

1     **The FLI portion of EWS/FLI contributes a transcriptional regulatory function that**  
2     **is distinct and separable from its DNA-binding function in Ewing sarcoma**

3  
4     Megann A. Boone<sup>1,2</sup>, Cenny Taslim<sup>2</sup>, Jesse C. Crow<sup>2</sup>, Julia Selich-Anderson<sup>2</sup>, Iftekhar A.  
5     Showpnil<sup>2,3</sup>, Benjamin D. Sunkel<sup>2</sup>, Meng Wang<sup>2</sup>, Benjamin Z. Stanton<sup>1,2,3,4</sup>, Emily R.  
6     Theisen<sup>1,2,3,4</sup>, Stephen L. Lessnick<sup>1,2,3,4</sup>

7  
8     <sup>1</sup> Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210,  
9     USA

10  
11    <sup>2</sup> Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at  
12    Nationwide Children's Hospital, Columbus, OH, 43205, USA

13  
14    <sup>3</sup> Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University,  
15    Columbus, OH, 43210, USA

16  
17    <sup>4</sup> Department of Pediatrics, The Ohio State University, Columbus, OH, 43210, USA

18  
19    To whom correspondence should be addressed:

20       Stephen L Lessnick, MD, PhD  
21       Abigail Wexner Research Institute at Nationwide Children's Hospital,  
22       700 Children's Drive, WA5011, Columbus, OH, 43205, USA;  
23       Tel: +1 (614) 355-2633; Fax: +1 (614) 355-2927;  
24       Email: [stephen.lessnick@nationwidechildrens.org](mailto:stephen.lessnick@nationwidechildrens.org)

25

26 **Abstract**

27 **Background:** Ewing sarcoma is an aggressive bone cancer in children and young adults that  
28 contains a pathognomonic chromosomal translocation: t(11;22)(q24;q12). The encoded protein,  
29 EWS/FLI, fuses the low-complexity amino-terminal portion of EWS to the carboxyl-terminus of  
30 FLI. The FLI portion contains an ETS DNA-binding domain and adjacent amino- and carboxyl-  
31 regions. Early studies using non-Ewing sarcoma cellular models provided conflicting information  
32 on the role of these adjacent regions in the oncogenic function of EWS/FLI. We therefore sought  
33 to define the specific contributions of each FLI region to EWS/FLI activity in an appropriate Ewing  
34 model, and in doing so, to better understand Ewing sarcoma development mediated by the fusion  
35 protein.

36 **Methods:** We used a “knock-down/rescue” system to replace endogenous EWS/FLI expression  
37 with mutant forms of the protein in Ewing sarcoma cells and tested these for oncogenic  
38 transformation using soft-agar colony forming assays. These data were complemented by DNA-  
39 binding assays using fluorescence anisotropy, genomic localization assays using CUT&RUN,  
40 transcriptional regulation studies using luciferase reporter assays and RNA-sequencing, as well  
41 as chromatin accessibility assays using ATAC-sequencing.

42 **Results:** We found that the DNA-binding domain and short flanking regions of FLI were required  
43 for oncogenic transformation, gene expression, genomic localization and chromatin accessibility  
44 when fused to the amino-terminal EWS-portion from EWS/FLI, but that the remaining regions of  
45 FLI were dispensable for these functions. Removal of a carboxyl-terminal alpha-helix from the  
46 short flanking regions of the DNA-binding domain of FLI created a hypomorphic EWS/FLI that  
47 retained normal DNA binding, genomic localization, and chromatin accessibility, but had  
48 significantly restricted transcriptional activity and a near total loss of oncogenic transformational  
49 capacity.

50 **Conclusions:** The DNA-binding domain and carboxyl-terminal short flanking region of FLI are  
51 the only portions of FLI required for EWS/FLI-mediated oncogenic transformation in a Ewing

52 sarcoma cellular context. In addition to the well-defined DNA-binding function of FLI, this  
53 additional alpha-helix immediately downstream of the DNA-binding domain contributes a  
54 previously-undescribed function in gene regulation and oncogenic transformation. Understanding  
55 the function of this critical region could provide new therapeutic opportunities to target EWS/FLI  
56 in Ewing sarcoma.

57

58 **Keywords:** Ewing sarcoma, EWS/FLI, translocation, ETS, structure-function

59

## 60 **Background**

61 Ewing sarcoma is a bone-tumor of children and young adults (2). These tumors always contain  
62 chromosomal translocations that encode fusions between a member of the FET protein family  
63 and one of the ETS transcription factors (1, 3). The most common translocation (in ~85% of  
64 patients) is the t(11;22)(q24;q12), which fuses *EWSR1* to *FLI1* (1, 4, 5). The *EWSR1/FLI1* fusion  
65 encodes the EWS/FLI protein (3, 6). Multiple studies have demonstrated that EWS/FLI has  
66 oncogenic function and serves as the driver oncoprotein in Ewing sarcoma (1, 4, 7). Indeed,  
67 EWS/FLI is often the only genetic abnormality in these otherwise “genomically-quiet” tumors (8).  
68 Thus, determining the mechanisms underlying the oncogenic function of EWS/FLI is critical to  
69 understanding Ewing sarcoma tumorigenesis, identifying new therapeutic approaches for this  
70 aggressive disease, and may also shed light on the oncogenic mechanisms of other “ETS-  
71 associated” tumors.

72

73 EWS/FLI functions as an aberrant transcription factor and dysregulates several thousand genes  
74 (9, 10). The intrinsically-disordered low-complexity domain of EWS contributes strong  
75 transcriptional activating and repressing functions to the fusion (11-13). The mechanisms by  
76 which the EWS-portion mediates these functions are only beginning to be understood, but may

77 include the recruitment of epigenetic co-regulators and RNA-polymerase II, perhaps via the  
78 formation of transcriptional “hubs” consisting of low-affinity/high-valency interactions, phase-  
79 separated droplets, or even polymerized fibrils (9, 14-17).

80

81 FLI is a member of the ETS family of transcription factors (18-20). The 28 ETS family members  
82 in humans are defined by the presence of highly conserved winged helix-turn-helix DNA-binding  
83 domains (DBD) (18). The preferred high-affinity (HA) binding sequence for FLI is  
84 “ACCGGAAGTG”, while other family members bind similar sequences containing a GGA(A/T)  
85 core surrounded by additional base pairs (18, 21). Structural studies have demonstrated that the  
86 third alpha-helix of the FLI DNA-binding domain (part of the winged helix-turn-helix structure)  
87 binds in the major groove of DNA (19, 22, 23). Several ETS family members demonstrate  
88 “autoinhibitory” activity in which domains adjacent to the DNA-binding domain reduce the ability  
89 of ETS factors to bind DNA (24). However, FLI harbors only minimal autoinhibitory activity (~2-3  
90 fold reduction in binding affinity) (24, 25). In addition to binding classic ETS HA sites, EWS/FLI  
91 also binds to microsatellite sequences consisting of multiple “GGAA” tetrameric repeats (26-28).  
92 There are thousands of GGAA-microsatellite sequences scattered throughout the human  
93 genome, and many of these serve as EWS/FLI-response elements associated with target genes  
94 critical for oncogenic transformation in Ewing sarcoma (26-28). The ability of EWS/FLI to regulate  
95 target genes through GGAA-microsatellites appears to be a neomorphic function gained by the  
96 fusion protein as compared to wild-type FLI. Along with the ETS DNA-binding domain, the FLI  
97 portion of the fusion contains additional amino-terminal and carboxyl-terminal regions of uncertain  
98 function.

99

100 The cell of origin of Ewing sarcoma is not known (29). Early studies that analyzed the role of the  
101 FLI portion of EWS/FLI used heterologous cell types, such as NIH3T3 murine fibroblasts, with  
102 conflicting results (29). For example, expression of wild-type EWS/FLI induces oncogenic

103 transformation of NIH3T3 cells, while expression of an EWS/FLI mutant harboring a complete  
104 deletion of the ETS DNA-binding domain did not, demonstrating a critical role for DNA-binding in  
105 the function of EWS/FLI (7). In contrast, a later study demonstrated that a partial deletion of the  
106 ETS DNA-binding domain (that also disrupted DNA-binding) instead retained the capability of  
107 inducing oncogenic transformation of NIH3T3 cells (30). Subsequent studies in patient-derived  
108 Ewing sarcoma cells showed that a DNA-binding defective mutant of EWS/FLI was unable to  
109 mediate oncogenic transformation in cells, thus proving that DNA-binding is absolutely required  
110 for EWS/FLI-mediated transformation in a more relevant Ewing cellular model (13). The carboxyl-  
111 terminal region of FLI (outside of the DNA-binding domain) was also evaluated in the NIH3T3  
112 model and determined to be important for transcriptional control and oncogenic transformation  
113 mediated by EWS/FLI, though this has not been reproduced in a Ewing sarcoma model (31).  
114 Later work demonstrated that gene expression patterns mediated by EWS/FLI in the NIH3T3  
115 model were drastically different from those in Ewing sarcoma cellular models, suggesting that  
116 EWS/FLI may utilize alternative mechanisms to drive oncogenesis in different systems and that  
117 model system selection is important (29). To our knowledge, a systematic evaluation of the FLI  
118 portion of EWS/FLI in Ewing sarcoma cells has yet to be reported and so the roles of various  
119 regions of FLI in EWS/FLI-mediated oncogenic transformation remain unknown.

120  
121 To address this important gap in knowledge, we now report an analysis of the FLI portion of  
122 EWS/FLI in Ewing sarcoma cells using our well-validated “knock-down/rescue” system. This  
123 model allowed us to identify an uncharacterized region just outside of the DNA-binding domain of  
124 FLI that is absolutely essential for EWS/FLI-mediated transcriptional regulation and oncogenic  
125 transformation. Furthermore, this system allowed us to explore the mechanistic contributions of  
126 this region using luciferase reporter and whole genome RNA-sequencing assays, DNA-binding  
127 assays and genomic localization studies, and evaluation of open chromatin regions using ATAC-  
128 sequencing. These studies demonstrate a unique contribution of this region in mediating gene

129 expression and subsequent oncogenic transformation that is independent of DNA-binding or the  
130 modulation of open chromatin states.

131

## 132 **Methods**

### 133 **Constructs and retroviruses**

134 Puromycin-resistant retroviral vectors encoding shRNAs targeting *Luciferase* (iLuc) or the 3'-UTR  
135 of endogenous EWS/FLI mRNA (iEF) were previously described (28, 32). Full-length EWS/FLI  
136 and mutants (all containing amino-terminal 3xFLAG-tags) were cloned into pMSCV-Hgro  
137 (Invitrogen) with sequence details provided in Additional file 1. Luciferase reporter constructs (in  
138 pGL3 vectors; Promega Corporation) were previously described (28). The FLI DBD or FLI DBD+  
139 proteins (each containing a carboxyl-terminal 6xHistidine tag) were expressed using pET28a  
140 plasmids (EMD Chemicals).

141

### 142 **Cell culture methods**

143 HEK-293EBNA (Invitrogen) and A673 cells (ATCC) were grown, retroviruses produced and used  
144 for infection, and soft agar assays were performed as described (28, 32, 33). STR profiling and  
145 mycoplasma testing are performed annually on all cell lines. Dual luciferase reporter assays were  
146 performed in HEK-293EBNA cells as previously described (28).

147

### 148 **Immunodetection**

149 Whole-cell or nuclear protein extraction, protein quantification, and Western blot analysis was  
150 performed as previously described (28, 32, 33). Immunoblotting was performed using anti-FLAG  
151 M2 mouse (Sigma F1804-200UG), anti- $\alpha$ -Tubulin (Abcam ab7291), and anti-Lamin B1 (Abcam  
152 ab133741). Membranes were imaged using the LiCor Odyssey CLx Infrared Imaging System.

153

154 **qRT-PCR**

155 Total RNA was extracted from cells using the RNeasy Extraction Kit (Qiagen 74136). Reverse  
156 transcription and qPCR were performed using the iTaq Universal SYBR Green 1-Step Reaction  
157 Mix (BioRad 1725151) on a Bio-Rad CFX Connect Real-Time System. Primer sequences are  
158 found in Additional file 2.

159

160 **Recombinant protein purification**

161 Recombinant 6xHistidine-tagged FLI DBD and FLI DBD+ protein was purified as previously  
162 described (28).

163

164 **Fluorescence anisotropy**

165 Fluorescence anisotropy was performed using recombinant protein and fluorescein-labeled DNA  
166 duplexes as previously described using sequences provided in Additional file 3 (28).

167

168 **CUT&RUN and Analysis**

169 Two biological replicates for each knock-down/rescue sample were analyzed by CUT&RUN using  
170 the anti-FLAG M2 mouse antibody (Sigma F1804-200UG) as described and sequenced with the  
171 Illumina HiSeq4000 (32). Raw reads were trimmed, de-duplicated, aligned to hg19 reference  
172 genomes, and peaks were called using macs2 and DiffBind (Bioconductor) using I"EF + Empty  
173 Vector" samples as controls (34). Bigwig files combining two replicates with normalization option  
174 "RPGC" were created using DeepTools (35). Overlapping peak analysis was completed using R  
175 packages ChIPpeakAnno and GenomicRanges (36, 37).

176

177 **RNA-sequencing and Analysis**

178 RNA-sequencing was performed on two biological replicates each for knock-down/rescue A673  
179 sample. TruSeq Stranded mRNA Kit (Illumina Cat. No. 20020594) was used to prepare cDNA

180 libraries from total RNA and sequenced on Illumina HiSeq4000 to generate 150-bp paired-end  
181 reads. Reads were analyzed for quality control, trimmed, aligned to the human genome and  
182 analyzed for differential analysis (using FASTQC, Multiqc, Trim\_galore, STAR version 2.5.2b,  
183 DESeq2) (38). GSEA (Version 4.0.3) analysis was performed on RNA-sequencing data (39).  
184 Significantly activated and repressed genes were defined using a  $\log_2(\text{FC})$  of  $|1.5|$  cutoff for EF  
185 and EF DBD+ to create gene sets. EF DBD genes were used as the rank-ordered gene list to  
186 compare with these gene sets. RNA-expression scatterplot analysis was performed as previously  
187 described (32).

188

### 189 **ATAC-sequencing and Analysis**

190 ATAC-sequencing was performed on two separate biological replicates for knock-down/rescue  
191 A673 cells as previously described and sequenced with Illumina HiSeq4000 (40, 41). The  
192 ENCODE pipeline was used for trimming, alignment to hg19 reference genome, and peak calling  
193 on individual replicates (ENCODE Project). RegioneR was used to perform permutation test and  
194 test significance of overlapping ATAC peaks in different samples (37). EnrichedHeatmap, ggplot2,  
195 ChIPpeakAnno, and GenomicRanges were used to calculate overlapping regions and create  
196 heatmaps (36, 37, 42, 43). Differential ATAC peak analysis was completed using DiffBind  
197 (Bioconductor) and DESeq2 with an  $\text{FDR} < 0.05$  (38).

198

### 199 **Statistical Analysis**

200 Luciferase assay, soft agar assay, and PCR data are presented as mean  $\pm$  SEM. Fluorescence  
201 anisotropy data are presented as mean  $\pm$  standard deviation. Significance of experimental results  
202 was determined using a Student's t-test for comparison between groups. P-values less than 0.05  
203 were considered to be significant.

204

### 205 **Results**

206

207 **Amino- and carboxyl-terminal regions of FLI are dispensable for EWS/FLI-mediated**  
208 **transcriptional activation in luciferase reporter assays**

209 We first sought to determine the role of the amino- and carboxyl-regions of FLI in EWS/FLI-  
210 mediated transcriptional activation using a well-defined luciferase reporter assay containing a  
211 20xGGAA-microsatellite response element and a minimal promoter (28). We used the “type IV”  
212 EWS/FLI fusion (containing regions encoded by exons 1-7 of *EWSR1* fused to exons 7-9 of *FLI1*)  
213 as the full-length protein (containing the 3xFLAG-tag), as this has been extensively used in our  
214 previous studies (28, 32). We created 3xFLAG-tagged constructs to express “EF ΔN-FLI” and “EF  
215 ΔC-FLI” mutants that harbor deletions in the FLI portion of the fusion that were either amino-  
216 terminal to or carboxyl-terminal to the FLI DNA-binding domain, respectively (Figure 1A). EF ΔC-  
217 FLI is similar to the Δ89-C protein that showed diminished oncogenic potential in the NIH3T3  
218 model system (31). Expression plasmids encoding these proteins were co-transfected with the  
219 20xGGAA-microsatellite luciferase reporter into HEK-293EBNA cells. All three proteins were  
220 expressed at similar levels (Figure 1B). We found that all three versions of EWS/FLI were capable  
221 of activating luciferase reporter gene expression to similar levels (Figure 1C). These data  
222 demonstrate that neither the amino-terminal nor the carboxyl-terminal region of FLI is required for  
223 transcriptional activation mediated by EWS/FLI in this system.

224

225 **Regions immediately adjacent to the DNA-binding domain of FLI are required for**  
226 **oncogenic function of EWS/FLI in a Ewing sarcoma cellular model**

227 We next hypothesized that the only critical region in the FLI portion of EWS/FLI is the ETS DNA-  
228 binding domain itself. The ETS DNA-binding domain of FLI is not well-defined in the published  
229 literature. The ETS domain is often referred to as an 85-amino acid sequence (18, 19, 21).  
230 However, other structural and functional studies of FLI defined a larger region of FLI as the ETS

231 domain that included short amino- and carboxyl-extensions to the 85-amino acid “core” (7, 44).  
232 To test both possible “ETS domains”, we created two new mutant forms of EWS/FLI: “EF DBD”  
233 that fuses EWS directly to the 85-amino acid ETS domain and “EF DBD+” that fused EWS to a  
234 102-amino acid ETS DNA-binding domain (containing 7- and 10-amino acid extensions on the  
235 amino-terminal and carboxyl-terminal sides of DBD, respectively) that our laboratory has used in  
236 prior studies (Figure 2A) (26).

237

238 Similar levels of protein expression were observed following transfection into HEK-293EBNA cells  
239 (Supplemental Figure 1A). Luciferase reporter assays using the 20xGGAA-microsatellite  
240 response element revealed that both EF DBD and EF DBD+ induced robust transcriptional  
241 activation and were even more active than full-length EWS/FLI itself (EF) (Figure 2B, p-  
242 value<0.001).

243

244 To determine whether the results observed using the luciferase reporter assay would translate to  
245 a more relevant Ewing sarcoma cellular model, we used our “knock-down/rescue” system to  
246 replace endogenous EWS/FLI with exogenous constructs in patient-derived A673 Ewing sarcoma  
247 cells (45). Briefly, retrovirally-expressed shRNAs targeting a control gene (iLuc) or the 3'-UTR of  
248 endogenous EWS/FLI (iEF) were introduced and efficient reduction of endogenous EWS/FLI  
249 mRNA was achieved (Figure 2C). Exogenous expression of EWS/FLI was “rescued” through  
250 retroviral expression of cDNA constructs (EF, EF DBD, and EF DBD+) lacking the endogenous  
251 3'-UTR (Figure 2D).

252

253 These “knock-down/rescue” cells were seeded into soft agar to measure anchorage-independent  
254 colony formation as a measure of oncogenic transformation (Figure 2E-F). Positive control cells  
255 (iLuc + Empty Vector) showed high rates of colony formation, while cells with diminished levels  
256 of EWS/FLI (iEF + Empty Vector) showed a near total loss of transformation capacity that was

257 rescued by re-expression of full-length EWS/FLI (iEF + EF). (Figure 2E-F). Interestingly,  
258 expression of EF DBD+ (iEF + EF DBD+) rescued colony formation to the same level as full-  
259 length exogenous EF, but the smaller EF DBD construct completely failed to rescue colony  
260 formation (Figure 2E-F, p-value<0.005). These data define a significant functional difference  
261 between EF DBD and EF DBD+ in the A673 Ewing sarcoma model that is not correlated to their  
262 transcriptional activity in the luciferase reporter assay.

263

264 **DNA-binding and genomic localization of EWS/FLI are nearly identical in FLI domain  
265 mutants**

266 The inability of EF DBD to rescue A673 cell colony growth suggested a loss of a critical function  
267 as compared to EF DBD+. The only difference between the EF DBD and EF DBD+ constructs is  
268 in the 17-amino acids flanking the 85-amino acid DNA-binding domain core. We therefore  
269 reasoned that these flanking amino acids may contribute to EWS/FLI DNA-binding affinity. To test  
270 this hypothesis, we performed *in vitro* fluorescence anisotropy studies to compare the ability of  
271 FLI DBD or FLI DBD+ recombinant protein to bind fluorescein-labeled DNA duplexes (Figure 3A,  
272 Supplemental Figure 2A-B). We tested an ETS high affinity (HA) site, a 2xGGAA-repeat  
273 microsatellite, and a 20xGGAA-repeat microsatellite (Figure 3B-D). We found that both FLI DBD  
274 and FLI DBD+ bound each DNA element with similar dissociation constant ( $K_D$ ) values (Figure  
275 3B-D). These data discount the idea that a significant difference in DNA-binding affinity is the  
276 underlying defect in EF DBD.

277

278 Although *in vitro* DNA-binding was nearly identical between FLI DBD and FLI DBD+ recombinant  
279 proteins, we next considered if differences in DNA-binding may only be revealed in the context of  
280 a chromatinized human genome. To assess this possibility, we performed CUT&RUN (Cleavage  
281 Under Targets & Release Under Nuclease) to determine the genomic localization patterns of our  
282 3xFLAG-tagged EF, EF DBD, and EF DBD+ proteins in A673 cells using our knock-down/rescue

283 system (32, 46). An anti-FLAG antibody was used to ensure that we evaluated the localization of  
284 the exogenous “rescue” constructs and not any low-level residual EWS/FLI remaining after the  
285 knock-down. We found that CUT&RUN identified a similar number of binding peaks between full-  
286 length EF (14,040), EF DBD+ (14,970), and EF DBD (14,394). Comparison of the binding  
287 locations for each construct demonstrated that 90% of EF DBD peaks overlap with those of EF  
288 and EF DBD+ (Figure 3E, adjusted p-value < 0.001). Further exploration of EWS/FLI-bound high-  
289 affinity sites and microsatellites did not identify any significant differences between EF DBD and  
290 EF or EF DBD+ (representative peak tracks are shown in Figure 3F-H). Taken together, these  
291 data indicate that there are no large-scale changes in DNA-binding capabilities that might explain  
292 the inability of EF DBD to rescue oncogenic transformation in Ewing sarcoma cells.

293

#### 294 **EF DBD exhibits a hypomorphic gene regulatory capability in Ewing sarcoma cells**

295 The above studies demonstrated that genome-wide localization is nearly-identical between the  
296 full-length and mutant EWS/FLI constructs. Although luciferase assays (Figure 2B) showed strong  
297 transcriptional activation by EF DBD, we next considered the possibility that transcriptional  
298 regulatory function of EF DBD might be disrupted in a more relevant Ewing sarcoma model. To  
299 test this hypothesis, we performed RNA-sequencing on knock-down/rescue cells expressing full-  
300 length EWS/FLI (EF), EF DBD+, or EF DBD.

301

302 Full-length EWS/FLI (EF) regulated 4,124 genes and EF DBD+ regulated 3,374 genes (at  
303 adjusted p-values < 0.05). Importantly, 90% of the genes regulated by EF DBD+ were also  
304 regulated by EF. In contrast, EF DBD regulated only 964 genes (adjusted p-value < 0.05). To  
305 determine if activated or repressed genes were disproportionately affected, we analyzed each  
306 group separately. There was a similar loss of regulation in each group, although the genes that  
307 were regulated by EF DBD mostly overlapped with the fully-functional constructs (Figure 4A-B).

308

309 We next performed a more detailed evaluation of the RNA-sequencing data using Gene Set  
310 Enrichment Analysis (GSEA). We asked where the activated and repressed gene sets of EF DBD  
311 fall in comparison to the rank-ordered gene expression list of EF DBD+. We found very strong  
312 correlations of both the activated and repressed gene sets ( $|NES|$  of 3.5 and 2.65, respectively,  $p$   
313  $< 0.001$ ; Figure 4C-D). Even stronger correlations were observed when EF DBD-regulated gene  
314 sets were compared with EF activated and repressed genes ( $|NES|$  of 7.09 and 5.65, respectively,  
315  $p < 0.001$ ; Supplemental Figure 3A-B).

316

317 Closer inspection of the GSEA results revealed a near-complete “stacking” of the EF DBD-  
318 regulated genes at the furthest edges of the EF DBD+ (or full-length EF) rank-ordered lists. This  
319 suggested that EF DBD may only be able to significantly rescue a portion of the EF DBD+ or EF-  
320 regulated genes, while other genes are still regulated, though to a lesser extent and are not called  
321 as significant. We therefore hypothesized that EF DBD functions as an attenuated, hypomorphic  
322 version of EWS/FLI. To test this hypothesis, we performed a scatterplot analysis to compare the  
323 ability of these constructs to rescue previously-reported EWS/FLI-regulated genes (47). On the  
324 x-axis, we plotted the expression levels of genes regulated by the full-length EF construct  
325 (activated genes in Figure 4E and repressed genes in Supplemental Figure 3C). On the y-axis,  
326 we plotted the expression levels of genes regulated by EF DBD+ or EF DBD. Transcriptional  
327 regulation by EF DBD+ at activated and repressed genes was highly correlated with regulation  
328 by EF (slope=0.88 with  $R=0.93$  and slope=0.94 with  $R=0.97$ , respectively;  $p$ -value  $< 2.2e-16$ ;  
329 Figure 4E left panel, Supplemental Figure 3C left panel). In contrast, EF DBD demonstrated much  
330 weaker correlations (slope=0.32 with  $R=0.54$  for activated genes,  $p$ -value  $< 2.5e-13$ ; slope=0.54  
331 with  $R=0.78$  for repressed genes,  $p$ -value  $< 2.2e-16$ ; Figure 4E right panel, Supplemental Figure  
332 3C right panel). As regulation of EF DBD was still correlated with EF, these data suggested that  
333 it is regulating a similar set of genes, albeit more weakly than EF or EF DBD+.

334

335 Taken together, these data indicate that EF DBD is significantly attenuated in its ability to both  
336 up- and down-regulate gene expression in patient-derived Ewing sarcoma cells. Thus, EF DBD  
337 is best considered a transcriptional regulatory hypomorph, even though its DNA-binding function  
338 is intact. The loss of oncogenic potential of EF DBD appears to be due to an underlying defect in  
339 transcriptional regulatory capability. This is an unanticipated result as the transcriptional  
340 regulation function of EWS/FLI was considered to be mediated solely by the EWS-portion of the  
341 fusion with the FLI-portion contributing only DNA-binding function.

342

343 **Capacity of EWS/FLI to mediate chromatin state is unaltered by deletions surrounding the**  
344 **FLI DNA-binding domain**

345 It was recently reported that EWS/FLI functions as a pioneer transcription factor to open regions  
346 of chromatin that were previously closed (9, 15). As chromatin accessibility is a general necessity  
347 for transcriptional regulation, we next evaluated the role of EWS/FLI and its mutants on creation  
348 (or maintenance) of open chromatin states by performing ATAC-sequencing in our knock-  
349 down/rescue system. To focus on the role of the EWS/FLI mutants on chromatin accessibility, we  
350 overlapped the EWS/FLI-bound regions (as identified in our CUT&RUN analysis) with the ATAC-  
351 sequencing data. We found that ~95% of the nearly 13,000 EWS/FLI-binding sites had detectable  
352 ATAC signal (Figure 5A), indicating that most EWS/FLI binding peaks are associated with open  
353 chromatin states.

354

355 To determine if EF DBD is defective in opening chromatin, we compared the ATAC signal at  
356 regions bound by EF DBD and those bound by EF DBD+. We found that almost 95% of ATAC  
357 peaks were shared between EF DBD+ and EF DBD (Figure 5B), suggesting that there were not  
358 significant differences in accessible chromatin associated with the two mutants.

359

360 To determine if more subtle differences in open chromatin might be associated with the capability  
361 of each mutant to regulate gene expression, we performed a heatmap analysis (Supplemental  
362 Figure 4A-B). At EWS/FLI-bound loci near genes that were regulated by EF DBD+ (but not EF  
363 DBD), we were surprised to find that the level of ATAC signal was similar in cells expressing EF  
364 DBD+ as compared to those expressing EF DBD. Interestingly, we also noted that the ATAC  
365 signal was similar at these sites in EWS/FLI knock-down cells (EF KD), indicating that the loss of  
366 EWS/FLI is not associated with a closing of the open chromatin state, at least in this system.  
367 Tracks comparing RNA-sequencing, CUT&RUN, and ATAC signal at representative genes only  
368 are shown in Figure 5C-D. These data indicate that the dysfunction of EF DBD in mediating gene  
369 regulation is not a consequence of an altered pioneer-type function to induce or maintain an open  
370 chromatin state at regulated genes.

371

372 **A fourth alpha-helix of the FLI ETS DNA-binding domain is essential for EWS/FLI-mediated  
373 oncogenic transformation**

374 Finally, we sought to determine which flanking region of EF DBD+ (that is missing in EF DBD) is  
375 critical for oncogenic transformation. We engineered EF DBD+ constructs harboring deletions of  
376 either the amino-terminal 7-amino acids or the carboxyl-terminal 10-amino acids surrounding the  
377 core 85-amino acid DNA-binding domain of FLI (EF DBD+  $\Delta$ N or EF DBD+  $\Delta$ C, respectively;  
378 Figure 6A). Similar expression of each protein construct was observed in A673 cells utilizing our  
379 knock-down/rescue system (Figure 6B). Soft agar colony-forming assays demonstrated that EF  
380 DBD+  $\Delta$ N was fully-functional while EF DBD+  $\Delta$ C completely lost the ability to transform A673  
381 cells (Figure 6C-D). These results clearly demonstrate that the 10-amino acids downstream of the  
382 FLI DNA-binding domain are essential for EWS/FLI-mediated oncogenesis.

383

384 Analysis of a previously published FLI protein crystal structure revealed that this 10-amino acid  
385 sequence forms two additional beta-turns and a fourth alpha-helix downstream of the winged  
386 helix-turn-helix DNA-binding domain of FLI (44). Interestingly, this same study demonstrated that  
387 recombinant FLI protein is capable of homodimerization when bound to an ETS HA site via  
388 interactions between this fourth alpha-helix of one FLI molecule with the  $\alpha_1$ -helix of another FLI  
389 molecule and that homodimerization was lost when a critical phenylalanine was mutated to  
390 alanine in this region (F362A) (44). We found that introduction of the F362A mutation to our EF  
391 DBD+ construct had no effect on oncogenic transformation in our A673 knock-down/rescue model  
392 system, indicating that homodimerization is not required for the oncogenic potential of EWS/FLI  
393 (Supplemental Figure 5A-D).

394

## 395 **Discussion**

396 Ewing sarcoma represents a unique opportunity to understand how a single fusion protein  
397 mediates oncogenic transformation (8). The EWS/FLI fusion functions as an aberrant transcription  
398 factor to dysregulate the expression of several thousand genes and drive oncogenesis, but the  
399 mechanistic details of how EWS/FLI modulates this process are only beginning to be understood.  
400 It has long been recognized that the EWS-portion functions as a strong transcriptional activation  
401 domain (11). In recent years, it has become appreciated that this domain has unique biophysical  
402 characteristics that are important for its functions of self-association, recruitment of epigenetic  
403 regulators, and interaction with the basal transcriptional machinery that all cooperate to regulate  
404 gene expression (9, 14-17).

405

406 Although several studies suggested that the regions outside of the ETS DNA-binding domain of  
407 FLI may be important for EWS/FLI function, the FLI-portion of the fusion has largely been viewed  
408 as simply contributing DNA-binding function. In the current study, we took a systematic approach

409 to understand the contributions of FLI to EWS/FLI activity in the context of a Ewing sarcoma  
410 cellular background. This allowed us to define a previously unappreciated role for the fourth alpha-  
411 helix of the extended FLI DNA-binding domain in transcriptional regulation. This alpha-helix does  
412 not appear to be important for the DNA-binding, genomic localization, or chromatin accessibility  
413 functions of EWS/FLI. Instead, loss of this helix results in a significant loss of gene-regulatory  
414 function that culminates in a complete loss of oncogenic transformation mediated by EWS/FLI.

415

416 The exact mechanism by which the fourth alpha-helix participates in gene regulation will require  
417 additional studies. One possibility is that the fourth alpha-helix is involved in protein-protein  
418 interactions with adjacent transcription factors. For example, it has been reported that EWS/FLI  
419 interacts with Serum Response Factor (SRF) on serum response elements to form a ternary  
420 complex with DNA that is required to regulate transcription (48). It was also shown that the AP-1  
421 members, Fos-Jun, bind to AP-1 sites adjacent to ETS high-affinity sites and form a ternary  
422 complex with EWS/FLI (49). Although each of these interactions specifically occur with the FLI  
423 portion of EWS/FLI, they each occur outside of the regions of FLI contained in our EF DBD or EF  
424 DBD+ mutants and as such, do not readily explain the differences in activity observed between  
425 the proteins (49). EWS/FLI may interact with other transcription factors as well. However, we do  
426 not favor a loss of such EWS/FLI-transcription factor interactions as the most likely cause of the  
427 massive loss of transcriptional function by EF DBD. We reason that if there were losses of  
428 EWS/FLI interactions with specific transcription factors, we would have expected a more limited  
429 loss of gene expression (rather than the ~70% loss we observed for EF DBD). Furthermore, the  
430 formation of ternary complexes between pairs of transcription factors with DNA tend to stabilize  
431 DNA binding. As such, we might also have anticipated a significant change in genomic localization  
432 of EF DBD, which was not observed. We currently favor a model whereby the fourth alpha-helix  
433 interacts with epigenetic regulators, and/or components of the core transcriptional machinery, that  
434 are required for global gene regulation, rather than regulation limited to specific loci.

435

436 Work in NIH3T3 mouse fibroblasts suggested a role for the carboxyl-terminal region of FLI in  
437 mediating transcriptional down-regulation by EWS/FLI (31). Our work here rules out a significant  
438 role for this region in EWS/FLI-mediated oncogenesis. Additionally, luciferase reporter assays  
439 have long been used as functional screens, but our results show that activation on a luciferase  
440 reporter in an artificial system does not necessarily translate to a Ewing sarcoma model. Indeed,  
441 we also note that we did not see direct evidence of the pioneer-type function of EWS/FLI in the  
442 Ewing sarcoma model, which had primarily been observed in a mesenchymal stem cell model  
443 (9). In our system, EWS/FLI-occupied sites remained open and accessible following knock-down  
444 of EWS/FLI. It may be that the 80-90% knock-down we achieved was insufficient to allow for  
445 chromatin closing of those loci, or perhaps insufficient time was provided to allow for chromatin  
446 closing. Nevertheless, changes in chromatin accessibility were not associated with the  
447 transcriptional dysfunction exhibited by EF DBD. These findings highlight the importance of  
448 analyzing EWS/FLI activity in a relevant Ewing sarcoma cellular context.

449

450 It is important to note that a detailed comparison of protein structures of ETS family members  
451 revealed that many of these proteins harbor this additional fourth alpha-helix just downstream of  
452 their DNA-binding domains. Therefore, the work presented here may have relevance beyond the  
453 EWS/FLI-associated Ewing sarcoma context. For example, Ewing sarcoma translocations involve  
454 one of five closely-homologous ETS family members (FLI, ERG, FEV, ETV1, and ETV4) (11).  
455 Additionally, *TMPRSS2-ERG* fusions exist in approximately 50% of prostate cancer cases, with  
456 *TMPRSS2-FEV*, *-ETV1*, *-ETV4*, and *-ETV5* fusions found in other patients (50). In fact, many ETS  
457 family members have been implicated in the oncogenesis of numerous solid and liquid tumor  
458 types via mechanisms of over-expression, amplification, mutations, and translocations (20). As  
459 the functional motif we identified as crucial for EWS/FLI activity is conserved in numerous other

460 ETS factors, the data presented in this report may have wide-ranging implications for oncogenesis  
461 in multiple tumor types.

462

### 463 **Conclusions**

464 In summary, we have taken a systematic structure-function approach to identify a previously  
465 unappreciated region in the extended FLI DNA-binding domain that is required for transcriptional  
466 regulation and oncogenic transformation mediated by EWS/FLI. This transcriptional function is  
467 distinct from the DNA-binding and genomic localization functions typically associated with the  
468 ETS domain. This work has implications not only for the development of Ewing sarcoma, but may  
469 also be useful in understanding the development of other ETS-associated tumors and, perhaps,  
470 even normal ETS transcriptional function. A better understanding of this newly-defined region may  
471 lead to novel approaches for therapeutically-targeting EWS/FLI, as well as other ETS factors.  
472 Ultimately, these efforts may lead to more efficacious therapeutic options for patients with this  
473 devastating disease.

474

### 475 **Abbreviations**

476 ATAC-sequencing: Assay for Transposase-Accessible Chromatin using sequencing; CUT&RUN:  
477 Cleave Under Targets & Release Under Nuclease; cDNA: complementary DNA; DBD: DNA-  
478 binding domain; DNA: deoxyribonucleic acid; EF: experimental EWS/FLI cDNA constructs; ERG:  
479 ETS-related gene; ETS: E26 transformation specific; ETV1: ETS variant transcription factor 1;  
480 ETV4: ETS variant transcription factor 4; ETV5: ETS variant transcription factor 5; *EWSR1* (EWS):  
481 Ewing sarcoma breakpoint region 1; FET: FUS/TLS, EWSR1, TAF15; FEV: Fifth Ewing variant  
482 protein; *FLI1* (FLI): Friend leukemia integration 1; FUS: Fused in sarcoma; GSEA: Gene Set  
483 Enrichment Analysis; HA: high-affinity; HEK-293EBNA: Human embryonic kidney-293 cell line  
484 expressing Epstein Barr nuclear antigen; IGV: Integrated Genome Viewer; KD: knock-down;  $K_D$ =

485 dissociation constant; log2(FC): log2(Fold Change); mRNA: messenger RNA;  $\mu$ Sat:  
486 microsatellite; NES: Normalized Enrichment Score; qRT-PCR: quantitative Reverse  
487 Transcriptase- Polymerase Chain Reaction; RNA: ribonucleic acid; SEM: standard error of the  
488 mean; SRF: Serum Response Factor; STR: short tandem repeats; TMPRSS2: Transmembrane  
489 protease, serine 2

490

491 **Declarations**

492 **Ethics Approval and Consent to Participate**

493 Not applicable.

494

495 **Consent for publication**

496 Not applicable.

497

498 **Availability of data and materials**

499 The sequencing datasets generated and analyzed during the current study are available in the  
500 Gene Expression Omnibus and accessible at [unique identifier number pending]. All other data  
501 generated or analyzed during this study are available from the corresponding author on  
502 reasonable request.

503

504 **Competing interests**

505 SLL declares a competing interest as a member of the advisory board for Salarius  
506 Pharmaceuticals. SLL is also a listed inventor on United States Patent No. US 7,939,253 B2,  
507 "Methods and compositions for the diagnosis and treatment of Ewing's sarcoma," and United  
508 States Patent No. US 8,557,532, "Diagnosis and treatment of drug-resistant Ewing's sarcoma."  
509 This does not alter our adherence to *Molecular Cancer* policies on sharing data and materials.

510

511 **Funding**

512 Research reported in this publication was supported by the National Institute of Health  
513 award T32 GM068412 to MAB, and U54 CA231641 to SLL. The content is solely the  
514 responsibility of the authors and does not necessarily represent the official views of the  
515 National Institutes of Health.

516

517 **Authors Contributions**

518 MAB and SLL are responsible for conceptualization of the project. Investigation was performed  
519 by MAB, JCC, JSA, BDS, and BZS. Methodology was formulated by MAB, JSA, ERT, IS, and  
520 BZS. Data analysis was performed by MAB, CT, ERT, IS, and MW. Manuscript preparation was  
521 completed by MAB and reviewing and editing was performed by all authors. Funding acquisition  
522 was completed by MAB and SLL. Supervision was provided by SLL.

523

524 **Acknowledgements**

525 We thank Dr. Andrea K. Byrum, Dr. Kirsten N. Johnson, Dr. Kathleen I. Pishas, Dr. Jack Tokarsky,  
526 and Ariunaa Bayanjargal for thoughtful discussion concerning the hypothesis and methodology  
527 of this manuscript.

528

529

530

531

532

533

534

535 **References**

- 536 1. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with  
537 an ETS DNA-binding domain caused by chromosome translocation in human tumours.  
538 *Nature*. 1992;359(6391):162-5.
- 539 2. Longhi A, Ferrari S, Tamburini A, Luksch R, Fagioli F, Bacci G, et al. Late effects of  
540 chemotherapy and radiotherapy in osteosarcoma and Ewing sarcoma patients: the Italian  
541 Sarcoma Group Experience (1983-2006). *Cancer*. 2012;118(20):5050-9.
- 542 3. Zucman J, Melot T, Desmaze C, Ghysdael J, Plougastel B, Peter M, et al. Combinatorial  
543 generation of variable fusion proteins in the Ewing family of tumours. *EMBO J*.  
544 1993;12(12):4481-7.
- 545 4. Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M, et al. DNA-binding and  
546 transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the  
547 t(11;22) translocation in Ewing sarcoma. *Mol Cell Biol*. 1994;14(5):3230-41.
- 548 5. Aurias A, Rimbaut C, Buffe D, Dubouset J, Mazabraud A. [Translocation of chromosome  
549 22 in Ewing's sarcoma]. *C R Seances Acad Sci III*. 1983;296(23):1105-7.
- 550 6. Turc-Carel C, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C, et al. Chromosomes in  
551 Ewing's sarcoma. I. An evaluation of 85 cases of remarkable consistency of  
552 t(11;22)(q24;q12). *Cancer Genet Cytogenet*. 1988;32(2):229-38.
- 553 7. May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, et al. Ewing  
554 sarcoma 11;22 translocation produces a chimeric transcription factor that requires the  
555 DNA-binding domain encoded by FLI1 for transformation. *Proc Natl Acad Sci U S A*.  
556 1993;90(12):5752-6.
- 557 8. Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, et al. The  
558 genomic landscape of pediatric Ewing sarcoma. *Cancer Discov*. 2014;4(11):1326-41.
- 559 9. Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suva ML, et al. EWS-FLI1  
560 utilizes divergent chromatin remodeling mechanisms to directly activate or repress  
561 enhancer elements in Ewing sarcoma. *Cancer Cell*. 2014;26(5):668-81.
- 562 10. Braun BS, Frieden R, Lessnick SL, May WA, Denny CT. Identification of target genes for  
563 the Ewing's sarcoma EWS/FLI fusion protein by representational difference analysis. *Mol  
564 Cell Biol*. 1995;15(8):4623-30.
- 565 11. Sankar S, Lessnick SL. Promiscuous partnerships in Ewing's sarcoma. *Cancer Genet*.  
566 2011;204(7):351-65.
- 567 12. Lessnick SL, Braun BS, Denny CT, May WA. Multiple domains mediate transformation by  
568 the Ewing's sarcoma EWS/FLI-1 fusion gene. *Oncogene*. 1995;10(3):423-31.
- 569 13. Sankar S, Bell R, Stephens B, Zhuo R, Sharma S, Bearss DJ, et al. Mechanism and  
570 relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. *Oncogene*.  
571 2013;32(42):5089-100.
- 572 14. Erkizan HV, Uversky VN, Toretsky JA. Oncogenic partnerships: EWS-FLI1 protein  
573 interactions initiate key pathways of Ewing's sarcoma. *Clin Cancer Res*. 2010;16(16):4077-  
574 83.
- 575 15. Boulay G, Sandoval GJ, Riggi N, Iyer S, Buisson R, Naigles B, et al. Cancer-Specific  
576 Retargeting of BAF Complexes by a Prion-like Domain. *Cell*. 2017;171(1):163-78 e19.
- 577 16. Spahn L, Siligan C, Bachmaier R, Schmid JA, Aryee DN, Kovar H. Homotypic and  
578 heterotypic interactions of EWS, FLI1 and their oncogenic fusion protein. *Oncogene*.  
579 2003;22(44):6819-29.
- 580 17. Kovar H. Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family.  
581 *Sarcoma*. 2011;2011:837474.
- 582 18. Liang H, Olejniczak ET, Mao X, Nettesheim DG, Yu L, Thompson CB, et al. The secondary  
583 structure of the ets domain of human Fli-1 resembles that of the helix-turn-helix DNA-

584 binding motif of the *Escherichia coli* catabolite gene activator protein. *Proc Natl Acad Sci U*  
585 *S A*. 1994;91(24):11655-9.

586 19. Laudet V, Hanni C, Stehelin D, Duterque-Coquillaud M. Molecular phylogeny of the ETS  
587 gene family. *Oncogene*. 1999;18(6):1351-9.

588 20. Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic  
589 transcription factors in solid tumours. *Nat Rev Cancer*. 2017;17(6):337-51.

590 21. Mao X, Miesfeldt S, Yang H, Leiden JM, Thompson CB. The FLI-1 and chimeric EWS-FLI-1  
591 oncoproteins display similar DNA binding specificities. *J Biol Chem*. 1994;269(27):18216-  
592 22.

593 22. Szymczyna BR, Arrowsmith CH. DNA binding specificity studies of four ETS proteins  
594 support an indirect read-out mechanism of protein-DNA recognition. *J Biol Chem*.  
595 2000;275(37):28363-70.

596 23. Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the  
597 specificity of ETS transcription factors. *Annu Rev Biochem*. 2011;80:437-71.

598 24. Currie SL, Lau DKW, Doane JJ, Whitby FG, Okon M, McIntosh LP, et al. Structured and  
599 disordered regions cooperatively mediate DNA-binding autoinhibition of ETS factors ETV1,  
600 ETV4 and ETV5. *Nucleic Acids Res*. 2017;45(5):2223-41.

601 25. Regan MC, Horanyi PS, Pryor EE, Jr., Sarver JL, Cafiso DS, Bushweller JH. Structural and  
602 dynamic studies of the transcription factor ERG reveal DNA binding is allosterically  
603 autoinhibited. *Proc Natl Acad Sci U S A*. 2013;110(33):13374-9.

604 26. Gangwal K, Close D, Enriquez CA, Hill CP, Lessnick SL. Emergent Properties of EWS/FLI  
605 Regulation via GGAA Microsatellites in Ewing's Sarcoma. *Genes Cancer*. 2010;1(2):177-  
606 87.

607 27. Gangwal K, Lessnick SL. Microsatellites are EWS/FLI response elements: genomic "junk"  
608 is EWS/FLI's treasure. *Cell Cycle*. 2008;7(20):3127-32.

609 28. Johnson KM, Mahler NR, Saund RS, Theisen ER, Taslim C, Callender NW, et al. Role for  
610 the EWS domain of EWS/FLI in binding GGAA-microsatellites required for Ewing sarcoma  
611 anchorage independent growth. *Proc Natl Acad Sci U S A*. 2017;114(37):9870-5.

612 29. Braunreiter CL, Hancock JD, Coffin CM, Boucher KM, Lessnick SL. Expression of EWS-  
613 ETS fusions in NIH3T3 cells reveals significant differences to Ewing's sarcoma. *Cell Cycle*.  
614 2006;5(23):2753-9.

615 30. Welford SM, Hebert SP, Deneen B, Arvand A, Denny CT. DNA binding domain-  
616 independent pathways are involved in EWS/FLI1-mediated oncogenesis. *J Biol Chem*.  
617 2001;276(45):41977-84.

618 31. Arvand A, Welford SM, Teitell MA, Denny CT. The COOH-terminal domain of FLI-1 is  
619 necessary for full tumorigenesis and transcriptional modulation by EWS/FLI-1. *Cancer Res*.  
620 2001;61(13):5311-7.

621 32. Theisen ER, Miller KR, Showpnil IA, Taslim C, Pishas KI, Lessnick SL. Transcriptomic  
622 analysis functionally maps the intrinsically disordered domain of EWS/FLI and reveals  
623 novel transcriptional dependencies for oncogenesis. *Genes Cancer*. 2019;10(1-2):21-38.

624 33. Pishas KI, Drenberg CD, Taslim C, Theisen ER, Johnson KM, Saund RS, et al. Therapeutic  
625 Targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 Engages the Endoplasmic  
626 Reticulum Stress Response. *Mol Cancer Ther*. 2018;17(9):1902-16.

627 34. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based  
628 analysis of ChIP-Seq (MACS). *Genome Biol*. 2008;9(9):R137.

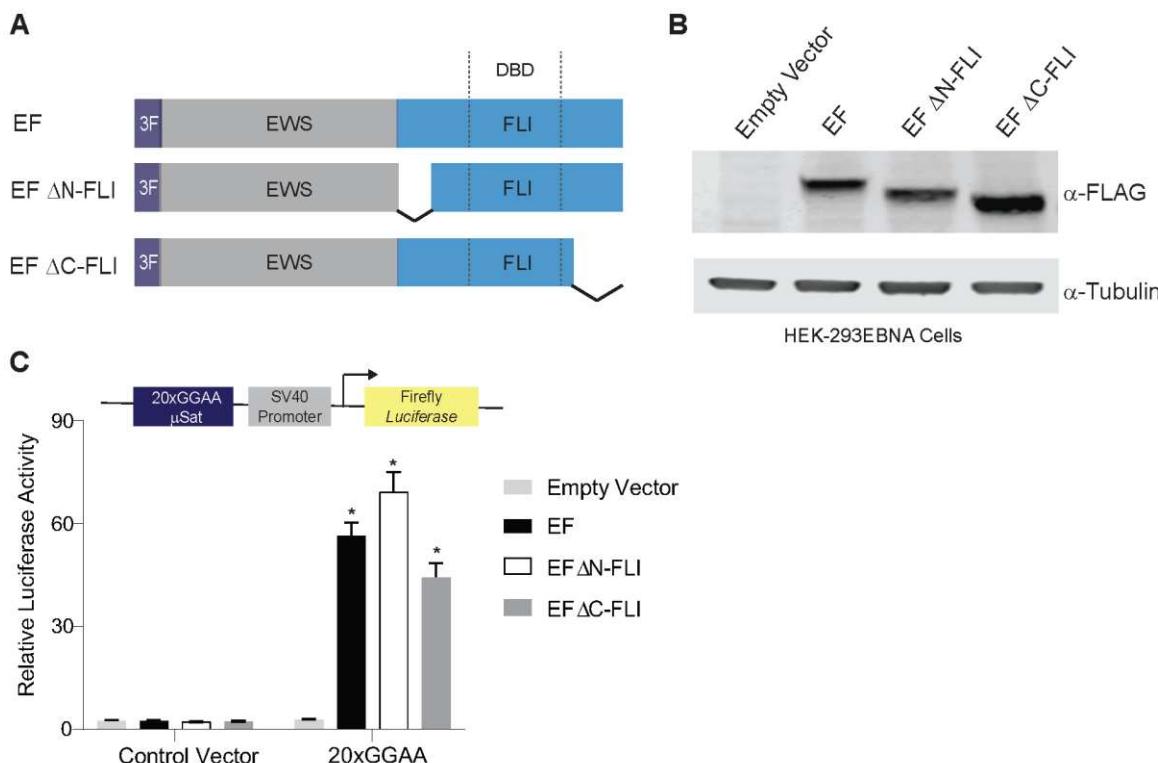
629 35. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a  
630 next generation web server for deep-sequencing data analysis. *Nucleic Acids Res*.  
631 2016;44(W1):W160-5.

632 36. Zhu LJ, Gazin C, Lawson ND, Pages H, Lin SM, Lapointe DS, et al. ChIPpeakAnno: a  
633 Bioconductor package to annotate ChIP-seq and ChIP-chip data. *BMC Bioinformatics*.  
634 2010;11:237.

635 37. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, et al. Software for  
636 computing and annotating genomic ranges. PLoS Comput Biol. 2013;9(8):e1003118.  
637 38. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-  
638 seq data with DESeq2. Genome Biol. 2014;15(12):550.  
639 39. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene  
640 set enrichment analysis: a knowledge-based approach for interpreting genome-wide  
641 expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50.  
642 40. Hodges HC, Stanton BZ, Cermakova K, Chang CY, Miller EL, Kirkland JG, et al. Dominant-  
643 negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted  
644 enhancers. Nat Struct Mol Biol. 2018;25(1):61-72.  
645 41. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native  
646 chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding  
647 proteins and nucleosome position. Nat Methods. 2013;10(12):1213-8.  
648 42. Gu Z, Eils R, Schlesner M, Ishaque N. EnrichedHeatmap: an R/Bioconductor package for  
649 comprehensive visualization of genomic signal associations. BMC Genomics.  
650 2018;19(1):234.  
651 43. Maag JV. gganatogram: An R package for modular visualisation of anatograms and  
652 tissues based on ggplot2. F1000Res. 2018;7:1576.  
653 44. Hou C, Tsodikov OV. Structural Basis for Dimerization and DNA Binding of Transcription  
654 Factor FLI1. Biochemistry. 2015;54(50):7365-74.  
655 45. Martinez-Ramirez A, Rodriguez-Perales S, Melendez B, Martinez-Delgado B, Urioste M,  
656 Cigudosa JC, et al. Characterization of the A673 cell line (Ewing tumor) by molecular  
657 cytogenetic techniques. Cancer Genet Cytogenet. 2003;141(2):138-42.  
658 46. Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping  
659 of DNA binding sites. Elife. 2017;6.  
660 47. Sankar S, Theisen ER, Bearss J, Mulvihill T, Hoffman LM, Sorna V, et al. Reversible LSD1  
661 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing  
662 sarcoma tumor growth. Clin Cancer Res. 2014;20(17):4584-97.  
663 48. Watson DK, Robinson L, Hodge DR, Kola I, Papas TS, Seth A. FLI1 and EWS-FLI1  
664 function as ternary complex factors and ELK1 and SAP1a function as ternary and  
665 quaternary complex factors on the Egr1 promoter serum response elements. Oncogene.  
666 1997;14(2):213-21.  
667 49. Kim S, Denny CT, Wisdom R. Cooperative DNA binding with AP-1 proteins is required for  
668 transformation by EWS-Ets fusion proteins. Mol Cell Biol. 2006;26(7):2467-78.  
669 50. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, et al. Role of the  
670 TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008;10(2):177-88.

671  
672

673


674

675

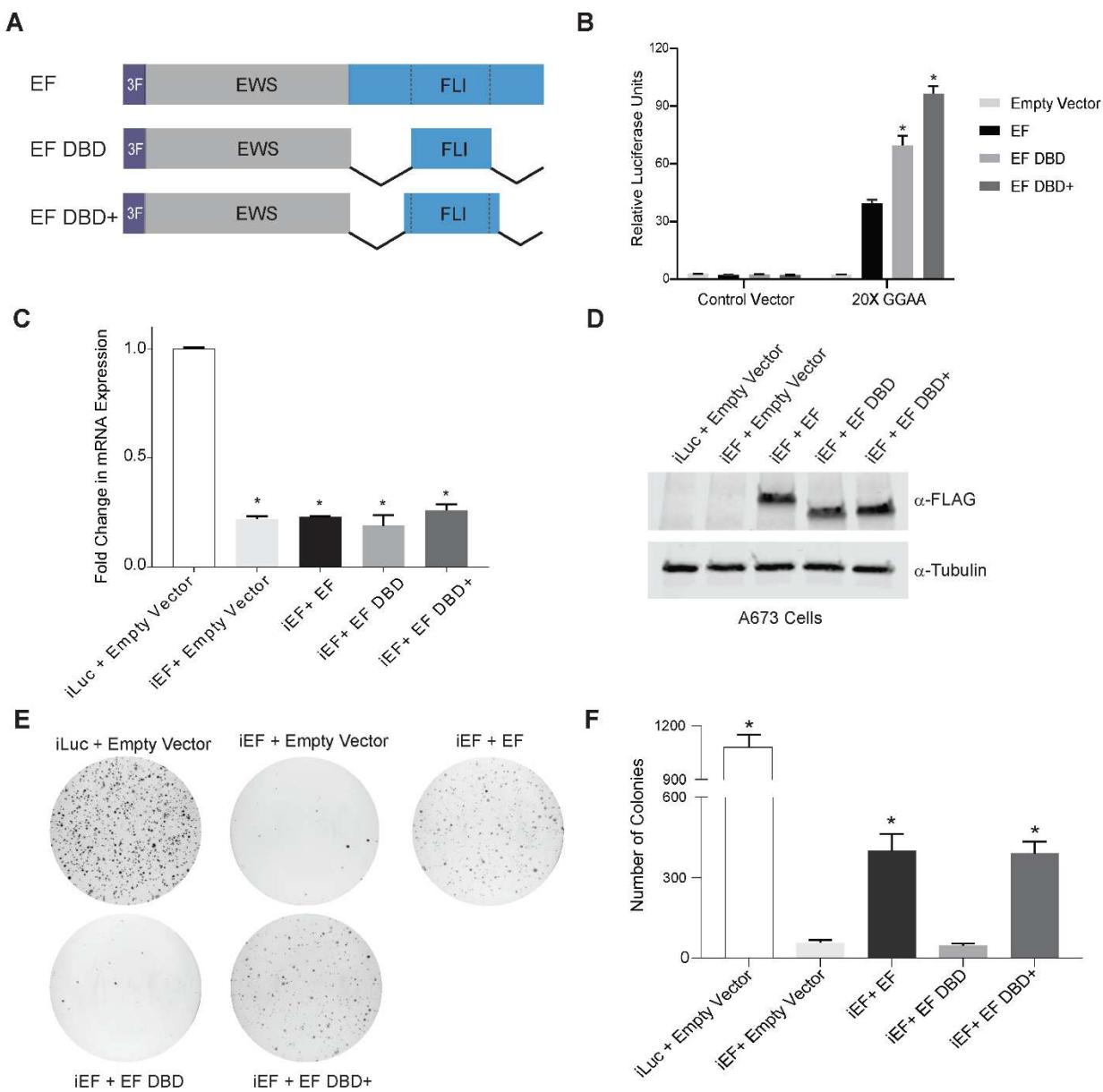
676

677

678 **Figures**



679


680 **Figure 1. Amino- and carboxyl-terminal regions of FLI are not required for EWS/FLI-  
681 mediated transcriptional activation.**

682 (A) Protein schematic of 3xFLAG-tagged (3F) EWS/FLI (EF) cDNA constructs with FLI deletions.  
683 EWS is represented in grey, FLI is represented in blue, and dashed lines in the FLI portion  
684 represent the 85-amino acid ETS DNA-binding domain (DBD) of FLI. In each construct, EWS is  
685 fused directly to the FLI portion, but connecting lines are shown here to represent regions of FLI  
686 that are eliminated in each construct. EF represents a full-length “type IV” EWS/FLI translocation.  
687 EF ΔN-FLI and EF ΔC-FLI indicate constructs where EWS was fused to a version of FLI with a  
688 deletion in the N- or C-terminal region of, respectively. (B) Western blot of 3xFLAG-tagged  
689 EWS/FLI protein expression in HEK-293EBNA cells. Membranes were probed with either α-FLAG  
690 or α-tubulin antibodies. (C) Dual luciferase reporter assay results for the indicated cDNA  
691 constructs co-transfected into HEK-293EBNA cells with a Control Vector harboring no GGAA-  
692 repeats, or a vector containing 20xGGAA-repeats (shown schematically above the graph). Data  
693 are presented as mean ± SEM (n=6 independent replicates). Asterisks indicate that the activity of  
694 EF, EF ΔN-FLI, and EF ΔC-FLI are each statistically significant when compared to Empty Vector  
695 on a 20xGGAA μSat (p-value <0.05). The activity of EF ΔN-FLI and EF ΔC-FLI are not statistically  
696 different from EF on the 20xGGAA μSat (p-value = 0.8).  
697

698

699

700



701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715

**Figure 2. Oncogenic transformation capacity of EWS/FLI affected by short regions surrounding the FLI DBD.**

(A) Protein schematic of 3xFLAG-tagged (3F) EWS/FLI cDNA constructs with deleted FLI domain regions. EF represents a full-length type IV EWS/FLI, EF DBD represents EWS fused directly to the 85-amino acid DNA-binding domain of FLI, and EF DBD+ represents EWS fused to a 102 amino acid region of FLI that contains the 85 amino-acid DNA-binding domain with 17 additional amino-acids on the amino-terminal side and 10 additional amino-acids on the carboxyl-terminal side (B) Dual luciferase reporter assay results for the indicated constructs tested on control and 20xGGAA  $\mu$ Sat-containing plasmids (as described in Figure 1). Data are presented as mean  $\pm$  SEM (n=6 independent replicates). Asterisks indicate that the activity of EF DBD and EF DBD+ are each statistically higher than EF (p-value < 0.001). (C) Representative qRT-PCR results of endogenous EWS/FLI in A673 cells harboring the indicated constructs (iLuc is a control shRNA targeting luciferase and iEF is an shRNA targeting the 3'UTR of endogenous EWS/FLI; n=1). EWS/FLI mRNA value are normalized to RPL30 mRNA control values. Asterisks indicate samples

716 are statistically different as compared to control iLuc + Empty Vector cells (p-value < 0.001). (D)  
717 Western blot analysis of exogenous EWS/FLI protein expression corresponding to samples  
718 shown in panel C. Protein constructs were detected using  $\alpha$ -FLAG antibody and  $\alpha$ -Tubulin was  
719 used as a loading control. (E) Representative soft agar assay results of A673 Ewing sarcoma  
720 cells containing the indicated constructs. (F) Soft agar assay colony formation quantification. Data  
721 presented as mean  $\pm$  SEM (n=9 independent replicates). Asterisks indicate p-value <0.001 as  
722 compared to iEF + Empty Vector.

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

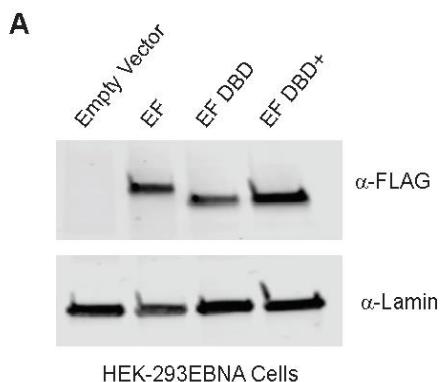
754

755

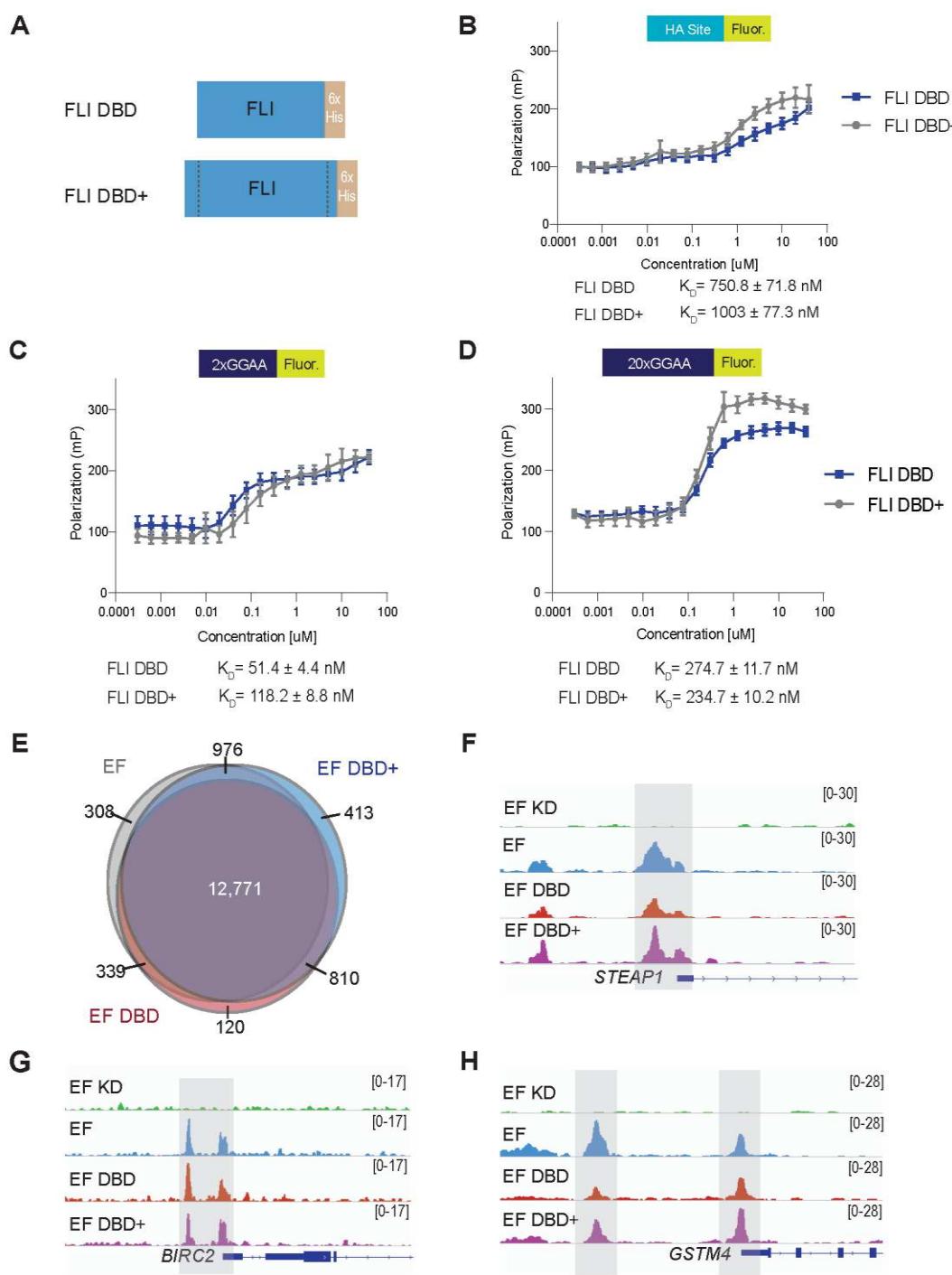
756

757

758


759

760

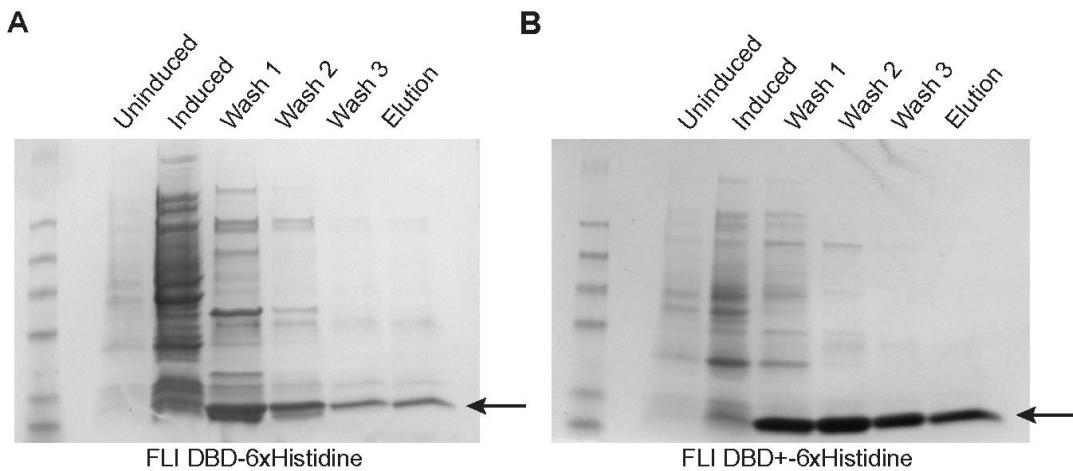

761

762

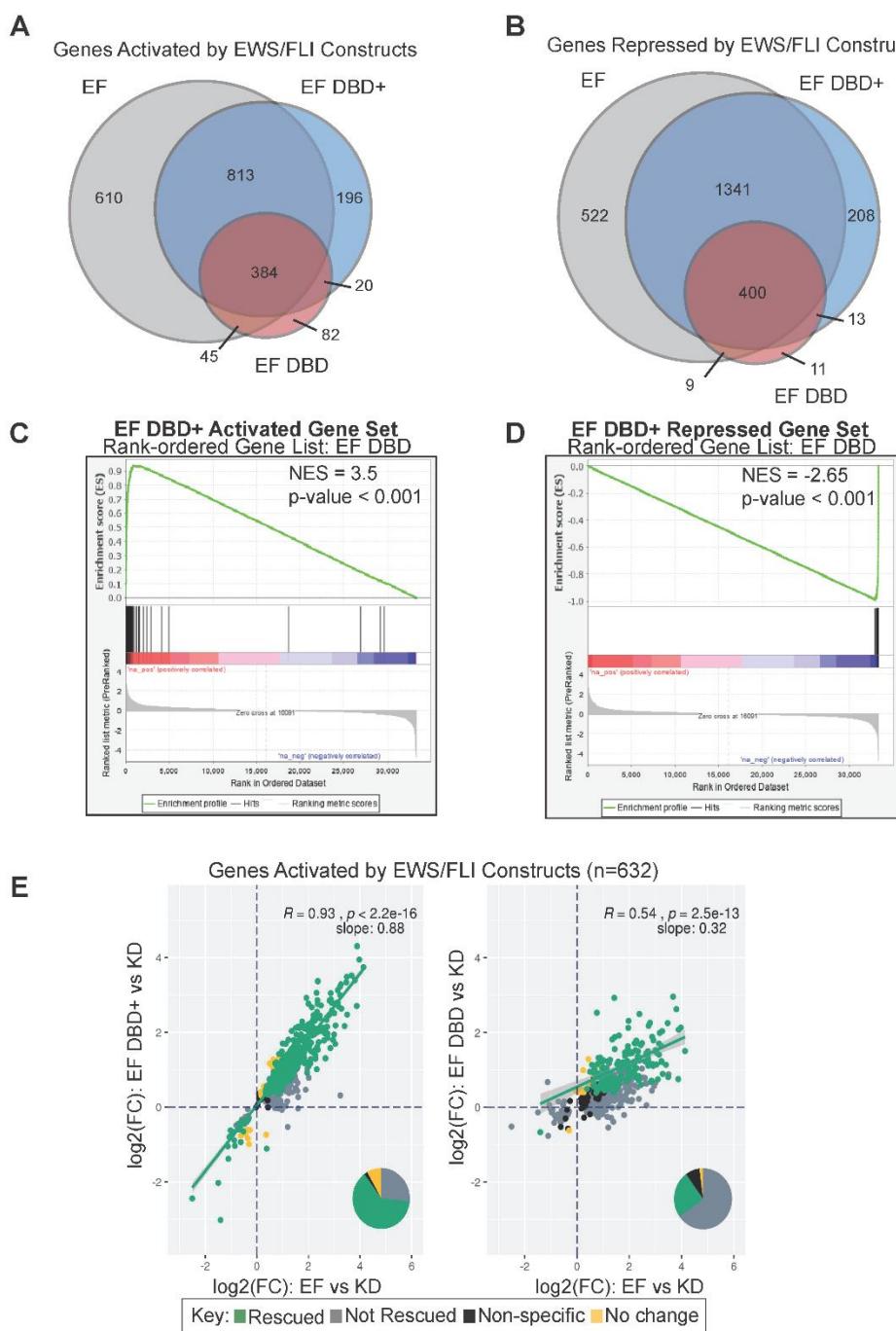
763



764  
765 **Supplemental Figure 1. EWS/FLI mutant construct expression in HEK-293EBNA cells.**  
766 (A) 3xFLAG-tagged full-length EWS/FLI (EF), EF DBD, or EF DBD+ constructs were expressed  
767 in HEK-293EBNA cells. Western blot analysis was used to determine expression of these proteins  
768 utilizing α-FLAG. α-Lamin was used as a loading control.  
769




770  
771  
772  
773  
774  
775  
776  
777  
778


**Figure 3. DNA-binding and genomic localization properties of EWS/FLI unaltered by deletions flanking the FLI DNA-binding domain.**

(A) Protein schematic of FLI DBD or FLI DBD+ recombinant protein (with C-terminal 6xHistidine-tag [6xHis]). (B-D) Fluorescence anisotropy assay results for FLI DBD and FLI DBD+ recombinant proteins (0-40  $\mu\text{M}$ ) on the following fluorescein-labeled DNA sequences: (B) ETS high affinity (HA) site DNA, (C) 2x-repeat GGAA  $\mu\text{Sat}$  DNA, and (D) 20x-repeat GGAA  $\mu\text{Sat}$  DNA (n=9 independent replicates). Dissociation constants ( $K_d$ ) for FLI DBD and FLI DBD+ are noted for each DNA response element. (E) Venn diagram comparing peaks called in CUT&RUN for

779 EWS/FLI construct localization in knock-down/rescue cells (EF = iEF + EF; EF DBD = iEF + EF  
780 DBD; EF DBD+ = iEF + EF DBD+) when compared to cells that did not contain a rescue construct  
781 (iEF + Empty Vector). The number of peaks overlapping between constructs are indicated on the  
782 Venn diagram. (F-H) Representative CUT&RUN peak tracks from IGV are shown for iEF + Empty  
783 Vector (EF KD), EF, EF DBD, and EF DBD+ samples. Examples of peaks from EWS/FLI-  
784 associated HA-site regulated genes ([F] *STEAP1* and [G] *BIRC2*) and GGAA-μSat-regulated  
785 genes ([H] *GSTM4*) are highlighted. Peak track scales are shown on the right.  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829



830  
831 **Supplemental Figure 2. Recombinant FLI DBD and FLI DBD+ protein purification.**  
832 (A-B) Samples were taken at several stages of recombinant protein purification for FLI DBD-  
833 6xHistidine (A) and FLI DBD+-6xHistidine (B), including: Uninduced bacteria, Induced bacteria,  
834 after Wash 1, Wash 2, and Wash 3 following bacterial lysis, and Eluted Fraction. Samples were  
835 run on a SDS-PAGE gel and demonstrate good purity at the final elution step.  
836



837

838 **Figure 4. EWS/FLI-driven transcriptional regulation diminished by FLI DBD flanking**  
839 **deletions in Ewing sarcoma cells.**

840 (A-B) Venn diagram analysis of RNA-sequencing data comparing genes significantly (A) activated  
841 or (B) repressed in A673 cells rescued with the indicated constructs (full-length EWS/FLI [EF], EF  
842 DBD, and EF DBD+) when compared to A673 cells with no exogenous EWS/FLI construct (iEF +  
843 Empty Vector) (adjusted p-value (FDR) < 0.05). (C-D) GSEA analysis comparing all genes  
844 regulated by EF DBD as the rank-ordered gene list to (C) genes activated by EF DBD+ ( $\log_2(\text{FC})$   
845 > 1.5, FDR < 0.05) as the gene set or (D) genes repressed by EF DBD+ ( $\log_2(\text{FC})$  < -1.5, FDR <  
846 0.05) as the gene set. (E) Genes significantly activated by endogenous EWS/FLI were defined

847 using a previous RNA-sequencing dataset (47). Genes activated by EF, EF DBD, and EF DBD+  
848 were compared to this list of EWS/FLI-activated genes. Scatterplots comparing genes activated  
849 by EF (on the x-axis) to EF DBD+ (left) or EF DBD (right) (on the y-axis) were plotted to determine  
850 the ability of these constructs to rescue expression these genes. Significance was defined by a  
851  $\log_2(FC) > 0$  and an adjusted p-value  $< 0.05$ . Pearson correlation coefficient and associated p-  
852 values with slope are noted on the plots. Pie charts represent the proportion of genes found in  
853 each of the described groups is also depicted.

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

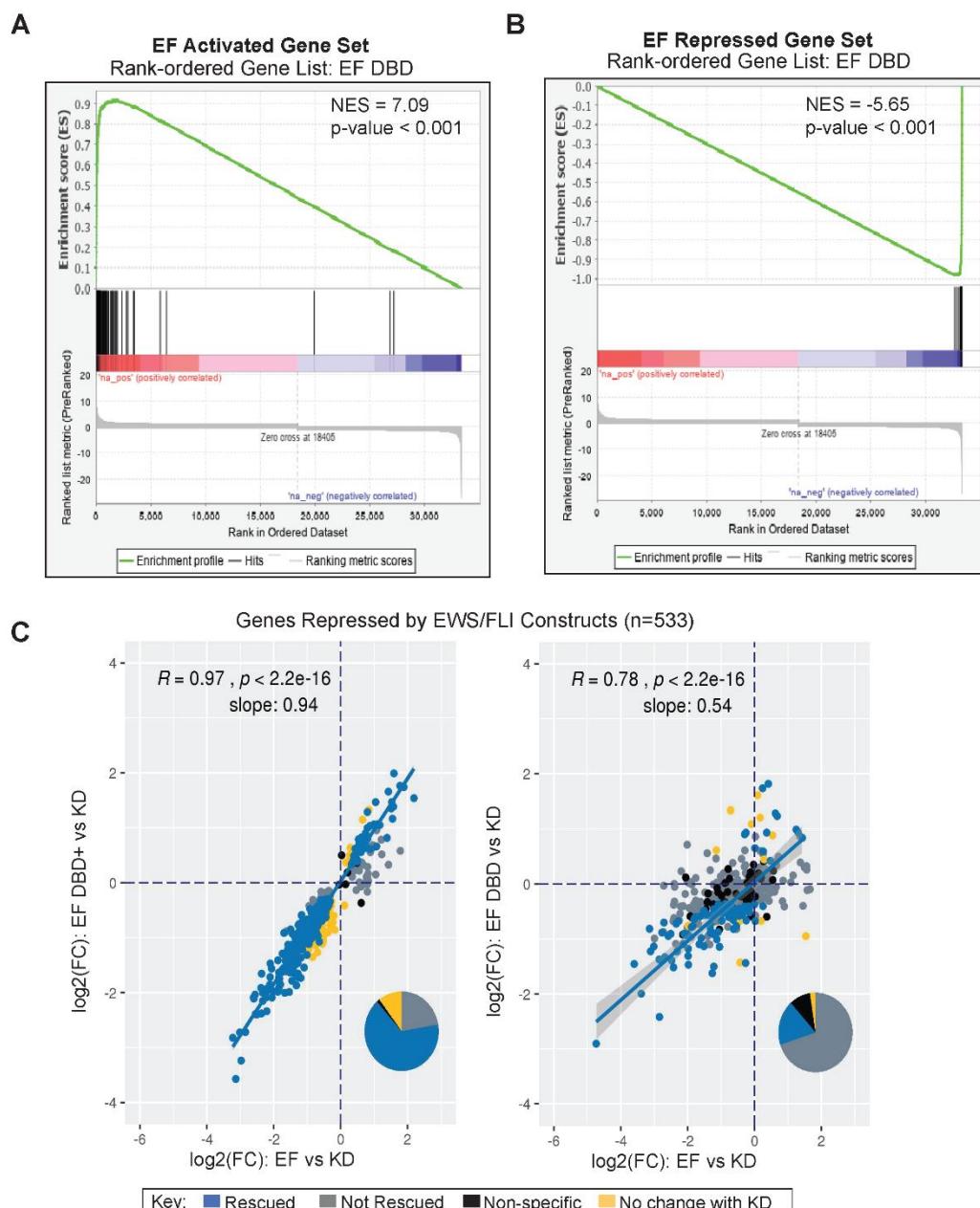
887

888

889

890

891

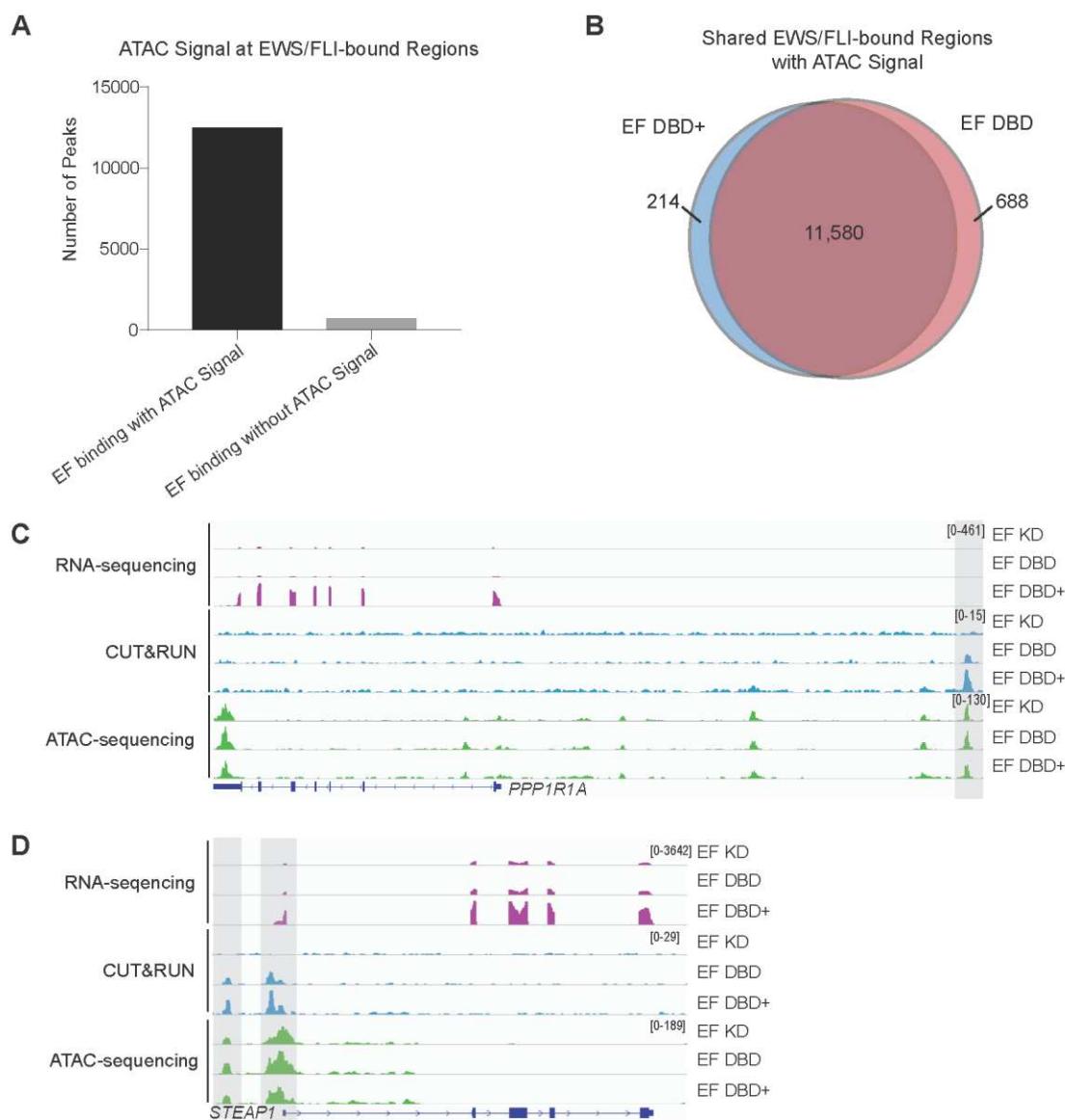

892

893

894

895

896




897

898 **Supplemental Figure 3. Deletions surrounding the FLI DBD of EWS/FLI result in weaker**  
899 **transcriptional regulation.**

900 (A-B) GSEA analysis comparing genes regulated by EF DBD as the rank-ordered gene list to (A)  
901 a gene set activated by EF ( $\log_2(\text{FC}) > 1.5$ , FDR  $< 0.05$ ) or (B) a gene set repressed by EF  
902 ( $\log_2(\text{FC}) < -1.5$ , FDR  $< 0.05$ ). (C) Genes significantly repressed by endogenous EWS/FLI were  
903 defined using a previous RNA-sequencing dataset (47). Genes repressed by EF, EF DBD, and  
904 EF DBD+ were compared to this list of EWS/FLI-repressed genes. Scatterplots comparing genes  
905 repressed by exogenous EF (on the x-axis) to EF DBD+ (left) or EF DBD (right) (on the y-axis)  
906 were plotted to determine the ability of these constructs to rescue repression of these genes.  
907 Significance was defined by a  $\log_2(\text{FC}) < 0$  and an adjusted p-value  $< 0.05$ . Pearson correlation  
908 coefficient and associated p-values with slope are noted on the plots. Pie charts represent the  
909 proportion of genes found in each of the described groups is also depicted.

910



911  
912 **Figure 5. Chromatin-opening ability of EWS/FLI is unaltered by deletions flanking the FLI**  
913 **DNA-binding domain.**  
914 (A) All EWS/FLI-bound loci in A673 cells (determined by CUT&RUN of knock-down/rescue cells  
915 expressing full-length EWS/FLI [EF]) were compared to loci harboring ATAC signal peaks and  
916 shown in graphical format. There were 12,482 EF-bound peaks with ATAC signal and 696 EF-  
917 bound peaks without ATAC signal. (B) Venn diagram analysis of regions bound by EF DBD+  
918 and/or EF DBD that also had overlapping ATAC signals. (C-D) Representative tracks of RNA-  
919 sequencing, CUT&RUN genomic localization, and ATAC-sequencing signals for the indicated  
920 knock-down/rescue A673 cells (EF KD = iEF + EF; EF DBD = iEF + EF DBD; EF DBD+ = iEF +  
921 EF DBD+). Scales to view tracks were kept consistent across sequencing type in each panel and  
922 are represented on the right. Representative genes *PPP1R1A* (C) and *STEAP1* (D) are regulated

923 by EF DBD+ but not EF DBD (adjusted p-value <0.05) and overlapping CUT&RUN and ATAC-  
924 sequencing peaks are highlighted.

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

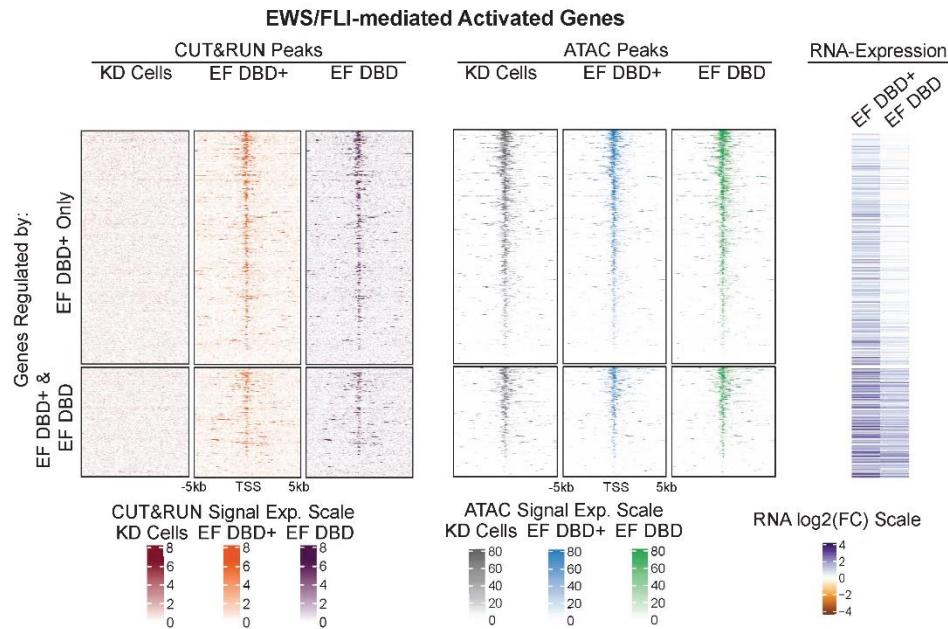
965

966

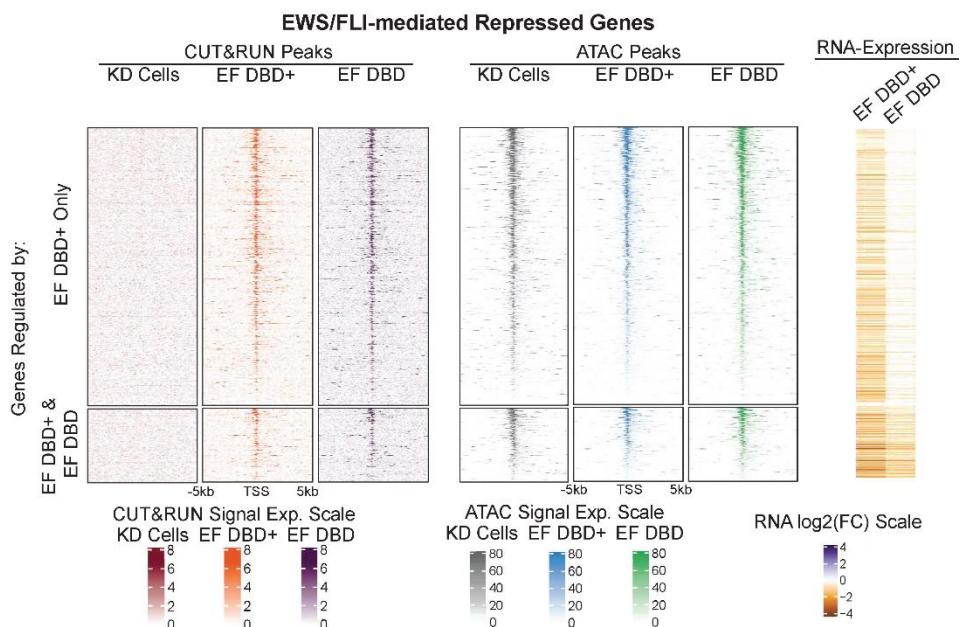
967

968

969


970

971

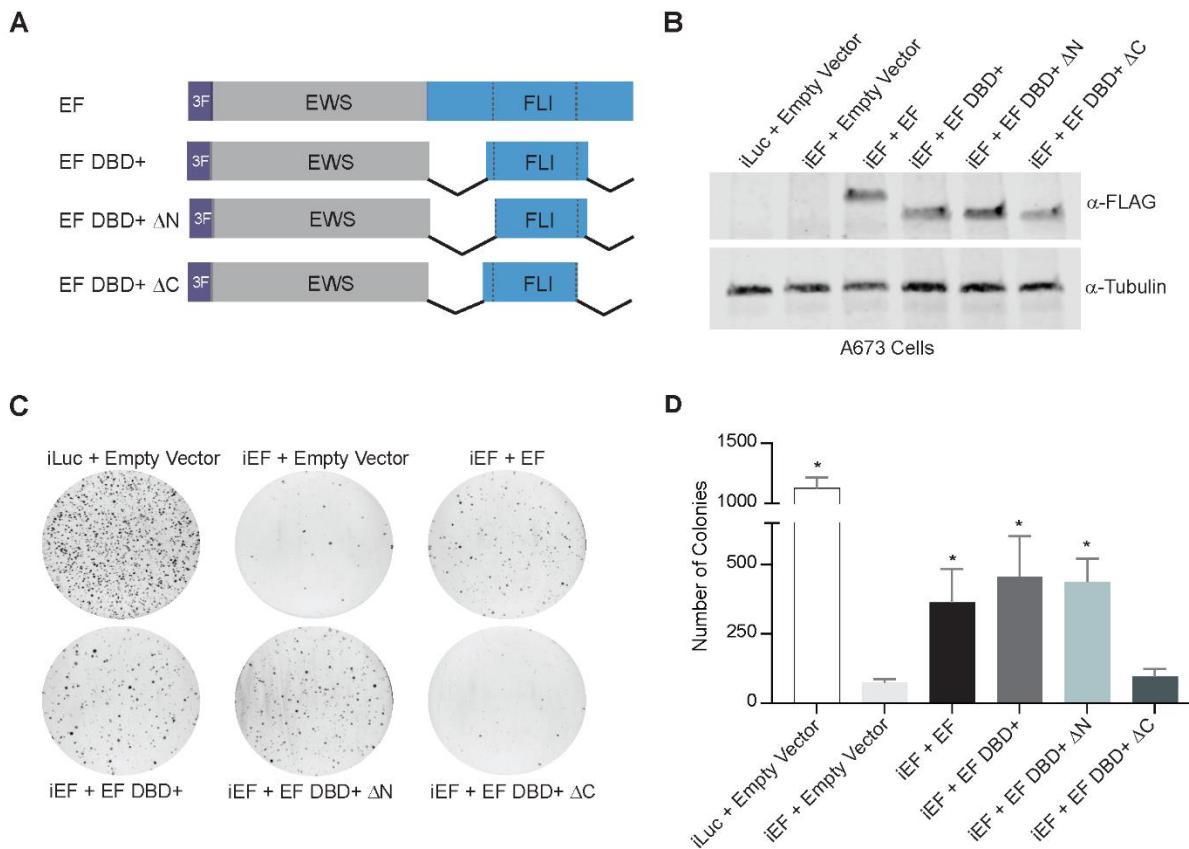

972

973

A



B




974

975 **Supplemental Figure 4. Heatmap analysis of ATAC-signal at EWS/FLI-mutant bound**  
 976 **activated and repressed genes.**

977 (A-B) Heatmaps depicting CUT&RUN and ATAC-sequencing signals, centered on the nearest  
 978 transcriptional start sites (TSS) of genes regulated by EF DBD+ only or both EF DBD+ and EF  
 979 DBD. EWS/FLI-mediated activated genes are visualized in (A) and repressed genes in (B).  
 980 Knock-down cells (KD; iEF + Empty Vector), EF DBD+ (iEF + EF DBD+), and EF DBD (iEF +  
 981 EF DBD) were compared (scales for peak height are depicted below heatmaps). The log2(FC)  
 982 of RNA expression for EF DBD+ and EF DBD (compared to KD) is pictured on the right with  
 983 log2(FC) scale depicted below.

984



985  
986 **Figure 6. The carboxyl-terminal amino acids flanking the FLI DNA-binding domain are**  
987 **essential for EWS/FLI-mediated oncogenic transformation.**

988 (A) Protein schematics of 3xFLAG-tagged (3F) EWS/FLI constructs: EF represents a full-length  
989 EWS/FLI; EF DBD+ ΔN represents EWS/FLI containing the DBD+ version of FLI missing the 7-  
990 amino-terminal amino acids to the DBD; EF DBD+ ΔC represents EWS/FLI containing the DBD+  
991 version of FLI missing the 10 carboxyl-terminal amino acids to the DBD. (B) Western blots of  
992 constructs expressed in A673 cells using our knock-down/rescue system. (C) Representative soft  
993 agar assay results are depicted for each of the indicated constructs. (D) Soft agar assay colony  
994 formation quantification. Data represented by mean ± SEM (n=3 independent replicates).  
995 Statistical significance of samples when compared to iEF + Empty Vector was used to determine  
996 the ability of each version of EWS/FLI to mediate oncogenic transformation in A673 cells.  
997 Asterisks indicate p-value < 0.05 as compared to negative control iEF + Empty Vector sample  
998 with no EWS/FLI expression.

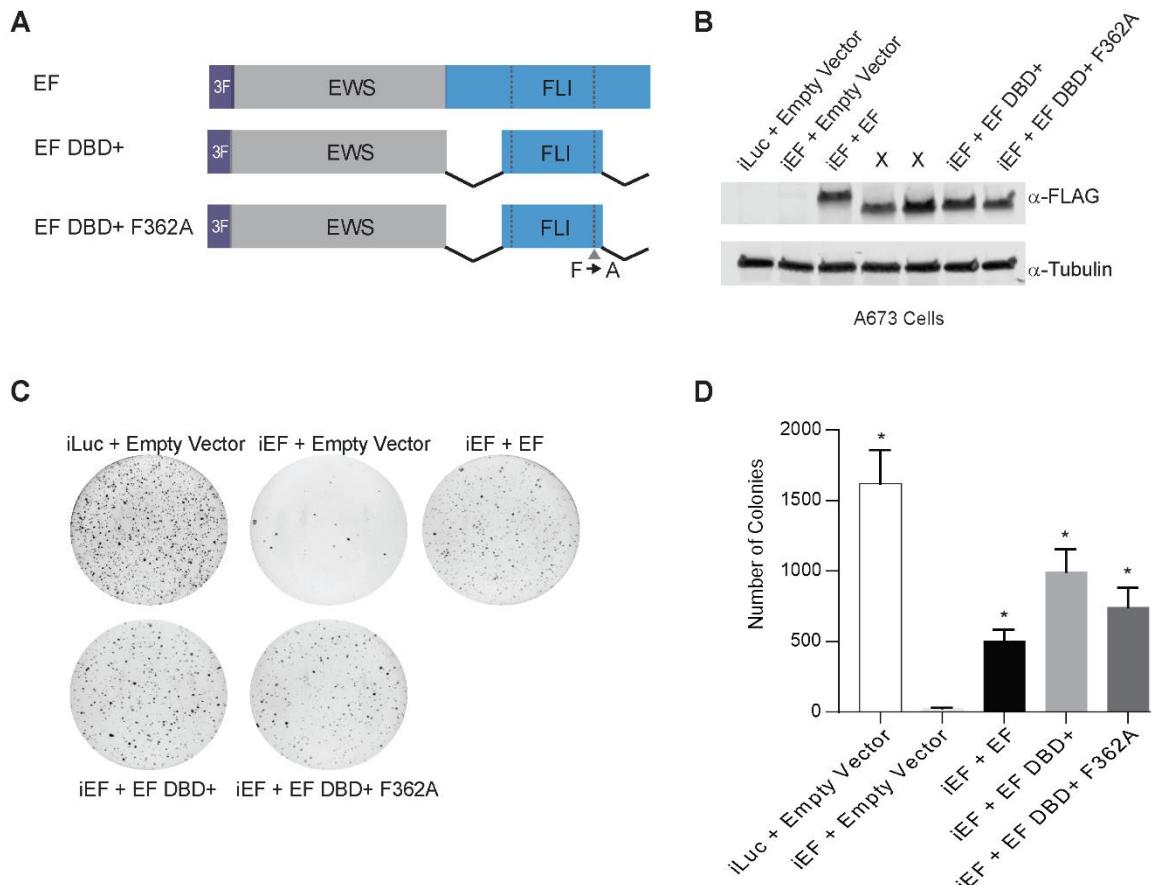
999

1000

1001

1002

1003


1004

1005

1006

1007

1008



1009  
1010 **Supplemental Figure 5. Homodimerization motif is dispensable for EWS/FLI-mediated**  
1011 **oncogenic transformation.**

1012 (A) Protein schematics of 3xFLAG-tagged (3F) EWS/FLI constructs: EF represents full-length  
1013 EWS/FLI; EF DBD+ contains EWS fused to the DBD+ version of FLI; EF DBD+ F362A represents  
1014 EWS fused to the DBD+ version of FLI with the phenylalanine "F" residue at residue 362 mutated  
1015 to alanine "A". (B) Constructs were expressed in A673 cells using our knock-down/rescue system  
1016 and Western blot analysis was used to determine efficient expression of these proteins using  $\alpha$ -  
1017 FLAG antibody for detection of EWS/FLI constructs and  $\alpha$ -Tubulin as a loading control. (Samples  
1018 labeled as X are not relevant to this current set of experiments.) (C) Representative soft agar  
1019 assay results are depicted, including controls and experimental samples. (D) Soft agar assay  
1020 colony formation quantification. Data is represented by mean  $\pm$  SEM (n=3 independent  
1021 replicates). Asterisks indicate p-value <0.005 as compared to samples with EWS/FLI knock-down  
1022 (iEF + Empty Vector).  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1030  
1031

1032 **Additional file 1. Amino acids references for EWS/FLI Mutant Constructs**

1033

| <b>Construct Name</b>    | <b>Amino acids residues according to protein:</b> |                              |                                                        |
|--------------------------|---------------------------------------------------|------------------------------|--------------------------------------------------------|
|                          | <b>EWSR1</b><br>(NP_001156757.1)                  | <b>FLI1</b><br>(NP_002008.2) | <b>“Type IV” EWS/FLI</b><br>(May <i>et al.</i> , 1993) |
| Full-length “Type IV” EF | 1-265                                             | 242-452                      | 266-476                                                |
| EF $\Delta$ N-FLI        | 1-265                                             | 275-452                      | 299-476                                                |
| EF $\Delta$ C-FLI        | 1-265                                             | 242-373                      | 266-397                                                |
| EF DBD                   | 1-265                                             | 277-361                      | 302-386                                                |
| EF DBD+                  | 1-265                                             | 270-371                      | 295-396                                                |
| FLI DBD                  | -                                                 | 277-361                      | 302-386                                                |
| FLI DBD+                 | -                                                 | 270-371                      | 295-396                                                |
| EF DBD+ $\Delta$ N       | 1-265                                             | 277-371                      | 302-396                                                |
| EF DBD+ $\Delta$ C       | 1-265                                             | 270-361                      | 295-386                                                |
| EF DBD+ F362A            | 1-265                                             | 270-371, F362A               | 295-396, F362A                                         |

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067 **Additional file 2. Sequences for primers used in RT-qPCR experiments**

| Gene    | Forward Primer            | Reverse Primer           |
|---------|---------------------------|--------------------------|
| EWS/FLI | 5'-CAGTCACTGCACCTCCATCC   | 5'-TTCATGTTATTGCCCAAGC   |
| RPL30   | 5'-GGGGTACAAGCAGACTCTGAAG | 5'-ATGGACACCAGTTTAGCCAAC |

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107 **Additional file 3. Fluorescein-labelled DNA-duplex oligonucleotides used for**  
1108 **fluorescence anisotropy experiments**  
1109

| DNA Duplex              | Sequence (forward strand of duplex)                                       |
|-------------------------|---------------------------------------------------------------------------|
| High Affinity (HA) Site | /56FAM/TTTACCGGAAGTGTT                                                    |
| 2X GGAA                 | /56FAM/TTTGGAAAGGAATT                                                     |
| 20X GGAA                | /56FAM/<br>TTTGGAAAGGAAGGAAGGAAGGAAGGAAGGAAGGAAGGAAGGAAGGAAGGAAGGAAGGAATT |

1110  
1111  
1112  
1113  
1114