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Harnessing multivariate, penalized regression methods
for genomic prediction and QTL detection to cope with
climate change affecting grapevine
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ABSTRACT Viticulture has to cope with climate change and decrease pesticide inputs, while maintaining yield and wine
quality. Breeding is a potential key to meet this challenge, and genomic prediction is a promising tool to accelerate breeding
programs, multivariate methods being potentially more accurate than univariate ones. Moreover, some prediction methods
also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and allowing the identification of positional
candidate genes. We applied several methods, interval mapping as well as univariate and multivariate penalized regression, in
a bi-parental grapevine progeny, in order to compare their ability to predict genotypic values and detect QTLs. We used a new
denser genetic map, simulated two traits under four QTL configurations, and re-analyzed 14 traits measured in semi-controlled
conditions under different watering conditions. Using simulations, we recommend the penalized regression method Elastic Net
(EN) as a default for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize
the QTLs. Indeed, penalized methods were more powerful than interval mapping for QTL detection across various genetic
architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation
between traits. Using experimental data, penalized regression methods proved as very efficient for intra-population prediction
whatever the genetic architecture of the trait, with accuracies reaching 0.68. These methods applied on the denser map found
new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. These methods can be applied
to other traits and species.
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2004). Breeding schemes could then incorporate genotypes bear-

Intr ion . . . . -
troductio ing genetic architecture favorable to high water use efficiency
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Viticulture is facing two major challenges, coping with climate
change and decreasing inputs such as pesticides, while maintain-
ing yield and quality. This requires understanding the physiolog-
ical processes and their genetic basis that determine adaptation
to climate change, such as water use efficiency (Condon et al.
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to be crossed with genotypes resistant to downy and powdery
mildew (Vezzulli et al. 2019) and by selecting offspring combin-
ing favorable combinations. In crops, the widespread use of
molecular markers through Marker Assisted Selection (MAS) or
Genomic Prediction (GP) substantially accelerates the genetic
gain compared to traditional phenotypic selection, by allowing
early selection of promising genotypes, without phenotypic in-
formation (Heffner ef al. 2009). This is of acute interest in fruiting
perennial species because of the long juvenile period during
which most traits of interest cannot be phenotyped. MAS and
GP are now widely developed in many perennial species such
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as pear (Kumar ef al. 2019), oil palm (Kwong ef al. 2017; Cros
et al. 2015), citrus (Gois et al. 2016), apple (Muranty et al. 2015)
and coffea (Ferrao et al. 2019). In grapevine, QTL detection in bi-
parental populations led up to the identification of major genes
for traits with a simple genetic architecture such as resistance to
downy and powdery mildew, berry color, seedlessness and Mus-
cat flavor (Fischer et al. 2004; Welter et al. 2007; Fournier-Level
et al. 2009; Emanuelli ef al. 2010; Mejia et al. 2011; Schwander et al.
2012). Currently, most breeding effort in grapevine consists in
improving disease resistance with MAS based on these results.
However, genetic improvement is also needed for traits with
more complex genetic determinism. Many minor QTLs have
been found for the tolerance to abiotic stresses (Coupel-Ledru
et al. 2014, 2016), yield components (Doligez et al. 2010, 2013)
and fruit quality (Huang et al. 2012), as reviewed in Vezzulli
et al. (2019). But MAS is not well suited for traits with many
underlying minor QTLs (Bernardo 2008). Genomic prediction,
which relies on high density genotyping is a promising tool for
breeding for such complex traits, especially in perennial plants
(Kumar et al. 2012). Nevertheless, in grapevine, GP has rarely
been used yet, only once on experimental data (Viana et al. 2016a)
and once on simulated data (Fodor ef al. 2014). Thus, before ap-
plying GP to this species, it has to be empirically validated by
thoroughly investigating the efficiency of different methods on
traits with various genetic architectures.

Both QTL detection and genomic prediction rely on finding
statistical associations between genotypic and phenotypic vari-
ation. So far, QTL detection in grapevine has been achieved
mainly by using interval mapping (IM) methods in bi-parental
populations, or more recently genome-wide association stud-
ies (GWAS) in diversity panels (see Vezzulli et al. (2019) for a
comprehensive review of QTL detection studies in grapevine).
However, most quantitative traits are explained by many minor
QTLs which are hardly detected neither by interval mapping
methods nor GWAS where each QTL has to individually over-
come a significance threshold. In contrast, GP methods, by
focusing on prediction, are less restrictive on the number of use-
ful markers, sometimes resulting in all markers being retained
as predictive with a non-zero effect. That is why GP methods are
more efficient to predict genotypic values (Goddard and Hayes
2007) and therefore have become more and more popular with
breeders (Heffner et al. 2010; Crossa 2017; Kumar et al. 2020).

Widely used methods for GP are based on penalized re-
gression (Hastie et al. 2009), notably RR (Ridge Regression,
equivalent to Genomic BLUP, GBLUP, Habier et al. (2007)) and
the LASSO (Least Absolute Shrinkage and Selection Operator).
Bayesian approaches are also commonly used in GP (e.g., de los
Campos ef al. (2013); Kemper et al. (2018)), see Desta and Ortiz
(2014) for a classification of GP methods. However, Bayesian
methods globally does not give better predictive ability than RR
or LASSO, and they bear a heavy computational cost when fitted
using Markov chains Monte-Carlo algorithms (Ferrdo et al. 2019).
Other methods based on non-parametric models (e.g., Support
Vector Machine, Reproducing Kernel Hilbert Space, Random
Forest) have been shown to yield lower predictive ability than
parametric models (frequentist or Bayesian) when the genetic
architecture of the trait was additive (Azodi et al. 2019).

Traits are often analyzed one by one in GP, using univari-
ate methods. Nevertheless, breeders want to select the best
genotypes which combine good performance for many traits.
Analyzing several traits jointly in GP allows to take into account
genetic correlation between traits (Henderson and Quaas 1976).
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Calus and Veerkamp (2011); Jia and Jannink (2012); Hayashi and
Iwata (2013); Guo et al. (2014) compared univariate vs multi-
variate models’ performance. They found a slight advantage of
multivariate analysis when heritability was low and data were
missing. Predictive ability was particularly improved if the test
set had been phenotyped for one trait while prediction was ap-
plied to another correlated trait (trait-assisted prediction) as in
Thompson and Meyer (1986); Jia and Jannink (2012); Pszczola
et al. (2013); Lado et al. (2018); Velazco et al. (2019); Liu et al. (2020).
However, this breaks independence between the training and
the test set, leading to an over-optimistic prediction accuracy
(Runcie and Cheng 2019). Multivariate methods have also been
proposed for QTL detection by Jiang and Zeng (1995); Korol et al.
(1995); Meuwissen and Goddard (2004), notably for distinguish-
ing between linkage and pleiotropy when a QTL is common
to several traits. Some methods of multivariate penalized re-
gression, such as in Chiquet et al. (2017), were designed to be
useful for both QTL detection and prediction of genotypic value.
Multivariate GP methods are expected to perform better if traits
are genetically correlated but this remains worth testing with
additional data. We also hypothesize that these methods will
have higher power for QTL detection, by making a better use of
information on the genetic architecture of several intertwined
traits.

Methods designed for QTL detection are rarely used for geno-
typic value prediction. As they select only the largest QTLs, we
hypothesize that these methods will provide an accurate pre-
diction as long as the genetic architecture is simple, but yield
poor prediction performance otherwise, as concluded in several
studies (Heffner et al. 2011; Wang et al. 2014; Arruda et al. 2016).
Conversely, some methods for GP like the LASSO and its exten-
sions are also able to select markers with non-null effects, hence
to perform QTL detection. Their accuracy in detecting QTLs has
been partially investigated by Li and Sillanpaa (2012) on a single
trait in an inbred species and on simulated data and by Cho
et al. (2010) on human data and binary trait, hence additional
analyzes are needed.

This article aims to compare the ability of various methods
to predict genotypic values and to detect QTLs in a bi-parental
progeny of grapevine, by focusing on traits related to adap-
tation to climate change. We first complemented the available
sparse SSR genetic map (Huang et al. 2012) by restriction-assisted
DNA sequencing to construct a saturated SNP map. Then, we
simulated phenotypic data using this map to compare several
univariate and multivariate methods and assess the impact of
simulation parameters. Finally, we reanalyzed the phenotypic
data on water stress from Coupel-Ledru ef al. (2014, 2016) ob-
tained in semi-controlled conditions. The same genotyping data
and methods as those applied to simulated data were compared,
providing deeper insights into the genetic determinism of key
traits underlying water use efficiency by finding new QTLs and
candidate genes.

Materials and Methods

Plant Material

This study was based on a pseudo-F1 progeny of 188 offspring
of Vitis vinifera L. from a reciprocal cross made in 1995 between
cultivars Syrah and Grenache (Adam-Blondon et al. 2005).

Genetic maps
SSR map
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We used the genetic map with 153 multi-allelic SSR mark-
ers already published (Huang et al. 2012), constructed with the
Kosambi mapping function (Doligez et al. 2013). In the following,
we used the JoinMap version 3 format, according to which each
marker genotype is encoded into one of the following segrega-
tion types: abxcd, efxeg, hkxhk, nnxnp and ImxIl. Each of them
comprises several allelic effects: e.g., for abxcd, the additive
effects are a, b, c and d, and the dominance effects are ac, ad,
bc and bd. Among the 153 SSRs, 50 were abxcd, 58 efxeg, 10
hkxhk, 16 ImxIl and 19 nnxnp.

The physical positions of SSR markers absent from the
latest URGI JBrowse (https://urgi.versailles.inra.fr/Species/Vitis/
Genome-Browser) were retrieved by aligning their forward
primer with BLAST (Altschul et al. 1990) on the PN40024 12X.v2
reference sequence (Canaguier ef al. 2017) using default param-
eter values, except for the Expect threshold which was set to 1
or 10. Physical positions were still missing for six SSRs and one
was uncertain (high Expect value).

SNP map

GBS markers  Further genotyping was done by sequencing af-
ter genomic reduction, using RAD-sequencing technology with
ApeKI restriction enzyme (Elshire et al. 2011), as described in
Flutre et al. (2020). Keygene N.V. owns patents and patent appli-
cations protecting its Sequence Based Genotyping technologies.
This yielded a final number of 17,298 SNPs.

Consensus genetic map  The genetic map was built with Lep-
MAP3 (Rastas 2017). The resulting map had 3,961 fully-
informative markers (abxcd segregation) without missing data.
These data were numerically recoded in biallelic doses (0,1,2)
according to the initial biallelic segregation and phase (Table S1).

Design matrices The resolution of multiple linear regressions
described below requires a design matrix, which is built from the
genotyping data. At a given marker, each genotype encoded in
the JoinMap v3 format corresponded to several columns, yield-
ing one predictor per allelic effect. From each genetic map (153
SSRs and 3,961 SNPs), we derived two design matrices, coded
with 0, 1 and 2. The first one included only additive allelic effects
(464 and 15,844, respectively). The second one included both
additive and dominance allelic effects (996 and 31,688, respec-
tively).

As mentioned before, we also recoded the 3,961 markers into
additive gene dose (i.e., 0, 1 or 2), which yielded an additional
design matrix with 3,961 predictors.

Simulation

Phenotype simulations were used to i) compare several meth-
ods for prediction accuracy, and ii) assess the efficacy of these
methods to select the markers most strongly associated with
trait variation.

Two traits, y1 and y, were jointly simulated according to the
following bivariate linear regression model: Y = XB + E, where
Y is the nn X k matrix of traits, X the n x p design matrix of allelic
effects, B the p x k matrix of allelic effects, and E the n x k matrix
of errors. For X, the 3,961 SNP markers mapped for the SxG
progeny were used, encoded in additive and dominance effects.
Therefore n = 188, k =2, and p = 31,688. For B, allelic effects cor-
responding to s additive QTLs were drawn from a matrix-variate
Normal distribution, B ~ MV(0,1, Vg), with I being the p x p
identity matrix and Vg the k X k genetic variance-covariance

2
. . o BUB,UB
matrix between traits such that Vg = B P 21 :
PBUB, 0B, 03,

where pp is the genetic correlation among traits and 0’%1 and

01232 the genetic variances for both traits y; and y». In the same

way, E ~ MV (0,1, Vg), with the k x k error variance-covariance

2
. 0] PEVE,UE . .
matrix Vg = B 21 > | where ok is the residual
PECE,0E, Ot,
error correlation among traits, and (7% the error variance. We set

pp to 0.8, (7%1 and (71%2 to 0.1, pg to 0 and narrow-sense heritability

t00.1,0.2,0.4 or 0.8 and U}% was deduced.

To explore different genetic architectures, we simulated s =
2 or s = 50 additive QTLs, located at s SNP markers, so that all
corresponding additive allelic effects had non-zero values in B.
Since all allelic effects were drawn from the same distribution,
all QTLs had "major" or "minor" effects for s = 2 and s = 50,
respectively. All dominant allelic effects were set to zero. Two
QTL distributions across traits were also simulated. For the first
one, called "same", all QTLs were at the same markers for both
traits. For the second one, called "diff", the two traits had no
QTL in common. Thus, there was genetic correlation among
traits only for the "same" QTL distribution.

For each configuration (2 or 50 QTLs combined with "same"
or "diff" distribution), the simulation procedure was replicated
t = 10 times, each with a different seed for the pseudo-random
number generator, resulting in different QTL positions and ef-
fects.

In a first simulation set, narrow-sense heritability was as-
sumed equal for both traits and prediction was done with all
methods. In a second set, we simulated two traits with different
heritability values (0.1 and 0.5), for the "same" QTL distribution
with s = 20 and s = 200 QTLs, with QTL effects drawn from a
matrix-variate distribution with 0'§=1 and pp = 0.5, in order to
test the simulation parameters from Jia and Jannink (2012) with
our genotyping data. For this second simulation set, prediction
was done with a subset of methods only. Simulation parameters
are summarized in Table 1.

Experimental design, phenotyping and statistical analysis

Seven phenotypes related to drought tolerance had already been
measured in two years on the Syrah x Grenache progeny (on
186 genotypes among the 188 existing) in semi-controlled condi-
tions on the PhenoArch platform (https://www6.montpellier.inrae.
fr/lepse_eng/M3P) in Montpellier, France, as detailed in Coupel-
Ledru et al. (2014, 2016). Briefly, six replicates per genotype
were used in 2012 (five in 2013). Three (in 2012) or two (in
2013) replicates were maintained under well-watered conditions
(Well-Watered condition, WW), whereas the three other ones
were submitted to a moderate water deficit (Water Deficit con-
dition, WD). Specific transpiration, i.e. transpiration rate per
leaf area unit, was measured during daytime (T+S) and night-
time (TrS_night). Midday leaf water potential (y51,PsiM) was
also measured and the difference between soil and leaf water
potential (A, DeltaPsi) was calculated. Soil-to-leaf hydraulic
conductance on a leaf area basis (KS) was calculated as the ra-
tio between TrS and DeltaPsi. Growth rate (DeltaBiomass) was
estimated by image analysis. Transpiration efficiency (TE) was
calculated over a period of 10 to 15 days as the ratio between
growth and total water loss by transpiration during this period.

These seven phenotypes were studied under each wa-
tering condition (WW and WD). We thus considered 14

Genomic prediction and QTL detection 3
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Simulation parameter

Same heritability values

Different heritability values

QTL number 2-50 20-200

Heritability value 0.8/0.8-0.4/04-0.2/0.2-0.1/0.1 0.1/0.5
Genetic variance 0.1/0.1 1/1
Genetic correlation 0.8 0.5

QTL distribution Same-Diff Same

Table 1 Parameter values in two sets of simulation of two traits in a bi-parental population

traits in this study, a trait being defined as a pheno-
type x watering condition combination, and used the raw
data available online (https://data.inrae.fr/privateurl.xhtml?token=
383f6606-1c3c-4d90-8607-704cd53de068). For each trait, a lin-
ear mixed model was fitted with R/Ilme4 version 1.1-21 (Bates
et al. 2014) using data from both years. First, a model with
two random effects (genotype and genotype-year interaction)
and nine fixed effects (year, replicate, coordinates in the plat-
form within the greenhouse, coordinates in the controlled-
environment chamber where PsiM and TrS were measured,
operator for Psi M measurements, controlled-environment cham-
ber and date of measurement) were fitted with maximum likeli-
hood (ML). The best model among all sub-models was chosen
using R/ImerTest version 3.1-2 (Kuznetsova et al. 2017) based
on Fisher tests for fixed effects and likelihood ratio tests for
random effects, with a p-value threshold of 0.05. This model
was then fitted with restricted maximum likelihood (ReML)
to obtain unbiased estimates of the variance components and
empirical BLUPs (Best Linear Unbiased Predictions) of the geno-
typic values. The acceptability of underlying assumptions (ho-
moscedasticity, normality, independence) was assessed visually
by plotting residuals and BLUPs. Broad-sense heritability was
computed according to Nanson (1970), dividing the residual
variance by the mean number of trials (years) and replicates per
trial. Its coefficient of variation was estimated by bootstrapping
with R/Ime4 and R/boot packages.

Interval Mapping methods

Two univariate interval mapping methods were compared,
using R/qtl version 1.46-2 (Broman et al. 2003). For both, the
probability of each genotypic class was first inferred at markers
and every 0.1 cM between markers along the genetic map, using
the R/qtl::calcgenoprob function.

Simple Interval Mapping  (SIM, Lander and Botstein (1989)) as-
sumes that there is at most one QTL per chromosome. A LOD
score was computed every 0.1 cM with R/qtl::scanone, then 1000
permutations were performed to determine the LOD threshold
so that the family-wise (genome wide) error rate (FWER) was
controlled at 5

Multiple Interval Mapping  (MIM, Kao et al. (1999)) allows the si-
multaneous detection of several QTLs. It was performed with
R/qtl::stepwiseqtl, using a forward / backward selection of
Haley-Knott regression model (Haley and Knott 1992), with a
maximum number of QTLs set to 4 (or 10 for ROC curve con-
struction, see below), replicated 10 times to overcome occasional
instability issues. Only main effects were included (no pairwise

4 Brault et al.

342

343

QTL x QTL interaction). The LOD threshold was computed
with permutations (1000 for QTL detection and 10 for cross-
validation of GP, see below) to determine the main penalty with
R/qtl::scantwo. QTL positions and effects were determined with
R/ qtl::refineqtl and R/ qtl:fitqtl, respectively. For both methods,
QTL positions were determined as those of LOD peaks above
the threshold, with LOD-1 confidence intervals (Lander and
Botstein 1989).

Penalized regression methods

Genomic prediction can be seen as a high-dimension regres-
sion problem with more allelic effects (in B) to estimate than
observations (in Y), known as the "n << p" problem. The likeli-
hood of such models must be regularized and various extensions,
called penalized regression of the Ordinary Least Squares (OLS)
algorithm were proposed. Such a penalization generally induces
a bias in the estimation of allelic effects.

Univariate methods

Ridge Regression (RR, Hoerl and Kennard (1970)) adds to the
OLS a penalty on the effects using the L2 norm. As a result,
all estimated allelic effects are shrunk towards zero, yet none
is exactly zero. The amount of shrinkage is controlled by a
regularization parameter (A). We tuned it by cross-validation
using the glmnet function of the R/glmnet package version 3.0-2
(Friedman et al. 2010) with default parameters except family =
"gaussian” and « = 0, keeping the A value that minimizes the
Mean Square Error (MSE). Note that effects associated to corre-
lated predictors are averaged so that they are close to identical,
for a high level of regularization.

The Least Absolute Shrinkage and Selection Operator (LASSO,
Tibshirani (1996)) adds to the OLS a penalty on the effects us-
ing the L1 norm, causing some allelic effects to be exactly zero,
while others are shrunk towards zero. Hence LASSO performs
predictor selection, i.e., provides a sparse solution of predictors
included in the best model, in addition to estimating their allelic
effect. The LASSO regularization parameter (A) was tuned by
cross-validation with cv.glmnet (family = "gaussian”, « = 1). In
the case of n < p, LASSO selects at most 1 predictors.

Extreme Gradient Boosting Mason ef al. (1999) is a machine
learning method. We first applied the LASSO for reduction di-
mension and then Extreme Gradient Boosting to better estimate
marker effect, based on the LASSO marker selection. Hence,
we called that method LASSO.GB. As the LASSO estimation of
allelic effect is biased, LASSO.GB could provide a better estima-
tion, as well as the estimation of non-linear effects. Briefly, the
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Gradient Boosting iteratively updates the estimation of weak
predictors, in order to reduce the loss. This method requires an
optimization of many parameters associated with a loss function
(MSE). This optimization has been done with train function from
R/caret version 6.0-86 (Kuhn 2008) using the "xgbTree" method.
As the optimization of numerous parameters was computation-
ally heavy, we fixed some of them (nrounds = max_depth =2,
colsample_bytree = 0.7, gamma = 0, min_child_weight =1 and
subsample = 0.5), while testing a grid of varying parameters
(nrounds = 25, 50, 100, 150; eta = 0.07, 0.1, 0.2).

The Elastic Net (EN, Zou and Hastie (2005)) adds to the OLS
both L1 and L2 penalties, the balance between them being con-
trolled by a parameter (). Both « and A were tuned by a nested
cross-validation: 20 values of a were tested between 0 and 1 and,
for each of them, we used cv.glmnet function (from R/glmnet
package) to choose between 500 values of A. The parameter pair
minimizing the MSE was kept. EN performs predictor selection
but is less sparse than LASSO.

Note that RR, LASSO and EN all assume a common variance
for all allelic effects.

Multivariate methods

The multi-task group-LASSO (MTV_LASSO, Hastie and Qian
(2016)) is a multivariate extension of the LASSO, A parameter
was tuned using glmnet (family = "mgaussian”, « = 1). It as-
sumes that each predictor variable has either a zero or a non-
zero effect across all traits, allowing non-zero effects to have
different values among traits. MTV_RR is the multivariate ex-
tension of RR, also tuned with glmnet (family = "mgaussian”,
« = 0). Similarly, MTV_EN is the multivariate extension of EN.
The implementation of these three methods is identical.

The multivariate structured penalized regression  (called SPRING
in Chiquet et al. (2017)) applies a L1 — penalty (A parameter)
for controlling sparsity (like LASSO) and a smooth L2 — penalty
(A2 parameter) for controlling the amount of structure among
predictor variables to add in the model, i.e., the correlation be-
tween markers according to their position on the genetic map.
Both parameters were tuned by cross-validation using cv.spring
function (from R/spring package, version 0.1-0). Unlike multi-
task group-LASSO, SPRING selects specific predictors for each
trait, i.e., a selected predictor can have a non-zero effect for a
subset of the traits. SPRING allows the distinction between the
direct effects of predictors on a trait and their indirect effects
by using conditional Gaussian graphical modeling. These ef-
fects are due to covariance of the noise such as environmental
effects affecting several traits simultaneously. This distinction
results in two kinds of estimated allelic effects: the direct ones,
re-estimated with OLS, which are best suited for QTL detection
(we called the corresponding prediction method spring.dir.ols)
and the regression ones, which involve both direct and indirect
effects and are best suited for prediction (spring.reg method).

Robust extension for marker selection

To enhance the reliability of marker selection by penalized
methods, we used two approaches: Stability Selection (Mein-
shausen and Buhlmann 2009) and marginal False Discovery Rate
(Breheny 2019), which both aim at controlling the number of
false positive QTLs. We did not use these methods for genomic
prediction, as they are not designed for this purpose.
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Stability selection  (SS) is a method which controls the FWER,
computes the empirical selection probability of each predictor
by applying a high-dimensional variable selection procedure,
e.g., LASSO, to a different subset of half the observations for
each A value from a given set, and then keeps only predictors
with a selection probability above a user-chosen threshold. Sta-
bility selection is implemented in R/stabs package version 0.6-3
(Hofner and Hothorn 2017) and can also be adapted to a multi-
variate framework. For QTL detection on experimental data, the
probability threshold we applied was 0.6 for LASSO.SS and 0.7
for MTV_LASSO.SS.

Marginal False Discovery Rate (mFDR) allows to choose a more
conservative value of A for LASSO and EN with the R/nvcreg
package version 3.12.0 (Breheny 2019). For QTL detection on
experimental data, we set mFDR to 10% for LASSO.mFDR and
EN.mFDR. This approach is not adapted to a multivariate frame-
work.

Evaluation and comparison of methods

All methods were compared on two aspects: their ability to
predict genotypic values, and their ability to select relevant mark-
ers, i.e., to detect QTLs. To assess the prediction of genotypic
values on simulated data, we used the Pearson’s correlation
coefficient between the predicted genotypic values and the sim-
ulated ones (prediction accuracy). On experimental data, we
used the same criterion, but the true genotypic values being
unknown, we used their empirical BLUPs instead (predictive
ability).

For QTL detection on simulated data, the methods were com-
pared using criteria of binary classification based on the numbers
of true positives and false negatives. On experimental data, be-
cause true QTLs are unknown, no such comparison could be
performed; instead, we compared the outcome of the different
methods and QTLs were deemed reliable when found by several
methods.

Genomic prediction

A nested cross-validation (CV) was applied to assess predic-
tion by the various methods.

e An outer k1 — fold CV was performed to estimate the per-
formance metrics, with an inner k2 — fold CV applied to
the training set of each outer fold to find the optimal tuning
parameters for the method under study (Figure S2). Both
k1 and k2 were set to 5 (see Arlot and Lerasle (2016). The
folds of the outer CV were kept constant among traits and
methods.

o For interval mapping methods, the optimal tuning param-
eter was the LOD threshold obtained from permutations,
and the effects for the four additive genotypic classes (ac,
ad, bc and bd) were estimated by fitting a multiple linear
regression model with genotype probabilities at all QTL
peak positions as predictors, using R/stat::lm. For penal-
ized regression methods, parameters were optimized with
specific functions such as cv.glmnet and cv.spring.

e As performance metrics, we used mainly the Pearson’s
correlation (corP) but we also calculated the root mean
square predicted error (RMSPE), the Spearman correlation
(corS), the model efficiency (Mayer and Butler 1993) and
test statistics on bias and slope from the linear regression of
observations on predictions (Pifieiro et al. 2008).

Genomic prediction and QTL detection 5
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For experimental data, the whole nested cross-validation
process was repeated 10 times (r=10), whereas for simulated
data it was performed only once, but on 10 different simulation
replicates (r=1 and t=10). The 14 traits were analyzed jointly for
MTV_RR, MTV_LASSO and MTV_EN. But for SPRING, since
analyzing all traits together was computationally too heavy, we
split traits into three groups by hierarchical clustering (Figure
S3) performed with R/hclust applied to genotypic BLUPs. All
traits within each group were analyzed together.

For simulated data with the same heritability values for both
traits, performance results were averaged not only over simu-
lation replicates and partitions of outer CV, but also over traits,
because both traits were equivalent in terms of simulation pa-
rameters. For simulated data with different heritability values,
performance results were averaged only over simulation repli-
cates and partitions of outer CV. For experimental data, perfor-
mance results were averaged over partitions of outer CV and
outer CV replicates.

Moreover, in terms of design matrices, for experimental data,
we compared several ones based on the mean predictive abil-
ity of eight methods across the 14 traits of experimental data.
For IM methods, only SSR and SNP maps coded in JoinMap
format were compared. We showed that for most methods, the
SNP genotypes recoded into gene doses gave the best predictive
ability (Figure S4), tied with other SNP design matrices. For com-
putational reasons, we hence chose to use this one for method
comparison. For simulated data, as QTLs correspond to SNP
markers, we only used the SNP map as the design matrix, coded
in gene doses for penalized methods and in JoinMap format for
IM methods.

QTL detection

Simulated data  The quality of a predictor selection method is
usually assessed with the relationship between statistical power
(i.e. the True Positive Rate, TPR) and type I error rate (i.e. the
False Positive Rate, FPR). To compare methods, we thus used
the ROC (receiver operating characteristic) curve (Swets et al.
1979), which is the plot of TPR as a function of FPR over a range
of parameters (Table 2), and the pAUC (partial Area Under the
Curve; McClish (1989); Dodd and Pepe (2003)). Any marker
selected at +/- 2 cM of a simulated QTL was counted as a True
Positive.

For methods with two tuning parameters, one parameter was
kept constant (« at 0.7 for EN and EN.mFDR, and A, at 10e-8
for SPRING). We tested several values of a for EN but it did not
change much the results (not shown). For MIM, the maximum
number of QTLs that can be integrated into the model was set
to 10.

Experimental data Comparison between methods was based on
the number of detected QTLs, the magnitude of their effects and
the percentage of variance globally explained by all detected
QTLs.

For MTV_LASSO and SPRING, we split traits into three
groups as described above, for computational reasons (for
SPRING) and to test whether such splitting gave more reliable
QTLs (for MTV_LASSO). The parameters of penalized methods
were tuned by cross-validation, with MSE as the cost function.
We compared predictor selection between methods in terms
of the number of common selected markers per trait, i.e. the
intersection between markers selected by penalized methods
(focusing on LASSO and EN) and markers inside confidence in-
tervals found by interval mapping methods (focusing on MIM).

6 Brault et al.

Then all markers in high LD with those selected were considered
as selected too. The threshold was defined as the 95% quantile
of LD value distribution, for all pairs of markers belonging to
the same chromosome (Figure S5), which gave a LD threshold
of 0.84.

We deemed selected markers as highly reliable if they were
either i) selected by at least five methods, whatever the meth-
ods, ii) or selected by both EN.mFDR and MIM (see Results).
Then, we defined a highly reliable QTL as the interval of +/-3
cM around each highly reliable marker (Price 2006; Viana et al.
2016b), as predicted by loess fitting of genetic positions to physi-
cal positions. When several markers were selected inside the 6
cM interval, the QTL interval was extended accordingly. The ge-
netic positions of this interval were then converted into physical
positions, by fitting a polynomial local regression (loess). QTLs
overlapping for several traits on the SNP map were merged
into a single QTL, by physical intervals” union. We determined
QTLs overlapping between SSR and SNP genetic maps based
on physical positions.

Candidate genes exploration  After merging the most highly re-
liable QTLs colocalized between traits, we proceeded to search
for underlying candidate genes. We retrieved the list of genes
overlapping the intervals of our QTLs from the reference Vi-
tis genome 12X.v2 and the VCost.v3 annotation (Canaguier
et al. 2017). We then used the correspondence between IGGP
(International Grapevine Genome Program) and NCBI RefSeq
gene model identifiers provided by URGI (https://urgi.versailles.
inra.fr/Species/Vitis/Annotations) to get putative functions from
NCBI, when available. For those genes with a putative func-
tion, we then refined the analysis to retrieve additional informa-
tion about their function and expression. We searched UniProt
(https://www.uniprot.org/) and TAIR (https://www.arabidopsis.org/)
databases to get a complete description of the genes function,
their name and the corresponding locus in Arabidopsis. In addi-
tion, we used the GREAT (GRape Expression Atlas) RNA-seq
data analysis workflow (https:/great.colmar.inrae.fr/app/GREAT),
which gathers published expression data, to assess the level
of expression of our candidate genes in grapevine leaves and
shoots, the organs relevant for the traits considered in this study.
RNA-seq data are normalized as detailed on the ‘User manual’
section of the GREAT platform: "from the raw read counts, the
normalized counts (library size normalization) and the RPKM
(gene size normalization) are calculated for each gene in each
sample". Data were retrieved with all filters set to "Select All"
except for the organ considered that was restricted to ‘Leaves’
and ‘Shoot’.

Data availability and reproducibility

All software we used was free and open-source and most an-
alyzes were done with R (R Core Team 2020), notably graphs
were created using the ggplot2 package (Wickham 2016). All R
scripts used for the analysis, i.e. genetic mapping, simulation,
phenotypic analysis, prediction and QTL detection, are avail-
able in a first, online repository at https:/data.inrae.fr/privateurl.
xhtml?token=d7ef7492-a2a7-499d-82c0-baad1d14a8dd. Many of
the custom functions we used are available in a package for
reproducibility purposes, R/rutilstimflutre (Flutre 2019). Raw
and transformed genotypic data, as well as the genetic map, are
available in a second, online repository at https://data.inrae.fr/
privateurl.xhtml?token=782ff6ff-d79c-4714-b0da-b85c5a4514a5.
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Method SIM/MIM LASSO/MTV_LASSO Stability Selection SPRING EN  mFDR

Parameter name LOD A probability threshold MM A mFDR
Lowest constraint 0 10e-5 0.5 10e-8 10e-4 0.3
Highest constraint 14 0.25 0.9 0.25 8 0

Table 2 Parameter ranges for ROC curve computation for comparing predictor selection performance of different methods.

Results

Genetic mapping

We constructed a saturated consensus genetic map with 3,961
SNP markers obtained by GBS. The SNP map covers 1,283 cM.
It was essentially superimposed on the SSR map of 1,116 cM
(Figure 1). Chromosome 17 had the largest contribution to this
15% difference in length, its length being 37.8 <M with SSRs and
63.7 cM with SNPs. Chromosomes 2, 3, 12, 13 and 15 were also
longer on the SNP map. The average distance between markers
was 0.34 cM for the SNP map (respectively 9.0 cM for the SSR
map) and the maximum distance was 12.0 cM (respectively 29.4
cM for the SSR map). At most places along the genome, genetic
order was consistent with physical order.

Comparison of methods with simulated data
Prediction: cross-validation results

Traits with the same heritability value Methods were compared
for prediction accuracy by applying cross-validation on simu-
lated data with four different configurations and four heritability
values.

Mean Pearson’s correlation coefficient varied from 0.16 to
0.98, with a strong effect of heritability on prediction accuracy in
all configurations, for the seven main methods (Figure 2). As ex-
pected, MIM performed very well in the "major" configurations
across all heritability values but yielded the least accurate pre-
diction in the "minor" ones. On the opposite, RR performed very
well in the "minor" configurations, but yielded the least accurate
prediction in the "major" ones. EN prediction performance was
always intermediate between those of RR and LASSO. QTL dis-
tribution among traits - "same" (for QTLs at the same positions)
or "diff" (for QTLs at different positions) - had very little effect
on prediction accuracy. Moreover, we did not observe any supe-
riority of multivariate methods over univariate ones, despite the
strong genetic correlation simulated between traits (op=0.8) and
no correlation between errors.

The prediction accuracy of four additional methods is shown
in Figures 56 and prediction accuracy values, as well as other
performance metrics (see Materials and Methods) are in Table
S7. All interval mapping methods yielded equivalent prediction
accuracy. LASSO.GB did not improve performance compared to
LASSO. MTV_RR showed equivalent performance as univariate
RR. Prediction accuracy with spring.dir.ols was always lower
than with spring.reg, and even very low for "minor" configu-
rations. With 100 or 1000 simulated QTLs (under both QTL
distributions) the ranking of methods based on prediction accu-
racy did not change compared to "minor" configurations (Figure
S8).

Traits with different heritability values To further compare pre-
diction accuracy of univariate and multivariate methods, we
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simulated two correlated traits with different heritability values,
0.1 and 0.5. MTV_LASSO performed slightly better than univari-
ate LASSO for the lowest heritability trait; however, differences
were not significant (Figure S9). On the opposite, prediction
accuracy was lower with MTV_LASSO than with univariate
LASSO for the highest heritability trait, reaching quite low val-
ues with 200 simulated QTLs. The same trends were also visible
for MTV_EN and EN. MTV_RR never improved prediction com-
pared to RR and spring.reg never performed better than RR.
Since these results were unexpected, we also compared pre-
diction accuracy of the above methods with the simulated data
published by Jia and Jannink (2012). We obtained very similar
differences among methods as with our simulated data, even
though prediction accuracy was higher in all cases (Figure 510).

QTL detection: ROC curve results

We compared the main methods mentioned above (except
RR which does not perform marker selection), as well as some
robust extensions, for their marker selection performance with
ROC curves, using the same simulated data (Figure 3) in the
four configurations. On ROC curves, the closer a method gets
to the optimum point (i.e. FPR =0 and TPR=1), the better. As
expected, interval mapping methods (SIM and MIM) showed
low selection performance when many minor QTLs were sim-
ulated and high selection performance when few major QTLs
were simulated. Note that the MIM curve was hardly visible; it
roughly overlapped with the SIM curve but stopped at a low
FPR because it could not select many QTLs by design.

The penalized regression methods always performed at least
as well as the interval mapping methods or even much better in
the case of "minor" configurations. Among penalized methods,
no method was clearly better than the others in all configu-
rations, except for a slight superiority of MTV_LASSO in the
"same_minor" configuration. These methods, and particularly
spring.dir.ols, displayed a high variability in classification re-
sults for two simulated QTLs ("major" configurations). Indeed,
when one QTL was not detected among the two traits, there was
a stronger impact on the TPR than with 50 simulated QTLs.

The most interesting part of the ROC curve for QTL detection
is the left most part, i.e. with a low FPR (e.g. below 0.1). We
hence calculated the partial Area Under the Curve (pAUC) for
FPR between 0 and 0.1 for methods reaching that value (Figure
S11). EN resulted in constantly high pAUC across configura-
tions and heritability values. In contrast, pAUC for SIM was
quite high at low heritability values for the "same_major" con-
figuration but dropped for other configurations and heritability
values.

Results on experimental data
Computation of genotypic BLUPs

Genomic prediction and QTL detection 7
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Figure 1 Comparison of SSR and SNP consensus genetic maps of a pseudo-F1 V. vinifera population, obtained by plotting genetic
positions as a function of physical positions for each chromosome. The position of the SSR marker indicated by a triangle on chro-

mosome 12 was uncertain.

We first recomputed the genotypic BLUPs from the raw phe-
notypic data from (Coupel-Ledru et al. 2014, 2016) in order to
control the model selection step in a reproducible way. These
new BLUPs had a strong linear correlation (> 0.9) with those
used in Coupel-Ledru et al. (2014, 2016), as shown in Figure S12.
Note that in Coupel-Ledru et al. (2014), no BLUP was available
for DeltaPsi and PsiM for WW condition because the genotype
random effect was not selected (H2=0).

The estimates of broad-sense heritability followed the same
trend as in Coupel-Ledru et al. (2014, 2016) (Figure S13). Never-
theless, values were not equal because we did not use exactly the
same formula to estimate heritability. All the information about
fitting linear mixed models (percentage of missing data, trans-
formation applied if any, effects included in the selected model,
residual variance, heritability estimate, coefficient of variation
estimate and precision) is available in the first, online repository.
Broad-sense heritability estimates were higher in WD condition
than in WW for all traits except DeltaBiomass.

Genetic correlation between traits varied widely, some abso-
lute correlation values being very high (e.g. up to 0.99 between
PsiM and DeltaPsi in both conditions) because some traits de-
rived from others (Figure S14).

Genomic predictive ability

8 Brault et al.
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Mean genomic predictive ability per trait ranged from -0.10
to 0.68 ((Figure 4 and Table S15). It decreased with broad-
sense heritability. IM methods (in blue) were always among
the three worst methods for prediction. Based on the mean
predictive ability averaged across traits, MTV_EN yielded the
highest correlation (0.384), followed by RR (0.3721), MTV_RR
(0.3716), MTV_LASSO (0.369), EN (0.357), spring.reg (0.344),
LASSO (0.329), LASSO.GB (0.313), MIM (0.200) and SIM (0.162).
However, based on the number of traits for which each method
gave the best prediction, spring.reg had the highest score, with
6 traits out of 14, followed by MTV_EN (3 out of 14) and EN (2
out of 14).

In a nutshell, MTV_EN and RR, tied with MTV_RR, pro-
vided the best mean predictive ability across traits. Even
though spring.reg outperformed them for some traits, its perfor-
mance was unstable, and especially low for DeltaBiomass. WW,
DeltaBiomass.WD, DeltaPsi. WW and DeltaPsi. WD. For compu-
tational reasons, all traits could not be analyzed together with
spring.reg, but were divided into three groups. These four traits
with low predictive ability belonged to the same group. Yet,
the effect of group membership on predictive ability was not
significant at 5% (p-value=0.30 and percentage of variance ex-
plained=24%).

QTL detection
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applied to 3,961 markers and two simulated traits in a bi-parental population with different heritability values and four QTL config-
urations (number x distribution among traits). major: 2 QTLs; minor: 50 QTLs; same: QTLs at the same positions for both traits; diff:
QTLs at different positions between traits. For each heritability value and configuration, prediction accuracy was averaged over
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Figure 3 ROC curves for 10 methods applied to 3,961 markers and two simulated traits in a bi-parental population with two heri-
tability values and four QTL configurations (number x distribution among traits). major: 2 QTLs; minor: 50 QTLs; same: QTLs at
the same positions for both traits; diff: QTLs at different positions between traits. Results are averaged over 2 traits x 10 simulation
replicates. TPR: True Positive Rate (number of correctly found QTLs / number of simulated QTLs), FPR: False Positive Rate (num-
ber of falsely found QTLs / number of markers outside a QTL). For robust methods (mFDR and SS), as the FPR remained very low,
we display only a single point corresponding to the lowest parameter constraint and thus to the highest TPR.
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Figure 4 Mean genomic predictive ability (Pearson’s correlation between genotypic BLUPs and their predicted values), obtained by
cross-validation for 10 methods applied to 14 traits related to water deficit and GBS gene-dose data, within a grapevine bi-parental
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mate). Traits are ordered by decreasing heritability. For each trait, predictive ability is averaged over 10 cross-validation replicates x

5 cross-validation folds).

Interval mapping methods: comparison with previous results  For
the 14 traits we analyzed, 26 QTLs were detected in Coupel-
Ledru et al. (2014, 2016) using Composite Interval Mapping
(CIM) on the SSR map. In comparison, using Multiple Interval
Mapping (MIM), we found 21 QTLs on the SSR map and 25 with
MIM on the SNP map (Figure S16).

Based on physical positions, we found 13 new QTLs (i.e. with
non-overlapping CIM SSR QTLs physical positions) (Table S17)
on six chromosomes for eight traits, and confirmed 21 of the 26
published QTLs, with a notable reduction of QTL intervals on
chromosome 13 (Figure 516). The 15 QTLs found by all three
methods (CIM SSR, MIM SSR and MIM SNP) explained the
highest mean percentage of variance (Figure S18).

Comparison of marker selection among a subset of methods  Af-
ter applying 11 methods for SNP selection (Table 519), we per-
formed a first comparison of marker selection between MIM, as
the reference method for QTL detection, and both LASSO and
EN, because our simulation results showed that they selected
relevant markers in various genetic determinism configurations
(Figures 3 and S11).

The number of markers selected by MIM, LASSO and EN was
905, 1009 and 1550, respectively (Table S19). For each trait, MIM
identified markers on a small number of chromosomes (from
0 to 5), while both EN and LASSO selected markers on many
chromosomes (from 6 to 19, Table S19). The number of selected
markers per trait seemed partly linked to trait heritability: more
markers were selected when heritability was high (Figures 4 and
5). More markers were selected by EN than by other methods
for all traits (except for KS.WW). Nearly all markers selected by
LASSO were also selected by EN (954 out of 1009), i.e., there
were only few markers selected by LASSO only. MIM selection
was quite different from LASSO and EN selections (184 out of

10 Brault et al.

905 were common with EN, LASSO or both) but most markers
selected by MIM and at least one penalized method were se-
lected by both EN and LASSO. The number of markers selected
by EN and MIM ranged from 0 to 59 over traits, with a median
value of 16.

Determination of highly reliable QTLs  To address the intersection
of SNP selection by all methods, and determine the number
of reliable intervals (QTLs) and their position, we examined in
more detail marker selection for each trait and chromosome.
Detailed results, including genetic and physical positions and
the percentage of variance explained, are given in Table S19. A
visualization of these results is given in Figure 6 for night-time
transpiration under water deficit ( TrS_night. WD) and in Figure
520 for all traits.

Most of the time, more markers were selected for traits under
water deficit than for traits in well-watered conditions, and they
were most often selected by several methods. We showed that
penalized methods tend to select the same markers, not only
close ones; for example, for TrS_night. WD on chromosome 4, the
same marker (at physical position 21,079,664 bp) was selected
by seven methods (Figure 6).

We considered markers selected by both MIM and EN.mFDR
as highly reliable ones for three reasons: 1) markers selected by
both MIM and EN were considered as reliable ones (see above);
2) simulations showed that MIM and mFDR methods led to
a very low FPR; 3) these methods belong to different method
classes (interval mapping vs penalized regression). We also
considered as highly reliable the markers selected by at least five
methods. These criteria resulted in a set of 59 highly reliable
selected markers, which were converted to genetic intervals of +
3 cM around each selected marker. Overlapping intervals per
trait were merged, resulting in 25 highly reliable QTLs.
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Figure 5 Number of selected markers per method or group of methods, for three methods applied to 14 traits related to water
deficit and GBS gene-dose data, within a grapevine bi-parental population. Traits are ordered as in Figure 4. Number of selected
markers (extended to markers in high LD, see Materials and Methods) per category are indicated at the top of each rectangle. Meth-
ods followed by « only » are for the number of markers selected by this method that are not selected by any of the two other meth-

ods (among EN, LASSO and MIM).

These 25 QTLs involved nine traits, mostly under water
deficit, and were located on seven chromosomes (Figure S21).
QTLs colocalized for different traits, such as on chromosome
1, had similar distributions of genotypic BLUPs according to
genotypic classes (Figure 522).

Among these 25 QTLs, 16 had overlapping physical inter-
vals with CIM SSR QTLs and one was very close to a CIM SSR
QTL (details about these 25 QTLs are in Table S23). Thus, we
found eight new highly reliable QTLs, among which five were
not detected by MIM. In particular, a completely new QTL for
TrS_night. WD was found alone on chromosome 12. Most other
new QTLs were colocalized with previously found QTLs in
single year analysis and/or for the other watering condition.
Notably, we observed colocalization of TrS_night. WD, TE.WD
and DeltaBiomass.WD QTLs on chromosomes 4 and 17.

In total, the percentage of variance explained (adjusted R?)
per trait was 51.28% for TrS_night. WD (36% in 2012 for Coupel-
Ledru et al. (2016), 33.88% for PsiM.WD, 31.41% for DeltaPsi.WD,
26.88% for DeltaBiomass.WW, 19.38% for TE.WD, 18.62% for
TE.WW, 16.99% for KS.WD, 14.88% for DeltaBiomass.WD and
8.55% for TrS.WD.

Candidate genes

After merging the QTLs colocalized between traits, we ob-
tained 12 intervals, located on chromosomes 1, 4, 10, 12, 13, 17
and 18, harboring a total of 3,461 genes according to the VCost.v3
annotation (Canaguier ef al. 2017). Among them, 2,379 had a
NCBI Refseq identifier and 1,757 a putative function (Table S24).
We then focused our analysis on the eight "new" intervals, i.e.
those which were not overlapping with CIM SSR intervals. They
encompassed 1,155 genes, half of which were annotated. We
were able to retrieve from TAIR and/or UniProt a more precise
description of the genes function for 86% of the annotated genes

(Table S24). The remaining ones either did not have any homolo-
gous gene in Arabidopsis thaliana or were not described in the
above-mentioned databases. RNA-seq data was available on the
GREAT platform for 90% of the annotated genes. We further
focused our analysis on the highly reliable QTL co-located on
chromosome 4 for TE, TrS_night and DeltaBiomass under various
conditions. We proceeded to a functional classification of the 161
annotated genes underlying this QTL, based on the full descrip-
tion previously retrieved (Table 525 and 7). For 75 genes, an inte-
grated function at the plant or organ level was explicitly quoted
in the description. We grouped these integrated functions into 12
major groups: stomata, trichomes development, xylem develop-
ment, growth or development, photosynthesis, wall, reproduc-
tion, pathogen resistance, detoxification, secondary metabolism,
senescence, germination, and nutrition. A substantial number of
genes were related to the functions of major interest in relation
to the traits for which QTLs co-localized on this chromosome: 15
genes related to hydraulics (stomata, xylem, trichomes), relevant
for TrS_night and thus TE; 27 to growth or development and one
to photosynthesis, both relevant to DeltaBiomass and thus TE. For
the 86 genes for which an integrated function was not explicitly
quoted, we further built a classification based on their cellular
or molecular function. Among them, we found six genes related
to carbon metabolism, one to wall formation (both relevant for
DeltaBiomass) and six to drought stress signaling and drought
related hormones (relevant for TrS_night).

Discussion

To provide new insights into the complex genetic determinism of
vegetative traits under different watering conditions, the contri-
butions of this study are three-fold. We compared by simulation
several univariate and multivariate methods for genomic pre-
diction and QTL detection, increased the density of genotyping

Genomic prediction and QTL detection 11
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data, and re-analyzed grapevine phenotypes obtained under sss Methodological aspects: method comparisons
semi-controlled conditions. In particular, we showed that penal-

ized methods are valuable not only for prediction but also for
QTL detection. Indeed, we found new QTL using these methods s
and identified relevant candidate genes.

sss  Handling linkage disequilibrium

Interval mapping methods estimate genotypic probabilities
sss  between markers according to a genetic map which is compu-
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tationally costly to build. On the other hand, most penalized
methods do not require any previous knowledge on LD.

The LASSO assumption that all predictor variables are inde-
pendent is all the more violated that there are many markers. In
the case of a group of correlated predictors (e.g., SNPs in LD),
EN selects either none or all predictors within the group with
close estimated values (Zou and Hastie 2005) whereas LASSO
selects a single predictor. In that sense, EN aims at correcting
the drawbacks of LASSO when predictor variables are highly
correlated. By exploring a large number of configurations of
the finite-sample high-dimensional regression problem, Wang
et al. (2020) showed that EN is competitive for both prediction
and selection in most cases with highly correlated predictors. In
agreement with these results, we showed that EN performed
well for both prediction and selection on our simulated data,
and that multivariate EN performed the best for prediction on
the grapevine experimental data.

We also compared SPRING that can explicitly make use of a
genetic map. We observed that SPRING had a larger increase
in predictive ability from SSR to SNP design matrix than other
methods (Figure S4). This was probably due to the fact that
SPRING uses LD pattern for prediction, this pattern being better
captured with a dense genetic map. However, SPRING showed
no systematic advantage over other penalized methods for pre-
diction with the dense SNP map (Figures 2, 4).

Comparison between interval-mapping and penalized regres-
sion methods for genomic prediction

As expected, IM methods performed poorly to predict accu-
rate genotypic values when QTL number was large (Bernardo
and Yu 2007; Lorenzana and Bernardo 2009; Mayor and Bernardo
2009; Olatoye et al. 2019) (Figures 2 and S6). Therefore, for com-
plex traits, genomic prediction should not be based only on
QTLs detected by IM methods.

Among univariate penalized methods, none performed best
in all cases (Figures 2, 4 and S6), as also found in the literature
(Riedelsheimer et al. 2012; Heslot et al. 2012; Azodi et al. 2019). As
shown by simulation, RR was better adapted to highly polygenic
genetic architecture whereas LASSO was better adapted to a few
major QTLs. Moreover, in the case of many minor QTLs, RR was
the most stable method across heritability values, as previously
described for several traits and species (Heslot et al. 2012; Azodi
et al. 2019). However, RR prediction accuracy dropped when
QTL number was too small whereas EN still predicted as well
as LASSO. EN was hence well adapted to various numbers and
distributions of QTLs.

Multivariate vs univariate  When the same heritability was sim-
ulated for both trait variables, no superiority of multivariate
methods was observed, even when both traits had QTLs at the
same positions (Figures 2 and S6).When different heritability
values were simulated for the two traits, we observed a slight
superiority of MTV_LASSO (resp. MTV_EN) over LASSO (resp.
EN) only in the "same" and "major" configuration (with both
traits sharing the same two QTLs) for the trait with small heri-
tability (Figure S9).

Other authors which tested multivariate GP on simulated
data systematically applied different heritability values and they
found a superiority of multivariate methods over univariate ones
for the trait with the smallest heritability (Calus and Veerkamp
2011; Guo et al. 2014; Jiang et al. 2015; Dagnachew and Meuwis-
sen 2019). However, all these studies were based on a smaller,
more favorable, p/n ratio, a key component of high-dimensional

980

models (Verzelen 2012). For example, in Jia and Jannink (2012),
their 500 observations for 2,020 predictors correspond to a ratio
of ~ 4, compared to our 188 observations for 3,961 predictors
corresponding to a ratio of ~ 21. Indeed, parameters n and p are
involved in the sample complexity function defined in Obozin-
ski et al. (2011), which predicts the theoretical cases where the
MTV_LASSO is superior to its univariate counterpart in terms
of variable selection. Accordingly, applying our methods on Jia
and Jannink (2012) data allowed us to display a higher differ-
ence between univariate and multivariate LASSO than with our
simulated data.

Unexpectedly, when reanalyzing the data simulated by Jia
and Jannink (2012), we obtained lower prediction accuracy with
our MTV_LASSO (Figure S11) than they did with their multi-
variate BayesA (their Figure 1A). A similar result in a univariate
setting was found by Guan and Stephens (2011) who compared
BSVR (comparable to BayesA) and the LASSO. They found that
BSVR had a markedly higher power than the LASSO. Moreover,
the parameters of both BSVR (in Guan and Stephens (2011))
and BayesA (in Jia and Jannink (2012)) were estimated with a
MCMC algorithm. No inner cross-validation was needed, hence
the sample used to train the model was larger. This difference
may explain why Figure 1A from Jia and Jannink (2012) shows
better prediction accuracies for multi-trait models compared
to their single-trait counterparts, although their figure did not
display any confidence interval. Note that our RR prediction
accuracies were close to those of their GBLUP (univariate and
multivariate). As a conclusion, prediction accuracy is affected
both by the dimension of the problem (i.e., n and p) and the
method used (i.e., Bayesian with MCMC or cross-validation).

For experimental data, we observed that MTV_LASSO (re-
spectively MTV_EN) was superior to LASSO (resp. EN) for the
five traits with the smallest heritability (Figure 4). This improve-
ment suggests that MTV_LASSO (resp. MTV_EN) was able to
borrow signal from the most heritable traits to the least heritable
ones, likely because of a genetic architecture partially overlap-
ping between these traits. This interpretation is reinforced by
the fact that a QTL for low-H2 trait, TE.WW, colocalizes on
chromosome 4 with QTLs for four high-to-moderate-H?2 traits
(TrS_night. WD, DeltaBiomass.WW, DeltaBiomass.WD and TE.WD).
This improvement was not found in Jia and Jannink (2012), who
also tested their methods on real pine data from Resende et al.
(2012). These observations suggest that the number of traits
analyzed (14 in our case and 2 in Jia and Jannink (2012) study)
may also play a role in the prediction accuracy of multivariate
over univariate methods.

Comparison between interval-mapping and penalized regres-
sion methods for QTL detection

To the best of our knowledge, comparison with the ROC
curve between IM and penalized regression methods has never
been done before in terms of marker selection. Other publica-
tions (Cho et al. 2010; Li and Sillanpad 2012; Waldmann et al.
2013) successfully applied LASSO or EN for performing GWAS,
but none of them compared IM and penalized methods for QTL
identification. As expected, we found that IM methods are
adapted to detect a few major QTLs but not many minor QTLs
(Figure 3). Moreover, we found that penalized methods could
be as good at marker selection as IM methods, and even far
better when there are many minor QTLs. Among the penalized
methods we compared, none clearly outperformed the others
for marker selection in all configurations.

Genomic prediction and QTL detection 13
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Multivariate vs univariate ~ As the MTV_LASSO selects one pre- 1040
dictor for all traits, its superiority over univariate LASSO de- 1041
pends on QTL distribution across traits, notably on the amount 1042
of genetic basis shared by the traits (Obozinski et al. 2011). How-
ever, as for prediction, we showed that MTV_LASSO perfor- e
mance was not different whether QTLs were at the same or at
different positions across traits (Figure 3). Nevertheless, we ob- 104
served that MTV_LASSO was slightly better than LASSO when 14
many QTLs were simulated. SPRING had never been evaluated 104
before for its quality of predictor selection. As for prediction, %7
SPRING showed unstable results across our simulation repli- 104
cates and hyper-parameter values. However, for the ROC curve, 104
we did not include predictor structure in the model, which may %
hamper marker selection quality. 1051
1052
Efficient default method for both QTL detection and genomic 105
prediction 1054
1055
IM methods were designed for marker selection; hence they 105
are not expected to be optimal for prediction, and we confirmed 105
that. Among penalized regression methods, some may be better 1oss
at prediction than marker selection, and vice versa. For exam- 1ps
ple, our results showed that EN performed well across several 1050
configurations for both aims. Some methods such as SPRING 11
are specially adapted to handle both purposes but it gave too 1o
variable results for either prediction or QTL detection. However, 1063
SPRING is a recent method that still can be improved in order 1s4

to correct this drawback. 1065

New penalized regression methods are continuously being
developed. In particular, graph structured sparse subset selec- "
tion (Grass) recently proved to outperform existing methods
for both prediction and predictor selection, thanks to a LO regu-
larization that limits the number of nonzero coefficients in the
model (Do et al. 2020). It could be tested on our data when
its implementation becomes available. Moreover, multivariate !
methods are presented as being more efficient at using the whole
signal in the data, whether for marker selection (Inouye et al.
2012) or prediction (Jia and Jannink 2012; Guo et al. 2014), but
our results revealed no systematic advantage of multivariate 1

methods over univariate ones for both aims.
1076

Using penalized methods for both marker selection and ge- 197
nomic prediction requires adapted hyper-parameter values. For 1078
EN, LASSO and SPRING, the A value controls sparsity (e.g., the 107°
number of selected markers). Thus, the optimal value of A might 108
not be the same if the aim is to limit the FPR or to maximize 1%
the predictive ability (Li and Sillanp&a 2012). For prediction, we 1082
traditionally use cross-validation to tune hyper-parameters by 103
minimizing MSE. For marker selection, there is no direct equiva- 10
lence. That is why we tested extensions of these methods (mFDR 105
and SS) which control sparsity for robust marker selection and 0%
they proved to be efficient to select the most relevant markers. 1%

In order to shed light on the link between prediction accuracy 1oss
and marker selection, we plotted the prediction accuracy at each 108
point of the ROC curve for EN and EN.mFDR against FPR for 100
minor configurations (with 50 simulated QTLs) (Figure S26). For 1001
EN, we showed that prediction accuracy reached its maximum 10e2
when FPR was below 0.05. Then, FPR increased while prediction 10ss
accuracy decreased, until it reached a plateau. This means that 10es
prediction quality is intimately linked to selection quality, espe- 10ss
cially at low heritability. For EN.mFDR, the FPR stayed always 1006

below 0.015 but the prediction accuracy was lower. 1007

14 Brault et al.

As a consequence, as an efficient default method, we advise
at this stage to apply EN for performing genomic prediction, and
its extension EN.mFDR for performing sparser marker selection.

Genetic determinism and prediction of grapevine response to
water deficit

Based on experimental data on the Syrah x Grenache progeny
(new genotypic data and already published phenotypic data),
we compared the same methods as above for both prediction
and marker selection. To the best of our knowledge, grapevine
GP within a bi-parental family has been applied only to a limited
number of traits, with very few methods and never using multi-
variate GP. Fodor et al. (2014) studied GP in grapevine with sim-
ulated data on a diverse and structured population, they tested
RR-BLUP, Bayesian Lasso, and a combination of marker selec-
tion and RR. Viana et al. (2016a) used an inter-specific grapevine
bi-parental population. They predicted cluster and berry pheno-
types (number and length of clusters, number of berries, berry
weight, juice pH, titrable acidity) with RR-BLUP and Bayesian
LASSO applied to table grape breeding. In addition to yield-
ing further insights into method comparison beyond those ob-
tained by simulation, our study brought valuable novel biologi-
cal knowledge about grapevine water use under different water-
ing conditions. Indeed, new methods and the new SNP genetic
map allowed us to find novel QTLs, as compared to those previ-
ously detected with the same phenotypic data (Coupel-Ledru
et al. 2014, 2016).

Predictive ability and genetic architecture

Among univariate penalized methods, RR generally had
equivalent or better predictive ability than LASSO. For the traits
with the largest discrepancy between RR and LASSO, this sug-
gests that trait variability was rather due to many minor QTLs
rather than to a few major ones. On the other hand, predictive
abilities of sparse methods (e.g. LASSO and IM methods) were
better than RR for PsiM.WD, DeltaPsi. WD and TE.WW traits,
suggesting a more major genetic architecture. We observed that
some genomic regions were less densely covered by the SNP
genetic map (e.g., a 10 cM gap on chromosome 19), which might
lead to a decrease in predictive ability for traits with QTLs in
these regions. We tested this hypothesis for penalized meth-
ods, by using the raw genotypic data imputed with the mean
(SNP.raw on Figure S4). For most traits, this design matrix gave
worse predictions than with other SNP ones, except for TE.WW,
for which the raw matrix gave the best predictive abilities (data
not shown). This suggests that some QTLs for TE. WW were lost
(markers not selected) when we predicted with sparser design
matrices, whereas this was not the case for other traits. Filtering
markers by genetic mapping for prediction purpose thus proved
to be useful for most traits.

Furthermore, we tested several design matrices for GP on
experimental data. The matrices derived from the SNP map led
to better predictive ability than those derived from the SSR map,
due to higher density, while the additive + dominant coding of
allelic effects did not provide any increase in predictive ability
(Figure S4). This could suggest that dominance effects have
negligible impact on these traits. Nevertheless, the additive +
dominant coding double the matrix dimension (up to 31,688
predictors), which might hamper allelic effect estimation and
thus, prediction.
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Finally, non-additive genetic effects such as epistasis could
be involved while not considered by the penalized methods
used. We therefore tested the superiority of LASSO.GB over
LASSO. Extreme Gradient Boosting methods are indeed among
the best machine learning methods (Chen and Guestrin 2016).
LASSO.GB did not markedly increase predictive ability on ex-
perimental data (Figure 4). However, we cannot exclude that
this might be due to a poor optimization of Extreme Gradient
Boosting parameters or to insufficient number of observations
to correctly fit the model.

Candidate gene analysis

The thorough methodology deployed for candidate genes
analysis allowed us not only to retrieve a list of the genes un-
derlying the QTLs of interest, but also to classify them based on
their function and expression in order to point at more likely
candidates. We focused on the highly reliable QTL detected on
chromosome 4 for TrS_night, TE and DeltaBiomass. TrS_night
QTL was previously described as a promising target for marker
assisted selection, as alleles limiting night-time transpiration
also favor plant growth, resulting in a double, beneficial im-
pact on improving transpiration efficiency (Coupel-Ledru et al.
2016). Moreover, this QTL was found by seven methods. Within
a plethora of integrated functions represented within the list
of annotated genes underlying this QTL, we show here that
a subset of more likely candidates can be defined as possibly
related to the traits of interest. These include on one hand,
genes related to broad-sense hydraulics and water loss, with
a possible direct impact on TrS_night: seven genes involved in
stomatal development, nine genes involved in stomatal open-
ing -sometimes through the abscicic acid signalling pathway-,
one to xylem development and one to trichome development
(Table S25). One of these genes, the trihelix transcription factor
GT-2 (Vitvi04g01604), was specifically shown to impact transpi-
ration and transpiration efficiency in Arabidopsis by acting as
a negative regulator of stomatal density. On the other hand,
27 genes among the list are directly related to growth, devel-
opment, or photosynthesis, meaning a possible direct impact
on DeltaBiomass. A histidine kinase 1 (Vitvi04g01483) may be a
particularly interesting candidate for its multiple roles in ABA
signalling, stomatal development and plant growth known in
Arabidopsis, hence potentially simultaneously acting on both
components of TE. Both these likely candidates were often highly
expressed in grapevine leaves according to the data retrieved
from the RNA-seq database. The reduction of confidence inter-
val did drastically reduce the number of genes as well as the
subsequent analyses, but the list is still extensive. More precise
analyses of these candidate genes, including functional genomic
work and possible gene editing of some of them will be now
necessary to identify the genes under these new QTLs.

Conclusion

Faced with the threat of climate change and the challenge of de-
creasing inputs while maintaining yield and quality, deciphering
the genetic architecture of target traits is a most needed endeavor.
In this goal of importance to all agricultural species whatever
the traits under investigation, the approach developed in this
article aimed at harnessing the most information as possible
from dense genotyping and accurate phenotypic data. Among
the wealth of available methods, we focused our comparison on
univariate vs multivariate ones. Moreover, rather than decou-
pling genomic prediction from the identification of major QTLs,

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
172
1173
1174

1175

we argue for the need to purse both goals jointly. Indeed, they
provide complementary information on the genetic architecture
of the target traits as well the key functions underlying them.
As such, we provided an in-depth investigation mobilizing both
simulated and experimental data, hence of interest beyond our
grapevine case study, hoping that it will contribute to a way
forward to other researchers working on other species. Of inter-
est to quantitative geneticists, our results notably emphasized
the interest of the Elastic Net, available as both a univariate and
a multivariate version, as an efficient, default method for ge-
nomic prediction, followed by the mFDR control for the robust
identification of QTLs. Moreover, of interest to plant biologists
who seek to understand the response to water stress, our results
highlighted several candidate genes underlying the integrated
traits of night-time transpiration, transpiration efficiency and
biomass production. For some of them, their functions confirm
and suggest causal links with stomatal functioning, trichome
development or the ABA pathway.
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