

1 **N₂O-respiring bacteria in biogas digestates for reduced agricultural emissions**

2 Kjell Rune Jonassen^{1,3}, Live H. Hagen¹, Silas H.W. Vick¹, Magnus Ø. Arntzen¹,
3 Vincent G.H. Eijsink¹, Åsa Frostegård¹, Paweł Lycus¹, Lars Molstad⁴, Phillip B.
4 Pope^{1,2}, Lars R. Bakken^{1*}

5 ¹⁾ Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of
6 Life Sciences, 1432 Ås, Norway

7 ²⁾ Faculty of Biosciences, NMBU - Norwegian University of Life Sciences, Norway

8 ³⁾ VEAS WWTP, Bjerkåsholmen 125, 3470 Slemmestad, Norway.

9 ⁴⁾ Faculty of Science and Technology, Norwegian University of Life Sciences, Norway

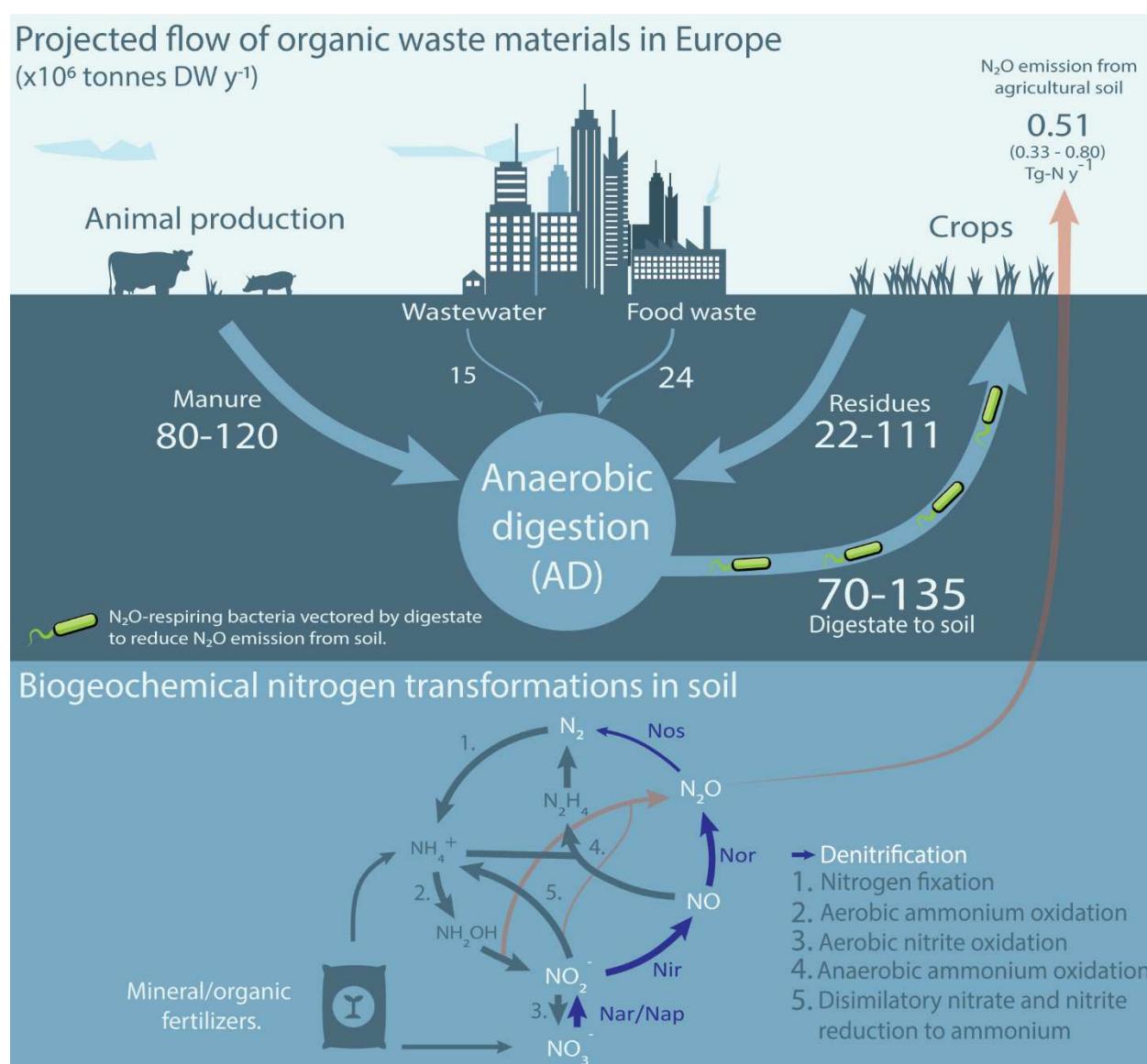
10

11 * corresponding author

12 **Abstract**

13 Inoculating agricultural soils with N₂O-respiring bacteria (NRB) can reduce N₂O-emissions, but would
14 be impractical as a standalone operation. Here we demonstrate that digestates obtained after biogas
15 production are suitable substrates and vectors for NRB. We show that indigenous NRB in digestates
16 grew to high abundance during anaerobic enrichment under N₂O. Gas-kinetics and meta-omic
17 analyses showed that these NRB's, recovered as metagenome-assembled genomes (MAGs), grew by
18 harvesting fermentation intermediates of the methanogenic consortium. Three NRB's were isolated,
19 one of which matched the recovered MAG of a *Dechloromonas*, deemed by proteomics to be the
20 dominant producer of N₂O-reductase in the enrichment. While the isolates harbored genes required
21 for a full denitrification pathway and could thus both produce and sequester N₂O, their regulatory
22 traits predicted that they act as N₂O sinks in soil, which was confirmed experimentally. The isolates
23 were grown by aerobic respiration in digestates, and fertilization with these NRB-enriched digestates
24 reduced N₂O emissions from soil. Our use of digestates for low-cost and large-scale inoculation with
25 NRB in soil can be taken as a blueprint for future applications of this powerful instrument to engineer
26 the soil microbiome, be it for enhancing plant growth, bioremediation, or any other desirable function.

27 **Introduction**


28 Nitrous oxide is an intermediate in the nitrogen cycle and a powerful greenhouse gas emitted
29 in large volumes from agricultural soils, accounting for ~1/3 of total anthropogenic N₂O
30 emissions (Tian et al 2020). Reduced emissions can be achieved by minimizing the
31 consumption of fertilizer nitrogen through improved agronomic practice and reduction of
32 meat consumption (Snyder et al 2014, Sutton et al, 2011), but such measures are unlikely to
33 do more than stabilize the global consumption of fertilizer N (Erisman et al 2008). This calls
34 for more inventive approaches to reduce N₂O emissions, targeting the microbiomes of soil
35 (D'Hondt et al 2021), in particular the physiology and regulatory biology of the organisms
36 involved in production and consumption of N₂O in soil (Bakken and Frostegård 2020).

37 N₂O turnover in soil involves several metabolic pathways, controlled by a plethora of
38 fluctuating physical and chemical variables (Butterbach-Bahl et al 2013, Hu et al 2015).

39 Heterotrophic denitrification is the dominant N₂O source in most soils, while autotrophic
40 ammonia oxidation may dominate in well drained calcareous soils (Song et al 2018 and
41 references therein). Heterotrophic denitrifying organisms are both sources and sinks for N₂O
42 because N₂O is a free intermediate in their stepwise reduction of nitrate to dinitrogen (NO₃⁻
43 →NO₂⁻→NO→N₂O→N₂). Denitrification involves four enzymes collectively referred to as
44 denitrification reductases: nitrate reductase (Nar/Nap), nitrite reductase (Nir), nitric oxide
45 reductase (Nor) and nitrous oxide reductase (Nos), encoded by the genes *nar/nap*, *nir*, *nor*
46 and *nosZ*, respectively. Oxygen is a strong repressor of denitrification, both at the
47 transcriptional and the metabolic level (Zumft 1997, Qu et al 2016). Many organisms have
48 truncated denitrification pathways, lacking from one to three of the four reductase genes
49 (Shapleigh 2013, Lycus et al 2017), and truncated denitrifiers can thus act as either N₂O
50 producers (organisms without *nosZ*) or N₂O reducers (organisms with *nosZ* only). The
51 organisms with *nosZ* only, coined non-denitrifying N₂O-reducers (Sanford et al 2013), have
52 attracted much interest as N₂O sinks in the environment (Hallin et al 2018). Of note,
53 organisms with a full-fledged denitrification pathway may also be strong N₂O sinks depending
54 on the relative activities and regulation of the various enzymes in the denitrification pathway
55 (Lycus et al 2018; Mania et al 2020). Despite their promise, feasible ways to utilize N₂O-
56 reducing organisms to reduce N₂O emissions have not yet emerged.

57 A soil with a strong N₂O-reducing capacity will emit less N₂O than one dominated by net N₂O
58 producing organisms, as experimentally verified by Domeignoz-Horta et al (2016), who
59 showed that soils emitted less N₂O if inoculated with large numbers (10⁷ - 10⁸ cells g⁻¹ soil) of
60 organisms expressing Nos as their sole denitrification reductase. As a standalone operation,
61 the large-scale production and distribution of N₂O-respiring bacteria would be prohibitively
62 expensive and impractical. However, the use of N₂O-respiring bacteria could become feasible
63 if adapted to an existing fertilization pipeline, such as fertilization with the nitrogen- and
64 phosphate-rich organic waste (digestate) generated by biogas production in anaerobic
65 digesters. Anaerobic digestion (**AD**) is already a core technology for treating urban organic
66 wastes, and is expected to treat an increasing proportion of the much larger volumes of waste
67 produced by the agricultural sector (**Figure 1**), as an element of the roadmap towards a low-
68 carbon circular economy (Scarlat et al 2018). This means that digestates from **AD** are likely to
69 become a major organic fertilizer for agricultural soils, with a huge potential for reducing N₂O
70 emissions if enriched with N₂O-respiring bacteria prior to application.

71 Here we provide the first proof of this promising concept. Firstly, we demonstrate selective
72 enrichment and isolation of fast-growing digestate-adapted N₂O-respiring bacteria using a
73 digestate from a wastewater treatment plant. Secondly, we demonstrate that the use of
74 digestates enriched with such organisms as a soil amendment reduces the proportion of N
75 leaving soil as N₂O, confirming the suitability of such digestates for this purpose. Analysis of
76 the enrichment process with multi-omics and in-depth monitoring of gas kinetics provides
77 valuable insights into Nos-synthesis by the various enriched taxa, and the metabolic pathways
78 of the anaerobic consortium providing substrates for these enriched N₂O-respiring
79 organisms.

80

81 **Figure 1. Possible biomass streams in a future circular economy with a central role for anaerobic digestion.**
82 Solid arrows (top section) show streams of biomass available for anaerobic digestion (AD). Numbers indicate
83 known estimates of currently used or potentially available amounts in Europe, in million tonnes dry-weight (DW)
84 per year (Foged et al 2011, Holm-Nielsen et al 2009, Stenmarck et al 2016, Meyer et al 2018). The arrow from
85 anaerobic digestion to agricultural soil, indicates a credible pathway for digestate enriched with N_2O -reducing
86 bacteria (assuming enrichment at AD site); fertilization with such enriched digestates strengthens the N_2O sink
87 capacity of the soil, hence reducing N_2O emissions. N_2O emissions from agricultural soil in Europe are estimated
88 at 0.51 tG per year (min 0.33 – max 0.80), representing some 48 % of total European N_2O emissions (Tian et al
89 2020), which account for approximately 3.5 % of the global warming effect from European greenhouse gas
90 emissions and 35 % of the global warming effect from European agriculture (Eurostat 2018). The lower half of
91 the picture shows the microbial nitrogen transformations underlying these N_2O emissions, which are fed by
92 fertilizers. Today, AD is primarily used for treating urban organic wastes, which comprise only ~10 % of the
93 biomass potentially available for AD. The amount of biomass treated by AD is expected to increase by an order
94 of magnitude when adopted on a large scale in the agricultural sector. This would generate 70-135 Mt DW of
95 digestate annually (assuming 50% degradation by AD), which is equivalent to 400-780 kg DW ha $^{-1}$ y $^{-1}$ if spread
96 evenly on the total farmland of Europe (173 million ha).

97 **Materials and methods**

98 The digestates were taken from two anaerobic digesters, one mesophilic (37 °C) and one thermophilic
99 (52 °C), which were running in parallel, producing biogas from sludge produced by a wastewater
100 treatment. The sludge was a poly-aluminum chloride (PAX-XL61™, Kemira) and ferric chloride
101 (PIX318™, Kemira) precipitated municipal wastewater sludge, with an organic matter content of 5.6%
102 (w/w). Both digestors reduced the organic matter by approximately 60%, producing digestates
103 containing ~2.1 % organic matter, 1.8-1.9 g NH₄⁺-N L⁻¹, ~16 and 32 Meq VFA L⁻¹, pH=7.6-7.8 and 8.2;
104 mesophilic and thermophilic, respectively (see [Suppl Methods 1](#) for further details). The digestates
105 were transported to the laboratory in 1 L insulated steel-vessels and used for incubation experiments
106 3-6 hours after sampling.

107 The robotized incubation system developed by Molstad et al (2007, 2016) was used in all experiments
108 where gas kinetics was monitored. The system hosts 30 parallel stirred batches in 120 mL serum vials,
109 crimp sealed with gas tight butyl rubber septa, which are monitored for headspace concentration of
110 O₂, N₂, N₂O, NO, CO₂ and CH₄ by frequent sampling. After each sampling, the system returns an equal
111 volume of He, and elaborated routines are used to account for the gas loss by sampling to calculate
112 the production/consumption-rate of each gas for each time interval between two samplings. More
113 details are given in [Suppl Methods 2](#).

114 Enrichment culturing of N₂O-respiring bacteria (NRB) in digestate was done as stirred (300 rpm)
115 batches of 50 mL digestate per vial. Prior to incubation, the headspace air was replaced with Helium
116 by repeated evacuation and He-filling (Molstad et al 2007), and supplemented with N₂O, and N₂O in
117 the headspace was sustained by repeated injections in response to depletion. Liquid samples (1 mL)
118 were taken by syringe, for metagenomic and metaproteomic analyses, and for quantification of
119 volatile fatty acids (VFA) and 16srDNA abundance. The samples were stored -80 °C before analyzed.
120 The growth of NRB in the enrichments was modelled based on the N₂O reduction kinetics. The
121 modelling and the analytic methods (quantification of VFA and 16srDNA abundance) are described in
122 detail in [Suppl Methods 3](#).

123 Metagenomics and metaprotomics: Sequencing of DNA (Illumina HiSec4000), and the methods for
124 Metagenome-Assembled Genome (MAG) binning, and the phylogenetic placement of the MAGs is
125 described in detail in [Suppl Methods 4](#). Proteins were extracted and digested to peptides, which were
126 analyzed by nanoLC-MS/MS, and the acquired spectra were inspected, using the metagenome-
127 assembled genomes (149 MAGs) as a scaffold ([Suppl Methods 5](#)).

128 Isolation of N₂O-respiring bacteria (NRB) ([Suppl Methods 6](#)). NRB present in the enrichment cultures
129 were isolated by spreading diluted samples on agar plates with different media composition, then
130 incubated in an anaerobic atmosphere with N₂O. Visible colonies were re-streaked and subsequently
131 cultured under aerobic conditions, and 16s-sequenced. Three isolates, **AS** (*Azospira* sp), **AN** (*Azonexus*
132 sp) and **SP** (*Pseudomonas* sp) (names based on their 16s sequence), were selected for genome
133 sequencing, characterization of their denitrification phenotypes, and for testing their effect as N₂O
134 sinks in soil.

135 Genome sequencing and phenotyping of isolates. Three isolates were genome sequenced and
136 compared with MAG's of the enrichment culture ([Suppl Methods 7](#)). The isolates' ability to utilize
137 various organic C substrates was tested on BiOLOG Phenotype MicroArray™ microtiter plates, and
138 their characteristic regulation of denitrification was tested through a range of incubation experiments
139 as in previous investigations (Bergaust et al 2010, Liu et al 2014, Lycus et al 2018, Mania et al 2020),
140 by monitoring the kinetics of O₂, N₂, N₂O, NO and NO₂⁻ throughout the cultures' depletion of O₂ and
141 transition from aerobic to anaerobic respiration in stirred batch cultures with He + O₂ (+/- N₂O) in the
142 headspace ([Suppl Methods 8](#)). The kinetics of electron flow throughout the oxic and anoxic phase in

143 these experiments were used to assess if the organisms were *bet hedging*, as demonstrated for
144 *Paracoccus denitrificans* (Lycus et al 2018), i.e. that only a minority of cells express nitrate- and/or
145 nitrite-reductase, while all express Nos, in response to oxygen depletion. Putative *bet*
146 *hedging* was corroborated by measuring the abundance of nitrate-, nitrite- and nitrous oxide
147 reductase (Suppl Methods 9).

148 N₂O mitigation experiments (Suppl Methods 9). To assess the capacity of the isolates to reduce the
149 N₂O emission from soil, they were grown aerobically in sterilized digestate, which was then added to
150 soil in microcosms, for measuring the NO-, N₂O- and N₂- kinetics of denitrification in the soil. For
151 comparison, the experiments included soils amended with sterilized digestate, live digestate (no
152 pretreatment), and digestate in which N₂O-reducing bacteria had been enriched by anaerobic
153 incubation with N₂O (as for the initial enrichment culturing).

154 *Data availability*

155 The sequencing data for this study have been deposited in the European Nucleotide Archive (ENA) at
156 EMBL-EBI under accession number PRJEB41283 (isolates AN, AS and PS) and PRJEB41816
157 (metagenome) (<https://www.ebi.ac.uk/ena/browser/view/PRJEBxxxx>). Functionally annotated MAGs
158 and metagenomic assembly are available in FigShare (DOI: [10.6084/m9.figshare.13102451](https://doi.org/10.6084/m9.figshare.13102451) and
159 [10.6084/m9.figshare.13102493](https://doi.org/10.6084/m9.figshare.13102493)). The proteomics data has been deposited to the ProteomeXchange
160 Consortium (<http://proteomecentral.proteomexchange.org>) via the PRIDE partner repository
161 (Vizcaino et al 2013) with the dataset identifier PXD022030* and PXD023233** for the metaproteome
162 and proteome of *Azonexus* sp. AN, respectively.

163 * Reviewer access: Username: reviewer_pxd022030@ebi.ac.uk. Password: GdTR3biE

164 ** Reviewers access: Username: reviewer_pxd023233@ebi.ac.uk Password: nMz62S8O

165

166 **Results and Discussion**

167 Enrichment of indigenous N₂O- respiration bacteria (NRB) in digestates

168 We hypothesized that suitable organisms could be found in anaerobic digesters fed with
169 sewage sludge, since such sludge contains a diverse community of denitrifying bacteria
170 stemming from prior nitrification/denitrification steps (Lu et al 2014). We further
171 hypothesized that these bacteria could be selectively enriched in digestates by anaerobic
172 incubation with N₂O. We decided to enrich at 20 °C, rather than at the temperatures of the
173 anaerobic digesters (37 and 52 °C), to avoid selecting for organisms unable to grow within the
174 normal temperature range of soils.

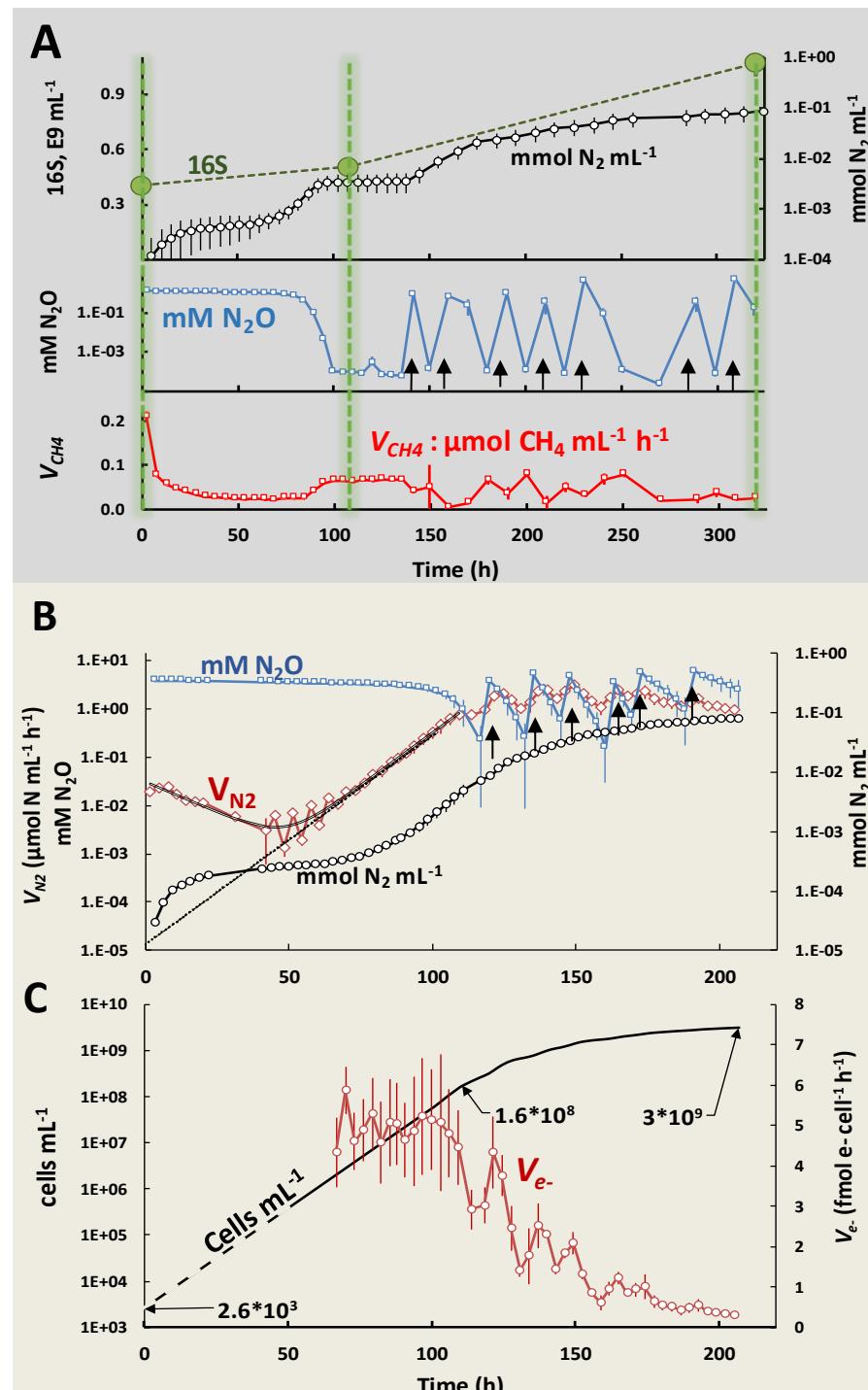
175 The digestates were incubated anaerobically as stirred batch cultures with N₂O in the
176 headspace (He atmosphere), and the activity and apparent growth of N₂O reducers was
177 assessed by monitoring the N₂O-reduction to N₂. **Figure 2A** shows the results for the first
178 experiment, where culture vials were liquid samples were taken at three time points (0, 115
179 and 325 h) for metagenomics, metaproteomics, and quantification of 16S rDNA and volatile
180 fatty acids (VFAs). N₂O was periodically depleted (100-140 h) in this experiment, precluding
181 detailed analysis of the growth kinetics throughout. This was avoided in the second
182 enrichment, for which complete gas data are shown in **Figure 2BC**. Apart from the deviations
183 caused by the temporary depletion of N₂O in the first experiment, both experiments showed

184 very similar N_2 production rates (**Figures 2B and S1B**). The gas kinetics of the second
185 enrichment are discussed in detail below.

186 **Figure 2B** shows declining rates of N_2 -production (V_{N_2}) during the first 50 h, followed by
187 exponential increase. This was modelled as the activity of two groups of NRB, one growing
188 exponentially from low initial abundance, and one which was more abundant initially, but
189 whose activity declined gradually (further explained in **Figure S1**). The modelling, indicated
190 that the cell density of the growing NRB increased exponentially (specific growth rate, $\mu = 0.1$
191 h^{-1}) from a very low initial density ($\sim 2.5 \cdot 10^3$ cells mL^{-1}) to $1.6 \cdot 10^8$ cells mL^{-1} after 110 h, and
192 continued to increase at a gradually declining rate to reach $\sim 3 \cdot 10^9$ cells mL^{-1} at the end of the
193 incubation period (215 h). The modelled cell-specific electron flow rate (V_e , **Figure 2C**) was
194 sustained at around 5 fmol e^- cell $^{-1}$ h^{-1} during the exponential growth, and declined gradually
195 thereafter, as the number of cells continued to increase, while the overall rate of N_2O -
196 respiration remained more or less constant (V_{N_2} , **Figure 2B**). Enrichment culturing as shown
197 in **Figure 2BC** was repeated three times, demonstrating that the characteristic N_2 production
198 kinetics was highly reproducible (**Figure S2**).

199 The provision of substrate for the N_2O -respiring bacteria can be understood by considering
200 the enrichment culture as a continuation of the metabolism of the anaerobic digester (**AD**),
201 albeit slowed down by the lower temperature (20 °C, versus 37 °C in the digester). In **AD**,
202 organic polymers are degraded and converted to CO_2 and CH_4 through several steps,
203 conducted by separate guilds of the methanogenic microbial consortium: 1) hydrolysis of
204 polysaccharides to monomers by organisms with carbohydrate-active enzymes, 2) primary
205 fermentation of the resulting monomers to volatile fatty acids (VFAs), 3) secondary
206 fermentation of VFAs to acetate, H_2 and CO_2 , and 4) methane production from acetate, CO_2 ,
207 H_2 , and methylated compounds. By providing N_2O to this (anaerobic) system, organisms that
208 respire N_2O can tap into the existing flow of carbon, competing with the methanogenic
209 consortium for intermediates, such as monomeric sugars, VFAs (such as acetate) and
210 hydrogen (Stams et al 2003). Thus, the respiration and growth of the N_2O -respiring bacteria
211 is sustained by a flow of carbon for which the primary source is the depolymerization of
212 organic polymers. It is possible that the retardation of growth after ~ 100 h of enrichment was
213 due to carbon becoming limiting. Thus, at this point, the population of N_2O -respiring
214 organisms may have reached high enough cell densities to reap most of the intermediates
215 produced by the consortium.

216 Parallel incubations of digestates without N_2O confirmed the presence of an active
217 methanogenic consortium, sustaining a methane production rate of ~ 0.2 $\mu\text{mol } CH_4 mL^{-1} h^{-1}$
218 throughout (**Figure S3**). Methane production was inhibited by N_2O , and partly restored in
219 periods when N_2O was depleted (**Figure 2A**, **Figures S3&S4**). We also conducted parallel
220 incubations with O_2 and NO_3^- as electron acceptors. These incubations showed that
221 methanogenesis was completely inhibited by NO_3^- , and partly inhibited by O_2 (concentration
222 in the liquid ranged from 20 to 90 $\mu\text{M } O_2$) (**Figures S3**). The rates of O_2 and NO_3^- reduction
223 indicated that the digestate contained a much higher number of cells able to respire O_2 and
224 NO_3^- than cells able to respire N_2O (**Figure S5A-C**). During the enrichment culturing with NO_3^-
225 , almost all reduced nitrogen appeared in the form of N_2O during the first 50 h (**Figure S5E**),


226 another piece of evidence that in the digestate (prior to enrichment culturing), the organisms
227 reducing NO_3^- to N_2O outnumbered those able to reduce N_2O to N_2 . The measured production
228 of CH_4 and electron flows to electron acceptors deduced from measured gases (N_2 , O_2 and
229 CO_2) were used to assess the effect of the three electron acceptors (N_2O , NO_3^- and O_2) on C-
230 mineralization. While oxygen appeared to have a marginal effect, NO_3^- and N_2O caused severe
231 retardation of C-mineralization during the first 50 and 100 h, respectively (**Figure S5A-D**). This
232 retarded mineralization is plausibly due to the inhibition of methanogenesis, causing a
233 transient accumulation of H_2 and VFAs until the N_2O -reducing bacteria reach a cell density
234 that allowed them to effectively reap these compounds. This was corroborated by
235 measurements of H_2 and VFAs (**Figure S13**).

236 To track the origin of the enriched N_2O -respiring bacteria in the digestate, we considered the
237 possibility that these are indigenous wastewater-sludge bacteria that survive the passage
238 through the anaerobic digester, which had a retention time of 20-24 days. We assessed
239 survival of N_2O -respiring bacteria by comparing the N_2O reduction potential of wastewater
240 sludge and the digestate. The results indicated that $\leq 1/3$ of the N_2O -respiring bacteria in the
241 sludge survived the passage (**Figure S6**). We also did enrichment culturing with a digestate
242 from a thermophilic digester (52 °C) operated in parallel with the mesophilic digester
243 (provided with the same feed), and found that it too contained N_2O reducers that could be
244 enriched, although the estimated initial numbers were orders of magnitude lower than in the
245 mesophilic digestate (**Figure S7**).

246 **Figure 2: Gas kinetics in**
 247 **anaerobic enrichment**
 248 **cultures with digestate.**

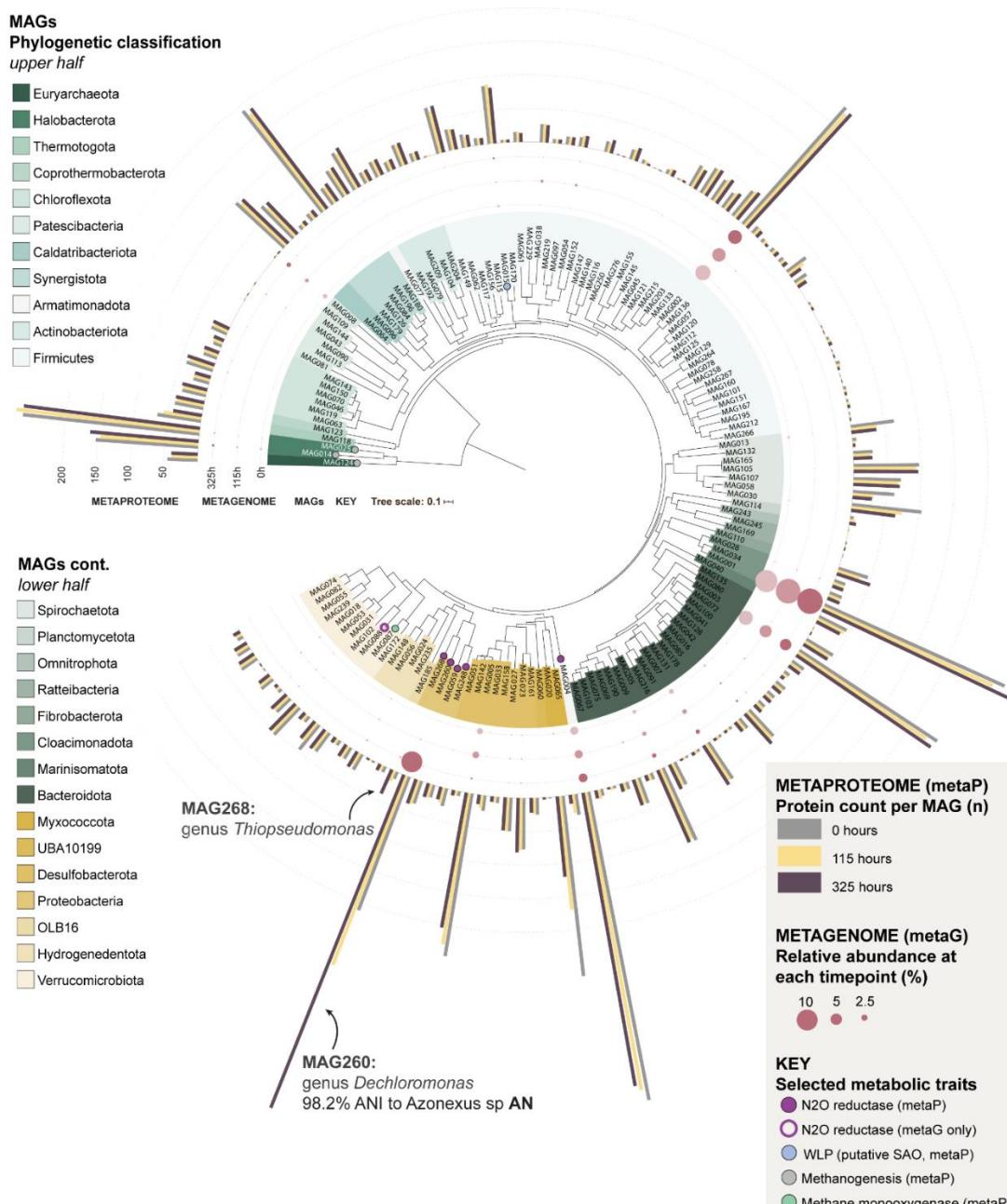
249 Panel A shows results for the
 250 enrichment culture
 251 (triplicate culture vials) sampled for metagenomics,
 252 metaproteomics,
 253 quantification of volatile
 254 fatty acids (VFAs) and 16S
 255 rDNA abundance (sampling
 256 times = 0, 115 and 325 hours,
 257 marked by vertical green
 258 lines). The top panel shows
 259 the amounts of N_2 produced
 260 (mmol N_2 L⁻¹ digestate, log
 261 scale) and 16S rDNA copy
 262 numbers. The mid panel
 263 shows the concentration of
 264 N_2O in the digestate (log
 265 scale), which was
 266 replenished by repeated
 267 injections from $t=140$ h and
 268 onwards (indicated by black
 269 arrows). The bottom panel
 270 shows the rate of methane
 271 production. Standard
 272 deviations ($n=3$) are shown
 273 as vertical lines in all panels.

274 Panel B and C show the
 275 results of a repeated
 276 enrichment experiment
 277 where N_2O -depletion (as
 278 seen at $t=100-140$ h in panel
 279 A) was avoided, to allow
 280 more precise assessment
 281 and modelling of growth
 282 kinetics. Panel B: N_2O
 283 concentration in the
 284 digestate (mM N_2O), rate of
 285 N_2 -production (V_{N_2}) and N_2

286 produced (mmol N_2 mL⁻¹ digestate), all log scaled. The curved black line shows the modelled V_{N_2} assuming two
 287 populations, one growing exponentially ($\mu = 0.1 \text{ h}^{-1}$), and one whose activity was dying out gradually (rate = -
 288 0.03 h^{-1}). The dotted black line is the activity of the exponentially growing population extrapolated to time=0.
 289 Panel C shows the modelled density (cells mL⁻¹) of cells growing by N_2O respiration, extrapolated back to $t=0$ h
 290 (dashed line), and the cell specific respiratory activity (V_e^- , fmol electrons cell⁻¹ h⁻¹), which declined gradually
 291 after 110 h. Standard deviations ($n = 3$) are shown as vertical lines. **Figure S1** provides additional data for the
 292 experiment depicted in Panel A, as well as a detailed description of the modelling procedures and their results.

294 **MAG-centric metaproteomic analysis of the enrichment cultures**

295 We analyzed the metagenome and metaproteome at three timepoints (0, 115 and 325 h,
296 **Figure 2A**), to explore the effect of the anaerobic incubation with N₂O on the entire microbial
297 consortium, and to identify the organisms growing by N₂O reduction. Metagenomic
298 sequences were assembled and resultant contigs assigned to 278 metagenome-assembled
299 genomes (MAGs), of which 149 were deemed to be of sufficient quality (completeness > 50%
300 and contamination < 20%, Supplementary Data S1) for downstream analysis. The
301 phylogenetic relationship and the relative abundance of the MAGs throughout the
302 enrichment are summarized in **Figure 3**, which also shows selected features revealed by the
303 combined metagenomic and metaproteomic analyses, including information about genes
304 and detected proteins involved in N₂O reduction, other denitrification steps, methanogenesis,
305 syntrophic acetate oxidation and methane oxidation.


306 Closer inspections of the abundance of individual MAGs, based on their coverage in the
307 metagenome and metaproteome, showed that the majority of the MAGs had a near constant
308 population density throughout the incubation, while two MAGs (260 and 268) increased
309 substantially (**Figure 4**; further analyses in **Supplementary Section B, Figures S8-S11**). The
310 stable abundance of the majority indicates that the methanogenic consortium remained
311 intact despite the downshift in temperature (20 °C versus 37 °C) and the inhibition of
312 methanogenesis by N₂O. Only 9 MAGs showed a consistent decline in abundance throughout
313 the enrichment (**Table S1**). These MAGs could theoretically correspond to microbes whose
314 metabolism is dependent on efficient H₂ scavenging by methanogens (Schink 1997), but we
315 found no genomic evidence for this, and surmise that organisms circumscribed by the
316 declining MAGs were unable to adapt to the temperature downshift from 37 °C to 20 °C.

317 Six MAGs, including the two that were clearly growing (MAG260 & MAG268) contained the
318 *nosZ* gene and thus had the genetic potential to produce N₂O-reductase (Nos) (**Figure 4**). Nos
319 proteins originating from five of these MAGs were detected in the metaproteome.
320 Importantly, while all but one of these MAGs contained genes encoding the other
321 denitrification reductases, none of these were detected in the metaproteome, suggesting
322 that the organisms can regulate the expression of their denitrification machinery to suit
323 available electron acceptors, in this case N₂O. Three of the MAGs with detectable Nos in the
324 proteome (MAG004, MAG059, MAG248) appeared to be non-growing during the enrichment.
325 The detected levels of their Nos proteins remained more or less constant, and their estimated
326 abundance in the metagenome and -proteome did not increase (**Figure 4B**). It is conceivable
327 that these three MAGs belong to the initial population of N₂O reducers whose N₂O-reduction
328 activity was present initially but gradually decreased during the early phase of the enrichment
329 (**Figure 2A**). The two growing MAGs (MAG260 and MAG268) showed increasing Nos levels
330 and increasing abundance both in terms of coverage and metaproteomic detection (**Figure**
331 **4B**), in proportion with the N₂ produced (**Figure S11**). MAG260 reached the highest
332 abundance of the two and accounted for 92% of the total detectable Nos pool at the final
333 time point. MAG260 is taxonomically most closely affiliated with the genus *Dechloromonas*
334 (GTDB, 97.9% amino acid similarity). Interestingly, Nap rather than Nar takes the role of
335 nitrate reductase in MAG260 (**Figure 4**), which makes it a promising organism for N₂O
336 mitigation since organisms with Nap only (lacking Nar) preferentially channel electrons to N₂O
337 rather than to NO₃⁻ (Mania et al 2020). MAG260, MAG004 and MAG088 contain a clade II

338 *nosZ*, characterized by a *sec*-dependent signal peptide, in contrast to the more common *tat*-
339 dependent clade I *nosZ*. The physiological implications of clade I versus clade II *nosZ* remains
340 unclear. Organisms with *nosZ* Clade II have high growth yield and high affinity (low k_s) for N₂O,
341 compared to those with *nosZ* Clade II (Yoon et al 2016), suggesting a key role of *nosZ* Clade II
342 organisms for N₂O reduction in soil, but this was contested by Conthe et al (2018), who found
343 that Clade I organisms had higher “catalytic efficiency” (V_{max}/k_s) than those with Clade II.

344 The apparent inhibition of methanogenesis by N₂O seen in the present study has been
345 observed frequently (Andalib et al 2011) and is probably due to inhibition of coenzyme M
346 methyltransferase (Kengen et al 1988), which is a membrane bound enzyme essential for
347 methanogenesis and common to all methanogenic archaea (Fischer et al 1992). The gas
348 kinetics demonstrate that the inhibition of was reversible, being partly restored whenever
349 N₂O was depleted (**Figure 2**). In the enrichment culture where metagenomics and
350 metaproteomics was monitored, several such incidents of N₂O depletion occurred (**Figure 2A**)
351 and during these periods CH₄ accumulated to levels amounting to 10% of levels in control
352 vials without N₂O (**Figure S4B**). These observations suggest that methanogens would be able
353 to grow, albeit sporadically, during the enrichment, which is corroborated by the sustained
354 detection of the complete methanogenesis pathway, including the crucial coenzyme M
355 methyl-transferase, of *Methanothrix* (MAG025), *Methanoregulaceae* (MAG014) and
356 *Methanobacterium* (MAG124) at high levels in the metaproteome. In fact, both MAG
357 coverage data and 16S rDNA copy numbers assessed by ddPCR suggested that the majority of
358 the original methanogenic consortium continued to grow (**Supplementary Section B**). A
359 tentative map of the metabolic flow of the methanogenic consortium, including the reaping
360 of intermediates (monosaccharides, fatty acids, acetate and H₂) by N₂O-respiring bacteria is
361 shown in **Figure S12**. Since methane production was inhibited from the very beginning of the
362 incubation, while it took ~100 hours for the N₂O-respiring bacteria to reach high enough
363 numbers to become a significant sink for intermediates (**Figure 2**), one would expect transient
364 accumulation of volatile fatty acids and H₂, which was corroborated by measurements of
365 these metabolites (**Figure S13**).

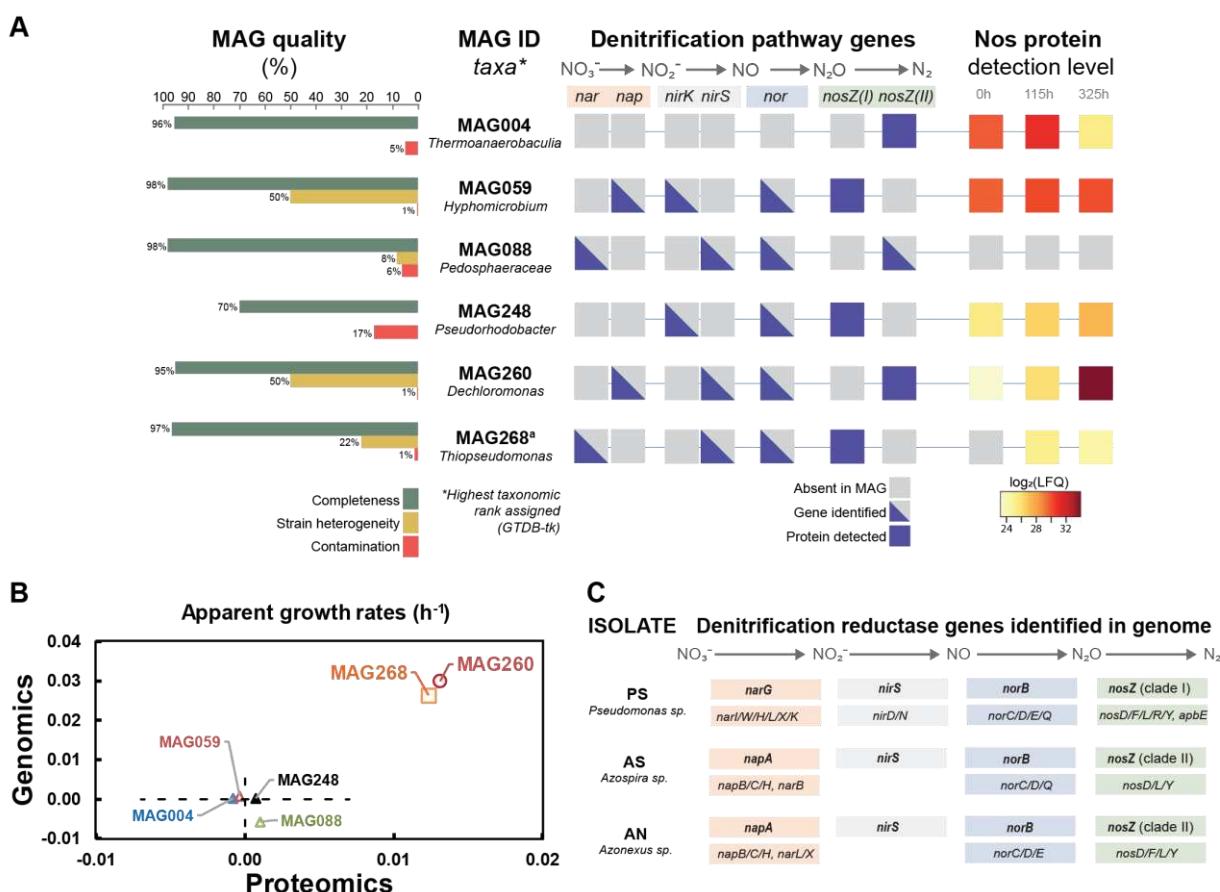
366 Of note, we detected methane monooxygenase and methanol dehydrogenase proteins from
367 MAG087 and MAG059, respectively, in the metaproteome. This opens up the tantalizing
368 hypothesis of N₂O-driven methane oxidation, a process only recently suggested to occur
369 (Valenzuela et al 2020; Cheng et al 2019). However, a close inspection of the N₂O- and CH₄-
370 kinetics indicated that N₂O-driven methane oxidation played a minor role (**Figure S4CD**).

394 **Figure 3: MAGs from the anaerobic enrichment culture with the mesophilic digestate.** The figure shows a
395 maximum likelihood tree indicating the phylogenetic placement of MAGs from the anaerobic enrichment. The
396 tree was constructed from a concatenated set of protein sequences of single-copy genes. Taxonomic
397 classification of the MAGs was inferred using the Genome Taxonomy Database (GTDB) and is displayed at the
398 phylum level by label and branch coloring. Branch label decorations indicate the presence of genes involved in
399 selected metabolic traits in the MAGs. The relative abundance of the MAG in the community as calculated from
400 sequence coverage is indicated by bubbles at branch tips and bar charts indicate the number of detected
401 proteins affiliated with each MAG at the three time points during incubation. Four of the 149 MAGs that met
402 the completeness and contamination threshold for construction of the metaproteome database were lacking
403 the universal single-copy marker genes and were omitted from the tree. Total protein counts per MAG were
404 calculated by aggregating both secretome and cell-associated proteomes.

405 Isolation of N₂O-respiring bacteria and their geno- and phenotyping

406 Whilst this enrichment culture could be used directly as a soil amendment, this approach is
407 likely to have several disadvantages. First, it would require the use of large volumes of N₂O

408 for enrichment, a process which would be costly and require significant infrastructure. An
409 alternative approach would be to introduce an axenic or mixed culture of digestate-derived,
410 and likely digestate-adapted, N₂O-respiring bacteria to sterilized/sanitized digestates. This
411 approach has multiple benefits: 1) it would remove the need for N₂O enrichment on site as
412 isolates could be grown aerobically in the digestate material, 2) one could chose organisms
413 with favorable denitrification genotypes and regulatory phenotypes, 3) the sanitation would
414 eliminate the methanogenic consortium hence reducing the risk of methane emissions from
415 anoxic micro-niches in the amended soil, and 4) sanitation of digestates aligns with current
416 practices that require such a pretreatment prior to use for fertilization. For these reasons an
417 isolation effort was undertaken to obtain suitable digestate-adapted N₂O-respiring
418 microorganisms from the N₂O-enrichment cultures. These efforts resulted in the recovery of
419 three axenic N₂O-respiring bacterial cultures, which were subjected to subsequent genomic
420 and phenotypic characterization.

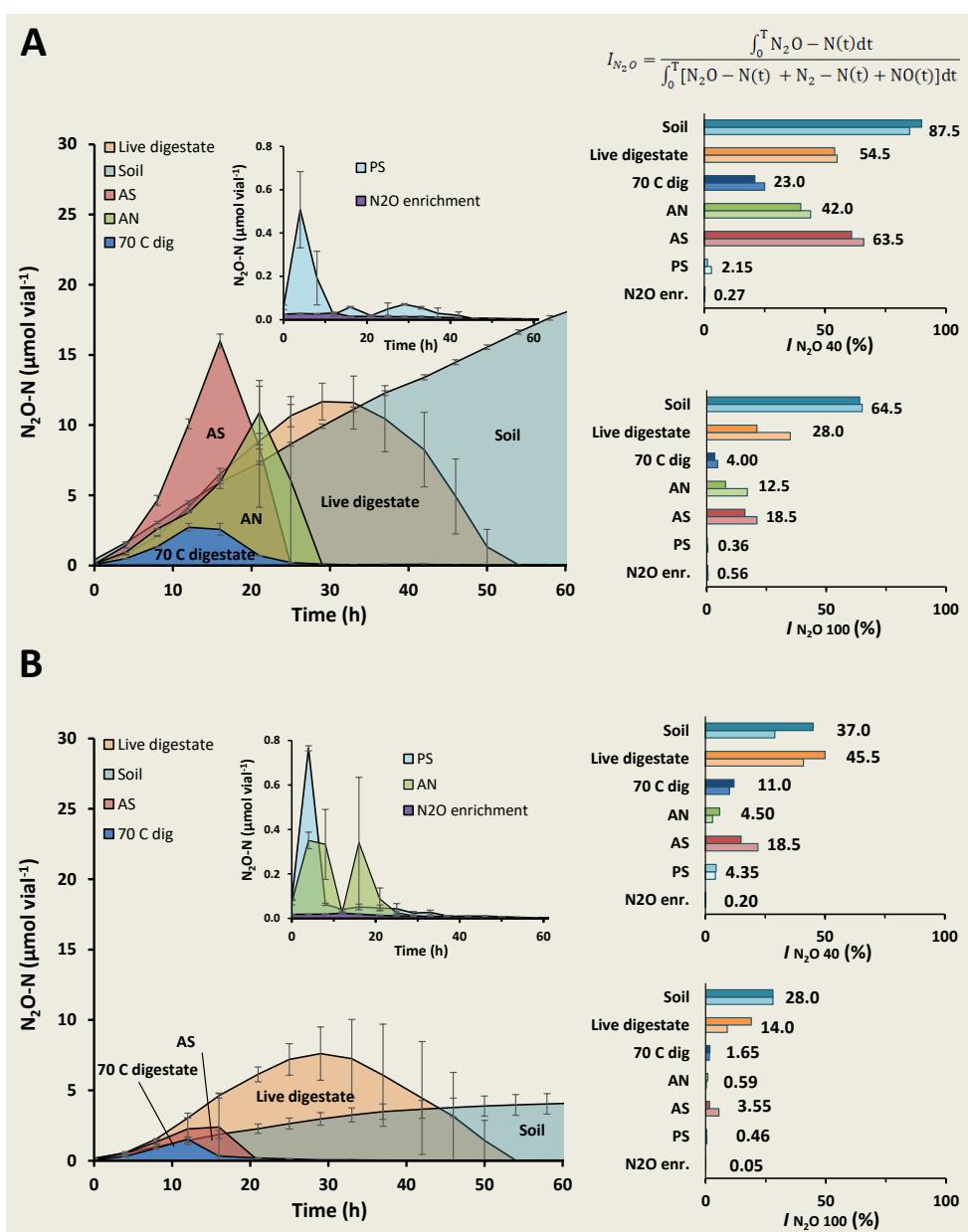

421 The isolates were phylogenetically assigned to *Pseudomonas* sp. (**PS**), *Azospira* sp. (**AS**) and
422 *Azonexus* sp. (**AN**) (working names in bold) based on full length 16S rDNA obtained from the
423 sequenced genomes (accessions ERR4842639 - 40, **Table S2**, phylogenetic trees shown in
424 **Figure S14**). All were equipped with genes for a complete denitrification pathway (**Figure 4C**).
425 **AN** and **AS** carried *napAB*, encoding the periplasmic nitrate reductase (Nap) and *nosZ* clade II,
426 whilst **PS** carried genes for the membrane bound nitrate reductase (Nar), encoded by *narG*,
427 and *nosZ* clade I. All had *nirS* and *norBC*, coding for nitrite reductase (NirS) and nitric oxide
428 reductase (Nor), respectively. Pairwise comparison of average nucleotide identities (ANI) with
429 MAGs from the enrichment metagenomes showed that the isolate **AN** matched the
430 *Dechloromonas*-affiliated MAG260 with 98.2 % ANI, suggesting the isolate is circumscribed by
431 MAG260 (Richter and Resselló-Móra 2009). Given the GTDB phylogeny of **AN** and MAG260
432 and the 16S rDNA gene homology of **AN** (95.2 % sequence identity to *Azonexus hydrophilus*
433 DSM23864, **Fig S14C**), we conclude that **AN** likely represents a novel species within the
434 *Azonexus* lineage. Unfortunately, the 16S rDNA gene was not recovered in MAG260,
435 preventing direct comparison with related populations. No significant ANI matches in our
436 MAG inventory were identified for the genomes of **PS** and **AS**.

437 The carbon catabolism profiles of the isolates were assayed using BiologTM PM1 and PM2
438 microplates, to screen the range of carbon sources utilized (**Supplementary Section E**). **PS**
439 utilized a wide spectrum of carbon sources (amino acids, nucleic acids, volatile fatty acids
440 (VFA), alcohols, sugar alcohols, monosaccharides and amino sugars), but only one polymer
441 (laminarin). **AN** and **AS** could only utilize small VFAs (eg. acetate, butyrate), intermediates in
442 the TCA cycle and/or the β-oxidation/methyl malonyl-CoA pathways of fatty acid degradation
443 (eg. malate, fumarate, succinate), and a single amino acid (glutamate). Thus, all three would
444 be able to grow in a live digestate by reaping the VFA's produced by the methanogenic
445 consortium. While the utilization of VFAs as C-substrates is one of several options for **PS**, **AN**
446 and **AS** appear to depend on the provision of VFAs. This was confirmed by attempts to grow
447 the three isolates in an autoclaved digestate: while **PS** grew well and reached high cell
448 densities without any provision of extra carbon sources, **AN** and **AS** showed early retardation
449 of growth unless provided with an extra dose of suitable carbon source (glutamate, acetate,
450 pyruvate or ethanol) (**Figure S25 and S26**). A high degree of specialization and metabolic

451 streamlining may thus explain the observed dominance of **AN** (MAG260) during enrichment
452 culturing.

453 To evaluate the potentials of these isolates to act as sinks for N₂O, we characterized their
454 denitrification phenotypes, by monitoring kinetics of oxygen depletion, subsequent
455 denitrification and transient accumulation of denitrification intermediates (NO₂⁻, NO, N₂O).
456 The experiments were designed to assess properties associated with strong N₂O reduction
457 such as 1) *bet hedging*, i.e. that all cells express N₂O reductase while only a fraction of the
458 cells express nitrite- and/or nitrate-reductase, as demonstrated for *Paracoccus denitrificans*
459 (Lycus et al 2018); 2) strong metabolic preference for N₂O-reduction over NO₃⁻-reduction, as
460 demonstrated for organisms with periplasmic nitrate reductase (Mania et al 2020).
461 **Supplementary section F** provides the results of all the experiments and a synopsis of the
462 findings. In short: *Azonexus* sp. (**AN**) had a clear preference for N₂O over NO₃⁻ reduction, but
463 not over NO₂⁻ reduction, ascribed to *bet hedging* with respect to the expression of nitrate
464 reductase (a few cells express Nap, while all cells express Nos), which was corroborated by
465 proteomics: the Nos/Nap abundance ratio was ~25 during the initial phase of denitrification
466 (**Figure S17**). *Azospira* sp. (**AS**) had a similar preference for N₂O over NO₃ reduction, albeit less
467 pronounced than in **AN**, and no preference for N₂O over NO₂⁻. *Pseudomonas* sp. (**PS**) showed
468 a phenotype resembling that of *Paracoccus denitrificans* (Lycus et al 2018), with
469 denitrification kinetics indicating that Nir is expressed in a minority of cells in response to O₂
470 depletion, while all cells appeared to express N₂O reductase. This regulation makes **PS** a more
471 robust sink for N₂O than the two other isolates, since it kept N₂O extremely low even when
472 provided with NO₂⁻.

473 In summary, **PS** appeared to be the most robust candidate as a sink for N₂O in soil for two
474 reasons; 1) it can utilize a wide range of carbon substrates, and 2) its N₂O sink strength is
475 independent of the type of nitrogen oxyanion present (NO₂⁻ or NO₃⁻). In contrast, **AN** and **AS**
476 appear to be streamlined for harvesting intermediates produced by anaerobic consortia,
477 hence their metabolic activity in soil could be limited. In addition, they could be sources rather
478 than sinks for N₂O if provided with NO₂⁻, which is likely to happen in soils, at least in soils of
479 neutral pH, during hypoxic/anoxic spells (Lim et al 2018).


504 digestate (directly from the digester), and live digestate heated to 70 °C for 2 hours (to
505 eliminate most of the indigenous consortium). In all cases, 3 mL of digestate was added to 10
506 g of soil. Since soil acidity has a pervasive effect on the synthesis of functional N₂O reductase
507 (Liu et al 2014), we tested the digestates with two soils from a liming experiment (Nadeem et
508 al 2020) with different pH (pH_{CaCl₂} = 5.5 and 6.6).

509 The transient N₂O accumulation during denitrification was generally higher in the acid than in
510 the near-neutral soil (**Figure 5**), which was expected since the synthesis of functional Nos is
511 hampered by low pH (Bergaust et al 2010, Liu et al 2014). Based on the kinetics of both N₂
512 and N₂O (see **Figure S27 and S28**), we calculated the N₂O-index (*I_{N2O}*) which is a measure of
513 the molar amounts of N₂O relative to N₂+N₂O in the headspace for a specific period (0-T), see
514 equation at top of **Figure 5**). Low values of *I_{N2O}* indicate efficient N₂O-reduction. In this case,
515 we calculated *I_{N2O}* for the incubation period until 40% of the available NO₃⁻ had been
516 recovered as N₂+N₂O (=*I_{N2O} 40*) and for the incubation period until 100% was recovered (*I_{N2O} 100*).
517

518 Extremely low *I_{N2O}* values were recorded for the treatments with digestate in which N₂O-
519 reducing bacteria were enriched by anaerobic incubation with N₂O, even in the acid soil. This
520 is in line with the current understanding of how pH affects N₂O-reduction: low pH slows down
521 the synthesis of functional Nos, but once synthesized, it remains functional even at low pH
522 (Bergaust et al 2010). Functional Nos had already been expressed during the enrichment and
523 was evidently active after amendment to the soils.

524 *I_{N2O}* values were generally high for treatment with live digestate, which probably reflects that
525 the digestate is dominated by N₂O-producing organisms (**Figure S5E**). This interpretation is
526 corroborated by the observed effect of heat-treating the live digestate; this lowered *I_{N2O}*
527 substantially.

528 The presence of the isolates in the digestates had clear but variable effects on *I_{N2O}*. Compared
529 to the heat treated digestate (“70 C dig” Fig 5), **AN** and **AS** increased the *I_{N2O}*-values in the
530 soil with pH=5.5, while in the soil with pH 6.6, their effect was marginal. The high *I_{N2O}* for **AN**
531 and **AS** in the acid soil plausibly reflect that the isolates were grown aerobically in the
532 digestate, hence synthesizing their denitrification enzymes after transfer to soil, which would
533 be hampered by low pH. In contrast to **AN** and **AS**, **PS** resulted in very low *I_{N2O}* values in both
534 soils, suggesting that this organism has an exceptional capacity to synthesize functional Nos
535 at low pH.

536

537 **Figure 5: Soil incubations.** N_2O kinetics during incubation of soils amended with six different digestates and a
 538 control sample (soil only). Panel A shows results for the pH 5.5 soil, while panel B the pH 6.6 soil. The digestates
 539 treatments are: "Live digestate", digestate directly from the anaerobic digester; "70 C dig", live digestate heat
 540 treated to 70 °C for two hours; AN, AS and PS: autoclaved digestate on which isolates AN, AS and PS had been
 541 grown aerobically (see Figure S25&S26 for details on the cultivation); "N₂O enr"= digestate enriched with N₂O-
 542 respiring bacteria (as in Fig 2). The left panels show the N₂O levels observed during each treatment; the insets,
 543 with altered scaling, show N₂O levels for treatments that resulted in very low N₂O levels (the PS and N₂O enr.
 544 treatments). The bar graphs to the right show the N₂O indexes (I_{N_2O} , bar height = single culture vial values,
 545 numerical value = average of duplicate culture vials), which are calculated by dividing the area under the N₂O-
 546 curve by the sum of the areas under the N₂O and N₂-curve, expressed as % (see equation in the figure and Liu et
 547 al 2014; the N₂ curves are provided in Figures S27&S28). I_{N_2O} have proven to be a robust proxy for potential N₂O
 548 emission from soil (Russeñes et al 2016). Two I_{N_2O} values are shown: one for the timespan until 40% of the NO₃⁻
 549 -N was recovered as N₂+N₂O+NO ($I_{N_2O} 40\%$), and one for 100% recovery ($I_{N_2O} 100\%$). More details (including N₂ and
 550 NO kinetics) are shown in Figure S27 and S28.

551 These results show that the emission of N₂O from soil fertilized with digestates can be
 552 manipulated by tailoring the digestate microbiome. Interestingly, measurements of methane

553 in these soil incubations showed that the methanogenic consortia in digestates that had not
554 been heat treated (i.e. the live digestate and the N₂O enrichment) remained metabolically
555 intact in the soil, and started producing methane as soon as N₂O and nitrogen oxyanions had
556 been depleted, while no methane was produced in the soils amended with autoclaved
557 digestate, and that heated to 70 °C (**Figure S29**).

558 In an effort to determine the survival of the N₂O-scavenging capacity of a digestate enriched
559 with N₂O reducers, we also tested its effect on soil N₂O emissions after a 70-hour aerobic
560 storage period (in soil or as enrichment culture, at 20 °C). These experiments demonstrated
561 a sustained beneficial effect on I_{N2O} after 70 hours of aerobic storage (**Figure S30**). This result
562 indicates that the enrichment strategies discussed here are robust, although long-lasting
563 storage experiments as well as field trials are needed.

564 **Concluding remarks**

565 This feasibility study identifies an avenue for large scale cultivation of N₂O reducers for soil
566 application, which could be low cost if implemented as an add-on to biogas production
567 systems. Further efforts should be directed towards selecting organisms that are both strong
568 sinks for N₂O and able to survive and compete in soil, to secure long-lasting effects on N₂O
569 emissions. A tantalizing added value would be provided by selecting organisms (or consortia
570 of organisms) that are not only strong N₂O-sinks, but also promote plant growth and disease
571 resistance (Gao et al 2016, 2017).

572 Gas kinetics, metagenomics and metaproteomics revealed that the methanogenic consortium
573 of the digestate remains active during anaerobic incubation with N₂O, and that bacteria with
574 an anaerobic respiratory metabolism grew by harvesting fermentation intermediates. The
575 inhibition of methanogenesis by N₂O implies that the respiring organisms would have
576 immediate access to the electron donors that would otherwise be used by the methanogens,
577 i.e. acetate and H₂, while they would have to compete with fermentative organisms for the
578 “earlier” intermediates such as alcohols and VFA. The importance of fermentation
579 intermediates as a carbon source for the N₂O-respiring bacteria would predict a selective
580 advantage for organisms with a streamlined (narrow) catabolic capacity, i.e. limited to short
581 fatty acids, and our results lend some support to this: the catabolic capacity of the organism
582 that became dominant (MAG260, isolate **AN**) was indeed limited, as was also the case for
583 isolate **AS**. Such organisms are probably not ideal N₂O-sinks in soil because their ability to
584 survive in this environment would be limited. Organisms with a wider catabolic capacity, such
585 as the isolated *Pseudomonas* sp. (**PS**), are stronger candidates for long term survival and N₂O-
586 reducing activity in soil. The ideal organisms are probably yet to be found, however, and
587 refinements of the enrichment culturing process are clearly needed.

588 The digestate used in this study contained N₂O-respiring bacteria, most likely survivors from
589 the raw sludge, which however, were clearly outnumbered by bacteria that are net producers
590 of N₂O. We surmise that the relative amounts of N₂O-producers and N₂O-reducers in
591 digestates may vary, depending on the feeding material and configuration for the anaerobic
592 digestion. This could explain the observed large variation of digestates on N₂O emission from
593 soils (Baral et al 2017, Herrero et al 2016). The high abundance of both NO₃⁻ - and O₂-respiring

594 organisms in digestates has practical implications for the attempts to grow isolated strains in
595 digestates: they could be outnumbered by the indigenous NO_3^- - and O_2 -respiring organisms
596 (**Figure S5**). Hence, we foresee that future implementation of this strategy will require a brief
597 heat treatment or other sanitizing procedure. A bonus of such sanitation is that it eliminates
598 methane production by the digestate in soil.

599 We failed to enrich organisms lacking all other denitrification genes than *nosZ*; the only
600 reconstructed genome with *nosZ* only (**MAG004**) did not grow at all. Failure to selectively
601 enrich such organisms by anaerobic incubation with N_2O was also experienced by Conthe et
602 al (2018). The organisms that did grow by respiring N_2O in our enrichment, were all equipped
603 with genes for the full denitrification pathway, although the only denitrification enzyme
604 expressed/detected during the enrichment was Nos. This agrees with the current
605 understanding of the gene regulatory network of denitrification; *nosZ* is the only gene whose
606 transcription does not depend on the presence of NO_3^- , NO_2^- or NO (Spiro 2016), which were
607 all absent during the enrichment.

608 Two of the reconstructed MAGs had periplasmic nitrate reductase (*nap*), as was the case for
609 two of the three isolates (AN and AS). This in itself would predict preference for N_2O - over
610 NO_3^- reduction at a metabolic level (Mania et al 2020), but otherwise their potential for being
611 N_2O sinks cannot be predicted by their genomes. The phenotyping of the isolates revealed
612 conspicuous patterns of *bet hedging* as demonstrated for *Paracoccus denitrificans* (Lycus et al
613 2018). The *bet hedging* in *P. denitrificans* is characterized by expression of Nir (and Nor) in a
614 minority of the cells, while Nos is expressed in all cells, in response to oxygen depletion, hence
615 the population as a whole is a strong sink for N_2O . The isolated *Pseudomonas* sp. (PS)
616 displayed denitrification kinetics that closely resembles that of *P. denitrificans*. The two other
617 isolates (**AN** and **AS**) showed indications of *bet hedging* as well, but of another sort: Nap
618 appears to be expressed in a minority of the cells. This different regulatory phenotype had
619 clear implications for the ability of organisms to function as N_2O -sinks: while all isolates were
620 strong N_2O sinks when provided with NO_3^- only, **AN** and **AS** accumulated large amounts of
621 N_2O if provided with NO_2^- .

622 The N_2O sink capacity of the organisms was tested by fertilizing soils with digestates with and
623 without the organisms, and monitoring the gas kinetics in response to oxygen depletion, thus
624 imitating the hot spots/hot moments of hypoxia/anoxia induced by digestates in soil
625 (Kuzyakov and Blagodatskaya 2015). Since the isolates were raised by aerobic growth in
626 autoclaved digestates, they would have to synthesize all denitrification enzymes in the soil,
627 hence the synthesis of functional Nos was expected to be hampered by low pH (Liu et al 2014).
628 The results for isolates **AS** and **AN** lend support to this (high $I_{\text{N}_2\text{O}}$ in the soil with pH=5.5). **AN**
629 was also dominating in the digestate enrichment culture, and in this case the organism had a
630 strong and pH-independent effect on N_2O emission, plausibly due synthesis of Nos prior to
631 incorporation into the soils.

632 In summary, we have demonstrated that a digestate from biogas production can be
633 transformed into an effective agent for mitigating N_2O emission from soil, simply by allowing
634 the right bacteria to grow to high cell densities in the digestate prior to fertilization. The
635 technique is attractive because it can be integrated in existing biogas production systems, and

636 hence is scalable. If we manage to treat a major part of waste materials in agroecosystems by
637 AD, the resulting digestates would suffice to treat a large share of total farmland, as illustrated
638 by **Figure 1**. Estimation of the potential N₂O-mitigation effect is premature, but the
639 documented feasibility and the scalability of the approach warrant further refinement as well
640 as rigorous testing under field condition. Our approach suggests one avenue for a much
641 needed valorization of organic wastes (Peng and Pivato 2019) via anaerobic digestion. Future
642 developments of this approach could extend beyond the scope of climate change mitigation
643 and include the enrichment of microbes for pesticide- and other organic pollutant
644 degradation (Sun et al 2018), plant growth promotion (Backer et al 2018) and inoculation of
645 other plant symbiotic bacteria (Poole et al 2018).

646 **References**

647 Andalib M, Nakhla E, McIntee, Zhu J (2011) Simultaneous denitrification and methanogenesis (SDM):
648 Review of two decades of research. *Desalination* 279:1-14. DOI:10.1016/j.desal.2011.06.018

649 Bakken LR, Frostegård Å (2020) Emerging options for mitigating N₂O emissions from food
650 production by manipulating the soil microbiota. *Current Opinion in Environmental Sustainability*
651 47:89-94. <https://doi.org/10.1016/j.cosust.2020.08.010>

652 Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslikova D, Ricci E, Subramnian S, Smith DL (2018)
653 Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to
654 commercialization of biostimulants for sustainable agriculture, *Front. Plant Sci.* 9:1473. doi:
655 10.3389/fpls.2018.01473

656 Baral KR, Labouriau R, Olesen J, Petersen SO (2017) Nitrous oxide emissions and nitrogen use efficiency
657 of manure and digestates applied to spring barley. *Agriculture Ecosystems & Environment* 239:188-
658 198. DOI:10.1016/j.agee.2017.01.012

659 Bergaust L, Mao Y, Bakken LR, Frostegård Å (2010) Denitrification response patterns during the
660 transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide
661 reductase in *Paracoccus denitrificans*. *Applied and Environmental Microbiology* 76:6387-6396.
662 DOI:10.1128/AEM.00608-10

663 Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous
664 oxide emissions from soils: how well do we understand the processes and their controls? *Philosophical
665 Transactions of the Royal Society B* 368:20130122. DOI:10.1098/rstb.2013.0122

666 Cheng C, Shen X, Xie, H, Hu Z, Pavlostathis SG, Zhang J (2019) Coupled methane and nitrous oxide
667 biotransformation in freshwater wetland sediment microcosms. *Science of the Total
668 Environment* 648:916-922. DOI:10.1016/j.scitotenv.2018.08.185

669 Conthe M, Wittorf L, Kuenen JG, Kleerebezem R, van Loosdrecht MCM, Hallin S (2018) Life on N₂O:
670 deciphering the ecophysiology of N₂O respiring bacterial communities in a continuous culture. *The
671 ISME Journal* 12:1142–1153. DOI:10.1038/s41396-018-0063-7

672 D'Hondt K, Kostic R, McDowell R, Eudes F Singh BK, Sarkar S, Markakis B, Schelkle B, Maguin E,
673 Sessitsch A (2021) Microbiome innovations for a sustainable future. *Nature Microbiology* 6:138-142.
674 doi.org/10.1038/s41564-020-00857-w

675 Domeignoz-Horta LA, Putz M, Spor A, Bru D, Breuil MC, Hallin S, Philippot L (2016) Non-denitrifying
676 nitrous oxide reducing bacteria – an effective N₂O sink in soil. *Soil Biology and Biochemistry* 103:376-
677 379. DOI:10.1016/j.soilbio.2016.09.010

678 Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia
679 synthesis changed the world. *Nature Geoscience* 1:636-639.

680 Eurostat (2017) Agri-environmental indicator – greenhouse gas emissions. ISSN 2443-8219,
681 <https://ec.europa.eu/eurostat/statistics-explained/pdfscache/16817.pdf>

682 Fischer R, Gärtner P, Yeliseev A, Thauer RK (1992) N⁵-Methyltetrahydromethanopterin: coenzyme M
683 methyltransferase in methanogenic archaeabacteria is a membrane protein. *Archives of Microbiology*
684 158:208-217. DOI:10.1007/BF00290817

685 Foged HL, Flotats X, Blasi AB, Palatsi J, Magri A, Schelde KM (2011) Inventory of manure processing
686 activities in Europe. Technical report No. I concerning “Manure Processing Activities in Europe” to the
687 European Commission, Directorate-General Environment. 138.

688 Gao N, Shen WS, Kakuta H, Tanaka N, Fujiwara T, Nishizawa T, Takaya N, Nagamine T, Isobe K, Otsuka
689 S, Senoo K (2016) Inoculation with nitrous oxide (N_2O)-reducing denitrifier strains simultaneously
690 mitigates N_2O emission from pasture soil and promotes growth of pasture plants. *Soil Biology and*
691 *Biochemistry* 97:83–91. DOI:10.1016/j.soilbio.2016.03.004

692 Gao N, Shen W, Camargo E, Shiratori Y, Nishizawa T, Isobe K, He X, Senoo K (2017) Nitrous oxide (N_2O)-
693 reducing denitrifier-inoculated organic fertilizer mitigates N_2O emissions from agricultural soils.
694 *Biology and Fertility of Soils* 53:885–898. DOI:10.1007/s00374-017-1231-z

695 Hallin S, Philippot L, Löffler RA, Jones CM (2018) Genomics and ecology of novel N_2O -reducing
696 microorganisms. *Trends in Microbiology* 26:43–55. DOI:10.1016/j.tim.2017.07.003

697 Herrero M, Henderson B, Havlik P, Thornton PK, Conant RT, Smith P, Wirsén S, Hristov AN, Gerber
698 P, Gill M, Butterbach-Bahl K, Valin H, Garnett T, Stehfest E (2016) Greenhouse gas mitigation
699 potential in the livestock sector. *Nature Climate Change* 6:452–461. DOI:10.1038/nclimate2925

700 Holm-Nielsen JB, Al-Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas
701 utilization. *Bioresource Technology* 100:5478–5484. DOI:10.1016/j.biortech.2008.12.046

702 Hu HW, Chen D, He JZ (2015) Microbial regulation of terrestrial nitrous oxide formation:
703 understanding the biological pathways for prediction of emission rates. *FEMS Microbiology Reviews*
704 39:729–749. DOI:10.1093/femsre/fuv021

705 Kengen SWM, Mosterd JJ, Nelissen, RLH (1988) Reductive activation of the methyl-
706 tetrahydromethanotering: coenzyme M methyl transferase from *Methanobacterium*
707 *thermoautotrophicum* strain ΔH. *Archives of Microbiology* 150:405–412. DOI:10.1007/BF00408315

708 Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: Concept & review.
709 *Soil Biology and Biochemistry* 83:184–199. DOI:10.1016/j.soilbio.2015.01.025

710 Liu B, Frostegård Å, Bakken LR (2014) Impaired Reduction of N_2O to N_2 in acid soils is due to a
711 posttranscriptional interference with the expression of *nosZ*. *mBio* 5:e01383-14.
712 DOI:10.1128/mBio.01383-14.

713 Lim YN, Frostegård Å, Bakken LR (2018) Nitrite kinetics during anoxia: The role of abiotic reactions
714 versus microbial reduction. *Soil Biology and Biochemistry* 119:203–209.
715 DOI:10.1016/j.soilbio.2018.01.006

716 Lu H, Chandran K, Stensel D (2014) Microbial ecology of denitrification in biological wastewater
717 treatment. *Water Research* 64:237–254. DOI:10.1016/j.watres.2014.06.042

718 Lycus P, Bøthun KL, Bergaust L, Shapleigh JP, Bakken LR, Frostegård Å (2017) Phenotypic and genotypic
719 richness of denitrifiers revealed by a novel isolation strategy. *The ISME Journal* 11:2219–2232.
720 DOI:10.1038/ismej.2017.82

721 Lycus P, Soriana-Laguna, Kjos M, Richardson DJ, Gates AJ, Milligan DA, Frostegård Å, Bergaust L,
722 Bakken LR (2018) A bet-hedging strategy for denitrifying bacteria curtails their release of N_2O .
723 *Proceedings of the National Academy of Sciences USA* 115:11820–11825.
724 DOI:10.1073/pnas.1805000115

725 Molstad L, Dörsch P, Bakken LR (2007) Robotized incubation system for monitoring gases (O₂, NO,
726 N₂O, N₂) in denitrifying cultures. *Journal of Microbiological Methods* 71:202-211.
727 DOI:10.1016/j.mimet.2007.08.011

728 Molstad L, Dörsch P, Bakken LR (2016) Improved robotized incubation system for gas kinetics in
729 batch cultures. *Researchgate*. DOI:10.13140/RG.2.2.30688.07680

730 Mania D, Wolily K, Degefu T, Frostegård Å (2020) A common mechanism for efficient N₂O reduction in
731 diverse isolates of nodule-forming bradyrhizobia. *Environmental Microbiology* 22:17-31.
732 DOI:10.1111/1462-2920.14731

733 Meyer A, Ehimen E, Holm-Nielsen J (2018) Future European biogas: Animal manure, straw and grass
734 potentials for a sustainable European biogas production. *Biomass and Energy* 111:154-164.
735 DOI:10.1016/j.biombioe.2017.05.013

736 Nadeem S, Bakken LR, Frostegård Å, Gaby JC, Dörsch P (2020) Contingent effects of liming on N₂O-
737 emissions driven by autotrophic nitrification. *Frontiers in Environmental Science* 8:598513.
738 DOI:10.3389/fenvs.2020.598513

739 Peng W, Pivato A (2019) Sustainable Management of Digestate from the Organic Fraction of Municipal
740 Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy.
741 *Waste Biomass Valor* (2019) 10:465–481. DOI 10.1007/s12649-017-0071-2

742 Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts *Nature*
743 *Reviews Microbiology* 16:291-303. doi:10.1038/nrmicro.2017.171

744 Qu Z, Bakken LR, Frostegård Å, Bergaust L (2016) Transcriptional and metabolic regulation of
745 denitrification in *Paracoccus denitrificans* allows low but significant activity of nitrous oxide reductase
746 under oxic conditions. *Environmental Microbiology* 18:2951-2963. DOI:10.1111/1462-2920.13128

747 Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species
748 definition. *Proceedings of the National Academy of Sciences USA* 106:19126-19131.
749 DOI:10.1073/pnas.0906412106

750 Russenes AL, Korsæth A, Bakken LR, Dörsch P (2016) Spatial variation in soil pH controls off-season
751 N₂O emission in an agricultural soil. *Soil Biology and Biochemistry* 99:36-46.
752 DOI:10.1016/j.soilbio.2016.04.019

753 Sanford RA, Wagner DD, Wu Quingzhong, Chee-Sanford JC, Thomas SH, Cruz-Garzia C, Rodrigues G,
754 Massol-Deya A, Krishnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, Löffler FE (2013) Unexpected
755 nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. *Proceedings of the*
756 *National Academy of Sciences USA* 109:19709-19714. DOI:10.1073/pnas.1211238109

757 Scarlat N, Dallemand JF, Fahl F (2018) Biogas: Developments and perspectives in Europe. *Renewable*
758 *Energy* 129:457-472. DOI:10.1016/j.renene.2018.03.006

759 Shapleigh JP (2013) Denitrifying Prokaryotes. in: Rosenberg E, DeLong EF, Lory S, Stackebrandt E,
760 Thompson F (editors). *Prokaryotes - Prokaryotic Physiology and Biochemistry* (Springer Berlin,
761 Heidelberg, 405–425). DOI:10.1007/978-3-642-30141-4_71

762 Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. *Microbiology*
763 and *Molecular Biology Reviews* 61:262-280. DOI:1092-2172/97/\$04.0010

764 Snyder CS, Davidson EA, Smith P, Venterea RT (2014) Agriculture: sustainable crop and animal
765 production to help mitigate nitrous oxide emissions. *Current Opinions in Environmental Sustainability*
766 9:10:46-54.

767 Song X, Liu M, Ju X, Gao B, Su F, Chen X, Rees RM (2018) Nitrous oxide emissions increase
768 exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain.
769 *Environmental Science and Technology* 52:12504–12513. DOI:10.1021/acs.est.8b03931

770 Sutton M, Erisman W, Leip A, vanGrinsven H, Winiwarter W (2011) Too much of a good thing. *Nature*
771 472: 159-161.

772 Spiro S (2016) Regulation of denitrification. (Chapter 13) in: Isabel M, José JGM, Sofia RP, Luisa BM
773 (editors). *RSC Metallobiology Series 9: Matalloenzymes in denitrification* (Royal Society of Chemistry
774 Cambridge, UK, 312-331). <https://doi.org/10.1039/9781782623762-00312>

775 Stams AJM, Elferink SJWHO, Westermann P (2003) Metabolic Interactions Between Methanogenic
776 Consortia and Anaerobic Respiring Bacteria. in: Ahring BK (editors). *Biomethanation I. Advances in*
777 *Biochemical Engineering/Biotechnology*, vol 81 (Springer Berlin, Heidelberg). DOI: 10.1007/3-540-
778 45839-5_2

779 Stenmarck AA, Jensen C, Quested T, Moates G (2016) Estimates of European food waste levels,
780 Report of the project FUSIONS (contract number: 311972) granted by the European Commission
781 (FP7). DOI:10.13140/RG.2.1.4658.4721

782 Sun S, Sidhu V, Rong Y, Zheng Y (2018) Pesticide Pollution in Agricultural Soils and Sustainable
783 Remediation Methods: a Review. *Current Pollution Reports* 4:240-250. doi.org/10.1007/s40726-018-
784 0092-x

785 Tian H, et al (2020) A comprehensive quantification of global nitrous oxide sources and sinks. *Nature*
786 586:248-255. DOI:10.1038/s41586-020-2780-0

787 Valenzuela El, Padilla-Loma C, Gómez-Hernández N, López-Lozano NE, Casas-Flores S, Cervantes FJ
788 (2020) Humic substances mediate anaerobic methane oxidation linked to nitrous oxide reduction in
789 wetland sediments. *Frontiers in Microbiology* 11:587. DOI:10.3389/fmicb.2020.00587

790 Vaccaro BJ, Thorgersen MP, Lancaster WA, Price MN, Wetmore KM, Poole FL, Deutschbauer A, Arkin
791 AP, Adams MWW (2016) Determining roles of accessory genes in denitrification by mutant fitness
792 analyses. *Applied and Environmental Microbiology* 82:51-61. DOI:10.1128/AEM.02602-15

793 Yoon S, Nissen S, Park D, Sanford RA, Löffler FE (2016) Nitrous oxide reduction kinetics distinguish
794 bacteria harboring Clade I NosZ from those harboring Clade II NosZ. *Applied and Environmental*
795 *Microbiology* 82:3793-3800. doi:10.1128/AEM.00409-16.

796 Zumft WG (1997) Cell biology and molecular basis of denitrification. *Microbiology and Molecular*
797 *Biology Reviews* 61:533-616. DOI:1092-2172/97/\$04.0010