

1 **COVID-19 genetic risk and Neanderthals: A case study highlighting the**
2 **importance of scrutinizing diversity**

3 ***Inken Wohlers¹, Verónica Calonga-Solís^{1,2}, Jan-Niklas Jobst¹, and Hauke***
4 ***Busch^{1*}***

5

6 *¹Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology*
7 *and Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany*

8 *²Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil*

9 ** Hauke.Busch@uni-luebeck.de; University of Lübeck, Ratzeburger Allee 160, 23562*
10 *Lübeck, Germany*

11

12 **Abstract**

13

14 Recent genome wide association studies (GWAS) have identified genetic risk factors
15 for developing severe COVID-19 symptoms. The first published study reported a 1bp
16 insertion rs11385942 on chromosome 3 (1) and subsequent studies single nucleotide
17 variants (SNVs) such as rs35044562, rs67959919 (2) and rs13078854 (3), all highly
18 correlated with each other. Zeberg and Pääbo (4) subsequently traced them back to
19 Neanderthal origin. They found that a 49.4 kb genomic region including the risk allele
20 of rs35044562 is inherited from Neanderthals of Vindija in Croatia. Here we add a
21 differently focused evaluation of this major genetic risk factor to these recent analyses.
22 We show that (i) COVID-19-related genetic factors of three previously assessed
23 Neanderthals deviate from those of modern humans and that (ii) they differ among
24 world-wide human populations, which compromises risk prediction in non-Europeans.
25 Currently, caution is thus advised in the genetic risk assessment of non-Europeans
26 during this world-wide COVID-19 pandemic.

27 **Main**

28

29 In general, GWAS relate genotypes to phenotypes such as disease susceptibility and
30 severity. However, association does not imply causality. To pinpoint causal variant(s)
31 underlying a GWAS association signal which typically comprises many correlated
32 variants, a so-called fine-mapping is performed in a first step. And ultimately, fine-
33 mapping must be followed by experimental validation to eventually identify causal
34 variant(s) and mechanisms. While GWAS are based on cohort data, a personal risk
35 can be assessed nonetheless, via associated variants as proxies for causal variants.
36 For this, the cohort's genetic linkage patterns need to be representative of the
37 individuum's genetic background. This requirement, however, is often violated,
38 especially for individuals having non-European ancestry. In a world-wide COVID-19
39 pandemic this might jeopardize individual genetic risk prediction and requires current
40 risk factors to be used with caution as we show below.

41

42 The first and to date only GWAS published in a peer-reviewed journal by the Severe
43 Covid-19 GWAS Group *et al.* (1) obtained a credible set of 22 highly correlated risk
44 variants through *in silico* fine-mapping using FINEMAP (5), including the reported lead
45 variant rs11385942. In combination, these variants have an overall probability greater
46 than 95% to include the causal variant, while each of the 22 variants has an individual
47 causal probability between 1 and 11% (median: 4%). This initial study was a Meta-
48 Analysis of a Spanish and an Italian cohort (overall n=1610 cases). The COVID-19
49 host genetics initiative included this data into a world-wide Meta-GWAS currently in
50 release 4 (n=8638 cases). Fine-mapping of this latest release results in a credible set
51 of only 10 variants, which are a subset of the published 22 credible set variants. This
52 fine-mapping does not utilize linkage disequilibrium information of the GWAS cohort

53 itself, which is the gold-standard setting for fine-mapping and which has been applied
54 to the initial Spanish and Italian cohort. Furthermore, it may be affected by differences
55 between European and non-European cohorts, for example if a causal variant does
56 not occur in all cohorts. World-wide genetic diversity of risk haplotypes identified within
57 a relatively homogeneous GWAS cohort should thus be scrutinized to help with the
58 interpretation of findings and to identify early possible limitations, as we do exemplarily
59 in the following.

60

61 19 of these 22 risk variants are identifiable in the Vindija Neanderthal genome and four
62 carry protective alleles, which accumulates to a risk probability of 64% for containing
63 a causal variant. This probability could increase to 82%, if the missing variants were
64 risk alleles as well. Zeberg and Pääbo addressed 13 of the 19 variants in their
65 Neanderthal study, with an overall maximum probability to include a causal variant of
66 61%. However, as two positions carry protective alleles the risk probability of the
67 previously assessed Vindija Neanderthal haplotype is only 52%.

68

69 Our results presented here complement the haplotype-based assessment of Zeberg
70 and Pääbo. We use the same 1000 Genomes (6) data as in the original study, but with
71 three important differences: (i) We investigate haplotypes within a larger genomic
72 region of 65.8 kb length that incorporates all 22 COVID-19 related variants, all of which
73 have an overall probability of more than 95% to include the causal variant. This
74 considerably increases the probability of only 61% covered by the original analysis. (ii)
75 We investigate only the haplotypes for the 22 credible set variant positions, that is, only
76 COVID-19 risk-related haplotypes. Previously, all haplotypes including all variant
77 positions were used to obtain a comprehensive phylogenetic tree of the locus, which
78 showed how haplotypes carrying the latest lead variant rs35044562 form a clade with

79 Neanderthals. Here we characterize risk-related haplotypes irrespective of
80 phylogenetic relationships. (iii) Lastly, the former haplotype-based assessment used
81 only lead variant rs35044562 to classify haplotypes as risk ones. Instead, we here
82 make use of individual probabilities of the risk variants.

83

84 Haplotypes from 1000 Genomes belong to 38 different haplogroups (labeled H1-H38
85 in order of overall count, Fig. 1c). Risk-related haplotypes have an aggregated
86 frequency of 10% in the whole dataset and variable frequencies from 1 to 31% in
87 different continental populations (Fig. 1a). Eight haplogroups, H1-H8, have counts
88 higher than 10 and the most common is the protective haplogroup H1. Risk haplotypes
89 of groups H2-H8 tend to differ between continental populations (Fig. 1a). For them,
90 COVID-19 genetic risk probability varies substantially between 8 and 96%. The high
91 risk haplogroups H2, H3 and H8 differ by one or two alleles, and differ from the low risk
92 haplogroups H5, H6 and H7 all of which are similar to the protective haplogroup H1
93 (Fig. 1b). However, individuals carrying a risk haplogroup very dissimilar from
94 Neanderthal haplotypes may still carry a causal variant (Fig. 1c); this holds particularly
95 true for Africans with haplogroups H5 or H6 (19% or 11% probability) and for Asians
96 with haplogroup H7 (8% probability). Haplogroup H3 has highest risk probability and
97 is the most common risk haplogroup in Europeans and Americans (Fig. 1b).

98

99 All human risk haplogroups differ from the three previously assessed Neanderthal
100 haplotypes (Fig. 1c). They share at most 11 of the 13 previously assessed Neanderthal
101 alleles and 16 of 19 known Vindija alleles. We used IBDmix (7), a recent tool for
102 individual-level identification of Neanderthal-inherited regions, to obtain Vindija
103 Neanderthal-introgressed sequences greater than 30 kb. Introgressed sequences
104 overlapped the considered 65.8 kb genomic region for most risk haplogroup carriers

105 H2, H3, H4 and H8, yet were absent for most protective homozygous H1 haplogroup
106 carriers and for all low risk H5/H6 haplogroup carriers, respectively. Thus, because all
107 high risk haplogroups are located within Neanderthal introgressed region, the lack of
108 3 of 19 risk-associated alleles shared by all human high risk haplogroups is best
109 explained by genetic diversity within Neanderthals – the introgressed sequence seems
110 to originate from a different Vindija Neanderthal than the one assessed.

111

112 In Africans, the protective H1 and low risk H5/H6 haplogroups occur almost
113 exclusively. Still this population carries the lead risk variant allele rs11385942 as well
114 as, interestingly, two protective Neanderthal alleles. Given the only 11% probability of
115 rs11385942 to be causal there is thus a fair chance that this lead variant incorrectly
116 classifies Africans to be at risk of developing severe COVID-19 symptoms. This would
117 contradict classification using the lead variant rs35044562. Overall, when classifying
118 individuals that carry the GA allele of rs11385942 to be at risk, 477 haplotypes would
119 be considered at risk, and these have an average probability of only 82% to contain
120 the causal risk allele. If instead the Meta-GWAS risk allele of rs35044562 were used
121 for classification, African haplogroups H5 and H6 would not be considered at risk. The
122 overall 410 haplotypes considered at risk have an average probability of 92% to
123 contain the causal risk allele.

124

125 Only 1% of East Asian haplotypes belong to the risk haplogroups and none of them
126 belongs to the largest risk probability haplogroup H3, which is predominantly
127 European. Contrary to this, the South Asian risk haplotype frequency is 31%, the
128 highest among all continental populations, a consequence of the predominance of the
129 haplogroups H2, H4 and H8. These haplogroups contain protective alleles that reduce
130 the risk probability by 2, 8 and 9% with respect to the highest risk haplogroup H3. Most

131 South Asian haplotypes thus have lower risk probability than European haplotypes.
132 Zeberg and Pääbo denoted the difference between South and East Asian populations
133 as unexpected and significant and state that it may indicate genetic selection. Our
134 analysis shows that South Asian risk haplogroups are genetically more diverse, which
135 may be the result of adaption. Both East Asian risk haplotype depletion as well as
136 South Asian haplotype diversity can be hypothesized to result from exposure to
137 pathogens related to severe respiratory diseases. Further, the protective G allele of
138 rs76374459 is shared by predominantly South Asian haplogroups H2, H4, H7 and H8.
139 If this variant was causal (2% probability) using lead variants such as rs11385942 or
140 rs35044562 would incorrectly classify individuals carrying these haplogroups to be at
141 risk. This applies to few Europeans, but mostly to non-Europeans.

142
143 In conclusion we find that classification into high and low COVID-19 risk is error-prone
144 in non-European populations, if this assessment is based on European risk variants
145 and probabilities, especially when using lead variant rs11385942, which is the only one
146 to date published in a peer-reviewed journal. The risk haplogroup diversity observed
147 across populations thus compromises risk assessment in non-Europeans. This
148 situation is currently improved by world-wide GWAS efforts also in non-European
149 populations, by Meta-GWAS, as well as by trans-ethnic GWAS. With respect to the
150 latter, a recent GWAS performed by the company 23andMe replicates the major
151 genetic risk factor addressed here, has rs13078854 as lead variant and a credible set
152 of 20 variants (3). Further, in-silico fine-mapping for the latest release of the Covid19
153 Host Genetics Initiative results in only 10 credible set variants, all of them
154 distinguishing common high risk haplogroups from common low risk haplogroups –
155 these are 10 of 13 variants used in the Neanderthal study. Thus, various genetic
156 studies already pinpoint, quantify and limit the set of candidate causal variants, and a

157 combined population genetic view will help narrowing down the list using in silico as
158 well as complementary, e.g. experimental approaches. These diverse systems
159 genetics efforts will eventually converge into genetic causes and corresponding
160 molecular mechanisms that explain non-environmental variation in COVID-19 severity.

161

162 Acknowledgements

163 We thank the COVID-19 Host Genetics Initiative for publicly releasing GWAS
164 summary statistics. IW and HB acknowledge funding by the Deutsche
165 Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's
166 Excellence Strategy—EXC 22167-390884018. Verónica Calonga-Solís was
167 supported by a scholarship from Deutscher Akademischer Austauschdienst (DAAD)
168 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). All
169 authors acknowledge computational support from the OMICS compute cluster at the
170 University of Lübeck.

171

172 References

- 173 1. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, Bujanda L, Buti M,
174 Albillas A, et al. Genomewide Association Study of Severe Covid-19 with
175 Respiratory Failure. *N Engl J Med.* 2020;383(16):1522–34.
- 176 2. COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a
177 global initiative to elucidate the role of host genetic factors in susceptibility and
178 severity of the SARS-CoV-2 virus pandemic. *Eur J Hum Genet.* 2020;28(6):715–
179 8.
- 180 3. Shelton JF, Shastri AJ, Ye C, Weldon CH, Filshtein-Somnez T, Coker D, et al.
181 Trans-ethnic analysis reveals genetic and non-genetic associations with COVID-
182 19 susceptibility and severity. *medRxiv.* 2020 Sep 7;2020.09.04.20188318.

183 4. Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is
184 inherited from Neanderthals. *Nature*. 2020 Sep 30.

185 5. Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M.
186 FINEMAP: efficient variable selection using summary data from genome-wide
187 association studies. *Bioinformatics*. 2016 15;32(10):1493–501.

188 6. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison
189 EP, Kang HM, et al. A global reference for human genetic variation. *Nature*. 2015
190 Oct 1;526(7571):68–74.

191 7. Chen L, Wolf AB, Fu W, Li L, Akey JM. Identifying and Interpreting Apparent
192 Neanderthal Ancestry in African Individuals. *Cell*. 2020 20;180(4):677-687.e16.

193

194 Code availability

195 No custom algorithms or software have been applied. The R and Python script used
196 for analysis are available from the authors.

197

198 Data availability

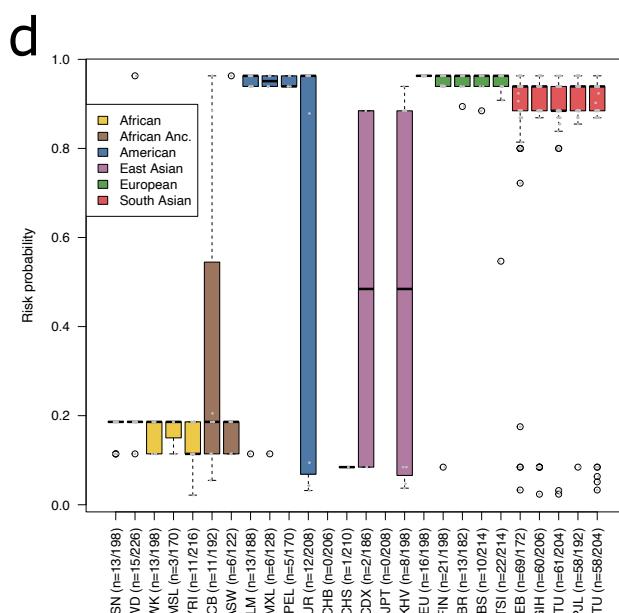
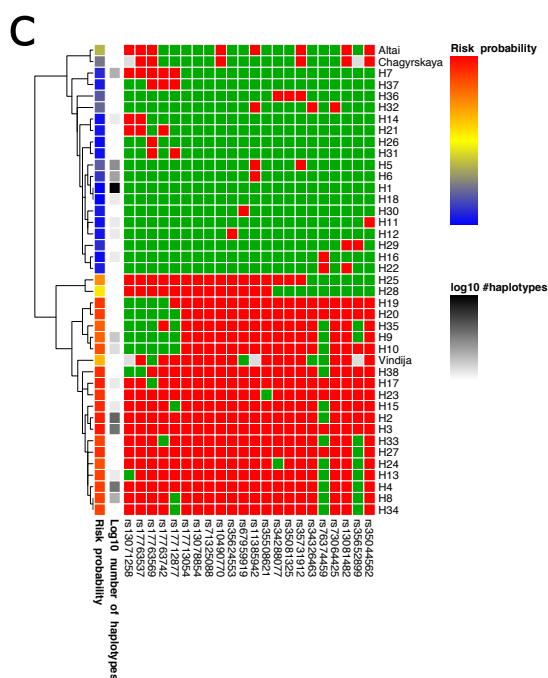
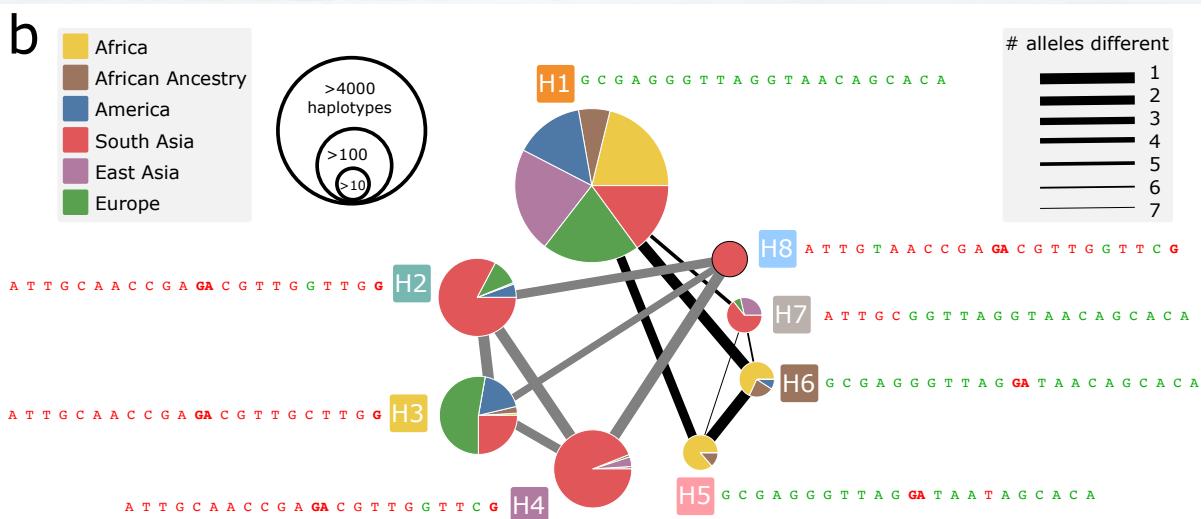
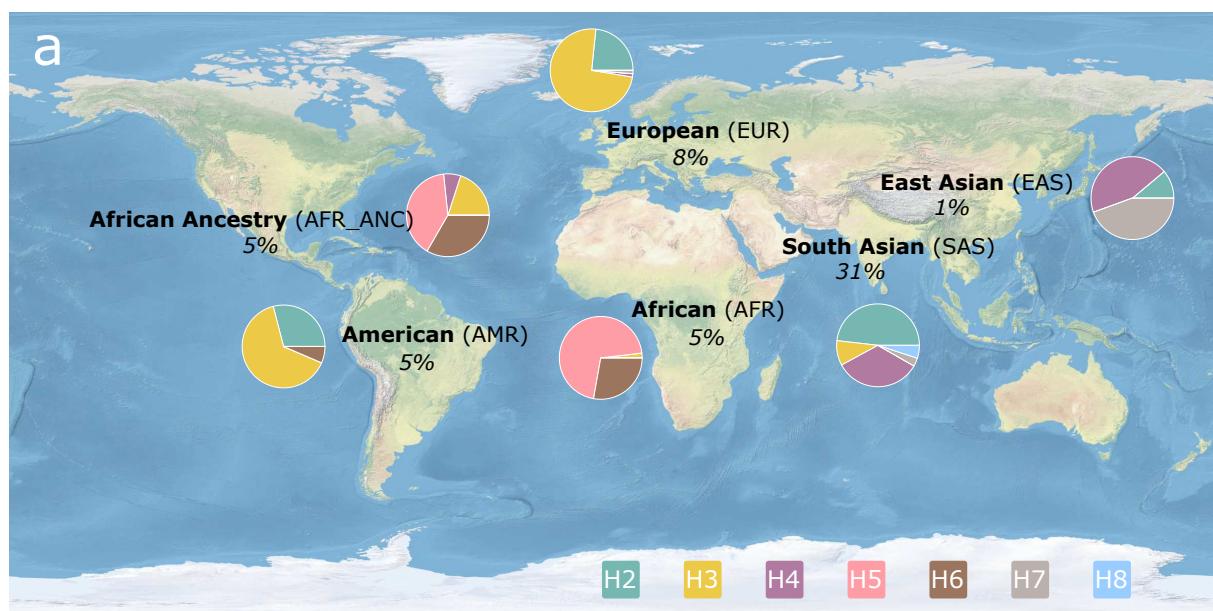
199 Variants rs35044562 and rs67959919 are lead variants of two subsequent Meta-
200 GWAS of the COVID-19 Host Genetics Initiative, both comparing hospitalized
201 COVID-19 with population controls (release 3: ANA_B2_V2 and release 4: B2_ALL,
202 respectively; with summary statistics available at <https://www.covid19hg.org>). 1000
203 Genomes variant data (phase 3 release) is available at
204 <https://www.internationalgenome.org>. Neanderthal variant data is provided by the
205 Max Planck Institute for Evolutionary Anthropology at
206 <http://cdna.eva.mpg.de/neandertal> (Chagyrskaya, Altai and Vindija 33.19). The world
207 graphic was obtained from Natural Earth, a public domain map dataset.

208

209 Contributions

210 I.W and V. C.-S conceived the study. All authors designed the study. I.W, V. C.-S.
211 and N.J performed data analysis. I.W. prepared figures and wrote the first manuscript
212 draft. All authors contributed to and approved the final manuscript.

213





214 Competing interests

215 The authors declare no competing interests.

216

217 Figure

218

220 Figure 1: a) Risk haplogroups in different continental populations. b) Comparison of
221 the eight most common haplogroups and their occurrence in continental populations.
222 For each haplogroup, the alleles for 22 risk variants are provided in the order of
223 chromosomal position. Red alleles are risk alleles, green alleles are protective.
224 Network nodes and edges are correlated with haplotype frequency and allele
225 difference, respectively. c) Heatmap depicting all 38 haplogroups observed in n=5008
226 haplotypes from 1000 Genomes as well as three Neanderthals (Altai, Chagyrskaya
227 and Vindija). Red denotes risk alleles, green denotes protective alleles. Variant order
228 is according to chromosomal position. Annotated are the number of haplotypes of
229 every haplogroup (log10 scale) and the risk probability of every haplogroup
230 considering 22 fine-mapped variants. d) Distribution of risk probabilities for risk
231 haplotypes of the 1000 Genomes populations. Box plots display median and
232 lower/upper quartiles; whiskers denote the most extreme data point no more than 1.5
233 times the interquartile range; outliers are data points extending beyond whiskers.