

Novel SARS-CoV-2 Whole-genome sequencing technique using Reverse Complement PCR enables
easy, fast and accurate outbreak analysis in hospital and community settings

1

2 Femke Wolters^{1*^a}, Jordy P.M. Coolen^{1a}, Alma Tostmann¹, Lenneke F.J. van Groningen², Chantal P. Bleeker-
3 Rovers³, Edward C.T.H. Tan^{4,5}, Nannet van der Geest-Blankert⁶, Jeannine L.A. Hautvast⁷, Joost Hopman¹,
4 Heiman F.L. Wertheim¹, Janette C. Rahamat-Langendoen¹, Marko Storch⁸, Willem J.G. Melchers¹.

5

6 ^aShared first authorship

7 ¹Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud university
8 medical center, Nijmegen, The Netherlands

9 ²Department of Haematology, Radboud university medical center, Nijmegen, The Netherlands

10 ³Department of Internal Medicine, division of Infectious Diseases, Radboud university medical center,
11 Nijmegen, The Netherlands

12 ⁴Department of Emergency Medicine, Radboud university medical center, Nijmegen, The Netherlands

13 ⁵Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands

14 ⁶Department of Occupational Health, Radboud university medical center, Nijmegen, The Netherlands

15 ⁷Regional Public Health Service, Nijmegen, the Netherlands

16 ⁸London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 84 Wood Lane,
17 London, W12 0BZ, UK;

18

19 ***Corresponding author:**

20 Femke Wolters, MD

21 Radboud university medical center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands

22 Femke.wolters@radboudumc.nl

23

24

25

26

27

28

29 **Abstract**

30 **Background:** Current transmission rates of severe acute respiratory syndrome coronavirus 2 (SARS-
31 CoV-2) are still increasing and many countries are facing second waves of infections. Rapid SARS-
32 CoV-2 whole-genome sequencing (WGS) is often unavailable but could support public health
33 organizations and hospitals in monitoring and determining transmission links. Here we report the use
34 of reverse complement polymerase chain reaction (RC-PCR), a novel technology for WGS of SARS-
35 CoV-2 enabling library preparation in a single PCR saving time, resources and enables high
36 throughput screening. Additionally, we show SARS-CoV-2 diversity and possible transmission within
37 the Radboud university medical center (Radboudumc) during September 2020 using RC-PCR WGS.

38 **Methods:** A total of 173 samples tested positive for SARS-CoV-2 between March and September
39 2020 were selected for whole-genome sequencing. Ct values of the samples ranged from 16 to 42.
40 They were collected from 83 healthcare workers and three patients at the Radboudumc, in addition to
41 64 people living in the area around the hospital and tested by the local health services. For validation
42 purposes, nineteen of the included samples were previously sequenced using Oxford Nanopore
43 Technologies and compared to RC-PCR WGS results. The applicability of RC-PCR WGS in outbreak
44 analysis for public health service and hospitals was tested on six suspected clusters containing samples
45 of healthcare workers and patients with an epidemiological link.

46 **Findings:** RC-PCR resulted in sequencing data for 146 samples. It showed a genome coverage of up
47 to 98,2% for samples with a maximum Ct value of 32. Comparison to Oxford Nanopore technologies
48 gives a near-perfect agreement on 95% of the samples (18 out of 19). Three out of six clusters with a
49 suspected epidemiological link were fully confirmed, in the others, four healthcare workers were not
50 associated. In the public health service samples, a previously unknown chain of transmission was
51 confirmed.

52 **Significance statement:**

53 SAR-CoV-2 whole-genome sequencing using RC-PCR is a reliable technique and applicable for use
54 in outbreak analysis and surveillance. Its ease of use, high-trough screening capacity and wide
55 applicability makes it a valuable addition or replacement during this ongoing SARS-CoV-2 pandemic.

56 **Funding:** None

57 **Research in context**

58 **Evidence before this study**

59 At present whole genome sequencing techniques for SARS-CoV-2 have a large turnover time and are
60 not widely available. Only a few laboratories are currently able to perform large scale SARS-CoV-2
61 sequencing. This restricts the use of sequencing to aid hospital and community infection prevention.

62 **Added value of this study**

63 Here we present clinical and technical data on a novel Whole Genome Sequencing technology,
64 implementing reverse-complement PCR. It is able to obtain high genome coverage of SARS-CoV-2
65 and confirm and exclude epidemiological links in 173 healthcare workers and patients. The RC-PCR
66 technology simplifies the workflow thereby reducing hands on time. It combines targeted PCR and
67 sequence library construction in a single PCR, which normally takes several steps. Additionally, this
68 technology can be used in concordance with the widely available range of Illumina sequencers.

69 **Implications of all the available evidence**

70 RC-PCR whole genome sequencing technology enables rapid and targeted surveillance and response
71 to an ongoing outbreak that has great impact on public health and society. Increased use of sequencing
72 technologies in local laboratories can help prevent increase of SARS-CoV-2 spreading by better
73 understanding modes of transmission.

74

75 **Introduction**

76
77 In December 2019 China reported a group of patients with a severe respiratory illness caused by a thus
78 far unknown coronavirus. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was
79 identified as the causative agent.¹ Since its outbreak, the virus evolved into a pandemic with almost 37
80 million infections and over a million deaths worldwide by October 2020.² Many countries are
81 currently fighting second waves of infection whilst the healthcare systems are still under pressure from
82 the first wave. To reduce spread and mitigate workforce depletion, large scale testing of healthcare
83 workers (HCW) was implemented in the Netherlands early on.³

84 Current testing is based on RT-PCR detection of SARS-CoV-2 in nasopharynx or oropharyngeal
85 swabs. If tested SARS-CoV-2 positive, HCW are instructed to self-isolate at home, and source finding
86 and contact tracing is performed. These procedures enable us to identify patients and personnel at risk
87 of infection and to identify chains of transmission in the hospital. In the community setting, source
88 finding and contact tracing is performed by public health staff upon a notification of a SARS-CoV-2
89 positive individual. It facilitates the implementation of quarantine measures for high-risk contacts in
90 the community. Contact tracing is time consuming and with rising numbers of infections as currently
91 seen in the second wave, the public health capacity may reach the limits of feasibility of thorough
92 source and contact tracing investigations.⁴ Routine sequencing the SARS-CoV-2 genome from
93 positive samples provides crucial insights into viral evolution and supports outbreak analysis.^{5,6}
94 Current whole-genome sequencing (WGS) workflows often require cumbersome preparation, are
95 laborious to implement for high throughput screening or use less widely accessible sequencing
96 platforms, preventing widespread implementation. Here we present a novel strategy for fast, simple
97 and robust Next-Generation Sequencing (NGS) WGS library preparation. We show that the RC-PCR
98 method, which integrates tiled target amplification with Illumina library preparation has a simple
99 workflow with minimal hands-on time. We used this novel and practical method to I) validate and
100 compare it with another sequence technology to demonstrate its reliability and capacity and II) apply it
101 to a set of epidemiologically linked cases to illustrate its added value in detecting potential
102 transmission events in public health and hospital settings.

103

104 **Material and Methods**

105 In this study we conducted a validation to assess the performance and reproducibility of the novel RC-
106 PCR SARS-CoV-2 sequencing technology. Subsequently, we performed a clinical validation to assess
107 the potential added value in identifying chains of transmission in a hospital and public health setting.

108

109 **Sample collection**

110 Nasopharyngeal and oropharyngeal swabs collected in UTM or GLY medium of patients, healthcare
111 workers and samples for the local public health services that were tested for SARS-CoV-2 in our

112 laboratory. Samples collected between March 2020 and September 2020 were included in this study
113 and stored at -80°C. Detailed descriptions on included samples can be found in supplementary table 1.
114 A total of 173 SARS-CoV-2 positive and fifteen SARS-CoV-2 negative samples were tested.

115 **Samples and selection of epidemiological clusters**

116 Nineteen out of 188 samples were previously sequenced using Oxford Nanopore Technologies (ONT).
117 These nineteen samples were collected at the beginning of the pandemic, between March 9th and
118 March 20th and ONT sequencing data of these samples has been deposited at GISAID, a global
119 initiative curating sequenced SARS-CoV-2 genomes for public access (<https://www.gisaid.org/>).⁶

120

121 *Hospital samples*

122 Six epidemiological hospital clusters that were identified by the infection prevention and control (IPC)
123 team were included in this study. These clusters involved patients admitted at and healthcare workers
124 (HCW) employed by the Radboud university medical center. Of the identified clusters, three were
125 clusters of healthcare workers with an epidemiological link, and three involved a patient and several
126 healthcare workers with a suspected epidemiological link. To determine whether other HCW could be
127 linked to one of the clusters, samples of sporadic HCW (all other HCW who tested positive for SARS-
128 CoV-2 in September 2020) were included in the selection, as the second wave of infections in the
129 Netherlands started late August 2020. These consist of Radboud university medical center HCW and
130 the majority work in direct or indirect patient care. A minority of positive samples include employees
131 working at the medical faculty or research departments. Additionally, twenty samples were included
132 from patients and HCW who were tested between March and September 2020 and who were not
133 associated with any of these predefined clusters.

134

135 *Community samples*

136 We also included an additional 64 community samples that tested positive for SARS-CoV-2 in March
137 and April 2020 and that were tested by the local public health service. These were samples of persons
138 living in the defined public health region surrounding our hospital. See Table 1 for an overview of the
139 groups and clusters.

140 The Research Ethics Committee of the region Arnhem/Nijmegen reviewed the current study and
141 waived additional ethical approval. All personal data of patients, HCW and public health service

Table1: number of groups and clusters of samples that were sequenced for SARS-CoV-2.			
Groups	Samples (N)	Month SARS-CoV-2 PCR positive	IPC cluster information
Oxford Nanopore Technology (ONT)	19	March 2020	None
Cluster 1 – External outbreak link	6	September 2020	HCW linked to a known community outbreak and who had either visited the venue or had close contact to people (with positive test) who had visited the venue
Cluster 2 – Department C	5	September 2020	All HCW working at the same department in close proximity and who tested positive in the same week.
Cluster 3 – Patient ward E	2^	September 2020	A patient and an HCW; the HCW had contact with the patient without adequate personal protective equipment (PPE).
Cluster 4 – Patient ward H	3*	May 2020	Two HCW and one patient tested positive at the same department in a short time period. An epidemiological link was suspected since the employees came in contact with the patient.
Cluster 5 – Laboratory R	9	April 2020	All HCW working at the same department, tested positive in the same week.
Cluster 6 – Patient ward S	6	September 2020	One patient and 5 HCW, the HCW tested positive 5 days after being in contact with the positive patient, the event included an unexpected aerosol generating procedure and HCW were not protected with PPE.
Sporadic HCW September 2020	39	September 2020	none
Public Health services samples	64	March & April 2020	none
Other (<i>patients/employees tested up to September 2020</i>)	20^	March – September 2020	none
Negative	15	n.a.	n.a.
Total	188		

142 samples was anonymized. Cluster information was provided anonymously by the IPC team.

143

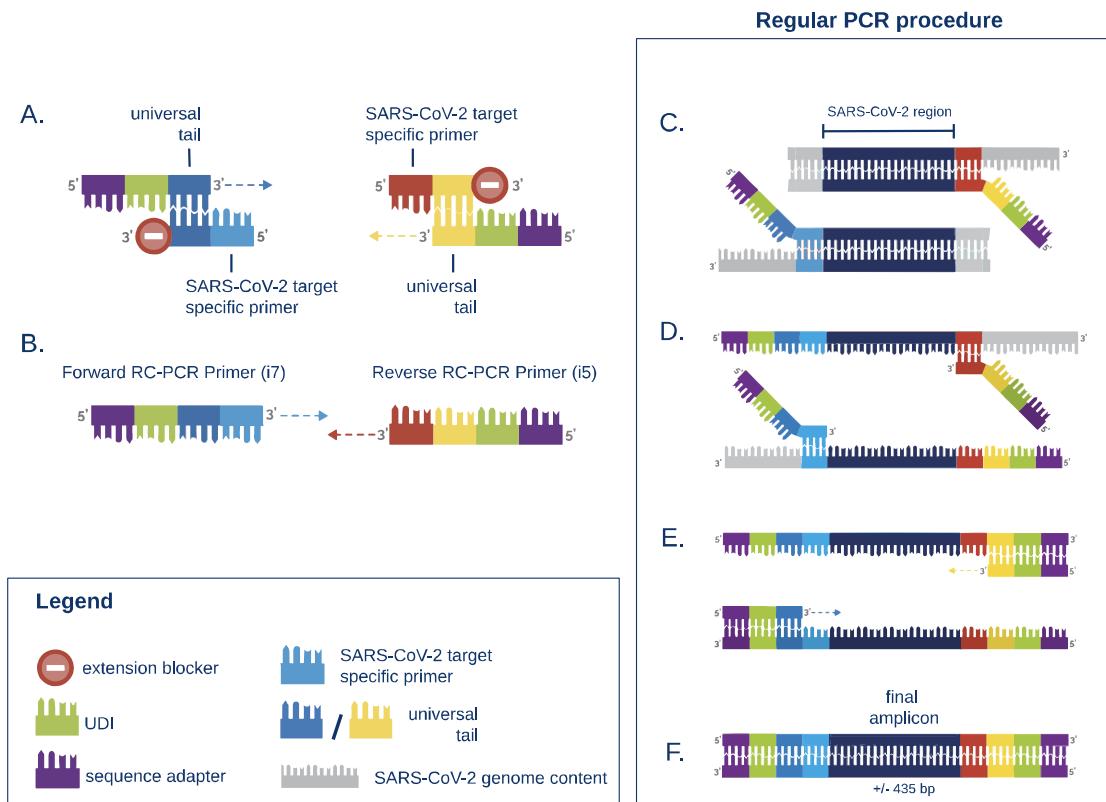
144

145 **Real-Time Polymerase Chain Reaction**

146 SARS-CoV-2 RT-PCR was performed on all samples during routine diagnostics. RNA was isolated
147 using Roche COBAS 4800 (Roche Diagnostics Corporation) with a CT/NG extraction kit according to
148 the manufacturers protocol. RT-PCR with primers targeting the envelope (E-gene) was used as
149 described by Corman *et al.* and performed on a LightCycler 480 (Roche Diagnostics Corporation)
150 using Roche Multiplex RNA Virus Mastermix.⁷

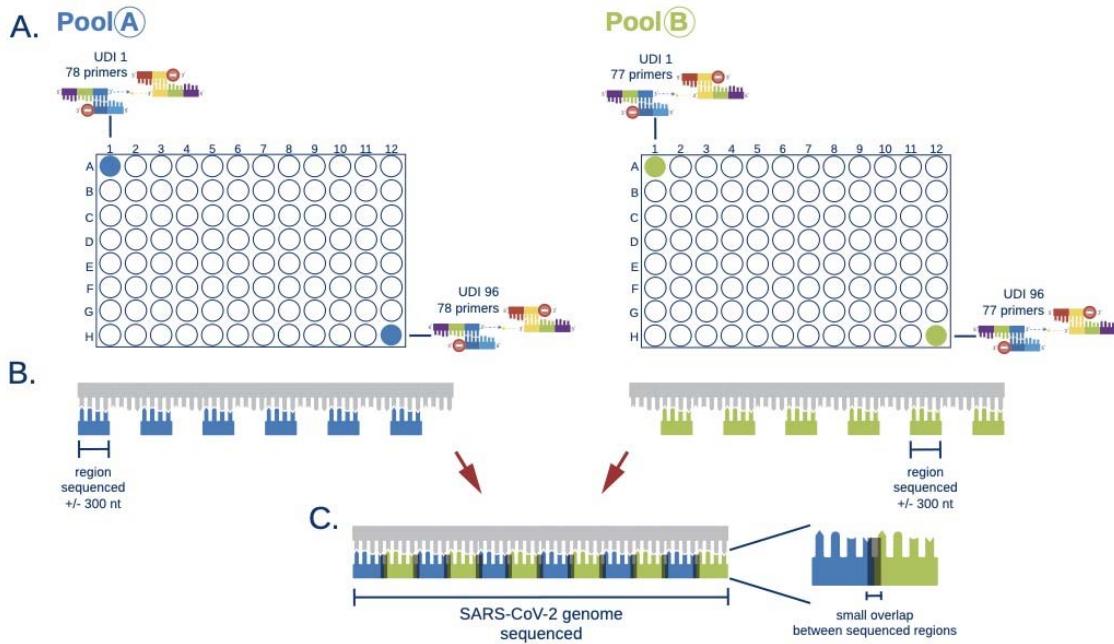
151

152


153 **Reverse Complement Polymerase Chain Reaction**

154 For all 188 selected samples, RNA isolation was repeated on the MagnaPure 96 (Roche Diagnostics
155 Corporation) using Small Volume isolate protocol with 200 μ l of sample and eluting isolated RNA in
156 50 μ l. cDNA-synthesis was performed using Multiscribe RT (Applied Biosystems) with 10 μ l of RNA
157 input (supplementary table 2). Four samples were replicates, RNA was isolated twice and tested in two
158 separate sequencing runs. They were randomly selected for the first run, but were also part of an IPC
159 identified cluster and therefore included in the second run.

160 Whole genome sequencing (WGS) was performed in 3 independent runs (96 samples each) using the
161 novel EasySeqTM RC-PCR SARS-CoV-2 WGS kit (NimaGen BV, Nijmegen, The Netherlands).


162 Figure 1 and 2 show a detailed description of the technology in which two types of oligo's are used to
163 start the targeted amplification. The RC-probe and the universal barcoding primer hybridize and start
164 the formation of specific SARS-CoV-2 primers with Unique Dual Index (UDI) and adapter sequences
165 already included. In contrast to other techniques where multiple steps are needed to add sequence
166 adapters and UDI's. This means a regular PCR-system can be used to produce SARS-CoV-2 specific
167 amplicons ready for sequencing. The kit uses 155 newly designed probes with a tiling strategy
168 previously implemented in the ARTIC protocol.⁸ The probes are divided in two pools, A and B. Pool
169 A contains 78 probes and Pool B contains 77 probes. This strategy requires two separate RC-PCR
170 reactions but ensures there is minimal chance of forming chimeric sequences or other PCR artifacts
171 (See Figure 2). After the PCR, samples of each plate are pooled into an Eppendorf tube, resulting in
172 two tubes, for pool A and B, respectively. These are individually cleaned using AmpliCleanTM
173 Magnetic Bead PCR Clean-up Kit (NimaGen, Nijmegen, The Netherlands). Afterwards, quantification
174 using the Qubit double strand DNA (dsDNA) High Sensitivity assay kit on a Qubit 4.0 instrument
175 (Life Technologies) is performed and pool A and B are combined. The amplicon fragment size in the
176 final library will be around 435 bp. Next Generation Sequencing (NGS) was performed on an Illumina
177 MiniSeq[®] using a Mid Output Kit (2x150-cycles) (Illumina, San Diego, CA, USA) by loading 0.8 pM
178 on the flowcell. The first two runs (Run1 and Run1_new) were conducted to test the performance of
179 the RC-PCR on a large variety of Ct-values (Ct 16 – 41) using the standard protocol provided by

180 NimaGen. For sequencing Run1_new the RC-PCR product from Run1 was re-used and sequenced
181 with the exception that the final sequencing library was created by using a balanced library pooling
182 strategy based on estimated cDNA input (2 μ l for $Ct < 20$, 5 μ l $20 \leq Ct < 27$ or 10 μ l $Ct \geq 27$). The final
183 sequence run (Run2) contains samples with a Ct range from 16 – 32, using the same Ct dependent
184 balanced library strategy.

Figure 1. Schematic representation of the RC-PCR technology to WGS SARS-CoV-2. The protocol consists of one single PCR-like reaction consisting of 2 steps. The schematic is adapted from Kieser *et al.* (Kieser *et al.*, 2020) A. Two types of oligo's are present, 1) the universal barcoding primer which includes a Unique Dual Index (UDI), sequence adapter, and universal tail. 2) the RC probe which contains an extension blocker, universal sequence, and the reverse complement of the SARS-CoV-2 genomic target sequence. B. The universal tail sequences anneal and form a SARS-CoV-2 specific PCR primer. C - E. A regular PCR in which the SARS-CoV-2 specific amplicons are created. F. The final amplicons are ready to sequence on an Illumina sequencer.

185

186

187

188 Data analysis

189 VirSEAK (JSI, Ettenheim, Germany) was used to map the Illumina paired-end reads to SARS-CoV-2
190 reference NC_045512.2. Consensus sequences were extracted for each sample using the virSEAK
191 export option, settings used can be found in supplementary table 3. All consensus sequences and
192 reference NC_045512.2 were aligned using MUSCLE (version 3.8.1551) using default settings.⁹
193 Sequence statistics were calculated using faCount (version 377). Mean read depth (RD) was calculated
194 using JSI/SEQUENCE PILOT (JSI, Ettenheim, Germany) to evaluate the amplicon depth of each of
195 the 155 amplicons. For the validation samples (ONT group Table 1) the sequence starts and ends were
196 trimmed to match RC-PCR region with Oxford Nanopore region. A maximum-likelihood phylogenetic
197 tree was inferred using IQ-TREE (version 2.0.3) under the GTR \square + \square F \square + \square I \square + \square G4 model with the
198 ultrafast bootstrap option set to 1,000. Phylogenetic tree visualization and annotation was performed
199 using iTOL (version 5.6.3) or FigTree (version 1.4.4) (<http://tree.bio.ed.ac.uk/software/figtree/>).¹⁰ SNP
200 distances between samples was calculated using snp-dists (version 0.7.0)
201 (<https://github.com/tseemann/snp-dists>). From the genome alignments we calculated a minimum
202 spanning tree (MST) by applying the MSTreeV2 algorithm using GrapeTree (version 1.5.0).¹¹

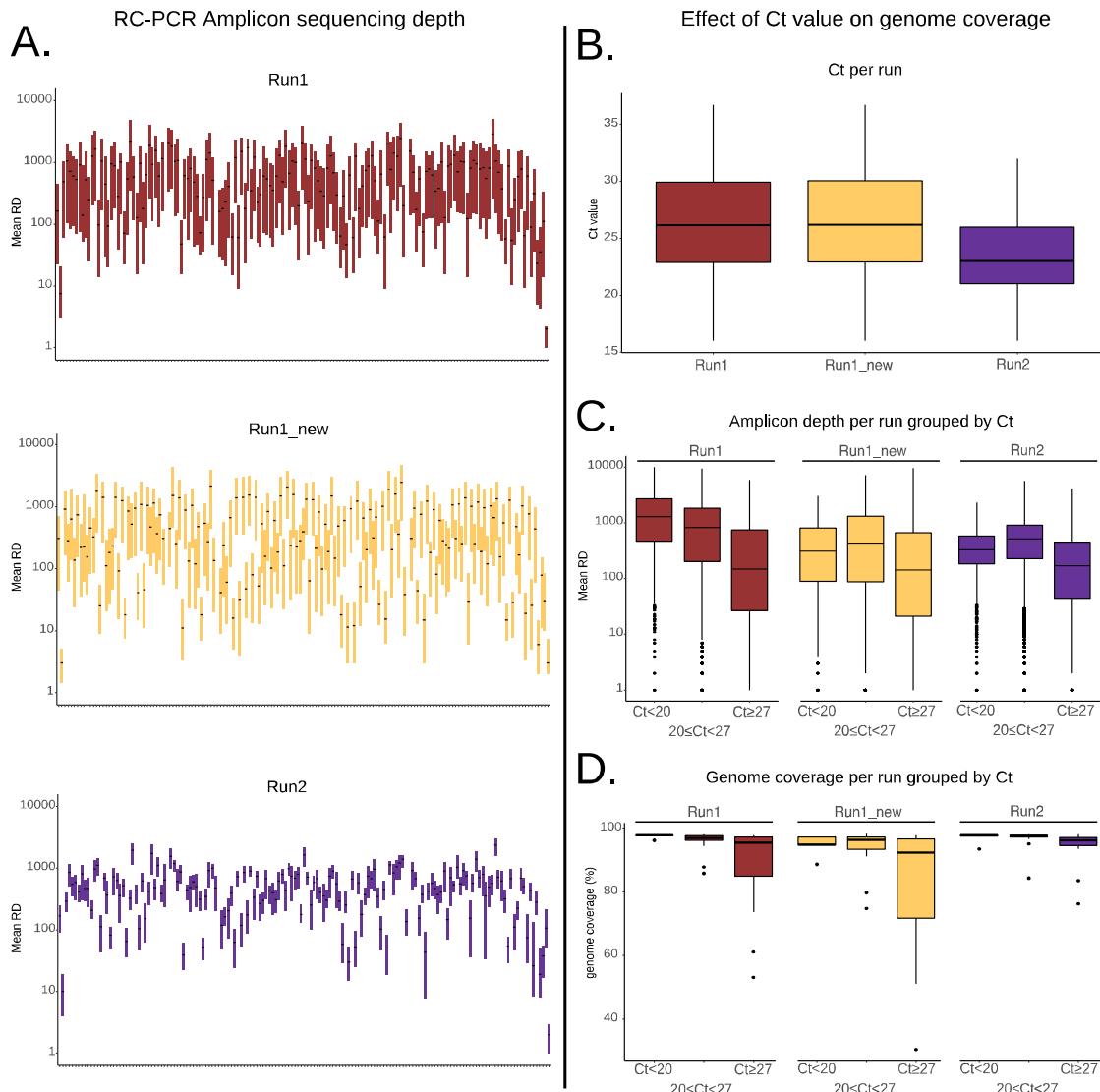
203 Visualization of the MST was performed using GrapeTree.
204 The clinical validation consisted of a comparison of the epidemiological information of the
205 community and hospital samples and the WGS findings to see whether sequencing confirmed or
206 dismissed the suspected links between the samples.

207

208 **Results**

209 **Technical results RC-PCR**

210 In this study we performed three Illumina MiniSeq Mid Output (2x150 bp) runs containing 96 samples
211 each that were prepared using the EasySeq™ RC-PCR SARS-CoV-2 WGS kit. It has a turnaround
212 time of about 8.5 hours, consisting of 1-hour hands-on time for preparing 96 samples, 6.5 hours for
213 performing the RC-PCR, and 1-hour of hands-on time for pooling, sample clean-up. Run 2 had the
214 highest number of positive SARS-CoV-2 VirSEAK consensus retrievals (100%). Of Run1 65% was
215 retrieved, Run1_new 67%. Run2, containing samples with higher viral loads (Ct values 16-32),
216 reached an average coverage of 96.69%. Genome coverage for Run1_new was 88%. (Figure 3B)
217 Supplementary table 4 provides a detailed overview of the technical results of the three sequence runs.


218

219 *Amplicon depth plots*

220 The amplicon depth distribution highlights which parts of the SARS-CoV-2 genome are represented
221 and the number of reads for each of the amplicons. In essence this shows how well the individual parts
222 of the SARS-CoV-2 genome are represented in the results. To illustrate the amplicon distribution on
223 the SARS-CoV-2 genome, for each of the 155 amplicons a sequencing depth was calculated and
224 plotted per run (See Figure 3A). Most amplicons are centered around a Mean read depth (RD) of 100-
225 1000. While some amplicons show less depth, in most cases they still result in a consensus sequence.
226 Additionally, for Run2 the interquartile range of the Mean RD is smaller compared to the two other
227 runs. When comparing the amplicon depth obtained per probe, boxplots are made for each run divided
228 in three Ct groups ($Ct < 20$, $20 \leq Ct < 27$, and $Ct \geq 27$) (see Figure3C). We see a decline in depth for
229 samples with Ct above 27. For Run1_new and Run2 samples with a Ct between 20 and 27 perform
230 slightly better than the $Ct < 20$ group this is probably an effect of the balanced library input strategy

231 applied for these runs. To evaluate if the impact of amplicon sequencing depth affects SARS-CoV-2
232 genome completeness, boxplots with the Ct groups are displayed to the effect on genome coverage
233 (see Figure 3D). Here we notice a decline in genome coverage with increasing Ct values for Run1 and
234 Run1_new. Run2 maintains high genome coverages, however does not contain samples with Ct values
235 above 32.

236

237 **Figure 3.** Graphical representation of performance of the RC-PCR Illumina sequence runs. **A.** Boxplots of the interquartile range of the Mean read
238 depth (RD) of the Amplicons on a \log_{10} scale for all 155 probes sorted on the SARS-CoV-2 genome. **B.** Boxplot of the Ct value as determined by
RT-PCR to illustrate the differences of viral load of the sample per run. **C.** Boxplots of the Mean RD of the amplicons (\log_{10} scale used) grouped per
run and by Ct value. **D.** Boxplots of the SARS-CoV-2 genome coverage as achieved by RC-PCR grouped per run and Ct value.

237

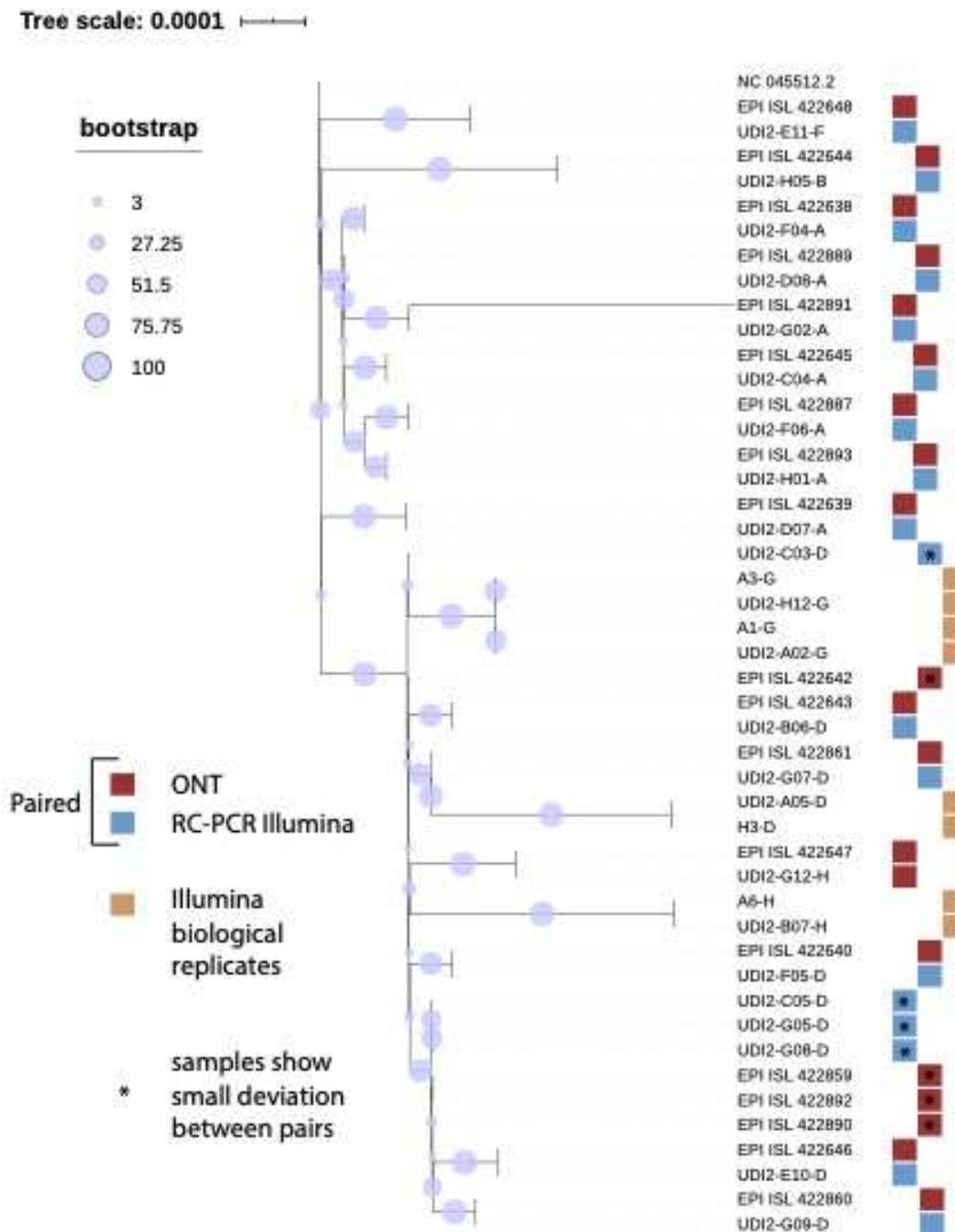
238 *Regions of low sequencing coverage*

239 In a detailed analysis of the coverage of the SARS-CoV-2 genome obtained by RC-PCR 5 missing
240 genomic regions were observed (Table 2). The largest missing region has a length of 186 bp and is
241 part of the Open Reading Frame 1a (ORF1a). A further two regions are the start (1-54 bp) and the end
242 (46-165bp) of the genome. We observed that region 14585-14725 is missing in the VirSEAK
243 consensus output but not in the JSI/SEQUENCE PILOT and at the time of writing the manuscript the
244 VirSEAK algorithm was updated to improve the consensus output. Overall, without this update, the
245 maximum SARS-CoV-2 genome coverage that can be achieved using RC-PCR is between 97,8% and
246 98,2%. In version 1 of the EasySeq™ RC-PCR SARS-CoV-2 WGS kit three probe pairs do not
247 produce amplicons, 6258_6426, 9504_9752, and 21241_21420, respectively. No data on these
248 genomic regions will be obtained (Table 2).

249

Table 2: missing regions in VirSEAK consensus output

VirSEAK consensus output		JSI/SEQUENCE PILOT		
Genomic location	Length (bp)	Probes	Genomic location	Length (bp)
1 - 54	54	No Probe		
6309 - 6407	99	6258_6426	6204 - 6372	169
9554 – 9739	186	9504_9753	9450 - 9699	250
14585 – 14725	141			
21322 - 21331	10	21241_21420	21187 - 21366	180
29739/29756/29858	165/148/46	29630_29857	29576 - 29803	228
—				
29903				
Total base-pairs	655/638/536			


250

251

252

253 **Validation of RC-PCR reproducibility**

254 All samples from Run1 that obtained a consensus (n=57) were compared to the same 57 samples from
255 Run1_new to determine whether results are reproducible when repeating sequencing with the RC-PCR
256 product. Results in supplemental figure 1 show that 50 of the 57 clusters fully align between Run1 and
257 Run1_new. There are 7 samples in which the phylogenetic distance is larger. For those samples in
258 which the phylogenetic distance is larger than expected, alignments were analyzed. The samples from
259 Run1_new show a lower genome coverage, explaining larger phylogenetic distances in these cases.
260 This is in line with the results observed in table 3 with average genome coverage of 88% in Run1_new
261 versus 93% in Run1. Which is either caused by RC-PCR product storage or the influence of the
262 balanced library pooling strategy based on Ct values of the samples.
263 Four sample pairs were tested in both Run1 and Run2 to serve as biological replicates. The entire
264 process from RNA isolation to sequence analysis was performed twice on these four samples.
265 Phylogenetic analysis depicted in Figure 4 (Illumina biological replicates) shows perfect agreement
266 between these repeats and confirms the specificity and reproducibility of RC-PCR.
267

Figure 4. Validation of RC-PCR by comparing the results for the same 19 samples sequenced previously by ONT.(Munnink *et al.*, 2020) Additionally, reproducibility was tested by applying RC-PCR on 4 samples as biological replicates (beige).

268

269

270

271

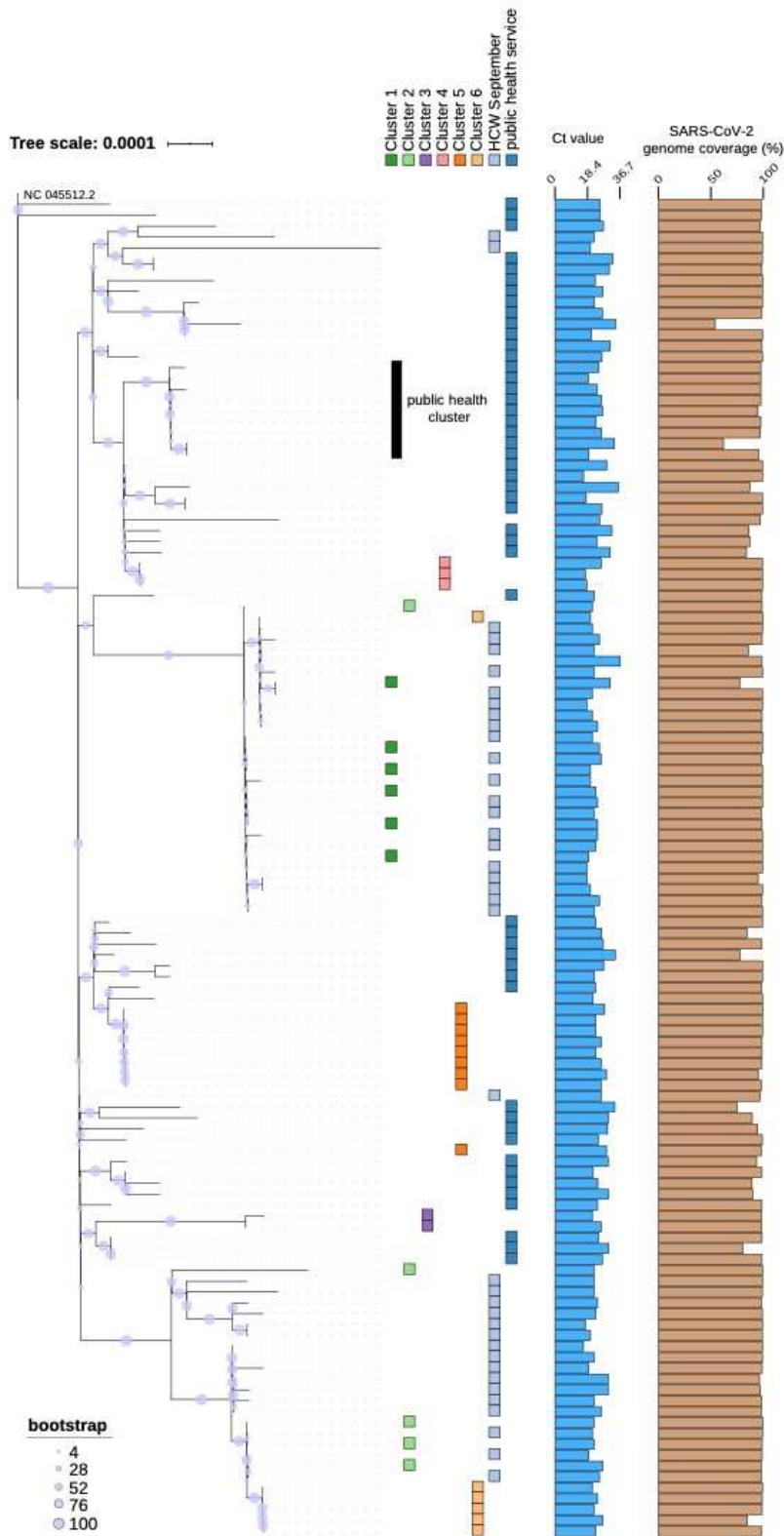
272 **Validation of RC-PCR with Oxford Nanopore Technologies® (ONT)**

273 Nineteen out of the 188 samples were tested using both ONT and Illumina® sequencing. The ONT
274 sequences were available in the GISAID database and compared to the results of RC-PCR sequencing.
275 All nineteen samples provided sequencing results on both platforms (Figure 4, ONT in red and RC-
276 PCR in blue). Fourteen out of nineteen samples provided perfect pairs, four samples show a small
277 divergence in the phylogenetic tree. Single nucleotide polymorphism (SNP) distance was calculated to
278 identify the number of nucleotides discrepant between samples. This in combination with manual
279 inspection showed that they have identical sequences but RC-PCR samples miss certain genomic
280 regions compared to ONT which results in the phylogenetic differences. One pair does not match, the
281 ONT sample shows a large distance (EPI ISL 422891). Manual inspection of the alignment revealed a
282 wrongly placed ambiguous region in the ONT sample.

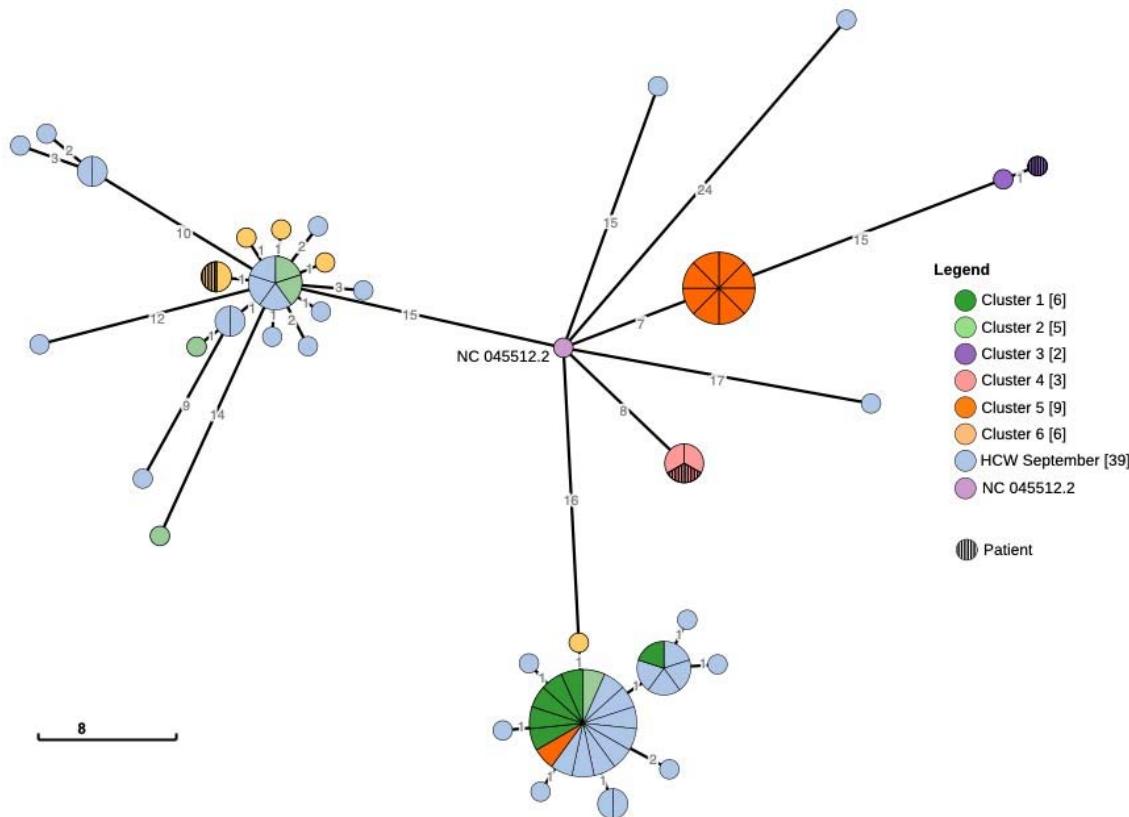
283

284 **Clinical validation**

285 Of the 188 tested samples, 173 were SARS-CoV-2 positive of which sequencing results were obtained
286 for 146 (57 in Run1 and 89 in Run2). All samples, excluding nineteen ONT and four duplicate
287 samples used for validation, are depicted in the phylogenetic tree of Figure 5. Only HCW and patients
288 are included in the minimum spanning tree of Figure 6. Figure 5 shows the genetic diversity of the
289 samples at different time points during the pandemic. Those collected during the first months of March
290 and April (community samples from public health service) are clearly separated from the other
291 samples, especially compared to the samples from September 2020 (Cluster 1,2,3,6, and the HCW).
292 In Figure 6 it is clear the epidemiological link between the samples three of the six clusters was
293 completely confirmed by the sequencing results. Clusters two, five, and six contained HCW that were
294 not related. In cluster one, linked to a venue outside the hospital, five samples group together with no
295 SNP distances, one sample has a distance of a single SNP suggesting the possibility of linked cases.
296 However, multiple “sporadic HCW” tested in September and two HCW previously linked to cluster
297 two and five also group within cluster one.


298 In cluster two only two samples group together, two others are genetically unrelated samples and one
299 samples has a SNP distance of 2 which could still be within the transmission chain. Cluster three, a

300 patient and HCW show a distance of only 1 SNP. Sample collection was performed on one occasion,
301 twelve days apart, which could account for the SNP difference. In cluster four two HCW and a patient
302 group together, confirming the suspected link. Cluster five, an outbreak at a laboratory, eight HCW
303 samples have identical SARS-CoV-2 genomes, only one sample is phylogenetically linked. Cluster six
304 originated from a SARS-CoV-2 positive patient seen at a department, where at that time multiple
305 HCW had close contact to the patient. At the time of presentation, no symptoms were present that
306 were indicative of SARS-CoV-2 and screening using a questionnaire was negative. Five of the HCW
307 tested SARS-CoV-2 positive in the following weeks. In four HCW a genetically similar SARS-CoV-2
308 virus was detected. Surprisingly multiple other HCW group in this same cluster with minimal
309 differences (0-3 SNPs), which could mean the outbreak was larger than anticipated or the patient was
310 not the source of the infection.


311 Even though no new clusters were identified among the “sporadic HCW”, they do group with
312 previously identified clusters. Additional information about these HCW revealed that many of them
313 had a direct or indirect link to the community source that was known by the public health services,
314 Cluster one.

315 Sequencing of the 64 community samples showed seven people clustered together in the phylogenetic
316 tree of Figure 5. There was no prior information available on these tested persons, but additional
317 information provided by the Local Public Health Service indicated that two of the seven worked at the
318 same location, two were their partners, the others lived in the same neighbourhood at the initial four
319 people, although they had no known epidemiological link to these people other than the area of
320 residence. Of other public health service samples no contact tracing information was available and
321 other samples clustering could not be confirmed with an epidemiological link.

322

Figure 5. Phylogenetic tree of 123 RC-PCR WGS SARS-CoV-2 genomes rooted at the NC 045512.2 reference genome. These samples are obtained from SARS-CoV-2 positive tested patients, HCW, and samples provided by public health services. Six clusters of samples were identified by the hospital Infection prevention control team. Sample groups are indicated by the colored blocks. Additional Ct values and genome coverage are plotted in barplots to illustrate the diversity in viral load between the samples and the high genome coverage that can be achieved by RC-PCR, respectively.

Figure 6. Minimum spanning tree of all samples being part of a cluster as defined by the infection prevention team and all HCW September samples. The tree was calculated using GrapeTree with the MSTreeV2 algorithm. This figure clearly illustrates the relationship between the samples and the clusters.

324

325 Discussion

326 In this study we present the application of a novel method called Reverse Complement-PCR to
327 sequence the SARS-CoV-2 genome which combines target amplification and indexing in a single
328 procedure, directly creating a sequencing ready Illumina library. We applied this method to 173
329 hospital and community samples that tested positive for SARS-CoV-2 with RT-PCR. Most
330 epidemiological clusters from the hospital and the community were confirmed by phylogenetic
331 clustering. Based on our data, RC-PCR is a reproducible technology, it correlates well with Oxford
332 Nanopore sequencing, is able to sequence samples with Ct values up to 32 determined by RT-PCR and
333 within these samples retrieves a high SARS-CoV-2 genome coverage. Optimization of the protocols is
334 expected to increase coverage in samples with lower viral loads even further.
335 Previous studies showed the benefit of using WGS of SARS-CoV-2 for outbreak investigation
336 purposes and to study transmission routes.^{6,12-16} Several methods have been optimized for this purpose.
337 The ARTIC Illumina method, a tiling multiplex PCR approach, was the first that enabled WGS of

338 SARS-CoV-2 using Illumina sequencers.¹⁷ The technique has subsequently been optimized and
339 analysis, albeit in small sample numbers, concluded that it delivers sufficient quality to perform
340 phylogenetic analysis.¹⁸⁻²⁰ It had been used as targeted and random RT-PCR screening with
341 subsequent sequencing of the population in order to study the spread through the community.¹² More
342 recently Sikkema *et al.* were the first to describe the use of SARS-CoV-2 sequencing in healthcare
343 associated infections and identify multiple introductions into Dutch hospitals through community-
344 acquired infections.⁵

345

346 SARS-CoV-2 has an estimated mutation rate of 1.12×10^{-3} substitutions per site per year, which
347 results in 2.8 mutations every month.²¹ The minimum spanning tree of Figure 6 shows several samples
348 with a genetic distance of only a single SNP. With the mutation rate in mind, it is unclear how to relate
349 these clusters since extensive contact tracing information is lacking and interpretation on SNP
350 regarding outbreak management is unknown. Since community samples of September were
351 unavailable, we are unable to determine whether the genetic diversity in the community was low
352 resulting in genetically similar SARS-CoV-2 strains in a hospital setting. However, since sequencing
353 of samples in March and April 2020 clearly resulted in a larger diversity of SARS-CoV-2, and this
354 was early on in the pandemic, it seems more likely that a common source of infection, in- or outside
355 the hospital is the cause. Further research is needed to determine the accepted SNP distance for the use
356 in outbreak analysis.²² Although we know minimum spanning trees are often used in outbreak
357 analysis.⁵ It is a simplification of the phylogeny which could result in erroneous conclusions in
358 outbreak analysis. Care should be taken in interpreting these results.

359

360 It should be noted that some of the amplicons result in lower coverage than others (See Figure 3).
361 Currently, developments are under way in which a better distribution of the amplicon depth will be
362 achieved resulting in genome coverage that could increase to almost 100%. The difference in genome
363 coverage between Run1 and Run1_new is most likely caused by storage of the library and subsequent
364 pooling on the basis of Ct value of the individual samples, nonetheless, repeated testing at higher Ct
365 values will be needed to confirm this.

366

367 With current increase in infections in many countries including the Netherlands and additional
368 measures being put in place to reduce SARS-CoV-2 spreading, real-time sequencing of public health
369 service samples could be used to target infection prevention measures nationwide and locally.²³ Its
370 application can range from incidental cluster analysis in the case of uncertain epidemiological links to
371 real-time surveillance in the community or health care institutes. Additionally, correlation between
372 specific SARS-CoV-2 strains or mutations and clinical outcome could be identified, supporting
373 clinical decision making to improve outcomes for patients.^{24,25}

374

375 In conclusion, here we implemented for the first time, RC-PCR in the field of medical microbiology
376 and infectious diseases thereby showing it to be a robust method which requires only minimal hands-
377 on time compared to current sequencing methods and can be used for high throughput sequencing of
378 SARS-CoV-2. Moreover, RC-PCR and sequence analysis can support epidemiological data with
379 genomic data to identify, monitor, and screen clusters of samples to help identify chains of
380 transmission of SARS-CoV-2, enabling a rapid, targeted and adaptive response to an ongoing outbreak
381 that has great impact on public health and society.

382 **Author contributions**

383 F.W. and J.P.M.C. conducted the research, performed analysis, wrote manuscript and created the
384 figures. L.F.J.vG., C.P.B-R., E.C.T.H.T., N.vdG-B., J.L.A.H. proofreading and provided clinical
385 information and samples of patients and HCWs. A.T. and J.H. conducted the contact tracing and
386 proofreading of the manuscript. H.F.L.W., J.C.R-L., M.S., and W.J.G.M supervised the study and
387 drafted the manuscript.

388 **Conflict of interest disclosures:**

389 The authors have no conflict of interest to disclose.

390 **Funding/support:**

391 The EasySeq™ RC-PCR SARS-CoV-2 WGS kit was supplied by NimaGen B.V and sequencing of
392 the Illumina libraries was performed by NimaGen B.V.. Validation was performed by the Department
393 of Medical Microbioly at the Radboud university medical center for the purpose of using the
394 technology in routine diagnostics. Therefore, no other funding was applied for.

395 **Role of funder/sponsor:**

396 NimaGen B.V. had no role in the design and conduct of the study; collection, management, data
397 analysis; preparation or approval of the manuscript.

398

399 **References**

400

- 401 1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China,
402 2019. *New England Journal of Medicine* 2020.
- 403 2. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real
404 time. *The Lancet infectious diseases* 2020; **20**(5): 533-4.
- 405 3. Reusken CB, Buiting A, Bleeker-Rovers C, et al. Rapid assessment of regional SARS-CoV-2
406 community transmission through a convenience sample of healthcare workers, the Netherlands, March
407 2020. *Eurosurveillance* 2020; **25**(12): 2000334.
- 408 4. McLachlan S, Lucas P, Dube K, et al. The fundamental limitations of COVID-19 contact
409 tracing methods and how to resolve them with a Bayesian network approach. 2020.
- 410 5. Sikkema RS, Pas SD, Nieuwenhuijse DF, et al. COVID-19 in health-care workers in three
411 hospitals in the south of the Netherlands: a cross-sectional study. *Lancet Infect Dis* 2020; **20**(11):
412 1273-80.
- 413 6. Munnink BBO, Nieuwenhuijse DF, Stein M, et al. Rapid SARS-CoV-2 whole-genome
414 sequencing and analysis for informed public health decision-making in the Netherlands. *Nature
415 medicine* 2020; **26**(9): 1405-10.

416 7. Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by
417 real-time RT-PCR. *Eurosurveillance* 2020; **25**(3): 2000045.

418 8. DNA Pipelines R&D BF, Diana Rajan, Emma Betteridge, Lesley Shirley, Michael Quail,
419 Naomi Park, Nicholas Redshaw, Iraad F Bronner, Louise Aigrain, Scott Goodwin, Scott Thurston,
420 Stefanie Lensing, Charlotte Beaver, Ian Johnston. COVID-19 ARTIC v3 Illumina library construction
421 and sequencing protocol V.1. 2020. [https://www.protocols.io/view/covid-19-artic-v3-illumina-library-
422 construction-an-beuzjex6?version_warning=no](https://www.protocols.io/view/covid-19-artic-v3-illumina-library-construction-an-beuzjex6?version_warning=no) (accessed 10th september 2020).

423 9. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
424 *Nucleic Acids Res* 2004; **32**(5): 1792-7.

425 10. Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: New Models and Efficient Methods
426 for Phylogenetic Inference in the Genomic Era. *Mol Biol Evol* 2020; **37**(5): 1530-4.

427 11. Zhou Z, Alikhan N-F, Sergeant MJ, et al. GrapeTree: visualization of core genomic
428 relationships among 100,000 bacterial pathogens. *Genome research* 2018; **28**(9): 1395-404.

429 12. Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic
430 Population. *N Engl J Med* 2020; **382**(24): 2302-15.

431 13. Meredith LW, Hamilton WL, Warne B, et al. Rapid implementation of SARS-CoV-2
432 sequencing to investigate cases of health-care associated COVID-19: a prospective genomic
433 surveillance study. *Lancet Infect Dis* 2020; **20**(11): 1263-72.

434 14. Quick J, Grubaugh ND, Pullan ST, et al. Multiplex PCR method for MinION and Illumina
435 sequencing of Zika and other virus genomes directly from clinical samples. *Nat Protoc* 2017; **12**(6):
436 1261-76.

437 15. Richard M, Kok A, de Meulder D, et al. SARS-CoV-2 is transmitted via contact and via the
438 air between ferrets. *bioRxiv* 2020.

439 16. Stefanelli P, Faggioni G, Lo Presti A, et al. Whole genome and phylogenetic analysis of two
440 SARS-CoV-2 strains isolated in Italy in January and February 2020: additional clues on multiple
441 introductions and further circulation in Europe. *Euro Surveill* 2020; **25**(13).

442 17. Quick J. nCoV-2019 sequencing protocol 2020. *Publisher Full Text* 2020.

443 18. Batty EM, Kochakarn T, Wangwiwatsin A, et al. Comparing library preparation methods for
444 SARS-CoV-2 multiplex amplicon sequencing on the Illumina MiSeq platform. *BioRxiv* 2020.

445 19. Pillay S. Illumina Nextera DNA Flex library construction and sequencing for SARS-CoV-2:
446 Adapting COVID-19 ARTIC protocol. 2020. <https://www.protocols.io/view/illumina-nextera-dna->
447 [flex-library-construction-and-bhjgi4jw](#) (accessed September 30th 2020).

448 20. Pillay S, Giandhari J, Tegally H, et al. Whole Genome Sequencing of SARS-CoV-2: Adapting
449 Illumina Protocols for Quick and Accurate Outbreak Investigation during a Pandemic. *Genes (Basel)*
450 2020; **11**(8).

451 21. Koyama T, Platt D, Parida L. Variant analysis of SARS-CoV-2 genomes. *Bull World Health
452 Organ* 2020; **98**(7): 495-504.

453 22. Yin C. Genotyping coronavirus SARS-CoV-2: methods and implications. *Genomics* 2020.

454 23. RIVM. Current information about COVID-19 (novel coronavirus). October 13th 2020 2020.
455 <https://www.rivm.nl/en/novel-coronavirus-covid-19/current-information>. (accessed October 15th 202.

456 24. Gong YN, Tsao KC, Hsiao MJ, et al. SARS-CoV-2 genomic surveillance in Taiwan revealed
457 novel ORF8-deletion mutant and clade possibly associated with infections in Middle East. *Emerg
458 Microbes Infect* 2020; **9**(1): 1457-66.

459 25. Wang C, Liu Z, Chen Z, et al. The establishment of reference sequence for SARS-CoV-2 and
460 variation analysis. *J Med Virol* 2020; **92**(6): 667-74.

461