

1 **Novel incursion of a highly pathogenic avian influenza**
2 **subtype H5N8 virus in the Netherlands, October 2020**

3

4 Nancy Beerens*, Rene Heutink, Frank Harders, Marit Roose, Sylvia B.E. Pritz-Verschuren,
5 Evelien A. Germeraad, Marc Engelsma

6

7 *Wageningen Boveterinary Research, Lelystad, the Netherlands*

8

9 * Address correspondence to Nancy Beerens, nancy.beerens@wur.nl

10

11

12

13

14 **Running Title:** Novel HPAI H5N8 virus in wild birds in the Netherlands

15

16

17 **Keywords:** HPAI H5N8, genome sequence, evolution, swans, wild birds

18

19

20 **Abstract**

21 The HPAI H5N8 virus detected in mute swans in the Netherlands in October 2020 shares a
22 common ancestor with clade 2.3.4.4b viruses last detected in Egypt in 2018-2019 and has a
23 similar genetic composition. The virus is not directly related to European H5N8 viruses
24 detected in first half of 2020.

25

26 The introduction of highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4 viruses in Europe
27 had large impact on animal health and caused substantial losses to the poultry industry
28 between 2014 and 2020. Migratory waterfowl are implicated in the distribution of HPAI H5
29 viruses along flyways from breeding grounds in North-Russia to wintering sites in Europe (1,
30 2). In 2016, HPAI H5N8 viruses of clade 2.3.4.4b were introduced in Europe, including the
31 Netherlands, infecting several poultry farms and causing high mortality amongst wild birds (3).
32 Analysis of wild bird and poultry viruses revealed several independent incursion events and
33 frequent reassortment events (4). In the first months of 2020, HPAI H5N8 clade 2.3.4.4b
34 viruses were detected in Eastern-Europe and Germany (5, 6). These HPAI H5N8 viruses were
35 genetically distinct from the viruses detected in Europe in 2016. Early in 2020 also HPAI H5N8
36 viruses were detected in Bulgaria (6). In October 2020 HPAI H5N8 virus was detected in wild
37 birds in the Netherlands. In this study, we performed genetic and phylogenetic analysis to study
38 the origin of this virus, and its relationship with viruses previously detected in Europe.

39 **The Study**

40 Two mute swans (*Cygnus olor*) were found dead in the Province of Utrecht, located in the
41 central part of the Netherlands. The mute swans were submitted for diagnostic testing as part
42 of the wild bird surveillance program for avian influenza virus. Swab samples from trachea and
43 cloaca tested positive in the screening M-PCR (7) and H5-PCR (8), demonstrating a notifiable
44 subtype H5 virus. Hemagglutinin (HA) and neuraminidase (NA) sequence analysis was
45 performed as previously described (7). The HA cleavage site PLREKRRKR*GLF showed
46 polybasic properties characteristic of highly pathogenic viruses, and NA sequence results
47 subtyped the virus as H5N8. Full genome sequencing was performed using the Illumina MiSeq-
48 platform, as described previously (4). Database searches showed that the virus
49 (A/mute_swan/Netherlands/20015931-001/2020; EPI591075) is related to HPAI H5N8 clade
50 2.3.4.4b viruses previously detected in Eurasia in 2016-2018 for all gene segments (Table 1).
51 For six of the gene segments, a virus isolated in Greonterp (the Netherlands) in 2016 was
52 identified as highly similar, with a nucleotide homology between 97%-98%. For the matrix (MP)
53 segment, viruses with higher nucleotide homology (99%) were detected in Asia and Egypt in
54 2016-2017.

55 The genetic relationship between the HPAI H5N8 viruses detected in the Netherlands in 2016
56 and 2020 raised questions on possible long-term undetected circulation of the virus in local
57 wild bird populations. To study the origin of the novel H5N8 virus, we performed detailed
58 phylogenetic analysis for all gene segments. Phylogenetic analysis of the HA (Fig 1) and NA
59 (Supplementary FigS1) shows that the closest genetic relative was isolated from a duck in
60 Egypt in January 2019 (EPI399644, only HA and NA sequences publicly available). The virus
61 also shares a common ancestor with other viruses detected in Egypt in 2018-2019, and with
62 viruses detected in the Netherlands and Eurasia in 2016-2017. The novel H5N8 virus does
63 not cluster with the H5N8 viruses that caused widespread outbreaks in Eastern-Europe and
64 Germany earlier in 2020, or viruses detected in Bulgaria in 2020. For all other gene segments
65 of the novel H5N8 virus, clustering was observed with H5N8 viruses that circulated in Egypt in
66 2018-2019 and in Eurasia in 2016-2017 (Supplementary FigS1). However, several viruses
67 closely related to MP were found to be more distantly related for the other gene segments
68 which suggest reassortment has occurred for the MP segment. HPAI H5N8 viruses closely
69 related to MP were isolated in Asia and Egypt in 2016-2018. No reassortments with low
70 pathogenic avian influenza viruses were observed for any of the segments.

71 The genetic distance between the novel H5N8 virus and related H5N8 viruses detected in
72 Egypt and Eurasia appears relatively large, as is demonstrated by the long branch lengths in
73 the phylogenetic trees (Fig S1). To estimate the time to the most recent common ancestor
74 (tMRCA), we performed molecular dating using the Bayesian Skyline coalescent model
75 (BEAST v 1.10.2 software) (Supplementary FigS2). For the H5 segment (Fig 2), a common
76 ancestor of the novel H5N8 virus and the virus detected in Egypt in 2019 (EPI399644) was
77 dated around July 2018 (Fig 2, [node 1]), and with the cluster of viruses from Egypt around
78 March 2017 (Fig 2, [node 2]). The novel H5N8 virus shares a common ancestor with the
79 Eurasian viruses detected in 2016-2017 which was dated to August 2016 (Fig 2, [node 3]). The
80 ancestor of the novel virus and H5N8 viruses detected in Eastern-Europe and Germany in
81 2020 was predicted in December 2015 (Fig 2, [node 4]). The highest posterior density interval
82 and the posterior values are summarized for all segments in Table 2. Similar dating of
83 ancestral viruses was observed for the other gene segments (FigS2), except MP that shares
84 a common ancestor with H5N8 viruses isolated in Asia and Egypt dated to July 2016 (Fig S2,
85 [node A]).

86 The molecular dating analysis suggests that the ancestor of the novel H5N8 virus circulated in
87 this genetic constitution since March 2017, causing outbreaks in Egypt in 2018-2019.
88 Thereafter, the virus remained undetected until its incursion into the Netherlands in October
89 2020. The virus incursion is not related to outbreaks in Eastern-Europe, Germany, and Bulgaria
90 earlier in 2020. Furthermore, as related viruses were detected in Egypt in 2018-2019, it seems

91 unlikely that the H5N8 virus remained circulating undetected in the Netherlands since 2016.
92 As mute swans do not migrate over long distances, the virus may have been introduced by
93 other waterfowl species of the orders Anseriformes and Charadriiformes migrating to between
94 breeding grounds in North-Russia and wintering sites in the Netherlands. No HPAI H5N8
95 viruses or wild bird mortality was reported from this (breeding) region proceeding the migration
96 season. However, starting in September 2020, several reports of HPAI H5N8 viruses in wild
97 birds and poultry in the South-Russia and North-Kazakhstan were reported by the responsible
98 national authorities (OIE; <https://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2020/>). Some waterfowl species, such as Eurasian wigeon (*Anas penelope*), Tufted
99 duck (*Aythya fuligula*) and White-fronted goose (*Anser albifrons*), are known to reside in these
100 regions of Russia and Kazakhstan and migrate to the Netherlands for wintering (SOVON;
101 <http://vogeltrekatlas.nl/soortzoek2.html>). The detection of HPAI H5N8 virus in a Eurasian
102 wigeon found dead near the location of the dead swans suggests that this bird species may
103 have introduced the virus in the Netherlands. As the sequences of the viruses detected in
104 Russia and Kazakhstan are currently unknown, the relationship between these viruses and the
105 virus detected in the Netherlands remains to be determined.
106

107

108 **Conclusions**

109 A novel HPAI H5N8 virus was detected in the Netherlands in October 2020 in mute swans
110 found dead. The virus is not closely related to H5N8 viruses causing outbreaks in Eastern-
111 Europe, Germany and Bulgaria in the first half year of 2020, but shares a putative common
112 ancestor with viruses last detected in Egypt in 2018-2019, which dates around March 2017.
113 The virus was likely introduced by waterfowl migrating to wintering sites in the Netherlands. In
114 October, wild bird migration is ongoing and millions of wild birds will reach their wintering sites
115 in Europe in the coming months. This early detection of HPAI H5N8 virus in the Netherlands
116 predicts a high risk for the poultry industry in Europe for the 2020-2021 winters season.

117

118 **Acknowledgments**

119 We thank Alex Bossers for excellent NGS facilities within WBVR. This work was funded by
120 the Dutch Ministry of Agriculture, Nature and Food Quality (project WOT-01-003-087 and KB-
121 37-003-015). We acknowledge the authors and submitting laboratories of the sequences from
122 the GISAID EpiFlu Database (detailed in supplementary file S3).

123

124

125 **Author Bio**

126 Dr Beerens is a senior scientist and head of the National Reference Laboratory for Avian
127 Influenza and Newcastle Disease in the Netherlands. Her research interests focus on
128 molecular virology, genetics, and virus evolution.

129

130 **Address for correspondence:** Nancy Beerens, Wageningen Bioveterinary Research,
131 Division of Virology, P.O. Box 65, 8200 AB, Lelystad, The Netherlands. Phone: +31 320
132 238217, email: nancy.beerens@wur.nl

133 **References**

134 1. Gilbert M, Xiao X, Domenech J, Lubroth J, Martin V, Slingenbergh J. Anatidae migration in
135 the western Palearctic and spread of highly pathogenic avian influenza H5NI virus.
136 Emerging infectious diseases. 2006 Nov;12(11):1650-6.

137 2. Global Consortium for HN, Related Influenza V. Role for migratory wild birds in the global
138 spread of avian influenza H5N8. Science. 2016 Oct 14;354(6309):213-7.

139 3. Kleyheeg E, Slaterus R, Bodewes R, Rijks JM, Spierenburg M, Beerens N, et al. High
140 mortality of wild birds during a highly pathogenic avian influenza A(H5N8) virus outbreak in
141 the Netherlands. Emerging infectious diseases. 2017;MS# EID-17-1086.

142 4. Beerens N, Heutink R, Bergervoet SA, Harders F, Bossers A, Koch G. Multiple Reassorted
143 Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the
144 Netherlands, 2016. Emerging infectious diseases. 2017 Dec;23(12):1974-81.

145 5. King J, Schulze C, Engelhardt A, Hlinak A, Lennermann SL, Rigbers K, et al. Novel HPAIV
146 H5N8 Reassortant (Clade 2.3.4.4b) Detected in Germany. Viruses. 2020 Mar 4;12(3).

147 6. European Food Safety A, European Centre for Disease P, Control, European Union
148 Reference Laboratory for Avian I, Adlhoch C, Fusaro A, et al. Avian influenza overview
149 February - May 2020. EFSA J. 2020 Jun;18(6):e06194.

150 7. Bouwstra RJ, Koch G, Heutink R, Harders F, van der Spek A, Elbers AR, et al. Phylogenetic
151 analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides
152 evidence for four separate introductions and one between-poultry farm transmission in the
153 Netherlands, November 2014. Euro surveillance : bulletin European sur les maladies
154 transmissibles = European communicable disease bulletin. 2015 Jul 02;20(26).

155 8. Slomka MJ, Pavlidis T, Banks J, Shell W, McNally A, Essen S, et al. Validated H5 Eurasian
156 real-time reverse transcriptase-polymerase chain reaction and its application in H5N1
157 outbreaks in 2005-2006. Avian diseases. 2007 Mar;51(1 Suppl):373-7.

158 9. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to
159 reality. Euro surveillance : bulletin European sur les maladies transmissibles = European
160 communicable disease bulletin. 2017 Mar 30;22(13).

161 10. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation
162 sequencing data. Bioinformatics. 2012 Dec 1;28(23):3150-2.

163 11. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
164 improvements in performance and usability. Molecular biology and evolution. 2013
165 Apr;30(4):772-80.

166 12. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
167 phylogenies. *Bioinformatics*. 2014 May 1;30(9):1312-3.

168 13. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian
169 phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evol.* 2018
170 Jan;4(1):vey016.

171 *Figure legends*

172 Fig 1. Phylogenetic analysis was performed for the HA segment. The optimal phylogenetic tree
173 generated using the maximum likelihood method (RAxML v8.2.12 with 100 bootstrap
174 replicates) is shown and drawn to scale. The GISAID accession numbers of the viruses are
175 shown in the trees. The H5N8 virus isolated in the Netherlands in 2020 is marked in red, the
176 H5N8 viruses isolated in Eastern-Europe, Germany and Bulgaria in 2020 are marked in green.

177

178 Fig 2. Molecular dating of the HA gene segment. The Bayesian coalescent method was used
179 to estimate the time to the most recent common ancestor (tMRCA) of the novel H5N8 virus.
180 The schematic representation shows the novel H5N8 virus in red, viruses detected in Egypt
181 2017-2018 and 2019 in orange, Eurasian viruses in blue and the viruses from Eastern-Europe
182 and Germany in 2020 in green.

183 Table 1: Genetic composition of the HPAI H5N8 virus isolated in the Netherlands, 2020
 184

Segment, virus	GISAID nr	185 identity
PB2		
A/Eur_Wig/NL-Greonterp/16015653-001/2016 (H5N8)	EPI1019555	98%
A/goose/Krasnodar/3144/2017 (H5N8)	EPI909433	98%
A/Mallard/Hungary/1574a/2017 (H5N8)	EPI954874	98%
A/Jungle crow/Hyogo/2803E024C/2018 (H5N8)	EPI1342188	98%
PB1		
A/Goose/Hungary/1030/2017 (H5N8)	EPI954661	98%
A/Eur_Wig/NL-Greonterp/16015653-001/2016 (H5N8)	EPI1019556	98%
A/chicken/Kalmykia/2643/2016 (H5N8)	EPI909458	98%
A/wild duck/Tatarstan/3059/2016 (H5N8)	EPI909450	98%
PA		
A/Eur_Wig/NL-Greonterp/16015653-001/2016 (H5N8)	EPI1019554	98%
A/Eur_Wig/NL-De Waal/16014891-003/2016 (H5N8)	EPI1019506	98%
A/Mal/NL-IJsselmuiden/16015448-002/2016 (H5N8)	EPI1019730	98%
A/turkey/England/052131/2016 (H5N8)	EPI868847	98%
HA		
A/Mallard/Hungary/1574a/2017 (H5N8)	EPI954877	98%
A/chicken/Rostov-on-Don/1598/2017 (H5N8)	EPI1169201	98%
A/Eur_Wig/NL-Greonterp/16015653-001/2016 (H5N8)	EPI1019558	98%
A/Greylag_goose/Hungary/320/2017 (H5N8)	EPI954813	98%
NP		
A/Peregrine_falcon/Hungary/4882/2017 (H5N8)	EPI954752	97%
A/chicken/Rostov-on-Don/1598/2017 (H5N8)	EPI1169199	97%
A/Mallard/Hungary/1574a/2017 (H5N8)	EPI954870	97%
A/chicken/Voronezh/20/2017 (H5N8)	EPI909421	97%
NA		
A/Eur_Wig/NL-Greonterp/16015653-001/2016 (H5N8)	EPI1019557	97%
A/Goose/Hungary/1030/2017 (H5N8)	EPI954662	97%
A/T_Dk/NL-Almeerder Zand/16014341-003/2016 (H5N8)	EPI1019765	97%
A/turkey/England/003778/2017 (H5N8)	EPI942937	97%
MP		
A/Duck/Egypt/AR518/2017 (H5N8)	EPI1420344	99%
A/Whooper Swan/Sanmenxia/01/2016 (H5N8)	EPI1550917	99%
A/whooper swan/Shanxi/RC01/2016 (H5N8)	EPI1549844	99%
A/duck/India/10CA01/2016 (H5N8)	EPI858840	99%
NS		
A/chicken/Mari El/870/2018 (H5N8)	EPI1352503	97%
A/chicken/Cheboksary/851/2018 (H5N8)	EPI1272549	97%
A/chicken/Rostov-on-Don/1598/2017 (H5N8)	EPI1169203	97%
A/Eur_Wig/NL-Greonterp/16015653-001/2016 (H5N8)	EPI1019552	97%

186 Table 2: calculated tMRCA, with 95% credible interval and posterior value

node ¹ segment	tMRCA ²		height 95% HPD ³		posterior
			lower	upper	
PB2	1	ND			189
	2	2016.67	Sep 2016	2016.43 2016.88	0.61 ¹⁹⁰
	3	2016.47	Jun 2016	2016.20 2016.68	0.97 ¹⁹¹
	4	2012.70	Sep 2012	2010.50 2014.43	0.96 ¹⁹²
PB1	1	ND			194
	2	2017.00	Jan 2017	2016.79 2017.14	0.95 ¹⁹⁵
	3	2016.56	Jul 2016	2016.35 2016.76	0.94 ¹⁹⁶
	4	2011.21	Mar 2011	2007.91 2013.81	1.00 ¹⁹⁷
PA	1	ND			198
	2	2016.67	Sep 2016	2016.44 2016.88	0.01 ¹⁹⁹
	3	2016.48	Jun 2016	2016.30 2016.67	1.00 ²⁰⁰
	4	2008.70	Sep 2008	2005.77 2011.20	1.00 ²⁰¹
HA	1	2018.58	Jul 2018	2018.15 2018.91	1.00 ²⁰²
	2	2017.18	Mar 2017	2016.88 2017.44	1.00 ²⁰³
	3	2016.62	Aug 2016	2016.46 2016.78	1.00 ²⁰⁴
	4	2015.97	Dec 2015	2015.68 2016.23	0.97 ²⁰⁵
NP	1	ND			207
	2	2016.89	Nov 2016	2016.52 2017.13	0.87 ²⁰⁸
	3	2016.43	Jun 2016	2016.08 2016.69	1.00 ²⁰⁹
	4	2014.71	Sep 2014	2013.32 2015.77	0.97 ²¹⁰
NA	1	2018.42	Jun 2018	2017.87 2018.88	1.00 ²¹¹
	2	2016.98	Dec 2016	2016.80 2017.12	0.99 ²¹²
	3	2016.71	Sep 2016	2016.51 2016.86	1.00 ²¹³
	4	2016.15	Feb 2016	2015.77 2016.40	1.00 ²¹⁴
MP	A	2016.57	Jul 2016	2016.32 2016.75	1.00 ²¹⁵
NS	1	ND			217
	2	2016.92	Dec 2016	2016.70 2017.03	0.01 ²¹⁸
	3	2016.48	Jun 2016	2016.00 2016.79	0.96 ²¹⁹
	4	2015.77	Oct 2015	2014.74 2016.40	1.00 ²²⁰

221

222 1 Nodes of the time-scaled phylogenetic tree

223 2 tMRCA = time of the most recent common ancestor (median)

224 3 HPD = highest posterior density interval

225 **Appendix: Supplementary Figure legends**

226

227 Fig S1: Phylogenetic analysis was performed for each gene segment. Related sequences were
228 obtained from GISAID's EpiFlu database (<http://www.gisaid.org>)(9). For HA additional
229 sequences from H5 clade 2.3.4.4b were collected from the EpiFlu database and clustered
230 using the CD-HIT algorithm (10), using identity setting of 0.985. Cluster representatives were
231 used in the analysis of HA in addition to the related sequences from the GISAID blast analyses.
232 Sequences were aligned using MAFFT v7.427 (11). Maximum likelihood trees based on the
233 general time reversible model with a gamma-distributed variation of rates and 100 bootstraps
234 were generated using RAxML v8.2.12 (12). The GISAID accession numbers of the viruses are
235 shown in the trees (details see table S3). The H5N8 virus isolated in the Netherlands in 2020
236 is marked in red, the H5N8 viruses isolated in Eastern-Europe, Germany and Bulgaria in 2020
237 are marked in green.

238

239 Fig S2: Molecular dating was performed for the all gene segments. The datasets of the ML
240 tree analysis (see Fig S1) were used for time scaled phylogenies, reconstructed using a
241 Bayesian Markov chain Monte Carlo (MCMC) framework implemented in the BEAST software
242 package (v 1.10.2; (13). The analysis was carried out with the SRD06 nucleotide substitution
243 model, the Bayesian Skyline coalescent model and an uncorrelated lognormal relaxed
244 molecular clock and MCMC runs of 1×10^8 states sampling each 1×10^4 steps were run to obtain
245 an effective sample size of >200 . Maximum clade credibility (MCC) trees were reconstructed
246 with 10% burn-in and the posterior distribution of relevant parameters were assessed in
247 FigTree (v 1.4.4). The tMRCA for the numbered nodes is listed in Table 2, as is the credible
248 interval and posterior value. GISAID accession numbers are shown in the trees (for details see
249 Supplementary file S3). The H5N8 virus isolated in the Netherlands in 2020 is marked in red,
250 the H5N8 viruses isolated in Eastern-Europe, Germany and Bulgaria in 2020 are marked in
251 green.

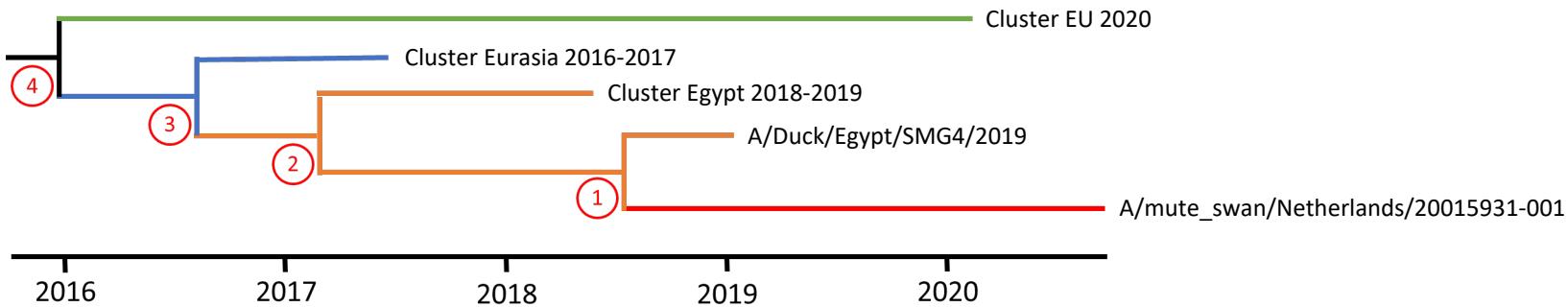


Fig 2