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11 Abstract

12 Generalization of transcriptomics results can be achieved by comparison across experiments,
13 which is based on integration of interrelated transcriptomics studies into a compendium. Both
14 characterization of the fate of the organism as well as distinguishing between generic and specific
15 responses can be gained in such a broader context. There are numerous methods for analyzing
16 such data sets, most focusing on gene-wise dimension reduction to obtain marker genes and
17 gene sets, e.g. for pathway analysis. Relying only on isolated biological modules might lead to
1 missing of important confounders and relevant context.

19 We have developed a novel method called Plant PhysioSpace, which provides the ability
20 to compute experimental conditions across species and platforms without a priori reducing
21 the reference information to specific gene-sets. It extracts physiologically relevant signatures
2 from a reference data set, a collection of public data sets, by integrating and transforming
23 heterogeneous reference gene expression data into a set of physiology-specific patterns. New
2% experimental data can be mapped to these patterns, resulting in similarity scores which provide
25 quantitative likeness of the new experiment to the a priori compendium.

26 Because of its robustness against noise and platform bias, Plant PhysioSpace can be used
27 as an inter-species or cross-platform similarity measure. We have demonstrated its success
28 in translating stress responses between different species and platforms (including single-cell
2 technologies).

30 We also report the implementation of two R packages, one software and one data package,
31 and a shiny web application, which provides plant biologists convenient ways to access our
2 method and precomputed models from four different species.

33

34 Keywords— crop science, stress analysis, single cell, computational method, web-tool

s 1 Introduction

36 As a consequence of their non-motile nature, plants developed a peculiarly organized yet labyrinthine re-
37 sponse system to external biotic and abiotic stresses. Exploiting this complex system has been playing
33 an important role in achieving sustainable plant protection in agriculture. Instances of tweaking the plant
30 defense system for obtaining better crops are numerous. For instance, priming, i.e. promoting plants to a
s primed state of defense, has been known, investigated and utilized for decades if not centuries [1, 2]. By
a1 exposure to biotic stresses (e.g. microbe-, pathogen-, herbivore-associated molecular patterns) or abiotic
22 stresses (for instance harsh temperatures, drought or damage-associated molecular patterns), plants switch
43 to a primed reinforced defense state. In this primed state, they can display sharper stress response, which
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4+ in turn results in more robust and resilient organisms. By artificially exposing plants to biotic and abiotic
45 stresses directly, or to some natural or synthetic chemicals which provoke the same defense response, it is
46 possible to engineer tougher plants [3]. Another example of crop engineering is by genetically modifying
47 (GM) plants to attain higher tolerance to stress [4]. Introducing a single gene encoding C-5 sterol desat-
s urase (FvC5SD) from Collybia velutipes to tomato is an instance of GM crop research, and it brings about
2 a drought-tolerant and fungal resistant crop [5, 6]. Obtaining resistance to papaya ringspot virus (PRSV)
s0 in transgenic papaya is another famous example. The resistant papaya gains the protection by expressing
s1 the PSRV coat protein transgene [7].

52 In research experiments aiming to modify the plant’s defense system, such as the examples mentioned
53 above, the stress responses of plants under study are to be thoroughly examined and contrasted to wild
s« types. We argue that a tool, which is capable of quantitatively and dependably measuring the speed and
55 intensity of stress responses in plants, can be of great assistance in this field of research. Hence, we present
s Plant PhysioSpace, an advanced computational tool based on PhysioSpace [8], for quantitative analysis of
57 stress responses in plants.

58 Sequencing technologies are commonly used for studying the changes in the plants under examination.
so  However, analysis of the results mostly focuses on gene-wise dimension reduction of data to obtain a list of
60 genes, with the rest of the analysis pipeline fixating on the genes in the list. By design, Plant PhysioSpace
61 extracts physiologically relevant information out of intricately convoluted gene expression data without
62 reducing dimensions, providing a direct link from sequencing data to physiological processes. Since it is
63 computationally cheap, the tool is able to train on a vast amount of retrospectively available data, allowing
64 explicit integration of established knowledge and data, eventuating in robust results when testing the method
6s on small data sets generated in specific experiments.

66 Plant PhysioSpace comprises two compartments: the space generation, the algorithm which elicits in-
67 formation from big data, and the physio-mapping, the process with which new data can be analyzed by
e comparison to the extracted information (Fig.1). Compared to the machine learning nomenclature, space
60 generation is analogous to training and physio-mapping to testing.

70 In this study, we focused on the application of our novel method in stress response analysis. As one of
71 the fiercest adversaries of plants, biotic and abiotic stresses take a toll on commercial agriculture. Plant
72 PhysioSpace can aid in engineering impervious crops, by quantitatively analyzing the effect of a new mutation
73 or treatment on plant’s resistance.

7 Another long-lasting question in the field of stress response research is the potential heterogeneity in
75 response among cell types under the stress. Generally, sequencing is done on thousands to millions of cells,
76 revealing only the average effect on the bulk tissue, thus lacking the direct assessment of cells. The individual
77 and unique role of cell types shape the function of their parent tissue. Hence, by careful examination of
78 stressed tissue cells, the difference between their behavior, and the in-between interplay among them, one
79 can gain new insights into the complex mechanisms shaping the plant stress response.

80 Since 2009, more and more single cell data sets are becoming available publicly. As with other new
81 technologies, the focus is mainly on human and animal tissue sequencing. Lack of data availability is espe-
&2 cially true for plant studies on account of processing tissues with cell walls has been a bothersome obstacle
g3 for single cell technologies, as they mostly result in low capture rates. But recent leaps in single cell se-
84 quencing technologies, e.g. the 10X platform, increased the resolution of single cell data, eventuating in a
ss few plant single cell experiments [9, 10, 11, 12, 13]. Mostly, scRNA-seq studies follow the same analysis
s pipeline [14, 15]. In a nutshell, the highest variable genes are selected and gone through principal com-
&7 ponent analysis (PCA) and t-distributed stochastic neighborhood embedding (tSNE) or uniform manifold
ss approximation and projection (UMAP) to demonstrate the underlying structure. Subsequently, Clustering
s or regression algorithms are used to identify biologically relevant groups (e.g. groups of cells with a similar
o0 response), or trends (e.g. pseudotemporal axis of cell development), from the underlying data structure [16].
o1 Although such technologies as 10X made plant single cell sequencing possible, they are far from perfect. For
92 instance, compared to bulk sequencing technologies, technical noise has a higher interference on single cell
93 reads, which calls for developing sophisticated bioinformatic analysis tools to handle those interferences.

o4 This paper has been organized in the following way: It begins with a brief explanation of the Plant Phys-
o5 ioSpace algorithm, which includes a review of the already published method, plus the modifications adapting
96 the method to the field of plant stress research. The paper will then go on to the benchmarking section,
o7 in which the method’s performance is assessed in translating stress response among different experiments,
9 platforms, and species. Benchmarking is followed by two application showcases, in which we demonstrate
9 two Plant PhysioSpace use-cases: investigating time-series data from biotic-stressed wheat, and analyzing a
w0 heat-stressed single cell data set. Finally, the discussion gives a brief summary and critique of the findings.

« 2 Materials and Methods

w 2.1 Data Preparation

103 While setting up a PhysioSpace matrix, our method requires extensive training data for achieving adequate
104 robustness. This training data can be retrieved from retrospective data sets. To that end, we curated more
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105 than 4000 plant stress response gene expression samples from GEO'! and SRA%. More specifically, 2480 A.
s thaliana (Arabidopsis thaliana) array samples, 967 A. thaliana RNA-seq samples, 146 Oryza sativa array
17 samples, 172 Glycine mazx array samples, and 104 Triticum aestivum array samples were used for space
108 generation. Each sample is annotated with a label from a stress set. In this study, samples are divided into
100 Aluminum, Magnesium, Biotic, Cold, Drought, FarRed, FeDeficiency, Genotoxic, Heat, Herbicide, Hormone,
1o Hypoxia, Light, LowPH, Metabolic, Mutant, Nitrogen, Osmotic, Radiation, Salt, Submergence, UV and
11 Wounding stress groups. For samples which underwent more than one stress, new labels were generated by
112 concatenating existing labels from the stress set. For example, 'Biotic.Drought’ designates a sample which
13 sustained both Biotic and Drought stresses.

114 Samples corresponding to each species are normalized in bulk to remove the batch effect. We used robust
us  multi-array average or RMA [17] for normalizing microarray RAW data files and a pipeline consisting of
us Fastg-dump, Trimmomatic [18], Star aligner [19] and featureCounts [20] to derive counts from SRA records.

w 2.2 PhysioSpace Method

us  PhysioSpace is a supervised dimension reduction method, which aims to extract relevant physiological
1o information from big data sets and store it in a mathematical space [8]. The method can be divided into
120 two main steps: space generation and physio-mapping (Fig.1).

1 2.2.1 Space Generation

122 After preparing the data, we derive the physiologically relevant information from normalized data and
123 store this information in a mathematical space. This step is comparable to training in machine learning
124 terminology. Space generation is done in two stages: space extraction and space trimming. The former
125 stage is identical to the method described previously in [8]. However, the latter, space trimming, is a novel
126 addition for adapting the method for studying plant stress response.

1z Space Extraction In the PhysioSpace method, all samples are analyzed contrastively, i.e. using differ-
128 ential expression analysis. ”Space” is a matrix which is built upon reference data. In this paper, reference
120 data contains all Arabidopsis array samples that are measured by the Affymetrix Arabidopsis ATH1 Genome
130 Array®. For each stress group in each data set, gene-wise fold changes are calculated between stressed plants
131 and their corresponding controls. The fold changes fill one column of the space matrix. This generated ma-
12 trix, which we call reference space (S.), contains all stress-relevant information represented in the reference
133 data. In addition to S, we calculated the mean reference space (ST) For constructing ST, for each stress
134 group, the gene-wise mean value of fold changes in S, is calculated and stored in a column in S,.. More
135 detailed information, as well as a step-by-step guide for creating S, and S, are provided in supplementary
16 file 1.

137 Space Trimming The stress grouping in this study is done based on the expert annotation provided
138 alongside public data sets. Therefore, this grouping doesn’t necessarily reflect the different classes of biolog-
130 ical mechanisms that shape the plant response spectrum. There are groups of biologically-related stresses,
10 which in turn make some stress responses very similar in their full genome signature. Logically, stresses
141 to which plants respond using the same common mechanisms and pathways, have similar gene expression
12 fingerprints. On the other hand, stresses have significantly different gene expression patterns when few to
143 no common genes are involved in their corresponding stress responses.

144 From the mathematical point of view, the distance between distinct stress responses manifests itself in
s the collinearity of axes of the extracted space. Collinearity in a mathematical space is a source of redundancy,
s and in our application, can result in lower accuracy and robustness.

147 We came up with a new algorithm named space trimming: an unsupervised approach which in combina-
us  tion with space extraction, makes up a hybrid method that can detect new groups of stress responses. We
1o call these new-found groups meta-stress groups.

150 Space trimming uses a consecutive combination of hierarchical clustering and leave-one-out cross-validation
151 (LOOCYV) to remove the aforementioned redundancy from a space. Space trimming consists of three steps:

152 1. Clustering and cross-validation analyses are done on the space under study, and a dendrogram based
153 on the calculated similarities is constructed.

154 2. Groups of stresses that are close and have low accuracy are combined to make meta-stress groups.
155 Groups that merge under the 50% of the maximum height in the dendrogram (i.e. groups with the
156 distance of 50% of the maximum distance or lower) are considered close, and groups of stresses that
157 mostly have an accuracy of less than 0.7 are considered low in accuracy.

158 3. Any newly-generated meta group that has at least the same performance as its subgroups is kept. All
159 other meta groups are reverted back to their former groups.

Thttps://www.ncbi.nlm.nih.gov/geo/
2https:/ /www.ncbi.nlm.nih.gov/sra/
S3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL198
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160 We applied the Space trimming algorithm to the reference space Sy, generated in the last section, from
161 Arabidopsis microarray data (Fig.2).
162 In LOOCYV, by definition, one sample is left out for testing. In our LOOCYV scheme though, we left out

165 one GSE (GEO” series) data set in each cycle. Due to batch effects, even with proper preprocessing, samples
164 from the same GSE set tend to be similar. With leave-one-GSE-out cross-validation, we make sure that the
165 stress response from different data sets could be successfully matched together.

166 In each iteration, one GSE data set is chosen as the test set, it is mapped to the rest of the data sets,
167 the training set, and it is counted as a successful match if the analyzed test data and its most similar data
s set from training set undergone the same stress group. Using the confusionMatrix function from the caret
10 package [21] in R®, matching accuracy and robustness of the method is evaluated (Fig.2A). With an overall
10 balanced accuracy of 0.43, a Cohen’s kappa of 0.385, and an accuracy p-value of 7.35 x 10~%2, PhysioSpace
i1 could successfully match the samples going through the same stress group.

172 As expected, clustering analysis exposed the similarities among different stress responses. For instance,
173 responses to Osmotic, Drought and Salt stresses seem to have common underlying activated gene groups. Or
14 regarding Biotic, Hormone, and Biotic.Hormone (double stress), their close proximity points toward a very
175 similar stress response. They also predominantly have lower accuracy comparable to other stress groups
176 (Fig.2A). This led us to the assumption that these groups of stress responses share one or few underlying
177 defensive mechanisms, such as an innate immune response.

178 Merging the similar stress groups and constructing the meta-stress groups result in an improved perfor-
179 mance of the method (Fig.2B). We constructed three new meta-stress groups: BioMone, which comprises
150 of Biotic, Hormone, and Biotic.Hormone stress groups, DrouSaTic, that was built by combining Drought,
11 Salt, and Osmotic stresses, and LighUV, which is made by merging Light and UV stresses (Fig.2B). Redoing
12 the LOOCYV on the new grouped space demonstrates the performance gain, with an accuracy of 0.57 and a
183 Cohen’s kappa of 0.49, which increased 0.14 and 0.105 respectively in comparison to the classical grouping
184 of stresses. And the accuracy p-value stays significant, as it is equal to 2.91 x 10739,

185 The resulted space, which we call meta-reference space or S, and its successive mean space which we
186 denote by S, are the spaces we use as the reference throughout the result section, though it is possible to
17 use S, and S, as a reference too, for example in cases that individual stresses are needed to be characterized,
18 e.g. if Salt and Drought stresses are needed to be studied separately.

19 2.2.2 Physio-mapping

1o After acquiring a space from known training data, we can map new data from any technology or species
11 back into the space and find similarities between the new unknown information and the known training data.
192 Physio-mapping is a nonlinear, model-free mapping, designed to take advantage of omics data structures and
13 to compensate biases from heterogeneous assessment protocols. Omics are mostly framed in high-feature
194 low-sample arrangements. In most cases, the majority of features in these types of data sets are intrinsically
195 dominated by noise rather than physiologically informative facts about the samples under study. Results
16 commonly acquired by differential expression analysis are great examples of this phenomenon; in most cases
17 of differential expression analyses, only a small proportion of features in an omics data set can be found to
18 be significantly different, i.e. correlated with circumstances that are being studied.

199 Presuming this assumption, the mapping is done by taking the following steps:

200 1. Either

201 (a) A new space is extracted from the new data. This means that for each gene in each stress case,
202 a fold change is calculated by modeling the gene behavior under the respective stress given the
203 control. We call this new input space S;.
204 (b) For each stress type v, genes are sorted from the lowest to highest fold change.
205 (¢) N percent lowest and highest genes are selected as Ly (y) and Lg(y) for each 7. N is a user-
206 defined parameter. In this paper, it is between 3 to 5 percent.
207 or
208 Differential expression analysis is done on the input data, and for each stress type vy, down- and
200 up-regulated gene sets are calculated, which are called Lz () and Ly(7), respectively.
210 2. For each axis on the reference space (i.e. each column in Sy, ), a statistical test is performed between
o1 L1 (v) and Lg () gene groups to form the PS matrix:
PS11 PpS12 . PS1t
PpS21 PpPS22 . pSat . )
PS=| . . . .| with psp, = signed loga(MWW_vatue (5L (1)ks SLL (1)k)) (1)
Spl DPSp2 P DPSpt

4https://www.ncbi.nlm.nih.gov/geo/
Shttps://www.r-project.org/
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212 In equation 1, pskm is the physio score between the m*® sample and the k*" column of reference space
2135 Spr. PSkm physio score value shows how similar the m*® sample of S; is to the k' column in Sp,.
24 MWW,y vale(a, b) is a function that calculates the p-value of a Mann—-Whitney—Wilcoxon statistical test
25 (also known as Mann-Whitney U test or Wilcoxon rank-sum test) between a and b. s, (,)x and sz, (y)k
216 are the sets of values in k' column, and ¢ € Ly and ¢ € Ly, rows of Sp,r, respectively. And signed logz(x)

. {—logg(m)7 if mean(sr (k) > mean(sr, (y)k)

217 .
loga(x),  otherwise

218 PS is a physio score matrix, containing similarity values of all input samples to all axes (i.e. columns)
219 in the reference space. This physio score matrix is the output of Plant PhysioSpace, the scores quantify the
20 intensity of different stress types in ditferent samples, and they are comparable within the same physio score
21 matrix®. To elaborate on how to interpret the physio scores, we analyzed the GSE137397[22] data set from
222 GEO using Plant PhysioSpace. In GSE13739, the responses of wild type and mutant Arabidopsis thaliana to
223 Golovinomyces orontii (powdery mildew) are studied till 7 days post infection. The mutant in this study is
24 Salicylic acid biosynthetic mutant ics?, which is expected to be more resilient compared to the wild type. We
225 plotted the physio score matrix (calculated using equationl) as a heatmap (Fig.3), with samples in columns
26 and stress groups in rows of the heatmap, and the color showing the magnitude of each stress in each sample.
27 Based on the experiment description, we anticipated 1) the plants to behave as they are under Biotic stress,
2s and 2) the mutant plants to have a milder response compared to the wild type since they are more resilient.
229 The results show similar dynamics in both wild type and mutant groups of samples: BioMone (Biotic or
230 Hormone) is the dominant stress response, and also its corresponding score increases with time, with wild
231 types reaching a stronger response levels compared to the mutants. Our results are aligned with what we
232 expected from the experiment. In addition, they show that physio scores are comparable between samples
233 (row-wise in the heatmap), as well as among stress groups (column-wise in the heatmap).

234 For inter-species mapping, for instance in analyzing new data from Oryza sativa using a space generated
235 from A. thaliana, we resorted to orthologous genes. By using the ideal assumption of orthologs to have iden-
236 tical biological roles in all species, we mapped genes to their orthologs in cases with interspecies translation.
257 For the mapping, we utilized the Basic Local Alignment Search Tool BLAST [23]. More specifically, we used
233 the BLASTn tool to align sequences from Oryza sativa, Glycine max, and Triticum aestivum against A.
20 thaliana, with o = 1072 as the cutoff for the ”expect value”. Expect value, also known as expectation value
20 or e-value, represents the number of random alignments with scores equivalent to or better than the resulted
21 match [24]. In other words, the expect value depicts the statistical significance of the alignment. Therefore,
22 in cases with multiple matching, the gene with the lowest expect value is chosen as the match, to have a
23 one-to-one matching between genes from ditferent species and A. thaliana.

« 3 Results
»s 3.1 Stress Space Verification by GO Analysis

us For substantiating the authenticity of stress information collected using our space generation process, we
27 utilized the gene list analysis section of PANTHER [25, 26]. For each stress group in our generated mean
23 meta-stress space Sp., we selected the genes with an absolute score value of more than one and a half®,
29 and tested this gene list by PANTHER overrepresentation Test, against Gene Ontology (GO) biological
0 processes (Fig.4 and supplement files 2 and 3). From 15 different stress groups, 11 were found to have the
1 GO terms corresponding to the same stress enriched, with significant corrected p-values of less than 0.001.

» 3.2 Inter-Technology Translation

3 Next generation sequencing (NGS) has revolutionized the biological sciences. Its speed, cost and data
4 quality outpaced the older DNA-microarray technology, which is why NGS became the standard method to
25 study transcriptomes. Yet, microarrays were used for RNA quantification for decades. The vast microarray
256 backlogs have the potential to grant an invaluable resource for new biological studies. Unfortunately, the
257 measurement technology has an inevitable impact on the transcript measurement levels and the distribution
28 of the resulting data.

250 Data derived from different platforms are distinctly different. Hence, there are numerous methods to
20 translate measurements from one technology to another [27, 28]. Moreover, with the third generation se-
261 quencing right around the corner (PacBio and Nanopore, to name a few [29]), there is a high demand for
262 computational methods capable of transferring useful information between different measurement technolo-
263 gies.

6The possible range of the physio scores is dependent on the number of shared features (i.e genes) between the test
data and the reference space. Therefore, if in two different mappings, the numbers of shared features are the same,
the scores from the two different resulted physio score matrices are comparable as well.

Thttps://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13739

8For BioMone and FeDeficiency stresses with cutoff of 1.5, less than 10 genes were selected, which is too small of
a set for list enrichment analysis. Hence in these two cases, cutoff is reduced to one.
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264 Since PhysioSpace utilizes the differential expression relations of the genes and not absolute values for
265 space generation and mapping, it can translate between each and any technology, as long as there exists a
266 proper method for detecting the differentially expressed genes in the mentioned technology. As proof for
27 this claim, we mapped more than 900 RNA-seq samples into the microarray space Sm,r (Table 1). Our
268 method can map the same stress type from microarray to RNA-seq data with 78 percent accuracy. We
260 also calculated the probability of acquiring this accuracy by chance, by randomly permuting the sample
a0 labels and calculating the random accuracy. The performance of our method is significantly higher than any
o1 random accuracy we acquired’, with a p-value of less than 1077,

= S o
g S g . S B S B,
T §§ TE £E
zs 5§ S§  £5
SRS T2 =2 <Z
2 22 g8 L2

. )

= 2 = 2 23 g 3

r % =
. Accuracy 0.78 0.59 0.57 0.23
Plant PhysioSpace pvalue < 10~7 3x10-7  0.002 0.015
Accuracy 0.68 0.30 0.10 0.06
GSEA p-value <1077 3x107* 0.42 0.97
Accuracy 0.69 0.57 0.12 0.13
WIS p-value <1077 <1077 0.21 0.28
Pearson correlation Accuracy 0.73 0.48 0.32 0.14
p-value <1077 <1077 0.12 0.17
Spearman correlation Accuracy 0.62 0.49 0.29 0.27

P pvalue <1077 <1077 021 4.79x 1070
. . Accuracy 0.30 0.27 0.21 0.39
Euclidean distance pvalue  0.83 0.03 062 <107

Table 1: Stress translation between platforms and Species. In each column, the best performer is marked in
red.

= 3.3 Inter-Species Translation

a3 Although not agriculturally relevant, Arabidopsis is arguably the most investigated species in plant sciences.
a4 Its availability, compact size, and fast growth made it an ideal model species. Nevertheless, there are
275 significant differences between the Arabidopsis plant model and crop plants, necessitating procedures for
a7 converting well-studied physiological knowledge, e.g. regarding plant response to different types of stress,
277 from Arabidopsis to crops. In this section, we show how Plant PhysioSpace can be utilized for this purpose.
278 We chose three of the most commercially relevant crops to study: Oryza sativa (rice), Glycine max
279 (soybean) and Triticum aestivum (wheat). For each crop, more than 100 microarray samples of stress
280 response experiments were curated, normalized, preprocessed and mapped to the Arabidopsis space Sy,. For
281 Oryza sativa and Glycine mazx, Plant PhysioSpace achieved respective accuracies of 59 and 57 percent, both of
282 which were significantly higher than any accuracy earned by chance. On the other hand, translation of stress
283 response from Triticum aestivum DNA array data to A. thaliana, with an accuracy of 23 percent and a p-
2 value of 0.015, was not successful (Table 1). In section 3.5 of this paper, we provided a thorough investigation
285 into wheat to Arabidopsis translation, hypothesized and examined the reason behind the translation failure,
286 and provided solutions for fixing it.

» 3.4 Benchmarking Plant PhysioSpace against Other Methods

288 We used the results from inter-technology and -species stress response translation to benchmark our method.
230 Plant PhysioSpace is compared to the most common approaches used in bioinformatics for measuring rela-
200 tions between two or more gene expression samples: Gene Set Enrichment Analysis (GSEA) [30], Weighted
200 Connectivity Score (WTCS), which is an advanced version of GSEA used in connectivity map [31], Pearson
202 and Spearman correlations, and Euclidean distance. For each method, fold change values of samples, from
203 different technologies and species, are calculated and used for finding the similarities between samples. Based

9The highest acquired accuracy from 10,000,000 random runs for RNA2DNA translation was 52% (minimum =
12.08%, first quartile = 28.12%, median = 30.87%, third quartile = 33.56% and maximum = 52.35%).


https://doi.org/10.1101/2020.11.16.384305
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.384305; this version posted April 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

204 on our results in inter-species and -platform mapping, Plant PhysioSpace could outperform other methods
205 in all scenarios, except in mapping from wheat to Arabidopsis (Table 1).

» 3.5 In-depth Investigation of Wheat Stress Response

207 The poor performance of our method in translating stress response from Triticum aestivum to A. thaliana
208 may have potentially derived from the microarray used to measure the wheat gene expressions. All microar-
20 ray samples of Triticum aestivum in this study are generated by using Affymetrix Wheat Genome Array'’.
30 Not only the aged technology could potentially deter the accuracy of transcription measurements, but also
31 as a polyploid, the complex genetics of wheat would make the task of measuring its RNA levels troublesome.
32 Moreover, among all translations tested, wheat microarray provides the least amount of mapped orthologs:
303 when translating from RNA-seq to microarray, we could find 12146 common features (i.e. genes). This
304 amount was lower for both translations of rice and soybean to Arabidopsis, as the ortholog mapping could
305 find 9455 and 9452 common features for them, respectively. And, in translation from wheat to Arabidop-
36 sis, 6202 common features could be found using the ortholog mapping, which is the least among the four
s07  translations. These common feature counts are correlated with the translation performance, considering the
38 RNA-seq to DNA-microarray has the highest and wheat to Arabidopsis has the lowest accuracy, while rice
a0 and soybean mappings are somewhere in between (Table 1). This correlation suggests one possible reason
si0 behind the failed wheat translation is the low amount of orthologs. Fortunately, advances in NGS gave rise
a1 to wheat stress response data sets with higher precision and a wider range of sequence reads.. In this section,
312 we repeated the wheat-to-Arabidopsis translation from inter-species analysis, except with wheat RNA-seq
s13  instead of microarray data.

314 We turned to the Wheat Expression Browser [32, 33] as the source of Triticum aestivum RNA-seq data.
315 From this source, we queried all data sets which study stress response, contain more than 30 samples, and
si6  include controls. Upon the first inspection, 8813 orthologs could be found between these data sets and the
317 genes available in our Arabidopsis reference space, which in addition with the improved data quality provided
s1s by RNA-seq, increases the prospect of Plant PhysioSpace correctly detecting and quantifying the stress in
s9 these data sets. We mapped these data sets into mean meta-reference space Sy, and plotted Physio scores
320 of three stress groups with the highest values (Fig.5).

321 In the experiment set ERP013829, wheat response after inoculation with fungal pathogen Fusarium
322 graminearum is measured through time [34]. For this experiment, Plant PhysioSpace correctly predicts that
323 wheat is experiencing BioMone (Biotic and Hormone) stress. In addition, the diachronic rise in the response
324 indicates how Physio scores are quantitatively comparable (Fig.5A).

325 In the data set ERP013983, responses of two different mutants of wheat are studied to wheat yellow
326 rust pathogen Puccinia striiformis f.sp. tritici (PST). The authors focused on the pathogen suppression of
327 basal defense in plants [35]. From their results, they deduced the pathogen overcame the defense by rapidly
328 suppressing the genes involved in chitin perception on day 2 after inoculation. In the susceptible interaction,
320 this provides the possibility of invasion and colonization, while in resistant plants, this suppression is quickly
a0 reverted. Plant PhysioSpace results expose this mechanism correctly: Both plant types are inducing a
331 BioMone response on day 1, followed by a suppression of the plant defense response on day 2. Eventually,
332 the quick resurgence of intense BioMone response in resistant wheat helps it in withstanding PST, while the
33 reaction of the susceptible trait might be too slow to deflect the pathogen (Fig.5B).

334 Plants in ERP009837 went through the infection cycle of the hemibiotrophic fungus Zymoseptoria tritici.
35 Similar to ERP013829, plants respond to the pathogen with a dominant BioMone response (Fig.5C). Al-
336 though unlike ERP013829, in which the experiment spanned a few hours, in ERP009837 plants were studied
337 for a longer period. Physio scores suggest that wheat responds to the presence of the pathogen by increasing
338 its BioMone response. This response starts to degrade from day 14, which is in alignment with the original
39 publication of the data set [36], in which the authors state that on day 21, plant tissue is completely defeated.
340 In SRP048912, the responses of two different traits of resistant and susceptible wheat to Fusarium crown
s rot are studied [37]. Only two different time points are included in this experiment: 3 and 5 days after
sz inoculation (dai). Plant PhysioSpace results correctly suggest the most dominant stress response present in
us  plants is BioMone, with the resistant wheat having a stronger response than the susceptible (Fig.5D).

344 Among the Wheat data sets we analyzed in this section, ERP003465 is arguably the most complex, and
s consequently most interesting as a testing scenario for our method. ERP003465 examined the behavior of
ss 5 different genotypes under the disease pressure of Fusarium graminearum [38]. Two well-validated and
a7 highly reproducible QTLs (quantitative trait loci), Fhb! and Qfhs.ifa-5A, are studied from samples taken
us 30 and 50 hours after inoculation (hai). Five different genotypes were investigated: CM-82036, a progeny
s of the resistant Sumai-3, and four near-isogenic lines (NILs) bearing either, both, or none of the resistant
350 alleles Fhb! and Qfhs. Among the four, NIL1 is a mutant with both QTLs, expected to have the highest
351 resistance after CM-82036, NIL2 and NIL3 are mutants harboring Fhb! and Qfhs QTLs respectively, with
352 both predicted to behave moderately resistant, and NIL4 missing both QTLs, and is likely to be susceptible.
353 Data analysis in the original paper was mainly based on differential expression analysis. As a first
354 step, the total number of differentially expressed genes for each genotype at each time point was taken as
355 a surrogate for stress response intensity to Fusarium graminearum. In the next steps, the weighted gene

LOhttps://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GPL3802
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36 co-expression network analysis (WGCNA) was used to detect clusters of genes with similar patterns, and
357 Gene Ontology analysis was utilized to infer the role of each cluster in the stress response.

358 Being able to quantify the intensity of each stress type at each time point, Plant PhysioSpace can
350 provide much more insight into the characteristics and dynamics of the stress responses that are at play in
w0 the ERP003465 experiment (Fig.5E). As this data set encompasses a high number of samples distributed
1 between only two time points, we plotted the results as a bar graph. And because the results cover a wide
32 range of values for this experiment, we used log-scaled Physio scores in the graph, and replaced values smaller
33 than one by one (i.e. zero in log-scale).

364 Among the concluding remarks in the original paper, some are in concordance with the results from our
s method. For example, lines lacking Qfhs.ifa-5A are regarded as “slow responders” by the original authors,
366 since they lack resistance against initial infection inferred by Qfhs.ifa-5A. This lack of early response can be
s7  seen in our results (Fig.5E): lines lacking Qfhs.ifa-5A, i.e. NIL2 and NIL4, have no BioMone (Biotic and
ss  Hormone) stress response at the early time point, while NIL1 and NIL3 show a considerable BioMone stress
30 response at the same time point. Another remark from the original paper suggested that a lack of timely
a0 defensive reaction could result in a higher infection in a later time, and consequently stronger response,
sn and vice versa: a quick response may reduce the intensity and infection at a later time. This can be seen
sz in the contrasting response dynamics of NIL1 versus the other lines (Fig.5E). NIL1 possesses both QTLs:
a3 Qfhs.ifa-5A ensures an early and fast stress response, evident on 30 hai time point. And a strong follow up,
s courtesy of Fhbl, results in a non-existent BioMone response at 50 hai. NIL3 contains Qfhs.ifa-5A, so it
a5 benefits from a quick response at 30 hai, but due to the absence of Fhb1, it cannot be rid of infection at 50
376 hai, evident by the high BioMone response at that time point. As mentioned, lines NIL2 and NIL4, which
sz lack Qfhs.ifa-5A, do not have an early response and have to play catch up with other lines on the later time
373 point.

379 Although many conclusions that could be derived from our method are similar to the ones from the
30 original publication, there are some discrepancies between the two groups as well. For instance, in most
331 samples, Wounding stress response is not only present, but it is even stronger than BioMone response in
32 some cases. This is in contrast with the original paper, in which it is mentioned that inoculation was done
383 cautiously without wounding the tissue. Interpretation of CM-82036 defensive behavior is another point of
s34 difference between our method and the results from the original paper. Kugler et al. construed the high
sss number of differentially expressed genes (DEG) at 30 hai as a sign of strong early response for CM-82036,
36 even stronger than NIL1 and NIL3. They followed up by studying specific gene families that are relevant to
37 defense mechanisms, such as UGTs and WRKYSs, and showed more DEGs from these families can be found
sss  at 30 hai in CM-82036 versus other lines. This finding is different from what we can interpret using our
39 method: Although CM-82036 exhibits BioMone response at 30 hai, the magnitude is somewhere between
s0 fast responder lines, that is NIL1 and NIL3, and slow responders, i.e. NIL2 and NIL4.

391 We speculate the main reason for the aforementioned inconsistencies is the particular way the prepro-
32 cessing was done in the original paper. In their preprocessing, Kugler et al. mapped the reads to a list of
303 barley high confidence genes and only used the reads with a possible match. This step drastically reduces
304 the number of analyzed transcripts, and also discards wheat-specific genes with no barley homologs. Our
305 method is designed for high-dimensional data, preferably data from the whole genome, therefore the specific
396 preprocessing of this data set might have reduced the performance of Plant PhysioSpace. We should also
37 mention that stress responses are not mutually exclusive; A plant can display multiple different responses
38 at the same time, some of which may even share part of their biological pathways. Fusarium graminearum
399 could have damaged the plant tissue at some point, which explains the existence of wounding response
a0 alongside BioMone.

401 Albeit the mediocre results of the last experiment, in this section we showed how, in 4 out of 5 data sets,
402 Plant PhysioSpace could:

403 1. correctly identify the type of stress plants are going through.
404 2. accurately relate the response from RNA-seq test data to DNA-array trained models.
405 3. rightly translate T. aestivum stress response to A. thaliana.

o 3.6 Plant PhysioSpace Application in Single Cell Analysis

a7 Single cell technologies facilitate investigating transcription profiles in single cell resolution, in order to
408 perceive the genetic basis of each cell type and its function. Although relatively new, more and more plant
a0 single cell data sets are becoming available to the community [9, 10, 11, 12, 13]. For now, most sequence
a0 data sets are focused on Arabidopsis roots. They try to gain an in-depth understanding of transcription
a1 patterns of different cells in different developmental stages of wild-type non-stressed plant roots. To our
412 knowledge, the only publication in which stressed single cells were sequenced is the paper by Jean-Baptiste
a3 et al. [12]. In this work, 38°C heat stress was applied to 8-day-old seedlings for 45 minutes. Subsequently,
414 roots of the seedlings were harvested, along with the roots of age- and time-matched control seedlings. The
a5 authors could capture and sequence 1,009 cells from the stressed group and 1076 from the control group.
a6 For processing the sequencing results, they followed the usual single cell analysis pipeline: PCA, UMAP
a7 and clustering, followed by differential gene expression analysis on clusters and enrichment tests on genes
a8 related to heat-shock. The results show the ”"promise and challenges inherent in comparing single cell data
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a9 across different conditions and treatments”. In this section, we demonstrate how a dedicated method, such
20 as Plant PhysioSpace, can bring forth more benefits than using the methodological norms.

421 To analyze the single cell data set, we used the gene-wise mean value of all control cells as the reference,
42 calculated fold changes for each single cell, and fed those fold change values into the Plant PhysioSpace
223 pipeline (Fig.6). Regardless of the cell type, heat-stressed single cells had significantly higher heat stress
424 scores, compared to control single cells (Fig.6A). For studying the heat-induced cell type disparity, we overlaid
a5 heat stress scores on UMAP and tSNE plots (Fig.6B&6C). In both tSNE and UMAP plots, coordinate values
46 calculated in the original paper of Jean-Baptiste et al. were used. As a result, cells are bundled in cell type
427 clusters in the UMAP plot, while in the tSNE plot, cells are clearly separated into two big clusters of control
w28 and stressed. Although, inside these two big clusters, sub-clusters of different cell types are evident (Fig.S1).
29 On the UMAP plot on the other hand, big clusters represent cell types (Fig.S2), and inside each cell type
430 cluster, groups of control and stressed cells may or may not be distinct, depending on the cell type. For
31 example, in Hair and Non-hair clusters, control and heated cells are separated, while the separation is less
sz pronounced in Stele cells (Fig.S2).

433 To look into the distinct behavior of different cells under stress, we also plotted cell heat scores grouped
s by the corresponding cell types (Fig.6D&S3). The results show how Hair and Non-hair cells have higher
435 heat scores, which demonstrates how the outer layers of roots are sharper in their response to heat. This
436 finding is in concordance with one of the conclusions in the original paper, in which based on the behavior
437 of the heat-relevant genes, they concluded the three outermost cell layers of the root went through higher
438 levels of changes caused by the heat stress. The authors hypothesized this may be because of more direct
439 exposure of the outer layers to the heat shock, resulting in a quicker and stronger response.

440 Although resulting in generally the same conclusions, in this analysis Plant PhysioSpace provided an
41 advantageous experience for the end-user, through providing:

402 1. convenience: unlike the original paper, there was no need for search and curation of heat stress gene
443 clusters, as they are already available in Plant PhysioSpace, as well as clusters for other common
444 stresses.

445 2. precision: not only the stress type but also the magnitude of the stress response could be quantified by
446 our method, something which is lacking in traditional gene list enrichment approaches. For example,
47 Plant PhysioSpace results suggest a stronger response in Hair response, compared to Non-hair response
448 (Fig.6D). This inference could not be concluded by the results of traditional methods.

449 3. optimization: in one run, our tool calculated responses of 20 different stresses for 2085 single cells, in
450 less than 3 minutes on a 2-core laptop CPU. This swift performance is accomplished by precalculating
451 the stress space, in combination with an optimized mapping algorithm, all of which is readily available
452 for the community to use.

w3 3.7 Availability

44 To provide the community with an easy-to-use implementation of our method, we built Plant PhysioSpace

55 into two different R packages: a method package (https://git.rwth-aachen.de/jrc-combine/PhysioSpaceMethods)
a6 containing functions for generating new spaces and Physio-mapping, and a data package (https://git.rwth-

»s7  aachen.de/jrc-combine/PlantPhysioSpace) comprising plant stress spaces such as S, and S, that were used

458 in this paper.

450 In addition, we made a shiny'' web application of Plant PhysioSpace (Fig.7). We hosted the web app on

a0 shinyapp.io (http://physiospace.shinyapps.io/plant/), to be freely available to use (under the terms of GPL-3

w61 license). We also built a Docker image of the ready-to-use tool (https://github.com/usadellab/physiospace_shiny).

w 3.8 Supplemental Material

463 This paper is accompanied by three supplement files and three supplement figures:

464 1. Supplementary file 1 is a PDF text file that provides a detailed explanation about how ”space
465 extraction” is performed.

466 2. Supplementary file 2 is a compendium of all 15 bubble plots related to section 3.1, ”Stress Space
467 Verification by GO Analysis”.

468 3. Supplementary file 3 is an excel file that contains the results of the PANTHER GO analysis for all
469 the 15 stress groups. In the file, correctly detected GO terms are highlighted, and stress groups that
470 had irrelevant GO terms enriched are labeled.

471 4. Supplementary figures are related to section 3.6, ”Plant PhysioSpace Application in Single Cell
472 Analysis”. Supp. figures S1 and S2 are alternative versions of figures 6C and 6B, in which cell types are
473 annotated in place of temperature. And supp. figures S3 is the same as figures 6D, except it contains
474 the control cells physio scores as well.

http://shiny.rstudio.com
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= 4 Discussion

476 Gaining proper insight into stress response mechanisms in plants is not only a must for the future of
477 agricultural research, but will prompt advances in the plant research field in general. In this study, we
a1s  developed an advanced computational method, designed to aid in understanding stress response in plants.
479 The lightweight algorithm allows it to run on either personal computers, or as a web application, making it
40 an ideal tool for experimental quality control, data set annotation, to draw conclusions considering thousands
41 of genes, et cetera.

482 We built the new method upon a previously published method in humans, called PhysioSpace. We
463 achieved this conformity by curating a multitude of Arabidopsis stress response samples to have a rich
44 training data set, adapting the space generation algorithm, i.e. training, to acclimate to the specific char-
45 acteristics of stress response data in plants, and thoroughly testing against other species and types of data.
a6 The results of this study demonstrated that Plant PhysioSpace can be a convenient and practical tool for
47 analyzing new stress response data sets, to apprehend, contrast to state of the art, or to simply quality
48 control.

489 Notably, our tool could perform adequately even when it was mapping information between different
a0 platforms and species. Although, it is crucial to bear in mind these cross translations necessitate for some
401 conditions to be true. In cross-platform translation, it was assumed that with the same experimental setup
42 and samples, there are computational pipelines available which roughly compute the same differentially
103 expressed gene lists regardless of the platform used. And in cross-species mapping, we assumed orthologous
494 genes have the same biological function across all species; evidently impossible to be consistently true for all
45 genes, but a sizable portion of genes have to pass this criterion for the inter-species translation to work.

496 We demonstrated how Plant Physiospace can provide insights when used for analyzing single cell data
497 sets. Recent advances in single cell technology call for suitable bioinformatic analysis tools, for example for
w8 reducing the interfering technical noise [16]. The clear, factual results derived from single cell data analysis
499 in this paper bring a spectrum of applications to mind for the future, especially in the light of approaching
soo  plant single cell atlas projects [39, 40].

501 Plant PhysioSpace may seem paradoxical at first, as it is explained to be a ”dimension reduction” method
s2  that extracts stress information from gene expression data ”without reducing dimensions”. Yet, this osten-
so3  sible contradiction is plausible in actuality, since our method doesn’t discard any features from the training
s data when extracting stress information in the space generation stage (i.e. model training), but only re-
sos  moves the irrelevant features in the physio-mapping (i.e. when applying the method to the new samples). As
sos mentioned before, the majority of genes remain unaltered under stress. We showed this unvarying behavior
so7  using the mean meta-reference space Sy, (Fig.8).Taking the absolute fold change value of 1 as a cutoff, only
s8  a small portion of plant genes are changing under stress. To be more specific, from all 22249 genes available
500 in Spyp, only 2905 (~13%) change at least under one stress type. In addition, the number of changed genes is
si0 & function of the stress type, ranging from ~0.07% in BioMone (biotic, hormone, or both stresses) to ~5.8%
s in the Drought.Light (double stress) group (Fig.8A).Moreover, the majority of varying genes are specific
si2 to a stress group, as 2175 out of the 2905 genes (~75%) only change in one stress group (Fig.8B).The low
si3  dimensionality of the stress responses, along with the highly specific features, may suggest that one can
514 remove the genes with the absolute fold change of less than 1 in the training step, as it seems that keeping
sis  all the features till the end is not beneficial, while removing them could result in an even more compressed
sis model. We are against this exclusion, however, on the ground that the removal of genes with an absolute
si7 - fold change of less than 1 can eliminate relevant information. As proof, we ran the single cell processing of
518 the last section once more, but this time as a reference, we used a "reduced” Sy, which is a version of Sy,
s with all the 2905 varying genes removed (Fig.8C).Although not as high as their counterparts calculated by
s20 using the complete Sy, heat scores calculated using the reduced space are still significantly higher in heated
sz single cells compared to the control cells (Wilcoxon rank-sum test p-value < 2.2 x 107'%), showing that the
52  less varying genes also carry stress-related information. Therefore, we conclude the benefits of keeping all
523 possible features outweigh the advantages that come about by removing them. Having the information from
s the whole genome at hand is especially helpful when analyzing data sets that don’t include a high number
s of genes, because the overlap between the features present in the model and the new data may become too
s26  small. Many new sequencing technologies, the Oxford Nanopore MinION [41] for example, or novel single cell
527 sequencing platforms, provide readings on a limited number of genes, and keeping the whole genome in the
s trained model can boost the performance of our method on data from the aforementioned technologies. That
520 being said, a proper and clever way of reducing dimensions of the trained spaces, a far more complex way
s  compared to the fold-change cutoff scenario we examined before, has the potential to increase the efficiency
531 and reduce the complexity of our method.

532 To our knowledge, Plant PhysioSpace is the only computational tool available capable of quantitizing
533 stress response in plant cells. Therefore, it can be used to assess each cell under stress, to grasp an under-
53¢ standing of the complex responses and interplay of cells in plants under stress, and to achieve a comprehensive
535 characterization of plant response to stress as a whole.
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= o Data Availability Statement

ss7  All the scripts that generate the results of this paper can be found in https://git.rwth-aachen.de/jrc-
sss  combine/PlantPhysioSpacePaper.
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Figure 1: Plant PhysioSpace Overview. The method consists of two main sections: space generation and Physio-
mapping. In space generation (A), data from public repositories is processed and its information is extracted. After
trimming, the extracted information is stored in matrices called “space”, representing physiology-relevant expression
patterns. Physio-mapping (B) uses a space to analyze new, unknown data, for example from a new experiment. The
new data is mapped to the generated space, resulting in “similarity” scores that indicate the likeness of the new data
to the known physiological processes.
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Figure 2: Space Trimming. Stress groups are clustered and for each group, leave-one-out cross-validation accuracy
is calculated, written in parenthesis, as shown in panel A. Close groups with low accuracy, written in red, are combined
to form new stress groups, called meta-groups, as shown in panel B. Groups are considered close if they merge in
the dendrogram in a height lower than 0.5 (50% of maximum height). This cut-off height is shown in the figure with
a dashed red line. In this figure, Salt, Drought and Osmotic stress groups, marked with brown color, merge into
DrouSaTic meta-group, Hormone, Biotic and Biotic.Hormone groups form BioMone meta-group, written in green,
and Light and UV groups combine into LighUV, shown in yellow.
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Figure 3: Analysis results of GSE13739. The GEO data set GSE13739 is mapped against the Sp,, reference
space using Plant PhysioSpace. The data set provides samples of Wild type (WT) and Mutant (MT) Arabidopsis
thaliana plants that are infected with Golovinomyces orontii (Biotic stress). The mutant plants are expected to be
more resilient.


https://doi.org/10.1101/2020.11.16.384305
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.384305; this version posted April 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

A Cold Stress

GO:0009
— 20
()
=2
[ .
> 15 ID Description
E G0:0009409 response to cold
<]
S 10 G0:0009266 response to temperature stimulus
g’ G0:0009628 response to abiotic stimulus
I 5 G0:0006950 response to stress

° GO:0050896

o_ . 1 .
Enrichment Ratio

B Heat Stress

GO:0009408
40
o
=
“ .
=30 G0:0009266 ID Description
__;: 00 GO:0006457 G0:0034605 cellular response to heat
S 0:004603 &O:%S 4605  GO:0009408 response to heat
b4 : o ® G0:0006457 protein folding
| 5 OCDO G0:0046034 ATP metabolic process
e ° G0:0009266 response to temperature stimulus
0.5 1.0 1.5
Enrichment Ratio
C Radiation Stress
_ b
[
=2
© 5 L
? ) ID Description
E 4 G0:0006302 double-strand break repair
E, G0:0006281 DNA repair
8’ 3 G0:0006974 cellular response to DNA damage stimulus
1 2 e G0:0006259 DNA metabolic process
° G0:0033554 cellular response to stress
0.5 1.0 1.5 2.0

Enrichment Ratio

response to stimulus

Figure 4: GO Analysis of Mean Stress Space. Results of GO analysis on three stress groups are demonstrated
using bubble plots. In the plots, each enriched GO term is represented by a circle, with adjusted p-values as y-axis and
enrichment ratio as x-axis. The size of the circle shows the size of the gene list of the corresponding GO term. And
enrichment ratio here means the ratio between the actual number of differentially expressed genes and the expected,
in each GO group. For each plot, 5 most significant GO terms are labeled on the plot and listed in a table beside each
plot. Complete set of bubble plot and set of significant GO terms for all 15 stress groups are provided in supplement
files 2 and 3. Plots were generated using the GOplot package in R [42].
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Figure 5: Time Series Analysis of Biotic Stress Response of Wheat RNA-seq data. 5 different biotic-
stressed data sets from Wheat Expression Browser are mapped to the Arabidopsis space Sp,,r, and the three groups
with highest stress values are plotted for each data set. In 4 out of 5 cases, BioMone (Biotic and Hormone) stress group
has the highest similarity value, with resistant mutants having higher responses than the susceptible ones (panels A,
B, C, and D).



https://doi.org/10.1101/2020.11.16.384305
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.384305; this version posted April 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

B
Heat Scores of Single Cells Heat Scores on UMAP Plot
600 = I
Wilcoxon, p <2.2e-16 T b Temperature
2.0 ¢ Hair s S o
R . '.‘ o 22 degree celsius
S ‘ \ .
'\ X 38 degree celsius
g400- Stele * \ 9
o ] @2
a Temperature o P 3& H _
2 + o /] ; Heat_PhysioScore
> E 22 degree celsius < !
£ : s
1 200+ El 38 degree celsius O 0
m 104 400
[} e
T \
o4 Endodermi
0.51
L ]
22 degrele celsius 38 degrele celsius
Temperature
c D ,
Heat Scores on tSNE Plot Heat Scores of Different Cell Types
Temperature 6004 p<2.22e-16 16
o 22 degree celsius ) 0.00032 p<222€ 16
X 38 degree celsius 8
D 4004 0.0025 4.5e-1
.i i—‘ Temperature
E Heat_PhysioScore £ Py E 38 degree celsius
zZ |
2 l § 2001 $ $
has [}
400 T
200 04
I 0 o & & & & o
¥ ¢ &
& <% &
£ Aal
tSNE 1 CellType

Figure 6: Single Cell Analysis Results of Plant PhysioSpace. Stress scores were calculated for each cell. For
demonstrating the outcome, we plotted the heat score of the two big groups of control and stressed, shown in panel
A. This box plot proves how Plant PhysioSpace could correctly detect and quantify stress response in single cell data.
On panels B and C, we overlaid the heat scores on UMAP and tSNE plots, respectively. On panel D, boxplot of heat
scores, on y-axis, were plotted against different cell types, on x-axis. Cell types on the x-axis are ordered based on
the morphological anatomy, starting from inner cell types to outermost cell layers (excluding Ambiguous cells, which
come at the end).
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Figure 7: Plant PhysioSpace Web-application
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Figure 8: Differentially Expressed Genes in the Reference Space. Behavior of genes with an absolute fold
change value of more than 1 in the reference space Spr, and their effects on the performance of Sy, as a reference
space is examined. In panel A, the number of genes with an absolute fold change value of more than 1 in each
stress group is demonstrated. Since there are 22249 genes available in the space Sy, the ratio of differentially
expressed genes to all genes among different stress groups spans from around 0.07% in BioMone (biotic, hormone, or
both stresses) to around 5.8% in the Drought.Light (double stress) group. In panel B, we explored the specificity of
differentially expressed genes to stress groups. Among all 22249 genes in Sp,r, only 2905 (~13%) are differentially
expressed in one or more stress groups. From these 2905 genes, 2175 (~10%) are specifically expressed in only one
stress group, 488 (~2%) are expressed in two stress groups, and 242 (~1%) in more than two stress groups. Hence,
we conclude that the majority of expressed genes in the reference space Sy, are specific to one stress group. In panel
C, we used the heated single cells to study the effect of the 2905 differentially expressed genes on applicability of Sy,
as a reference space. We compared the performance of Sy, against Sy, without the 2905 differentially expressed
genes, which we called the "reduced” Sy,,. As evident from the boxplot, the heat scores are still significantly different
between control and heated cells, even when the reduced space is used, although the magnitude of the heat scores is
decreased compared to when the complete space is used.



https://doi.org/10.1101/2020.11.16.384305
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and Methods
	Data Preparation
	PhysioSpace Method
	Space Generation
	Physio-mapping


	Results
	Stress Space Verification by GO Analysis
	Inter-Technology Translation
	Inter-Species Translation
	Benchmarking Plant PhysioSpace against Other Methods
	In-depth Investigation of Wheat Stress Response
	Plant PhysioSpace Application in Single Cell Analysis
	Availability
	[RGB]255,255,255Supplemental Material

	Discussion
	Data Availability Statement

