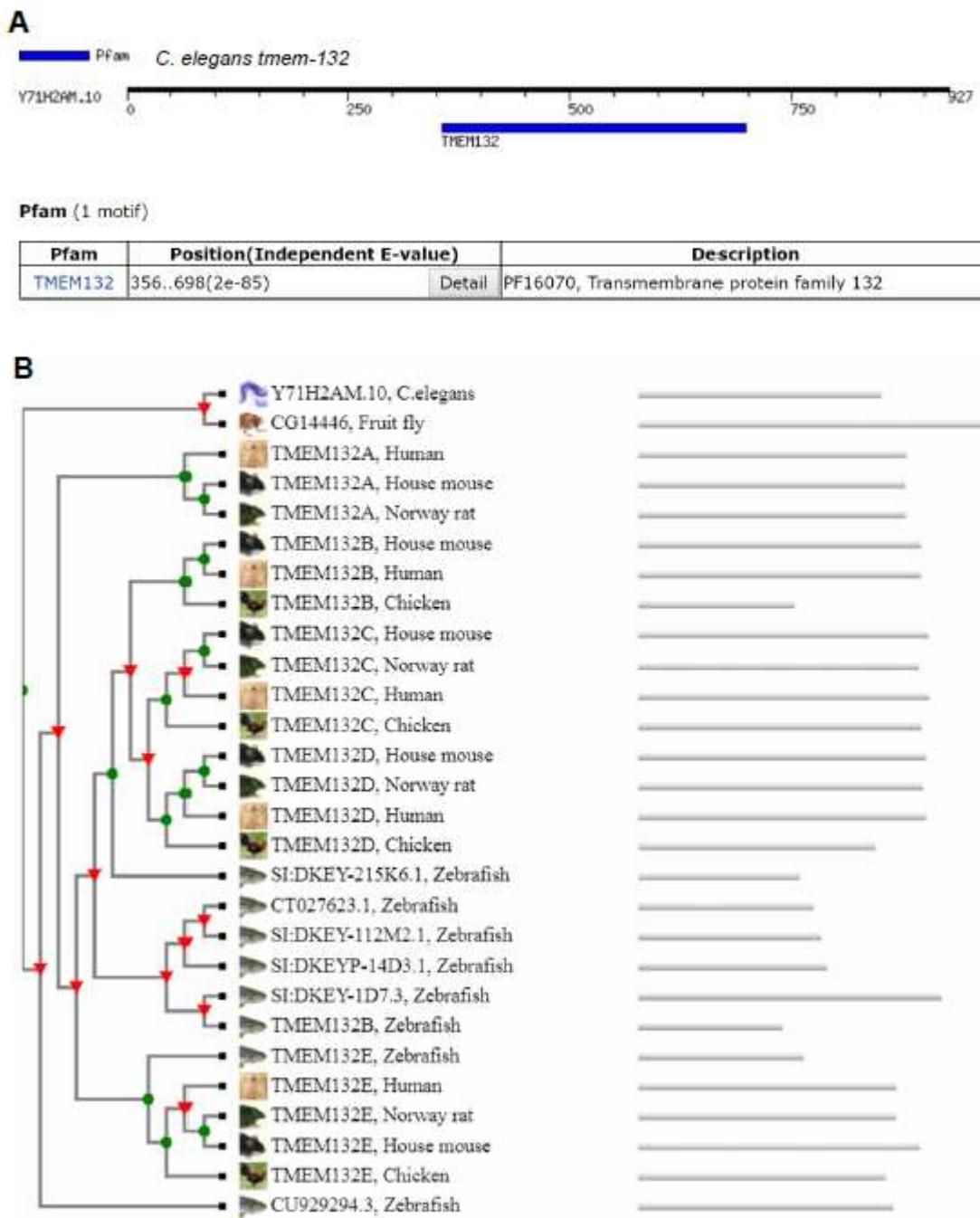
589 shown in Figure 2D. **(B)** Exemplar Western blot showing decreased abundance of ABI1 but not  
590 NAP1 by co-expression with V5-tagged TMEM132D. Comparable abundance of V5 and H3  
591 controls effects of TMEM132D expression levels and sample loading. **(C)** Exemplar Western  
592 blot showing decreased abundance of LifeAct::GFP reporter by co-expression with V5-tagged  
593 TMEM132D, under serum-containing and serum-free media conditions. Comparable abundance  
594 of V5, pan-Actin and H3 controls effects of TMEM132D expression levels, monomeric Actin and  
595 sample loading respectively. **(D)** Quantification of percentage of GFP+ cells under indicated co-  
596 transfection conditions. **(E)** Exemplar micrographic images showing motile recovery of HEK293  
597 cells stably expressing control or TMEM132D after line wounding. **(F)** Quantification of cell-free  
598 line width indicating wound recovery in HEK293 cells stably expressing control or TMEM132D  
599 24 and 48 hrs after line wounding. Scale bars: 10  $\mu$ m. \*\* indicates  $P < 0.01$  (repeated in at least  
600 three independent experiments).

601

602



603

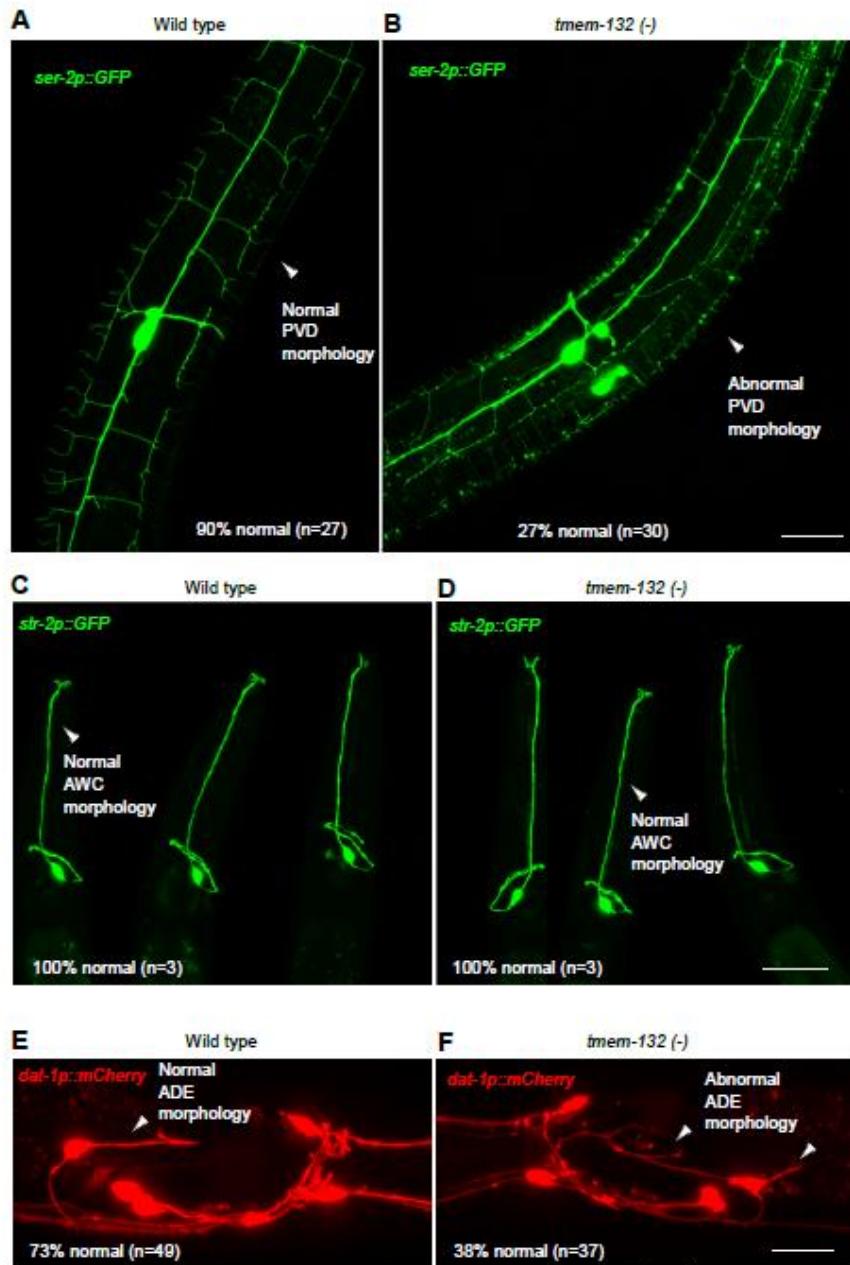

604

605 **Figure 8 Model.** In wild-type cells, TMEM132 family proteins function as local F-actin regulators  
606 by sequestering Nap/Sra homologs and thus limiting the abundance of WRC because of  
607 disintegration/degradation of other WRC components. Consequently, there is limited cell  
608 morphological changes at cell surface compartments where TMEM132 proteins are enriched  
609 and WRC/F-actin nucleating activity is restricted. In TMEM132 deficient cells, Nap/Sra proteins  
610 are not sequestered and thus WRC is intact, permitting WRC/F-actin-nucleating activity that is  
611 normally regulated by Rho-GTPases and other factors in response to membrane signaling.

612

613

614 **Supplemental Figures and Table**

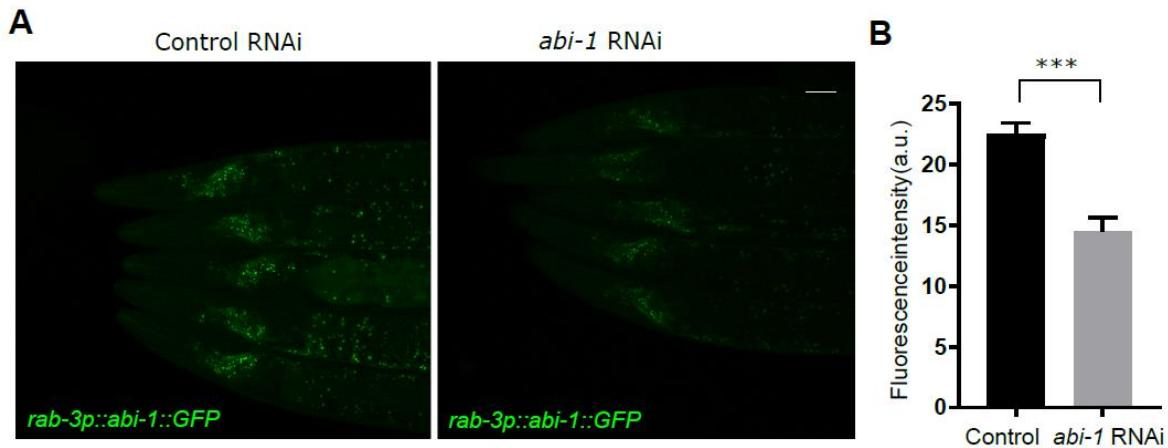



615

616 **Supplemental Figure S1 *C. elegans* TMEM-132 is a member of the evolutionarily  
617 conserved TMEM132 protein family. (A) Conserved Pfam domain in *C. elegans* TMEM-132**

618 identified from MOTIF Search (<https://www.genome.jp/tools/motif/MOTIF2.html>). (B)  
619 Phylogenetic profile (generated by Wormbase.org) of the TMEM132 protein family with  
620 homologs from major metazoan species. Only *C. elegans* and fruit fly have one ortholog each.

621



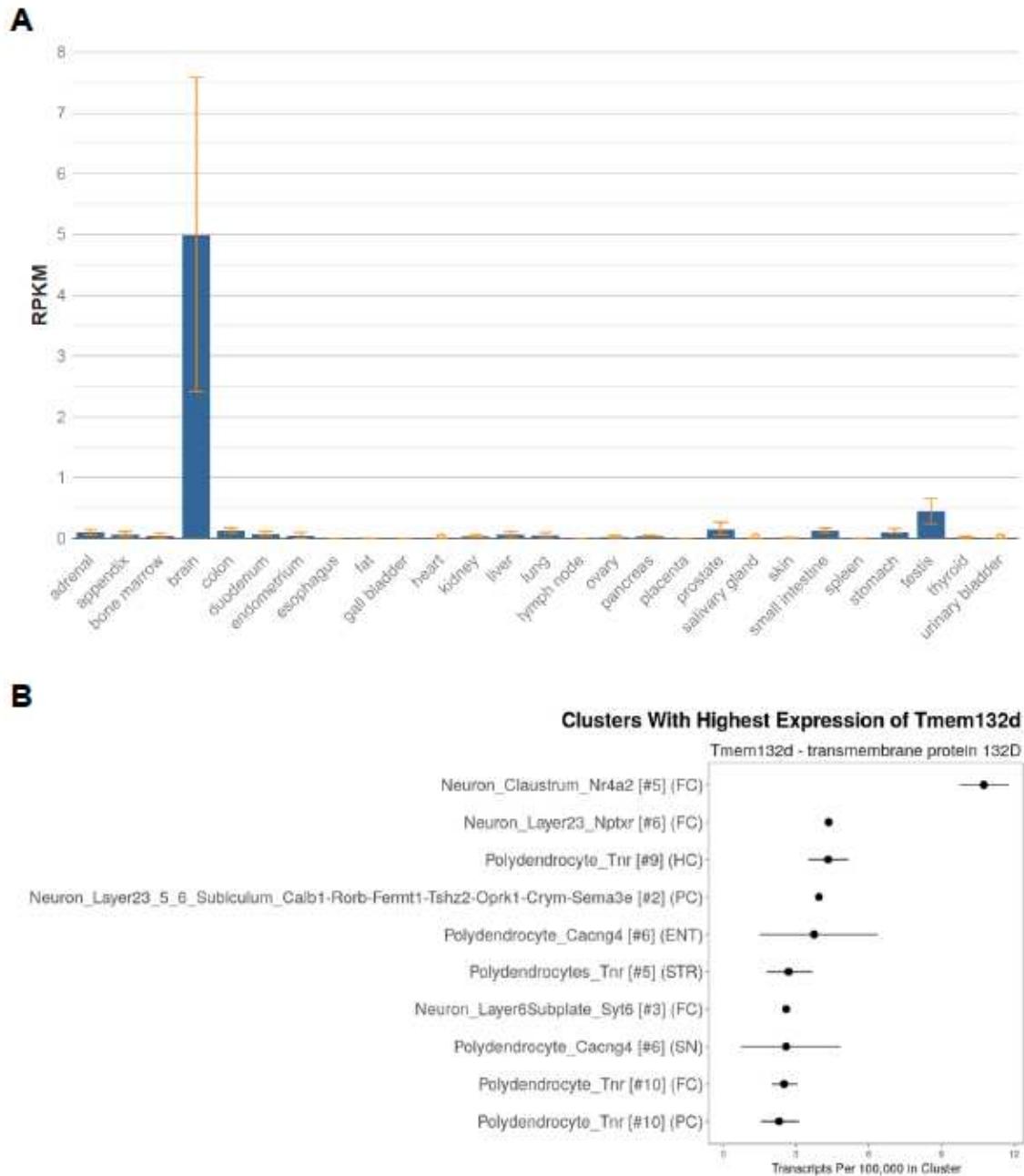

622

623 **Supplemental Figure S2** *C. elegans* TMEM-132 maintains morphologically complex PVD,  
624 **ADE but not AWC neurons.** **(A)** Exemplar confocal fluorescence image showing normal PVD  
625 neuronal morphology in wild type animals. **(B)** Exemplar confocal fluorescence image showing  
626 abnormal PVD neuronal morphology in *tmem-132* deletion mutants. **(C)** Exemplar confocal

627 fluorescence image showing normal AWC neuronal morphology in wild type animals. **(D)**  
628 Exemplar confocal fluorescence image showing normal AWC neuronal morphology in *tmem-*  
629 *132* deletion mutants. **(E)** Exemplar confocal fluorescence image showing normal ADE neuronal  
630 morphology in wild type animals. **(F)** Exemplar confocal fluorescence image showing abnormal  
631 ADE neuronal morphology in *tmem-132* deletion mutants. Phenotypic penetrance (%) is noted.

632



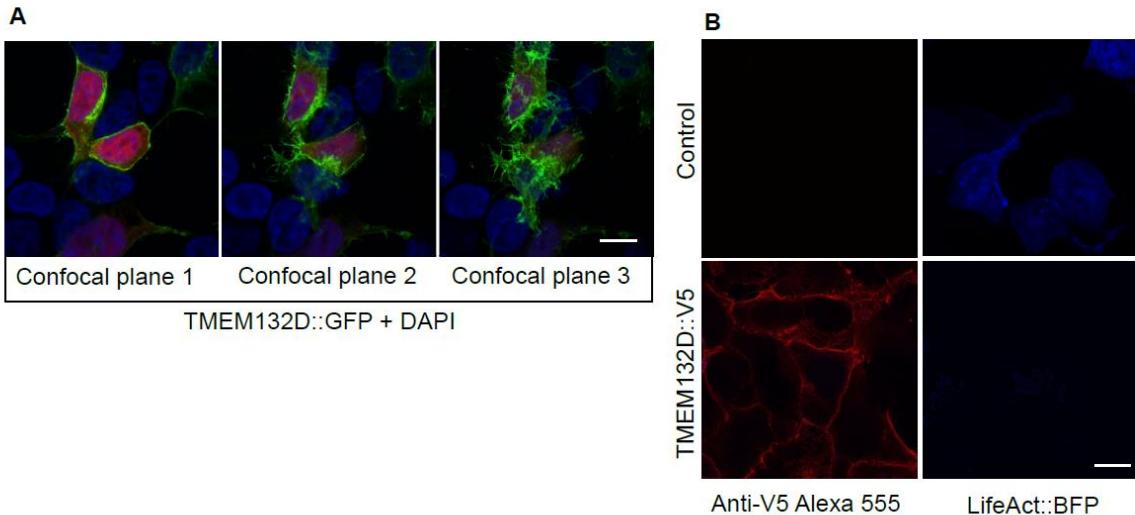

633

634 **Supplemental Figure S3 Efficacy of RNAi in neurons by feeding from bacteria. (A)**

635 Exemplar confocal fluorescence image showing *rab-3* promoter-driven expression of ABI-  
636 1::GFP in control and animals fed with *E. Coli* expressing RNAi against *abi-1*. Scale bar: 50  $\mu$ m.

637 **(B)** Quantification of ABI-1::GFP fluorescence intensity in control and animals fed with *E. Coli*  
638 expressing RNAi against *abi-1*. \*\*\* indicates  $P < 0.001$  ( $n = 5$ , repeated in at least 3 independent  
639 experiments).

640




641

642 **Supplemental Figure S4 Enrichment of mammalian *TMEM132D* expression in the brain**  
643 **and claustral neurons. (A) NCBI graph**  
644 [\(<https://www.ncbi.nlm.nih.gov/gene/121256/?report=expression>\)](https://www.ncbi.nlm.nih.gov/gene/121256/?report=expression) quantification of human  
645 **TMEM132D transcript abundance across 27 different tissues showing enrichment in brain. (B)**

646 DropViz (<http://dropviz.org/>) graph showing enrichment of *tmem132d* expression in mouse  
647 claustral neurons based on transcript abundance.

648



649

650 **Supplemental Figure S5 TMEM132D regulates F-actin abundance. (A)** Exemplar confocal  
651 fluorescence images (from three different confocal planes) showing membrane localization  
652 pattern of TMEM132D::GFP in HEK293 cells. **(B)** Exemplar confocal fluorescence images  
653 showing immunostaining of V5-tagged TMEM132D and BFP-tagged LifeAct in HEK293 cells.  
654 V5 positive cells strongly decreased abundance of LifeAct::BFP. Scale bar: 10  $\mu$ m.

655

656 **Supplementary Table 1. List of TMEM132D interactor-encoding genes identified from**  
657 **yeast-two-hybrid screens.**

| <u>Gene Name</u>     | <u>Occurrence frequency</u> | <u>Gene Name</u>     | <u>Occurrence frequency</u> |
|----------------------|-----------------------------|----------------------|-----------------------------|
| <i>NCKAP1</i>        | 3                           | <i>HDAC2</i>         | 1                           |
| <i>RNF2</i>          | 1                           | <i>TNFAIP8</i>       | 1                           |
| <i>HDAC2</i>         | 1                           | <i>SDHB</i>          | 1                           |
| <i>NDUFS5</i>        | 1                           | <i>PCLO</i>          | 2                           |
| <i>PLSCR2</i>        | 2                           | <i>PNISR</i>         | 2                           |
| <i>STK39</i>         | 1                           | <i>ATP7A</i>         | 1                           |
| <i>HOXA9</i>         | 1                           | <i>FAM35A</i>        | 1                           |
| <i>TMED7-TICAM2</i>  | 2                           | <i>PTPN2</i>         | 1                           |
| <i>PTPRD</i>         | 1                           | <i>RAB6A</i>         | 3                           |
| <i>CD59</i>          | 2                           | <i>ANKRD31</i>       | 1                           |
| <i>NM_005746.2</i>   | 1                           | <i>PGM1</i>          | 1                           |
| <i>ANKRD36</i>       | 2                           | <i>SEC22B</i>        | 1                           |
| <i>PNISR</i>         | 2                           | <i>TUBGCP5</i>       | 3                           |
| <i>CMPK1</i>         | 1                           | <i>HEBP2</i>         | 2                           |
| <i>UMOD</i>          | 1                           | <i>SLC35E2</i>       | 1                           |
| <i>TPST1</i>         | 1                           | <i>HNRNPU1</i>       | 1                           |
| <i>TMED5</i>         | 2                           | <i>ZNF302</i>        | 2                           |
| <i>SRSF5</i>         | 1                           | <i>TOB2</i>          | 1                           |
| <i>IDI2-AS1</i>      | 1                           | <i>COMM1</i>         | 2                           |
| <i>ENOPH1</i>        | 6                           | <i>LNX1</i>          | 1                           |
| <i>H3K27Ac</i>       | 1                           | <i>TRAPPC8</i>       | 1                           |
| <i>EFEMP1</i>        | 2                           | <i>TCF12</i>         | 1                           |
| <i>VPS13C</i>        | 1                           | <i>PAIP1</i>         | 1                           |
| <i>BNIP3L</i>        | 1                           | <i>CNGB3</i>         | 1                           |
| <i>PRPF40A</i>       | 9                           | <i>GFM2</i>          | 1                           |
| <i>COX11</i>         | 1                           | <i>MIR181A1HG</i>    | 1                           |
| <i>USP32P2</i>       | 2                           | <i>NAMPT</i>         | 1                           |
| <i>FMO2</i>          | 1                           | <i>MME</i>           | 1                           |
| <i>RNF2</i>          | 1                           | <i>ZBTB20</i>        | 2                           |
| <i>SEP_15</i>        | 2                           | <i>RCBTB2</i>        | 1                           |
| <i>USP32P2</i>       | 3                           | <i>ATP1B1</i>        | 1                           |
| <i>CNTN1</i>         | 2                           | <i>SVIL</i>          | 1                           |
| <i>TRAPPC11</i>      | 3                           | <i>CTD-2303H24.2</i> | 1                           |
| <i>CTD-2175A23.1</i> | 2                           | <i>UBA5</i>          | 1                           |
| <i>IL13RA1</i>       | 1                           | <i>CADPS2</i>        | 1                           |
| <i>PCCA</i>          | 2                           | <i>CPD</i>           | 1                           |
| <i>NPAS3</i>         | 1                           | <i>CCDC85A</i>       | 1                           |
| <i>PRMT3</i>         | 1                           | <i>SAMD12</i>        | 1                           |

658