
Plant PhysioSpace: a robust tool to compare stress response1

across plant species2

Ali Hadizadeh Esfahani1, Janina Maß2, Asis Hallab2, Bernhard M. Schuldt3,3

David Nevarez1, Björn Usadel2, Mark-Christoph Ott4, Benjamin Buer4,4

Andreas Schuppert1∗
5

1Joint Research Center for Computational Biomedicine, RWTH Aachen University,6

Aachen, Germany7

2IBG-4: Bioinformatics, Forschungszentrum Jülich, 52425 Jülich, Germany8
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Abstract11

Generalization of transcriptomics results can be achieved by comparison across experiments,12

which is based on integration of interrelated transcriptomics studies into a compendium. Both13

characterization of the fate of the organism as well as distinguishing between generic and specific14

responses can be gained in such a broader context. There are numerous methods for analyzing15

such data sets, most focusing on gene-wise dimension reduction to obtain marker genes and16

gene sets, e.g. for pathway analysis. Relying only on isolated biological modules might lead to17

missing of important confounders and relevant context.18

We have developed a novel method called Plant PhysioSpace, which provides the ability19

to compute experimental conditions across species and platforms without a priori reducing20

the reference information to specific gene-sets. It extracts physiologically relevant signatures21

from a reference data set, a collection of public data sets, by integrating and transforming22

heterogeneous reference gene expression data into a set of physiology-specific patterns. New23

experimental data can be mapped to these patterns, resulting in similarity scores which provide24

quantitative likeness of the new experiment to the a priori compendium.25

Because of its robustness against noise and platform bias, Plant PhysioSpace can be used26

as an inter-species or cross-platform similarity measure. We have demonstrated its success27

in translating stress responses between different species and platforms (including single-cell28

technologies).29

We also report the implementation of two R packages, one software and one data package,30

and a shiny web application, which provides plant biologists convenient ways to access our31

method and precomputed models from four different species.32

33
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1 Introduction35

As a consequence of their non-motile nature, plants developed a peculiarly organized yet labyrinthine re-36

sponse system to external biotic and abiotic stresses. Exploiting this complex system has been playing37

an important role in achieving sustainable plant protection in agriculture. Instances of tweaking the plant38

defense system for obtaining better crops are numerous. For instance, priming, i.e. promoting plants to a39

primed state of defense, has been known, investigated and utilized for decades if not centuries [1, 2]. By40

exposure to biotic stresses (e.g. microbe-, pathogen-, herbivore-associated molecular patterns) or abiotic41

stresses (for instance harsh temperatures, drought or damage-associated molecular patterns), plants switch42

to a primed reinforced defense state. In this primed state, they can display sharper stress response, which43
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in turn results in more robust and resilient organisms. By artificially exposing plants to biotic and abiotic44

stresses directly, or to some natural or synthetic chemicals which provoke the same defense response, it is45

possible to engineer tougher plants [3]. Another example of crop engineering is by genetically modifying46

(GM) plants to attain higher tolerance to stress [4]. Introducing a single gene encoding C-5 sterol desat-47

urase (FvC5SD) from Collybia velutipes to tomato is an instance of GM crop research, and it brings about48

a drought-tolerant and fungal resistant crop [5, 6]. Obtaining resistance to papaya ringspot virus (PRSV)49

in transgenic papaya is another famous example. The resistant papaya gains the protection by expressing50

the PSRV coat protein transgene [7].51

In research experiments aiming to modify the plant’s defense system, such as the examples mentioned52

above, the stress responses of plants under study are to be thoroughly examined and contrasted to wild53

types. We argue that a tool, which is capable of quantitatively and dependably measuring the speed and54

intensity of stress responses in plants, can be of great assistance in this field of research. Hence, we present55

Plant PhysioSpace, an advanced computational tool based on PhysioSpace [8], for quantitative analysis of56

stress responses in plants.57

Sequencing technologies are commonly used for studying the changes in the plants under examination.58

However, analysis of the results mostly focuses on gene-wise dimension reduction of data to obtain a list of59

genes, with the rest of the analysis pipeline fixating on the genes in the list. By design, Plant PhysioSpace60

extracts physiologically relevant information out of intricately convoluted gene expression data without61

reducing dimensions, providing a direct link from sequencing data to physiological processes. Since it is62

computationally cheap, the tool is able to train on a vast amount of retrospectively available data, allowing63

explicit integration of established knowledge and data, eventuating in robust results when testing the method64

on small data sets generated in specific experiments.65

Plant PhysioSpace comprises two compartments: the space generation, the algorithm which elicits in-66

formation from big data, and the physio-mapping, the process with which new data can be analyzed by67

comparison to the extracted information (Fig.1). Compared to the machine learning nomenclature, space68

generation is analogous to training and physio-mapping to testing.69

In this study, we focused on the application of our novel method in stress response analysis. As one of70

the fiercest adversaries of plants, biotic and abiotic stresses take a toll on commercial agriculture. Plant71

PhysioSpace can aid in engineering impervious crops, by quantitatively analyzing the effect of a new mutation72

or treatment on plant’s resistance.73

Another long-lasting question in the field of stress response research is the potential heterogeneity in74

response among cell types under the stress. Generally, sequencing is done on thousands to millions of cells,75

revealing only the average effect on the bulk tissue, thus lacking the direct assessment of cells. The individual76

and unique role of cell types shape the function of their parent tissue. Hence, by careful examination of77

stressed tissue cells, the difference between their behavior, and the in-between interplay among them, one78

can gain new insights into the complex mechanisms shaping the plant stress response.79

Since 2009, more and more single cell data sets are becoming available publicly. As with other new80

technologies, the focus is mainly on human and animal tissue sequencing. Lack of data availability is espe-81

cially true for plant studies on account of processing tissues with cell walls has been a bothersome obstacle82

for single cell technologies, as they mostly result in low capture rates. But recent leaps in single cell se-83

quencing technologies, e.g. the 10X platform, increased the resolution of single cell data, eventuating in a84

few plant single cell experiments [9, 10, 11, 12, 13]. Mostly, scRNA-seq studies follow the same analysis85

pipeline [14, 15]. In a nutshell, the highest variable genes are selected and gone through principal com-86

ponent analysis (PCA) and t-distributed stochastic neighborhood embedding (tSNE) or uniform manifold87

approximation and projection (UMAP) to demonstrate the underlying structure. Subsequently, Clustering88

or regression algorithms are used to identify biologically relevant groups (e.g. groups of cells with a similar89

response), or trends (e.g. pseudotemporal axis of cell development), from the underlying data structure [16].90

Although such technologies as 10X made plant single cell sequencing possible, they are far from perfect. For91

instance, compared to bulk sequencing technologies, technical noise has a higher interference on single cell92

reads, which calls for developing sophisticated bioinformatic analysis tools to handle those interferences.93

This paper has been organized in the following way: It begins with a brief explanation of the Plant Phys-94

ioSpace algorithm, which includes a review of the already published method, plus the modifications adapting95

the method to the field of plant stress research. The paper will then go on to the benchmarking section,96

in which the method’s performance is assessed in translating stress response among different experiments,97

platforms, and species. Benchmarking is followed by two application showcases, in which we demonstrate98

two Plant PhysioSpace use-cases: investigating time-series data from biotic-stressed wheat, and analyzing a99

heat-stressed single cell data set. Finally, the discussion gives a brief summary and critique of the findings.100

2 Materials and Methods101

2.1 Data Preparation102

While setting up a PhysioSpace matrix, our method requires extensive training data for achieving adequate103

robustness. This training data can be retrieved from retrospective data sets. To that end, we curated more104
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than 4000 plant stress response gene expression samples from GEO1 and SRA2. More specifically, 2480 A.105

thaliana (Arabidopsis thaliana) array samples, 967 A. thaliana RNA-seq samples, 146 Oryza sativa array106

samples, 172 Glycine max array samples, and 104 Triticum aestivum array samples were used for space107

generation. Each sample is annotated with a label from a stress set. In this study, samples are divided into108

Aluminum, Magnesium, Biotic, Cold, Drought, FarRed, FeDeficiency, Genotoxic, Heat, Herbicide, Hormone,109

Hypoxia, Light, LowPH, Metabolic, Mutant, Nitrogen, Osmotic, Radiation, Salt, Submergence, UV and110

Wounding stress groups. For samples which underwent more than one stress, new labels were generated by111

concatenating existing labels from the stress set. For example, ’Biotic.Drought’ designates a sample which112

sustained both Biotic and Drought stresses.113

Samples corresponding to each species are normalized in bulk to remove the batch effect. We used robust114

multi-array average or RMA [17] for normalizing microarray RAW data files and a pipeline consisting of115

Fastq-dump, Trimmomatic [18], Star aligner [19] and featureCounts [20] to derive counts from SRA records.116

2.2 PhysioSpace Method117

PhysioSpace is a supervised dimension reduction method, which aims to extract relevant physiological118

information from big data sets and store it in a mathematical space [8]. The method can be divided into119

two main steps: space generation and physio-mapping (Fig.1).120

2.2.1 Space Generation121

After preparing the data, we derive the physiologically relevant information from normalized data and122

store this information in a mathematical space. This step is comparable to training in machine learning123

terminology. Space generation is done in two stages: space extraction and space trimming. The former124

stage is identical to the method described previously in [8]. However, the latter, space trimming, is a novel125

addition for adapting the method for studying plant stress response.126

Space Extraction In the PhysioSpace method, all samples are analyzed contrastively, i.e. using differ-127

ential expression analysis. ”Space” is a matrix which is built upon reference data. In this paper, reference128

data contains all Arabidopsis array samples that are measured by the Affymetrix Arabidopsis ATH1 Genome129

Array3. For each stress group in each data set, gene-wise fold changes are calculated between stressed plants130

and their corresponding controls. The fold changes fill one column of the space matrix. This generated ma-131

trix, which we call reference space (Sr), contains all stress-relevant information represented in the reference132

data. In addition to Sr, we calculated the mean reference space (Sr). For constructing Sr, for each stress133

group, the gene-wise mean value of fold changes in Sr is calculated and stored in a column in Sr. More134

detailed information, as well as a step-by-step guide for creating Sr and Sr, are provided in supplementary135

file 1.136

Space Trimming The stress grouping in this study is done based on the expert annotation provided137

alongside public data sets. Therefore, this grouping doesn’t necessarily reflect the different classes of biolog-138

ical mechanisms that shape the plant response spectrum. There are groups of biologically-related stresses,139

which in turn make some stress responses very similar in their full genome signature. Logically, stresses140

to which plants respond using the same common mechanisms and pathways, have similar gene expression141

fingerprints. On the other hand, stresses have significantly different gene expression patterns when few to142

no common genes are involved in their corresponding stress responses.143

From the mathematical point of view, the distance between distinct stress responses manifests itself in144

the collinearity of axes of the extracted space. Collinearity in a mathematical space is a source of redundancy,145

and in our application, can result in lower accuracy and robustness.146

We came up with a new algorithm named space trimming: an unsupervised approach which in combina-147

tion with space extraction, makes up a hybrid method that can detect new groups of stress responses. We148

call these new-found groups meta-stress groups.149

Space trimming uses a consecutive combination of hierarchical clustering and leave-one-out cross-validation150

(LOOCV) to remove the aforementioned redundancy from a space. Space trimming consists of three steps:151

1. Clustering and cross-validation analyses are done on the space under study, and a dendrogram based152

on the calculated similarities is constructed.153

2. Groups of stresses that are close and have low accuracy are combined to make meta-stress groups.154

Groups that merge under the 50% of the maximum height in the dendrogram (i.e. groups with the155

distance of 50% of the maximum distance or lower) are considered close, and groups of stresses that156

mostly have an accuracy of less than 0.7 are considered low in accuracy.157

3. Any newly-generated meta group that has at least the same performance as its subgroups is kept. All158

other meta groups are reverted back to their former groups.159

1https://www.ncbi.nlm.nih.gov/geo/
2https://www.ncbi.nlm.nih.gov/sra/
3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL198
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We applied the Space trimming algorithm to the reference space Sr, generated in the last section, from160

Arabidopsis microarray data (Fig.2).161

In LOOCV, by definition, one sample is left out for testing. In our LOOCV scheme though, we left out162

one GSE (GEO4 series) data set in each cycle. Due to batch effects, even with proper preprocessing, samples163

from the same GSE set tend to be similar. With leave-one-GSE-out cross-validation, we make sure that the164

stress response from different data sets could be successfully matched together.165

In each iteration, one GSE data set is chosen as the test set, it is mapped to the rest of the data sets,166

the training set, and it is counted as a successful match if the analyzed test data and its most similar data167

set from training set undergone the same stress group. Using the confusionMatrix function from the caret168

package [21] in R5, matching accuracy and robustness of the method is evaluated (Fig.2A). With an overall169

balanced accuracy of 0.43, a Cohen’s kappa of 0.385, and an accuracy p-value of 7.35× 10−42, PhysioSpace170

could successfully match the samples going through the same stress group.171

As expected, clustering analysis exposed the similarities among different stress responses. For instance,172

responses to Osmotic, Drought and Salt stresses seem to have common underlying activated gene groups. Or173

regarding Biotic, Hormone, and Biotic.Hormone (double stress), their close proximity points toward a very174

similar stress response. They also predominantly have lower accuracy comparable to other stress groups175

(Fig.2A). This led us to the assumption that these groups of stress responses share one or few underlying176

defensive mechanisms, such as an innate immune response.177

Merging the similar stress groups and constructing the meta-stress groups result in an improved perfor-178

mance of the method (Fig.2B). We constructed three new meta-stress groups: BioMone, which comprises179

of Biotic, Hormone, and Biotic.Hormone stress groups, DrouSaTic, that was built by combining Drought,180

Salt, and Osmotic stresses, and LighUV, which is made by merging Light and UV stresses (Fig.2B). Redoing181

the LOOCV on the new grouped space demonstrates the performance gain, with an accuracy of 0.57 and a182

Cohen’s kappa of 0.49, which increased 0.14 and 0.105 respectively in comparison to the classical grouping183

of stresses. And the accuracy p-value stays significant, as it is equal to 2.91× 10−39.184

The resulted space, which we call meta-reference space or Smr, and its successive mean space which we185

denote by Smr, are the spaces we use as the reference throughout the result section, though it is possible to186

use Sr and Sr as a reference too, for example in cases that individual stresses are needed to be characterized,187

e.g. if Salt and Drought stresses are needed to be studied separately.188

2.2.2 Physio-mapping189

After acquiring a space from known training data, we can map new data from any technology or species190

back into the space and find similarities between the new unknown information and the known training data.191

Physio-mapping is a nonlinear, model-free mapping, designed to take advantage of omics data structures and192

to compensate biases from heterogeneous assessment protocols. Omics are mostly framed in high-feature193

low-sample arrangements. In most cases, the majority of features in these types of data sets are intrinsically194

dominated by noise rather than physiologically informative facts about the samples under study. Results195

commonly acquired by differential expression analysis are great examples of this phenomenon; in most cases196

of differential expression analyses, only a small proportion of features in an omics data set can be found to197

be significantly different, i.e. correlated with circumstances that are being studied.198

Presuming this assumption, the mapping is done by taking the following steps:199

1. Either200

(a) A new space is extracted from the new data. This means that for each gene in each stress case,201

a fold change is calculated by modeling the gene behavior under the respective stress given the202

control. We call this new input space Si.203

(b) For each stress type γ, genes are sorted from the lowest to highest fold change.204

(c) N percent lowest and highest genes are selected as LL(γ) and LH(γ) for each γ. N is a user-205

defined parameter. In this paper, it is between 3 to 5 percent.206

or207

Differential expression analysis is done on the input data, and for each stress type γ, down- and208

up-regulated gene sets are calculated, which are called LL(γ) and LH(γ), respectively.209

2. For each axis on the reference space (i.e. each column in Smr), a statistical test is performed between210

LL(γ) and LH(γ) gene groups to form the PS matrix:211

PS =











ps11 ps12 . . . ps1t
ps21 ps22 . . . ps2t
...

...
. . .

...
psp1 psp2 . . . pspt











with pskγ = signed log2(MWWp-value(sLH (γ)k, sLL(γ)k)) (1)

4https://www.ncbi.nlm.nih.gov/geo/
5https://www.r-project.org/
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In equation 1, pskm is the physio score between the mth sample and the kth column of reference space212

Smr. pskm physio score value shows how similar the mth sample of Si is to the kth column in Smr.213

MWWp-value(a, b) is a function that calculates the p-value of a Mann–Whitney–Wilcoxon statistical test214

(also known as Mann–Whitney U test or Wilcoxon rank-sum test) between a and b. sLH (γ)k and sLL(γ)k215

are the sets of values in kth column, and i ∈ LH and i ∈ LL rows of Smr, respectively. And signed log2(x)216

is

{

−log2(x), if mean(sLH (γ)k) ≥ mean(sLL(γ)k)

log2(x), otherwise
217

PS is a physio score matrix, containing similarity values of all input samples to all axes (i.e. columns)218

in the reference space. This physio score matrix is the output of Plant PhysioSpace, the scores quantify the219

intensity of different stress types in different samples, and they are comparable within the same physio score220

matrix6. To elaborate on how to interpret the physio scores, we analyzed the GSE137397[22] data set from221

GEO using Plant PhysioSpace. In GSE13739, the responses of wild type and mutant Arabidopsis thaliana to222

Golovinomyces orontii (powdery mildew) are studied till 7 days post infection. The mutant in this study is223

Salicylic acid biosynthetic mutant ics1 , which is expected to be more resilient compared to the wild type. We224

plotted the physio score matrix (calculated using equation1) as a heatmap (Fig.3), with samples in columns225

and stress groups in rows of the heatmap, and the color showing the magnitude of each stress in each sample.226

Based on the experiment description, we anticipated 1) the plants to behave as they are under Biotic stress,227

and 2) the mutant plants to have a milder response compared to the wild type since they are more resilient.228

The results show similar dynamics in both wild type and mutant groups of samples: BioMone (Biotic or229

Hormone) is the dominant stress response, and also its corresponding score increases with time, with wild230

types reaching a stronger response levels compared to the mutants. Our results are aligned with what we231

expected from the experiment. In addition, they show that physio scores are comparable between samples232

(row-wise in the heatmap), as well as among stress groups (column-wise in the heatmap).233

For inter-species mapping, for instance in analyzing new data from Oryza sativa using a space generated234

from A. thaliana, we resorted to orthologous genes. By using the ideal assumption of orthologs to have iden-235

tical biological roles in all species, we mapped genes to their orthologs in cases with interspecies translation.236

For the mapping, we utilized the Basic Local Alignment Search Tool BLAST [23]. More specifically, we used237

the BLASTn tool to align sequences from Oryza sativa, Glycine max , and Triticum aestivum against A.238

thaliana, with α = 10−2 as the cutoff for the ”expect value”. Expect value, also known as expectation value239

or e-value, represents the number of random alignments with scores equivalent to or better than the resulted240

match [24]. In other words, the expect value depicts the statistical significance of the alignment. Therefore,241

in cases with multiple matching, the gene with the lowest expect value is chosen as the match, to have a242

one-to-one matching between genes from different species and A. thaliana.243

3 Results244

3.1 Stress Space Verification by GO Analysis245

For substantiating the authenticity of stress information collected using our space generation process, we246

utilized the gene list analysis section of PANTHER [25, 26]. For each stress group in our generated mean247

meta-stress space Smr, we selected the genes with an absolute score value of more than one and a half8,248

and tested this gene list by PANTHER overrepresentation Test, against Gene Ontology (GO) biological249

processes (Fig.4 and supplement files 2 and 3). From 15 different stress groups, 11 were found to have the250

GO terms corresponding to the same stress enriched, with significant corrected p-values of less than 0.001.251

3.2 Inter-Technology Translation252

Next generation sequencing (NGS) has revolutionized the biological sciences. Its speed, cost and data253

quality outpaced the older DNA-microarray technology, which is why NGS became the standard method to254

study transcriptomes. Yet, microarrays were used for RNA quantification for decades. The vast microarray255

backlogs have the potential to grant an invaluable resource for new biological studies. Unfortunately, the256

measurement technology has an inevitable impact on the transcript measurement levels and the distribution257

of the resulting data.258

Data derived from different platforms are distinctly different. Hence, there are numerous methods to259

translate measurements from one technology to another [27, 28]. Moreover, with the third generation se-260

quencing right around the corner (PacBio and Nanopore, to name a few [29]), there is a high demand for261

computational methods capable of transferring useful information between different measurement technolo-262

gies.263

6The possible range of the physio scores is dependent on the number of shared features (i.e genes) between the test
data and the reference space. Therefore, if in two different mappings, the numbers of shared features are the same,
the scores from the two different resulted physio score matrices are comparable as well.

7https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13739
8For BioMone and FeDeficiency stresses with cutoff of 1.5, less than 10 genes were selected, which is too small of

a set for list enrichment analysis. Hence in these two cases, cutoff is reduced to one.
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Since PhysioSpace utilizes the differential expression relations of the genes and not absolute values for264

space generation and mapping, it can translate between each and any technology, as long as there exists a265

proper method for detecting the differentially expressed genes in the mentioned technology. As proof for266

this claim, we mapped more than 900 RNA-seq samples into the microarray space Smr (Table 1). Our267

method can map the same stress type from microarray to RNA-seq data with 78 percent accuracy. We268

also calculated the probability of acquiring this accuracy by chance, by randomly permuting the sample269

labels and calculating the random accuracy. The performance of our method is significantly higher than any270

random accuracy we acquired9, with a p-value of less than 10−7.271

Method
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Plant PhysioSpace
Accuracy 0.78 0.59 0.57 0.23

p-value < 10−7 3× 10−7 0.002 0.015

GSEA
Accuracy 0.68 0.30 0.10 0.06

p-value < 10−7 3× 10−4 0.42 0.97

WTCS
Accuracy 0.69 0.57 0.12 0.13

p-value < 10−7
< 10−7 0.21 0.28

Pearson correlation
Accuracy 0.73 0.48 0.32 0.14

p-value < 10−7
< 10−7 0.12 0.17

Spearman correlation
Accuracy 0.62 0.49 0.29 0.27

p-value < 10−7
< 10−7 0.21 4.79× 10−5

Euclidean distance
Accuracy 0.30 0.27 0.21 0.39

p-value 0.83 0.03 0.62 < 10−7

Table 1: Stress translation between platforms and Species. In each column, the best performer is marked in
red.

3.3 Inter-Species Translation272

Although not agriculturally relevant, Arabidopsis is arguably the most investigated species in plant sciences.273

Its availability, compact size, and fast growth made it an ideal model species. Nevertheless, there are274

significant differences between the Arabidopsis plant model and crop plants, necessitating procedures for275

converting well-studied physiological knowledge, e.g. regarding plant response to different types of stress,276

from Arabidopsis to crops. In this section, we show how Plant PhysioSpace can be utilized for this purpose.277

We chose three of the most commercially relevant crops to study: Oryza sativa (rice), Glycine max278

(soybean) and Triticum aestivum (wheat). For each crop, more than 100 microarray samples of stress279

response experiments were curated, normalized, preprocessed and mapped to the Arabidopsis space Smr. For280

Oryza sativa andGlycine max, Plant PhysioSpace achieved respective accuracies of 59 and 57 percent, both of281

which were significantly higher than any accuracy earned by chance. On the other hand, translation of stress282

response from Triticum aestivum DNA array data to A. thaliana, with an accuracy of 23 percent and a p-283

value of 0.015, was not successful (Table 1). In section 3.5 of this paper, we provided a thorough investigation284

into wheat to Arabidopsis translation, hypothesized and examined the reason behind the translation failure,285

and provided solutions for fixing it.286

3.4 Benchmarking Plant PhysioSpace against Other Methods287

We used the results from inter-technology and -species stress response translation to benchmark our method.288

Plant PhysioSpace is compared to the most common approaches used in bioinformatics for measuring rela-289

tions between two or more gene expression samples: Gene Set Enrichment Analysis (GSEA) [30], Weighted290

Connectivity Score (WTCS), which is an advanced version of GSEA used in connectivity map [31], Pearson291

and Spearman correlations, and Euclidean distance. For each method, fold change values of samples, from292

different technologies and species, are calculated and used for finding the similarities between samples. Based293

9The highest acquired accuracy from 10,000,000 random runs for RNA2DNA translation was 52% (minimum =
12.08%, first quartile = 28.12%, median = 30.87%, third quartile = 33.56% and maximum = 52.35%).
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on our results in inter-species and -platform mapping, Plant PhysioSpace could outperform other methods294

in all scenarios, except in mapping from wheat to Arabidopsis (Table 1).295

3.5 In-depth Investigation of Wheat Stress Response296

The poor performance of our method in translating stress response from Triticum aestivum to A. thaliana297

may have potentially derived from the microarray used to measure the wheat gene expressions. All microar-298

ray samples of Triticum aestivum in this study are generated by using Affymetrix Wheat Genome Array10.299

Not only the aged technology could potentially deter the accuracy of transcription measurements, but also300

as a polyploid, the complex genetics of wheat would make the task of measuring its RNA levels troublesome.301

Moreover, among all translations tested, wheat microarray provides the least amount of mapped orthologs:302

when translating from RNA-seq to microarray, we could find 12146 common features (i.e. genes). This303

amount was lower for both translations of rice and soybean to Arabidopsis, as the ortholog mapping could304

find 9455 and 9452 common features for them, respectively. And, in translation from wheat to Arabidop-305

sis, 6202 common features could be found using the ortholog mapping, which is the least among the four306

translations. These common feature counts are correlated with the translation performance, considering the307

RNA-seq to DNA-microarray has the highest and wheat to Arabidopsis has the lowest accuracy, while rice308

and soybean mappings are somewhere in between (Table 1). This correlation suggests one possible reason309

behind the failed wheat translation is the low amount of orthologs. Fortunately, advances in NGS gave rise310

to wheat stress response data sets with higher precision and a wider range of sequence reads.. In this section,311

we repeated the wheat-to-Arabidopsis translation from inter-species analysis, except with wheat RNA-seq312

instead of microarray data.313

We turned to the Wheat Expression Browser [32, 33] as the source of Triticum aestivum RNA-seq data.314

From this source, we queried all data sets which study stress response, contain more than 30 samples, and315

include controls. Upon the first inspection, 8813 orthologs could be found between these data sets and the316

genes available in our Arabidopsis reference space, which in addition with the improved data quality provided317

by RNA-seq, increases the prospect of Plant PhysioSpace correctly detecting and quantifying the stress in318

these data sets. We mapped these data sets into mean meta-reference space Smr, and plotted Physio scores319

of three stress groups with the highest values (Fig.5).320

In the experiment set ERP013829, wheat response after inoculation with fungal pathogen Fusarium321

graminearum is measured through time [34]. For this experiment, Plant PhysioSpace correctly predicts that322

wheat is experiencing BioMone (Biotic and Hormone) stress. In addition, the diachronic rise in the response323

indicates how Physio scores are quantitatively comparable (Fig.5A).324

In the data set ERP013983, responses of two different mutants of wheat are studied to wheat yellow325

rust pathogen Puccinia striiformis f.sp. tritici (PST). The authors focused on the pathogen suppression of326

basal defense in plants [35]. From their results, they deduced the pathogen overcame the defense by rapidly327

suppressing the genes involved in chitin perception on day 2 after inoculation. In the susceptible interaction,328

this provides the possibility of invasion and colonization, while in resistant plants, this suppression is quickly329

reverted. Plant PhysioSpace results expose this mechanism correctly: Both plant types are inducing a330

BioMone response on day 1, followed by a suppression of the plant defense response on day 2. Eventually,331

the quick resurgence of intense BioMone response in resistant wheat helps it in withstanding PST, while the332

reaction of the susceptible trait might be too slow to deflect the pathogen (Fig.5B).333

Plants in ERP009837 went through the infection cycle of the hemibiotrophic fungus Zymoseptoria tritici.334

Similar to ERP013829, plants respond to the pathogen with a dominant BioMone response (Fig.5C). Al-335

though unlike ERP013829, in which the experiment spanned a few hours, in ERP009837 plants were studied336

for a longer period. Physio scores suggest that wheat responds to the presence of the pathogen by increasing337

its BioMone response. This response starts to degrade from day 14, which is in alignment with the original338

publication of the data set [36], in which the authors state that on day 21, plant tissue is completely defeated.339

In SRP048912, the responses of two different traits of resistant and susceptible wheat to Fusarium crown340

rot are studied [37]. Only two different time points are included in this experiment: 3 and 5 days after341

inoculation (dai). Plant PhysioSpace results correctly suggest the most dominant stress response present in342

plants is BioMone, with the resistant wheat having a stronger response than the susceptible (Fig.5D).343

Among the Wheat data sets we analyzed in this section, ERP003465 is arguably the most complex, and344

consequently most interesting as a testing scenario for our method. ERP003465 examined the behavior of345

5 different genotypes under the disease pressure of Fusarium graminearum [38]. Two well-validated and346

highly reproducible QTLs (quantitative trait loci), Fhb1 and Qfhs.ifa-5A, are studied from samples taken347

30 and 50 hours after inoculation (hai). Five different genotypes were investigated: CM-82036, a progeny348

of the resistant Sumai-3, and four near-isogenic lines (NILs) bearing either, both, or none of the resistant349

alleles Fhb1 and Qfhs. Among the four, NIL1 is a mutant with both QTLs, expected to have the highest350

resistance after CM-82036, NIL2 and NIL3 are mutants harboring Fhb1 and Qfhs QTLs respectively, with351

both predicted to behave moderately resistant, and NIL4 missing both QTLs, and is likely to be susceptible.352

Data analysis in the original paper was mainly based on differential expression analysis. As a first353

step, the total number of differentially expressed genes for each genotype at each time point was taken as354

a surrogate for stress response intensity to Fusarium graminearum. In the next steps, the weighted gene355

10https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL3802

7

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.11.16.384305doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384305
http://creativecommons.org/licenses/by/4.0/


co-expression network analysis (WGCNA) was used to detect clusters of genes with similar patterns, and356

Gene Ontology analysis was utilized to infer the role of each cluster in the stress response.357

Being able to quantify the intensity of each stress type at each time point, Plant PhysioSpace can358

provide much more insight into the characteristics and dynamics of the stress responses that are at play in359

the ERP003465 experiment (Fig.5E). As this data set encompasses a high number of samples distributed360

between only two time points, we plotted the results as a bar graph. And because the results cover a wide361

range of values for this experiment, we used log-scaled Physio scores in the graph, and replaced values smaller362

than one by one (i.e. zero in log-scale).363

Among the concluding remarks in the original paper, some are in concordance with the results from our364

method. For example, lines lacking Qfhs.ifa-5A are regarded as “slow responders” by the original authors,365

since they lack resistance against initial infection inferred by Qfhs.ifa-5A. This lack of early response can be366

seen in our results (Fig.5E): lines lacking Qfhs.ifa-5A, i.e. NIL2 and NIL4, have no BioMone (Biotic and367

Hormone) stress response at the early time point, while NIL1 and NIL3 show a considerable BioMone stress368

response at the same time point. Another remark from the original paper suggested that a lack of timely369

defensive reaction could result in a higher infection in a later time, and consequently stronger response,370

and vice versa: a quick response may reduce the intensity and infection at a later time. This can be seen371

in the contrasting response dynamics of NIL1 versus the other lines (Fig.5E). NIL1 possesses both QTLs:372

Qfhs.ifa-5A ensures an early and fast stress response, evident on 30 hai time point. And a strong follow up,373

courtesy of Fhb1, results in a non-existent BioMone response at 50 hai. NIL3 contains Qfhs.ifa-5A, so it374

benefits from a quick response at 30 hai, but due to the absence of Fhb1, it cannot be rid of infection at 50375

hai, evident by the high BioMone response at that time point. As mentioned, lines NIL2 and NIL4, which376

lack Qfhs.ifa-5A, do not have an early response and have to play catch up with other lines on the later time377

point.378

Although many conclusions that could be derived from our method are similar to the ones from the379

original publication, there are some discrepancies between the two groups as well. For instance, in most380

samples, Wounding stress response is not only present, but it is even stronger than BioMone response in381

some cases. This is in contrast with the original paper, in which it is mentioned that inoculation was done382

cautiously without wounding the tissue. Interpretation of CM-82036 defensive behavior is another point of383

difference between our method and the results from the original paper. Kugler et al. construed the high384

number of differentially expressed genes (DEG) at 30 hai as a sign of strong early response for CM-82036,385

even stronger than NIL1 and NIL3. They followed up by studying specific gene families that are relevant to386

defense mechanisms, such as UGTs and WRKYs, and showed more DEGs from these families can be found387

at 30 hai in CM-82036 versus other lines. This finding is different from what we can interpret using our388

method: Although CM-82036 exhibits BioMone response at 30 hai, the magnitude is somewhere between389

fast responder lines, that is NIL1 and NIL3, and slow responders, i.e. NIL2 and NIL4.390

We speculate the main reason for the aforementioned inconsistencies is the particular way the prepro-391

cessing was done in the original paper. In their preprocessing, Kugler et al. mapped the reads to a list of392

barley high confidence genes and only used the reads with a possible match. This step drastically reduces393

the number of analyzed transcripts, and also discards wheat-specific genes with no barley homologs. Our394

method is designed for high-dimensional data, preferably data from the whole genome, therefore the specific395

preprocessing of this data set might have reduced the performance of Plant PhysioSpace. We should also396

mention that stress responses are not mutually exclusive; A plant can display multiple different responses397

at the same time, some of which may even share part of their biological pathways. Fusarium graminearum398

could have damaged the plant tissue at some point, which explains the existence of wounding response399

alongside BioMone.400

Albeit the mediocre results of the last experiment, in this section we showed how, in 4 out of 5 data sets,401

Plant PhysioSpace could:402

1. correctly identify the type of stress plants are going through.403

2. accurately relate the response from RNA-seq test data to DNA-array trained models.404

3. rightly translate T. aestivum stress response to A. thaliana.405

3.6 Plant PhysioSpace Application in Single Cell Analysis406

Single cell technologies facilitate investigating transcription profiles in single cell resolution, in order to407

perceive the genetic basis of each cell type and its function. Although relatively new, more and more plant408

single cell data sets are becoming available to the community [9, 10, 11, 12, 13]. For now, most sequence409

data sets are focused on Arabidopsis roots. They try to gain an in-depth understanding of transcription410

patterns of different cells in different developmental stages of wild-type non-stressed plant roots. To our411

knowledge, the only publication in which stressed single cells were sequenced is the paper by Jean-Baptiste412

et al. [12]. In this work, 38◦C heat stress was applied to 8-day-old seedlings for 45 minutes. Subsequently,413

roots of the seedlings were harvested, along with the roots of age- and time-matched control seedlings. The414

authors could capture and sequence 1,009 cells from the stressed group and 1076 from the control group.415

For processing the sequencing results, they followed the usual single cell analysis pipeline: PCA, UMAP416

and clustering, followed by differential gene expression analysis on clusters and enrichment tests on genes417

related to heat-shock. The results show the ”promise and challenges inherent in comparing single cell data418
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across different conditions and treatments”. In this section, we demonstrate how a dedicated method, such419

as Plant PhysioSpace, can bring forth more benefits than using the methodological norms.420

To analyze the single cell data set, we used the gene-wise mean value of all control cells as the reference,421

calculated fold changes for each single cell, and fed those fold change values into the Plant PhysioSpace422

pipeline (Fig.6). Regardless of the cell type, heat-stressed single cells had significantly higher heat stress423

scores, compared to control single cells (Fig.6A). For studying the heat-induced cell type disparity, we overlaid424

heat stress scores on UMAP and tSNE plots (Fig.6B&6C). In both tSNE and UMAP plots, coordinate values425

calculated in the original paper of Jean-Baptiste et al. were used. As a result, cells are bundled in cell type426

clusters in the UMAP plot, while in the tSNE plot, cells are clearly separated into two big clusters of control427

and stressed. Although, inside these two big clusters, sub-clusters of different cell types are evident (Fig.S1).428

On the UMAP plot on the other hand, big clusters represent cell types (Fig.S2), and inside each cell type429

cluster, groups of control and stressed cells may or may not be distinct, depending on the cell type. For430

example, in Hair and Non-hair clusters, control and heated cells are separated, while the separation is less431

pronounced in Stele cells (Fig.S2).432

To look into the distinct behavior of different cells under stress, we also plotted cell heat scores grouped433

by the corresponding cell types (Fig.6D&S3). The results show how Hair and Non-hair cells have higher434

heat scores, which demonstrates how the outer layers of roots are sharper in their response to heat. This435

finding is in concordance with one of the conclusions in the original paper, in which based on the behavior436

of the heat-relevant genes, they concluded the three outermost cell layers of the root went through higher437

levels of changes caused by the heat stress. The authors hypothesized this may be because of more direct438

exposure of the outer layers to the heat shock, resulting in a quicker and stronger response.439

Although resulting in generally the same conclusions, in this analysis Plant PhysioSpace provided an440

advantageous experience for the end-user, through providing:441

1. convenience: unlike the original paper, there was no need for search and curation of heat stress gene442

clusters, as they are already available in Plant PhysioSpace, as well as clusters for other common443

stresses.444

2. precision: not only the stress type but also the magnitude of the stress response could be quantified by445

our method, something which is lacking in traditional gene list enrichment approaches. For example,446

Plant PhysioSpace results suggest a stronger response in Hair response, compared to Non-hair response447

(Fig.6D). This inference could not be concluded by the results of traditional methods.448

3. optimization: in one run, our tool calculated responses of 20 different stresses for 2085 single cells, in449

less than 3 minutes on a 2-core laptop CPU. This swift performance is accomplished by precalculating450

the stress space, in combination with an optimized mapping algorithm, all of which is readily available451

for the community to use.452

3.7 Availability453

To provide the community with an easy-to-use implementation of our method, we built Plant PhysioSpace454

into two different R packages: a method package (https://git.rwth-aachen.de/jrc-combine/PhysioSpaceMethods)455

containing functions for generating new spaces and Physio-mapping, and a data package (https://git.rwth-456

aachen.de/jrc-combine/PlantPhysioSpace) comprising plant stress spaces such as Smr and Sr that were used457

in this paper.458

In addition, we made a shiny11 web application of Plant PhysioSpace (Fig.7). We hosted the web app on459

shinyapp.io (http://physiospace.shinyapps.io/plant/), to be freely available to use (under the terms of GPL-3460

license). We also built a Docker image of the ready-to-use tool (https://github.com/usadellab/physiospace shiny).461

3.8 Supplemental Material462

This paper is accompanied by three supplement files and three supplement figures:463

1. Supplementary file 1 is a PDF text file that provides a detailed explanation about how ”space464

extraction” is performed.465

2. Supplementary file 2 is a compendium of all 15 bubble plots related to section 3.1, ”Stress Space466

Verification by GO Analysis”.467

3. Supplementary file 3 is an excel file that contains the results of the PANTHER GO analysis for all468

the 15 stress groups. In the file, correctly detected GO terms are highlighted, and stress groups that469

had irrelevant GO terms enriched are labeled.470

4. Supplementary figures are related to section 3.6, ”Plant PhysioSpace Application in Single Cell471

Analysis”. Supp. figures S1 and S2 are alternative versions of figures 6C and 6B, in which cell types are472

annotated in place of temperature. And supp. figures S3 is the same as figures 6D, except it contains473

the control cells physio scores as well.474

11http://shiny.rstudio.com
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4 Discussion475

Gaining proper insight into stress response mechanisms in plants is not only a must for the future of476

agricultural research, but will prompt advances in the plant research field in general. In this study, we477

developed an advanced computational method, designed to aid in understanding stress response in plants.478

The lightweight algorithm allows it to run on either personal computers, or as a web application, making it479

an ideal tool for experimental quality control, data set annotation, to draw conclusions considering thousands480

of genes, et cetera.481

We built the new method upon a previously published method in humans, called PhysioSpace. We482

achieved this conformity by curating a multitude of Arabidopsis stress response samples to have a rich483

training data set, adapting the space generation algorithm, i.e. training, to acclimate to the specific char-484

acteristics of stress response data in plants, and thoroughly testing against other species and types of data.485

The results of this study demonstrated that Plant PhysioSpace can be a convenient and practical tool for486

analyzing new stress response data sets, to apprehend, contrast to state of the art, or to simply quality487

control.488

Notably, our tool could perform adequately even when it was mapping information between different489

platforms and species. Although, it is crucial to bear in mind these cross translations necessitate for some490

conditions to be true. In cross-platform translation, it was assumed that with the same experimental setup491

and samples, there are computational pipelines available which roughly compute the same differentially492

expressed gene lists regardless of the platform used. And in cross-species mapping, we assumed orthologous493

genes have the same biological function across all species; evidently impossible to be consistently true for all494

genes, but a sizable portion of genes have to pass this criterion for the inter-species translation to work.495

We demonstrated how Plant Physiospace can provide insights when used for analyzing single cell data496

sets. Recent advances in single cell technology call for suitable bioinformatic analysis tools, for example for497

reducing the interfering technical noise [16]. The clear, factual results derived from single cell data analysis498

in this paper bring a spectrum of applications to mind for the future, especially in the light of approaching499

plant single cell atlas projects [39, 40].500

Plant PhysioSpace may seem paradoxical at first, as it is explained to be a ”dimension reduction” method501

that extracts stress information from gene expression data ”without reducing dimensions”. Yet, this osten-502

sible contradiction is plausible in actuality, since our method doesn’t discard any features from the training503

data when extracting stress information in the space generation stage (i.e. model training), but only re-504

moves the irrelevant features in the physio-mapping (i.e. when applying the method to the new samples). As505

mentioned before, the majority of genes remain unaltered under stress. We showed this unvarying behavior506

using the mean meta-reference space Smr(Fig.8).Taking the absolute fold change value of 1 as a cutoff, only507

a small portion of plant genes are changing under stress. To be more specific, from all 22249 genes available508

in Smr, only 2905 (∼13%) change at least under one stress type. In addition, the number of changed genes is509

a function of the stress type, ranging from ∼0.07% in BioMone (biotic, hormone, or both stresses) to ∼5.8%510

in the Drought.Light (double stress) group (Fig.8A).Moreover, the majority of varying genes are specific511

to a stress group, as 2175 out of the 2905 genes (∼75%) only change in one stress group (Fig.8B).The low512

dimensionality of the stress responses, along with the highly specific features, may suggest that one can513

remove the genes with the absolute fold change of less than 1 in the training step, as it seems that keeping514

all the features till the end is not beneficial, while removing them could result in an even more compressed515

model. We are against this exclusion, however, on the ground that the removal of genes with an absolute516

fold change of less than 1 can eliminate relevant information. As proof, we ran the single cell processing of517

the last section once more, but this time as a reference, we used a ”reduced” Smr, which is a version of Smr518

with all the 2905 varying genes removed (Fig.8C).Although not as high as their counterparts calculated by519

using the complete Smr, heat scores calculated using the reduced space are still significantly higher in heated520

single cells compared to the control cells (Wilcoxon rank-sum test p-value < 2.2× 10−16), showing that the521

less varying genes also carry stress-related information. Therefore, we conclude the benefits of keeping all522

possible features outweigh the advantages that come about by removing them. Having the information from523

the whole genome at hand is especially helpful when analyzing data sets that don’t include a high number524

of genes, because the overlap between the features present in the model and the new data may become too525

small. Many new sequencing technologies, the Oxford Nanopore MinION [41] for example, or novel single cell526

sequencing platforms, provide readings on a limited number of genes, and keeping the whole genome in the527

trained model can boost the performance of our method on data from the aforementioned technologies. That528

being said, a proper and clever way of reducing dimensions of the trained spaces, a far more complex way529

compared to the fold-change cutoff scenario we examined before, has the potential to increase the efficiency530

and reduce the complexity of our method.531

To our knowledge, Plant PhysioSpace is the only computational tool available capable of quantitizing532

stress response in plant cells. Therefore, it can be used to assess each cell under stress, to grasp an under-533

standing of the complex responses and interplay of cells in plants under stress, and to achieve a comprehensive534

characterization of plant response to stress as a whole.535
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5 Data Availability Statement536

All the scripts that generate the results of this paper can be found in https://git.rwth-aachen.de/jrc-537

combine/PlantPhysioSpacePaper.538
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Figure 2: Space Trimming. Stress groups are clustered and for each group, leave-one-out cross-validation accuracy
is calculated, written in parenthesis, as shown in panel A. Close groups with low accuracy, written in red, are combined
to form new stress groups, called meta-groups, as shown in panel B. Groups are considered close if they merge in
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and Light and UV groups combine into LighUV, shown in yellow.
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thaliana plants that are infected with Golovinomyces orontii (Biotic stress). The mutant plants are expected to be
more resilient.
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files 2 and 3. Plots were generated using the GOplot package in R [42].

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.11.16.384305doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384305
http://creativecommons.org/licenses/by/4.0/


A B

C D

E

Different genotypes at different hours after inoculation (hai) with Fusarium graminearum

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

Time

S
tr

e
s
s
 P

h
y
s
io

S
c
o

re
s

ERP013829

Hours after inoculation (hai) with Fusarium graminearum

BioMone

Wounding

Genotoxic

3 6 12 24 36 48

0
2

0
0

4
0

0
6

0
0

8
0

0

Time

S
tr

e
s
s
 P

h
y
s
io

S
c
o

re
s

ERP013983

Days after inoculation (dai) with PST

1 2 3 5 7 9 11

ERP013983

BioMone

Wounding

Genotoxic

susceptible

resistant

−1
0
0

0
1
0
0

2
0
0

Time

S
tr

e
s
s
 P

h
y
s
io

S
c
o
re

s

ERP009837

Days after inoculation (dai) with Zymoseptoria tritici

BioMone

Wounding

Genotoxic

1 4 9 14 21

●

●

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0

0
3

5
0

Time

S
tr

e
s
s
 P

h
y
s
io

S
c
o
re

s

●

●

●

●

SRP048912

Days after inoculation (dai) with Fusarium pseudograminearum

3 5

●
●

●

●

●

●

SRP048912

BioMone

Wounding

Genotoxic

susceptible

resistant

C
M

 3
0
h
a
i

C
M

 5
0
h
a
i

N
IL

1
 3

0
h
a
i

N
IL

1
 5

0
h
a
i

N
IL

2
 3

0
h
a
i

N
IL

2
 5

0
h
a
i

N
IL

3
 3

0
h
a
i

N
IL

3
 5

0
h
a
i

N
IL

4
 3

0
h
a
i

N
IL

4
 5

0
h
a
i

ERP003465

L
o
g
−s

c
a

le
d
 P

h
y
s
io

S
c
o
re

s

1
2

5
1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

BioMone

Wounding

Genotoxic

Figure 5: Time Series Analysis of Biotic Stress Response of Wheat RNA-seq data. 5 different biotic-
stressed data sets from Wheat Expression Browser are mapped to the Arabidopsis space Smr, and the three groups
with highest stress values are plotted for each data set. In 4 out of 5 cases, BioMone (Biotic and Hormone) stress group
has the highest similarity value, with resistant mutants having higher responses than the susceptible ones (panels A,
B, C, and D).
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Figure 6: Single Cell Analysis Results of Plant PhysioSpace. Stress scores were calculated for each cell. For
demonstrating the outcome, we plotted the heat score of the two big groups of control and stressed, shown in panel
A. This box plot proves how Plant PhysioSpace could correctly detect and quantify stress response in single cell data.
On panels B and C, we overlaid the heat scores on UMAP and tSNE plots, respectively. On panel D, boxplot of heat
scores, on y-axis, were plotted against different cell types, on x-axis. Cell types on the x-axis are ordered based on
the morphological anatomy, starting from inner cell types to outermost cell layers (excluding Ambiguous cells, which
come at the end).

A B

Figure 7: Plant PhysioSpace Web-application
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Figure 8: Differentially Expressed Genes in the Reference Space. Behavior of genes with an absolute fold
change value of more than 1 in the reference space Smr, and their effects on the performance of Smr as a reference
space is examined. In panel A, the number of genes with an absolute fold change value of more than 1 in each
stress group is demonstrated. Since there are 22249 genes available in the space Smr, the ratio of differentially
expressed genes to all genes among different stress groups spans from around 0.07% in BioMone (biotic, hormone, or
both stresses) to around 5.8% in the Drought.Light (double stress) group. In panel B, we explored the specificity of
differentially expressed genes to stress groups. Among all 22249 genes in Smr, only 2905 (∼13%) are differentially
expressed in one or more stress groups. From these 2905 genes, 2175 (∼10%) are specifically expressed in only one
stress group, 488 (∼2%) are expressed in two stress groups, and 242 (∼1%) in more than two stress groups. Hence,
we conclude that the majority of expressed genes in the reference space Smr are specific to one stress group. In panel
C, we used the heated single cells to study the effect of the 2905 differentially expressed genes on applicability of Smr

as a reference space. We compared the performance of Smr against Smr without the 2905 differentially expressed
genes, which we called the ”reduced” Smr. As evident from the boxplot, the heat scores are still significantly different
between control and heated cells, even when the reduced space is used, although the magnitude of the heat scores is
decreased compared to when the complete space is used.
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