

Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection to cope with climate change affecting grapevine

Charlotte Brault*, †, §, Agnès Doligez†, §, 1, Loïc le Cunff*, §, Aude Coupel-Ledru**, Thierry Simonneau**, Julien Chiquet††, Patrice This†, § and Timothée Flutre†, 1

*Institut Français de la Vigne et du Vin, Montpellier, France, §UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier, France, †AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France, †Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France, ††AgroParisTech, UMR MIA, Paris, France, **LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

ABSTRACT Viticulture has to cope with climate change and decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a potential key to meet this challenge, and genomic prediction is a promising tool to accelerate breeding programs, multivariate methods being potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and allowing the identification of positional candidate genes. We applied several methods, interval mapping as well as univariate and multivariate penalized regression, in a bi-parental grapevine progeny, in order to compare their ability to predict genotypic values and detect QTLs. We used a new denser genetic map, simulated two traits under four QTL configurations, and re-analyzed 14 traits measured in semi-controlled conditions under different watering conditions. Using simulations, we recommend the penalized regression method Elastic Net (EN) as a default for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than interval mapping for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using experimental data, penalized regression methods proved as very efficient for intra-population prediction whatever the genetic architecture of the trait, with accuracies reaching 0.68. These methods applied on the denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. These methods can be applied to other traits and species.

KEYWORDS genomic prediction; QTL detection; genetic correlation; breeding; candidate gene; water stress; grapevine

Introduction

Viticulture is facing two major challenges, coping with climate change and decreasing inputs such as pesticides, while maintaining yield and quality. This requires understanding the physiological processes and their genetic basis that determine adaptation to climate change, such as water use efficiency (Condon *et al.*

2004). Breeding schemes could then incorporate genotypes bearing genetic architecture favorable to high water use efficiency to be crossed with genotypes resistant to downy and powdery mildew (Vezzulli *et al.* 2019) and by selecting offspring combining favorable combinations. In crops, the widespread use of molecular markers through Marker Assisted Selection (MAS) or Genomic Prediction (GP) substantially accelerates the genetic gain compared to traditional phenotypic selection, by allowing early selection of promising genotypes, without phenotypic information (Heffner *et al.* 2009). This is of acute interest in fruiting perennial species because of the long juvenile period during which most traits of interest cannot be phenotyped. MAS and GP are now widely developed in many perennial species such

doi: 10.1534/genetics.XXX.XXXXXX

Manuscript compiled: Thursday 22nd October, 2020

¹Corresponding authors: Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France; E-mail: timothee.flutre@inrae.fr; AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France; E-mail: agnes.doligez@inrae.fr

as pear (Kumar *et al.* 2019), oil palm (Kwong *et al.* 2017; Cros *et al.* 2015), citrus (Gois *et al.* 2016), apple (Muranty *et al.* 2015) and coffeea (Ferrão *et al.* 2019). In grapevine, QTL detection in bi-parental populations led up to the identification of major genes for traits with a simple genetic architecture such as resistance to downy and powdery mildew, berry color, seedlessness and Muscat flavor (Fischer *et al.* 2004; Welter *et al.* 2007; Fournier-Level *et al.* 2009; Emanuelli *et al.* 2010; Mejía *et al.* 2011; Schwander *et al.* 2012). Currently, most breeding effort in grapevine consists in improving disease resistance with MAS based on these results. However, genetic improvement is also needed for traits with more complex genetic determinism. Many minor QTLs have been found for the tolerance to abiotic stresses (Coupel-Ledru *et al.* 2014, 2016), yield components (Doligez *et al.* 2010, 2013) and fruit quality (Huang *et al.* 2012), as reviewed in Vezzulli *et al.* (2019). But MAS is not well suited for traits with many underlying minor QTLs (Bernardo 2008). Genomic prediction, which relies on high density genotyping is a promising tool for breeding for such complex traits, especially in perennial plants (Kumar *et al.* 2012). Nevertheless, in grapevine, GP has rarely been used yet, only once on experimental data (Viana *et al.* 2016a) and once on simulated data (Fodor *et al.* 2014). Thus, before applying GP to this species, it has to be empirically validated by thoroughly investigating the efficiency of different methods on traits with various genetic architectures.

Both QTL detection and genomic prediction rely on finding statistical associations between genotypic and phenotypic variation. So far, QTL detection in grapevine has been achieved mainly by using interval mapping (IM) methods in bi-parental populations, or more recently genome-wide association studies (GWAS) in diversity panels (see Vezzulli *et al.* (2019) for a comprehensive review of QTL detection studies in grapevine). However, most quantitative traits are explained by many minor QTLs which are hardly detected neither by interval mapping methods nor GWAS where each QTL has to individually overcome a significance threshold. In contrast, GP methods, by focusing on prediction, are less restrictive on the number of useful markers, sometimes resulting in all markers being retained as predictive with a non-zero effect. That is why GP methods are more efficient to predict genotypic values (Goddard and Hayes 2007) and therefore have become more and more popular with breeders (Heffner *et al.* 2010; Crossa 2017; Kumar *et al.* 2020).

Widely used methods for GP are based on penalized regression (Hastie *et al.* 2009), notably RR (Ridge Regression, equivalent to Genomic BLUP, GBLUP, Habier *et al.* (2007)) and the LASSO (Least Absolute Shrinkage and Selection Operator). Bayesian approaches are also commonly used in GP (e.g., de los Campos *et al.* (2013); Kemper *et al.* (2018)), see Desta and Ortiz (2014) for a classification of GP methods. However, Bayesian methods globally does not give better predictive ability than RR or LASSO, and they bear a heavy computational cost when fitted using Markov chains Monte-Carlo algorithms (Ferrão *et al.* 2019). Other methods based on non-parametric models (e.g., Support Vector Machine, Reproducing Kernel Hilbert Space, Random Forest) have been shown to yield lower predictive ability than parametric models (frequentist or Bayesian) when the genetic architecture of the trait was additive (Azodi *et al.* 2019).

Traits are often analyzed one by one in GP, using univariate methods. Nevertheless, breeders want to select the best genotypes which combine good performance for many traits. Analyzing several traits jointly in GP allows to take into account genetic correlation between traits (Henderson and Quaas 1976).

Calus and Veerkamp (2011); Jia and Jannink (2012); Hayashi and Iwata (2013); Guo *et al.* (2014) compared univariate *vs* multivariate models' performance. They found a slight advantage of multivariate analysis when heritability was low and data were missing. Predictive ability was particularly improved if the test set had been phenotyped for one trait while prediction was applied to another correlated trait (trait-assisted prediction) as in Thompson and Meyer (1986); Jia and Jannink (2012); Pszczola *et al.* (2013); Lado *et al.* (2018); Velasco *et al.* (2019); Liu *et al.* (2020). However, this breaks independence between the training and the test set, leading to an over-optimistic prediction accuracy (Runcie and Cheng 2019). Multivariate methods have also been proposed for QTL detection by Jiang and Zeng (1995); Korol *et al.* (1995); Meuwissen and Goddard (2004), notably for distinguishing between linkage and pleiotropy when a QTL is common to several traits. Some methods of multivariate penalized regression, such as in Chiquet *et al.* (2017), were designed to be useful for both QTL detection and prediction of genotypic value. Multivariate GP methods are expected to perform better if traits are genetically correlated but this remains worth testing with additional data. We also hypothesize that these methods will have higher power for QTL detection, by making a better use of information on the genetic architecture of several intertwined traits.

Methods designed for QTL detection are rarely used for genotypic value prediction. As they select only the largest QTLs, we hypothesize that these methods will provide an accurate prediction as long as the genetic architecture is simple, but yield poor prediction performance otherwise, as concluded in several studies (Heffner *et al.* 2011; Wang *et al.* 2014; Arruda *et al.* 2016). Conversely, some methods for GP like the LASSO and its extensions are also able to select markers with non-null effects, hence to perform QTL detection. Their accuracy in detecting QTLs has been partially investigated by Li and Sillanpää (2012) on a single trait in an inbred species and on simulated data and by Cho *et al.* (2010) on human data and binary trait, hence additional analyzes are needed.

This article aims to compare the ability of various methods to predict genotypic values and to detect QTLs in a bi-parental progeny of grapevine, by focusing on traits related to adaptation to climate change. We first complemented the available sparse SSR genetic map (Huang *et al.* 2012) by restriction-assisted DNA sequencing to construct a saturated SNP map. Then, we simulated phenotypic data using this map to compare several univariate and multivariate methods and assess the impact of simulation parameters. Finally, we reanalyzed the phenotypic data on water stress from Coupel-Ledru *et al.* (2014, 2016) obtained in semi-controlled conditions. The same genotyping data and methods as those applied to simulated data were compared, providing deeper insights into the genetic determinism of key traits underlying water use efficiency by finding new QTLs and candidate genes.

Materials and Methods

Plant Material

This study was based on a pseudo-F1 progeny of 188 offspring of *Vitis vinifera L.* from a reciprocal cross made in 1995 between cultivars Syrah and Grenache (Adam-Blondon *et al.* 2005).

Genetic maps

SSR map

We used the genetic map with 153 multi-allelic SSR markers already published (Huang *et al.* 2012), constructed with the Kosambi mapping function (Doligez *et al.* 2013). In the following, we used the JoinMap version 3 format, according to which each marker genotype is encoded into one of the following segregation types: ab×cd, ef×eg, hk×hk, nn×np and lm×ll. Each of them comprises several allelic effects: e.g., for ab×cd, the additive effects are a, b, c and d, and the dominance effects are ac, ad, bc and bd. Among the 153 SSRs, 50 were ab×cd, 58 ef×eg, 10 hk×hk, 16 lm×ll and 19 nn×np.

The physical positions of SSR markers absent from the latest URGJ JBrowse (<https://urgi.versailles.inra.fr/Species/Vitis/Genome-Browser>) were retrieved by aligning their forward primer with BLAST (Altschul *et al.* 1990) on the PN40024 12X.v2 reference sequence (Canaguier *et al.* 2017) using default parameter values, except for the Expect threshold which was set to 1 or 10. Physical positions were still missing for six SSRs and one was uncertain (high Expect value).

SNP map

GBS markers Further genotyping was done by sequencing after genomic reduction, using RAD-sequencing technology with *ApeKI* restriction enzyme (Elshire *et al.* 2011), as described in Flutre *et al.* (2020). Keygene N.V. owns patents and patent applications protecting its Sequence Based Genotyping technologies. This yielded a final number of 17,298 SNPs.

Consensus genetic map The genetic map was built with LepMAP3 (Rastas 2017). The resulting map had 3,961 fully-informative markers (ab×cd segregation) without missing data. These data were numerically recoded in biallelic doses (0,1,2) according to the initial biallelic segregation and phase (Table S1).

Design matrices The resolution of multiple linear regressions described below requires a design matrix, which is built from the genotyping data. At a given marker, each genotype encoded in the JoinMap v3 format corresponded to several columns, yielding one predictor per allelic effect. From each genetic map (153 SSRs and 3,961 SNPs), we derived two design matrices, coded with 0, 1 and 2. The first one included only additive allelic effects (464 and 15,844, respectively). The second one included both additive and dominance allelic effects (996 and 31,688, respectively).

As mentioned before, we also recoded the 3,961 markers into additive gene dose (i.e., 0, 1 or 2), which yielded an additional design matrix with 3,961 predictors.

Simulation

Phenotype simulations were used to i) compare several methods for prediction accuracy, and ii) assess the efficacy of these methods to select the markers most strongly associated with trait variation.

Two traits, y_1 and y_2 were jointly simulated according to the following bivariate linear regression model: $\mathbf{Y} = \mathbf{XB} + \mathbf{E}$, where \mathbf{Y} is the $n \times k$ matrix of traits, \mathbf{X} the $n \times p$ design matrix of allelic effects, \mathbf{B} the $p \times k$ matrix of allelic effects, and \mathbf{E} the $n \times k$ matrix of errors. For \mathbf{X} , the 3,961 SNP markers mapped for the SxG progeny were used, encoded in additive and dominance effects. Therefore $n = 188$, $k = 2$, and $p = 31,688$. For \mathbf{B} , allelic effects corresponding to s additive QTLs were drawn from a matrix-variate Normal distribution, $\mathbf{B} \sim MV(0, \mathbf{I}, \mathbf{V}_B)$, with \mathbf{I} being the $p \times p$ identity matrix and \mathbf{V}_B the $k \times k$ genetic variance-covariance

matrix between traits such that $\mathbf{V}_B = \begin{bmatrix} \sigma_{B_1}^2 & \rho_B \sigma_{B_1} \sigma_{B_2} \\ \rho_B \sigma_{B_1} \sigma_{B_2} & \sigma_{B_2}^2 \end{bmatrix}$

where ρ_B is the genetic correlation among traits and $\sigma_{B_1}^2$ and $\sigma_{B_2}^2$ the genetic variances for both traits y_1 and y_2 . In the same way, $\mathbf{E} \sim MV(0, \mathbf{I}, \mathbf{V}_E)$, with the $k \times k$ error variance-covariance

matrix $\mathbf{V}_E = \begin{bmatrix} \sigma_{E_1}^2 & \rho_E \sigma_{E_1} \sigma_{E_2} \\ \rho_E \sigma_{E_1} \sigma_{E_2} & \sigma_{E_2}^2 \end{bmatrix}$ where ρ_E is the residual

error correlation among traits, and σ_E^2 the error variance. We set ρ_B to 0.8, $\sigma_{B_1}^2$ and $\sigma_{B_2}^2$ to 0.1, ρ_E to 0 and narrow-sense heritability to 0.1, 0.2, 0.4 or 0.8 and σ_E^2 was deduced.

To explore different genetic architectures, we simulated $s = 2$ or $s = 50$ additive QTLs, located at s SNP markers, so that all corresponding additive allelic effects had non-zero values in \mathbf{B} . Since all allelic effects were drawn from the same distribution, all QTLs had "major" or "minor" effects for $s = 2$ and $s = 50$, respectively. All dominant allelic effects were set to zero. Two QTL distributions across traits were also simulated. For the first one, called "same", all QTLs were at the same markers for both traits. For the second one, called "diff", the two traits had no QTL in common. Thus, there was genetic correlation among traits only for the "same" QTL distribution.

For each configuration (2 or 50 QTLs combined with "same" or "diff" distribution), the simulation procedure was replicated $t = 10$ times, each with a different seed for the pseudo-random number generator, resulting in different QTL positions and effects.

In a first simulation set, narrow-sense heritability was assumed equal for both traits and prediction was done with all methods. In a second set, we simulated two traits with different heritability values (0.1 and 0.5), for the "same" QTL distribution with $s = 20$ and $s = 200$ QTLs, with QTL effects drawn from a matrix-variate distribution with $\sigma_B^2 = 1$ and $\rho_B = 0.5$, in order to test the simulation parameters from Jia and Jannink (2012) with our genotyping data. For this second simulation set, prediction was done with a subset of methods only. Simulation parameters are summarized in Table 1.

Experimental design, phenotyping and statistical analysis

Seven phenotypes related to drought tolerance had already been measured in two years on the Syrah x Grenache progeny (on 186 genotypes among the 188 existing) in semi-controlled conditions on the PhenoArch platform (https://www6.montpellier.inrae.fr/lepe_eng/M3P) in Montpellier, France, as detailed in Coupel-Ledru *et al.* (2014, 2016). Briefly, six replicates per genotype were used in 2012 (five in 2013). Three (in 2012) or two (in 2013) replicates were maintained under well-watered conditions (Well-Watered condition, WW), whereas the three other ones were submitted to a moderate water deficit (Water Deficit condition, WD). Specific transpiration, i.e. transpiration rate per leaf area unit, was measured during daytime (TrS) and nighttime (TrS_night). Midday leaf water potential (ψ_M, Psi_M) was also measured and the difference between soil and leaf water potential ($\Delta\psi, DeltaPsi$) was calculated. Soil-to-leaf hydraulic conductance on a leaf area basis (KS) was calculated as the ratio between TrS and $DeltaPsi$. Growth rate ($DeltaBiomass$) was estimated by image analysis. Transpiration efficiency (TE) was calculated over a period of 10 to 15 days as the ratio between growth and total water loss by transpiration during this period.

These seven phenotypes were studied under each watering condition (WW and WD). We thus considered 14

Simulation parameter	Same heritability values	Different heritability values
QTL number	2-50	20-200
Heritability value	0.8/0.8 – 0.4/0.4 – 0.2/0.2 – 0.1/0.1	0.1/0.5
Genetic variance	0.1/0.1	1/1
Genetic correlation	0.8	0.5
QTL distribution	Same-Diff	Same

Table 1 Parameter values in two sets of simulation of two traits in a bi-parental population

255 traits in this study, a trait being defined as a pheno- 300 type x watering condition combination, and used the raw 301 data available online (<https://data.inrae.fr/privateurl.xhtml?token=383f6606-1c3c-4d90-8607-704cd53de068>). For each trait, a lin- 302 ear mixed model was fitted with R/lme4 version 1.1-21 (Bates 303 *et al.* 2014) using data from both years. First, a model with 304 two random effects (genotype and genotype-year interaction) 305 and nine fixed effects (year, replicate, coordinates in the plat- 306 form within the greenhouse, coordinates in the controlled- 307 environment chamber where *PsiM* and *TrS* were measured, 308 operator for *PsiM* measurements, controlled-environment cham- 309 ber and date of measurement) were fitted with maximum likeli- 310 hood (ML). The best model among all sub-models was chosen 311 using R/lmerTest version 3.1-2 (Kuznetsova *et al.* 2017) based 312 on Fisher tests for fixed effects and likelihood ratio tests for 313 random effects, with a *p*-value threshold of 0.05. This model 314 was then fitted with restricted maximum likelihood (ReML) 315 to obtain unbiased estimates of the variance components and 316 empirical BLUPs (Best Linear Unbiased Predictions) of the geno- 317 typic values. The acceptability of underlying assumptions (ho- 318 moscedasticity, normality, independence) was assessed visually 319 by plotting residuals and BLUPs. Broad-sense heritability was 320 computed according to Nanson (1970), dividing the residual 321 variance by the mean number of trials (years) and replicates per 322 trial. Its coefficient of variation was estimated by bootstrapping 323 with R/lme4 and R/boot packages.

281 **Interval Mapping methods**

282 Two univariate interval mapping methods were compared, 324 using R/qlt version 1.46-2 (Broman *et al.* 2003). For both, the 325 probability of each genotypic class was first inferred at markers 326 and every 0.1 cM between markers along the genetic map, using 327 the R/qlt::calcgenoprob function.

288 **Simple Interval Mapping** (SIM, Lander and Botstein (1989)) as- 328 sumes that there is at most one QTL per chromosome. A LOD 329 score was computed every 0.1 cM with R/qlt::scanone, then 1000 330 permutations were performed to determine the LOD threshold 331 so that the family-wise (genome wide) error rate (FWER) was 332 controlled at 5

293 **Multiple Interval Mapping** (MIM, Kao *et al.* (1999)) allows the si- 333 multaneous detection of several QTLs. It was performed with 334 R/qlt::stepwiseql, using a forward / backward selection of 335 Haley-Knott regression model (Haley and Knott 1992), with a 336 maximum number of QTLs set to 4 (or 10 for ROC curve con- 337 struction, see below), replicated 10 times to overcome occasional 338 instability issues. Only main effects were included (no pairwise 339

340 QTL x QTL interaction). The LOD threshold was computed 341 with permutations (1000 for QTL detection and 10 for cross- 342 validation of GP, see below) to determine the main penalty with 343 R/qlt::scantwo. QTL positions and effects were determined with 344 R/qlt::refineql and R/qlt::fitql, respectively. For both methods, 345 QTL positions were determined as those of LOD peaks above 346 the threshold, with LOD-1 confidence intervals (Lander and 347 Botstein 1989).

348 **Penalized regression methods**

349 Genomic prediction can be seen as a high-dimension regres- 350 sion problem with more allelic effects (in **B**) to estimate than 351 observations (in **Y**), known as the "*n* << *p*" problem. The likeli- 352 hood of such models must be regularized and various extensions, 353 called penalized regression of the Ordinary Least Squares (OLS) 354 algorithm were proposed. Such a penalization generally induces 355 a bias in the estimation of allelic effects.

356 **Univariate methods**

357 **Ridge Regression** (RR, Hoerl and Kennard (1970)) adds to the 358 OLS a penalty on the effects using the *L*2 norm. As a result, 359 all estimated allelic effects are shrunk towards zero, yet none 360 is exactly zero. The amount of shrinkage is controlled by a 361 regularization parameter (λ). We tuned it by cross-validation 362 using the glmnet function of the R/glmnet package version 3.0-2 363 (Friedman *et al.* 2010) with default parameters except family = 364 "gaussian" and $\alpha = 0$, keeping the λ value that minimizes the 365 Mean Square Error (MSE). Note that effects associated to corre- 366 lated predictors are averaged so that they are close to identical, 367 for a high level of regularization.

368 **The Least Absolute Shrinkage and Selection Operator** (LASSO, 369 Tibshirani (1996)) adds to the OLS a penalty on the effects us- 370 ing the *L*1 norm, causing some allelic effects to be exactly zero, 371 while others are shrunk towards zero. Hence LASSO performs 372 predictor selection, i.e., provides a sparse solution of predictors 373 included in the best model, in addition to estimating their allelic 374 effect. The LASSO regularization parameter (λ) was tuned by 375 cross-validation with cv.glmnet (family = "gaussian", $\alpha = 1$). In 376 the case of $n < p$, LASSO selects at most n predictors.

377 **Extreme Gradient Boosting** Mason *et al.* (1999) is a machine 378 learning method. We first applied the LASSO for reduction di- 379 mension and then Extreme Gradient Boosting to better estimate 380 marker effect, based on the LASSO marker selection. Hence, 381 we called that method LASSO.GB. As the LASSO estimation of 382 allelic effect is biased, LASSO.GB could provide a better estima- 383 tion, as well as the estimation of non-linear effects. Briefly, the 384

344 Gradient Boosting iteratively updates the estimation of weak 401
345 predictors, in order to reduce the loss. This method requires an 402
346 optimization of many parameters associated with a loss function 403
347 (MSE). This optimization has been done with train function from 404
348 R/caret version 6.0-86 (Kuhn 2008) using the "xgbTree" method. 405
349 As the optimization of numerous parameters was computationally 406
350 heavy, we fixed some of them (nrounds = max_depth = 2, 407
351 colsample_bytree = 0.7, gamma = 0, min_child_weight = 1 and 408
352 subsample = 0.5), while testing a grid of varying parameters 409
353 (nrounds = 25, 50, 100, 150; eta = 0.07, 0.1, 0.2). 410
354

355 **The Elastic Net** (EN, Zou and Hastie (2005)) adds to the OLS 412
356 both L_1 and L_2 penalties, the balance between them being con- 413
357 trolled by a parameter (α). Both α and λ were tuned by a nested 414
358 cross-validation: 20 values of α were tested between 0 and 1 and, 415
359 for each of them, we used cv.glmnet function (from R/glmnet 416
360 package) to choose between 500 values of λ . The parameter pair 417
361 minimizing the MSE was kept. EN performs predictor selection
362 but is less sparse than LASSO.

363 Note that RR, LASSO and EN all assume a common variance 418
364 for all allelic effects.

364 **Multivariate methods**

365 **The multi-task group-LASSO** (MTV_LASSO, Hastie and Qian 423
366 (2016)) is a multivariate extension of the LASSO, λ parameter 424
367 was tuned using glmnet (family = "mgaussian", $\alpha = 1$). It as- 425
368 sumes that each predictor variable has either a zero or a non- 426
369 zero effect across all traits, allowing non-zero effects to have 427
370 different values among traits. MTV_RR is the multivariate ex- 428
371 tension of RR, also tuned with glmnet (family = "mgaussian", 429
372 $\alpha = 0$). Similarly, MTV_EN is the multivariate extension of EN. 430
373 The implementation of these three methods is identical.

374 **The multivariate structured penalized regression** (called SPRING 435
375 in Chiquet *et al.* (2017)) applies a $L_1 - \text{penalty}$ (λ_1 parameter) 436
376 for controlling sparsity (like LASSO) and a smooth $L_2 - \text{penalty}$ 437
377 (λ_2 parameter) for controlling the amount of structure among 438
378 predictor variables to add in the model, i.e., the correlation 439
379 between markers according to their position on the genetic map. 440
380 Both parameters were tuned by cross-validation using cv.spring 441
381 function (from R/spring package, version 0.1-0). Unlike multi- 442
382 task group-LASSO, SPRING selects specific predictors for each 443
383 trait, i.e., a selected predictor can have a non-zero effect for a 444
384 subset of the traits. SPRING allows the distinction between the 445
385 direct effects of predictors on a trait and their indirect effects 446
386 by using conditional Gaussian graphical modeling. These ef- 447
387 fects are due to covariance of the noise such as environmental 448
388 effects affecting several traits simultaneously. This distinction 449
389 results in two kinds of estimated allelic effects: the direct ones, 450
390 re-estimated with OLS, which are best suited for QTL detection 451
391 (we called the corresponding prediction method **spring.dir.ols**) 452
392 and the regression ones, which involve both direct and indirect 453
393 effects and are best suited for prediction (**spring.reg** method).

394 **Robust extension for marker selection**

395 To enhance the reliability of marker selection by penalized 453
396 methods, we used two approaches: Stability Selection (Mein- 454
397 shausen and Buhlmann 2009) and marginal False Discovery Rate 455
398 (Breheny 2019), which both aim at controlling the number of 456
399 false positive QTLs. We did not use these methods for genomic 457
400 prediction, as they are not designed for this purpose. 458

Stability selection (SS) is a method which controls the FWER, 401
57 computes the empirical selection probability of each predictor 402
346 by applying a high-dimensional variable selection procedure, 403
347 e.g., LASSO, to a different subset of half the observations for 404
348 each λ value from a given set, and then keeps only predictors 405
349 with a selection probability above a user-chosen threshold. Sta- 406
350 bility selection is implemented in R/stabs package version 0.6-3 407
351 (Hofner and Hothorn 2017) and can also be adapted to a multi- 408
352 variate framework. For QTL detection on experimental data, the 409
353 probability threshold we applied was 0.6 for LASSO_SS and 0.7 410
354 for MTV_LASSO_SS.

Marginal False Discovery Rate (mFDR) allows to choose a more 412
57 conservative value of λ for LASSO and EN with the R/nvcreg 413
346 package version 3.12.0 (Breheny 2019). For QTL detection on 414
347 experimental data, we set mFDR to 10% for LASSO.mFDR and 415
348 EN.mFDR. This approach is not adapted to a multivariate frame- 416
349 work.

349 **Evaluation and comparison of methods**

350 All methods were compared on two aspects: their ability to 418
351 predict genotypic values, and their ability to select relevant markers, 419
352 i.e., to detect QTLs. To assess the prediction of genotypic 420
353 values on simulated data, we used the Pearson's correlation 421
354 coefficient between the predicted genotypic values and the sim- 422
355 ulated ones (prediction accuracy). On experimental data, we 423
356 used the same criterion, but the true genotypic values being 424
357 unknown, we used their empirical BLUPs instead (predictive 425
358 ability).

359 For QTL detection on simulated data, the methods were 426
360 compared using criteria of binary classification based on the numbers 427
361 of true positives and false negatives. On experimental data, be- 428
362 cause true QTLs are unknown, no such comparison could be 429
363 performed; instead, we compared the outcome of the different 430
364 methods and QTLs were deemed reliable when found by several 431
365 methods.

365 **Genomic prediction**

366 A nested cross-validation (CV) was applied to assess prediction 436
367 by the various methods.

- An outer $k_1 - \text{fold}$ CV was performed to estimate the performance metrics, with an inner $k_2 - \text{fold}$ CV applied to the training set of each outer fold to find the optimal tuning parameters for the method under study (Figure S2). Both k_1 and k_2 were set to 5 (see Arlot and Lerasle (2016)). The folds of the outer CV were kept constant among traits and methods.
- For interval mapping methods, the optimal tuning parameter was the LOD threshold obtained from permutations, and the effects for the four additive genotypic classes (ac, ad, bc and bd) were estimated by fitting a multiple linear regression model with genotype probabilities at all QTL peak positions as predictors, using R/stat::lm. For penalized regression methods, parameters were optimized with specific functions such as cv.glmnet and cv.spring.
- As performance metrics, we used mainly the Pearson's correlation (corP) but we also calculated the root mean square predicted error (RMSPE), the Spearman correlation (corS), the model efficiency (Mayer and Butler 1993) and test statistics on bias and slope from the linear regression of observations on predictions (Piñeiro *et al.* 2008).

459 For experimental data, the whole nested cross-validation
460 process was repeated 10 times ($r=10$), whereas for simulated
461 data it was performed only once, but on 10 different simulation
462 replicates ($r=1$ and $t=10$). The 14 traits were analyzed jointly for
463 MTV_RR, MTV_LASSO and MTV_EN. But for SPRING, since
464 analyzing all traits together was computationally too heavy, we
465 split traits into three groups by hierarchical clustering (Figure
466 S3) performed with R/hclust applied to genotypic BLUPs. All
467 traits within each group were analyzed together.

468 For simulated data with the same heritability values for both
469 traits, performance results were averaged not only over simu-
470 lation replicates and partitions of outer CV, but also over traits,
471 because both traits were equivalent in terms of simulation pa-
472 rameters. For simulated data with different heritability values,
473 performance results were averaged only over simulation rep-
474 licates and partitions of outer CV. For experimental data, per-
475 formance results were averaged over partitions of outer CV and
476 outer CV replicates.

477 Moreover, in terms of design matrices, for experimental data,
478 we compared several ones based on the mean predictive abil-
479 ity of eight methods across the 14 traits of experimental data.
480 For IM methods, only SSR and SNP maps coded in JoinMap
481 format were compared. We showed that for most methods, the
482 SNP genotypes recoded into gene doses gave the best predictive
483 ability (Figure S4), tied with other SNP design matrices. For com-
484 putational reasons, we hence chose to use this one for method
485 comparison. For simulated data, as QTLs correspond to SNP
486 markers, we only used the SNP map as the design matrix, coded
487 in gene doses for penalized methods and in JoinMap format for
488 IM methods.

489 **QTL detection**

490 **Simulated data** The quality of a predictor selection method is
491 usually assessed with the relationship between statistical power
492 (i.e. the True Positive Rate, TPR) and type I error rate (i.e. the
493 False Positive Rate, FPR). To compare methods, we thus used
494 the ROC (receiver operating characteristic) curve (Swets *et al.*
495 1979), which is the plot of TPR as a function of FPR over a range
496 of parameters (Table 2), and the pAUC (partial Area Under the
497 Curve; McClish (1989); Dodd and Pepe (2003)). Any marker
498 selected at $+/ - 2$ cM of a simulated QTL was counted as a True
499 Positive.

500 For methods with two tuning parameters, one parameter was
501 kept constant (α at 0.7 for EN and EN.mFDR, and λ_2 at 10^{-8}
502 for SPRING). We tested several values of α for EN but it did not
503 change much the results (not shown). For MIM, the maximum
504 number of QTLs that can be integrated into the model was set
505 to 10.

506 **Experimental data** Comparison between methods was based on
507 the number of detected QTLs, the magnitude of their effects and
508 the percentage of variance globally explained by all detected
509 QTLs.

510 For MTV_LASSO and SPRING, we split traits into three
511 groups as described above, for computational reasons (for
512 SPRING) and to test whether such splitting gave more reliable
513 QTLs (for MTV_LASSO). The parameters of penalized methods
514 were tuned by cross-validation, with MSE as the cost function.
515 We compared predictor selection between methods in terms
516 of the number of common selected markers per trait, i.e. the
517 intersection between markers selected by penalized methods
518 (focusing on LASSO and EN) and markers inside confidence in-
519 tervals found by interval mapping methods (focusing on MIM).

520 Then all markers in high LD with those selected were considered
521 as selected too. The threshold was defined as the 95% quantile
522 of LD value distribution, for all pairs of markers belonging to
523 the same chromosome (Figure S5), which gave a LD threshold
524 of 0.84.

525 We deemed selected markers as highly reliable if they were
526 either i) selected by at least five methods, whatever the meth-
527 ods, ii) or selected by both EN.mFDR and MIM (see **Results**).
528 Then, we defined a highly reliable QTL as the interval of $+/ - 3$
529 cM around each highly reliable marker (Price 2006; Viana *et al.*
530 2016b), as predicted by loess fitting of genetic positions to physi-
531 cal positions. When several markers were selected inside the 6
532 cM interval, the QTL interval was extended accordingly. The ge-
533 netic positions of this interval were then converted into physical
534 positions, by fitting a polynomial local regression (loess). QTLs
535 overlapping for several traits on the SNP map were merged
536 into a single QTL, by physical intervals' union. We determined
537 QTLs overlapping between SSR and SNP genetic maps based
538 on physical positions.

539 **Candidate genes exploration** After merging the most highly re-
540 liable QTLs colocalized between traits, we proceeded to search
541 for underlying candidate genes. We retrieved the list of genes
542 overlapping the intervals of our QTLs from the reference Vi-
543 tis genome 12X.v2 and the VCost.v3 annotation (Canaguier
544 *et al.* 2017). We then used the correspondence between IGGP
545 (International Grapevine Genome Program) and NCBI RefSeq
546 gene model identifiers provided by URG1 (<https://urgi.versailles.inra.fr/Species/Vitis/Annotations>) to get putative functions from
547 NCBI, when available. For those genes with a putative func-
548 tion, we then refined the analysis to retrieve additional informa-
549 tion about their function and expression. We searched UniProt
550 (<https://www.uniprot.org/>) and TAIR (<https://www.arabidopsis.org/>)
551 databases to get a complete description of the genes function,
552 their name and the corresponding locus in Arabidopsis. In addi-
553 tion, we used the GREAT (GRape Expression Atlas) RNA-seq
554 data analysis workflow (<https://great.colmar.inrae.fr/app/GREAT>),
555 which gathers published expression data, to assess the level
556 of expression of our candidate genes in grapevine leaves and
557 shoots, the organs relevant for the traits considered in this study.
558 RNA-seq data are normalized as detailed on the 'User manual'
559 section of the GREAT platform: "from the raw read counts, the
560 normalized counts (library size normalization) and the RPKM
561 (gene size normalization) are calculated for each gene in each
562 sample". Data were retrieved with all filters set to "Select All"
563 except for the organ considered that was restricted to 'Leaves'
564 and 'Shoot'.

566 **Data availability and reproducibility**

567 All software we used was free and open-source and most analy-
568 zes were done with R (R Core Team 2020), notably graphs
569 were created using the ggplot2 package (Wickham 2016). All R
570 scripts used for the analysis, i.e. genetic mapping, simulation,
571 phenotypic analysis, prediction and QTL detection, are avail-
572 able in a first, online repository at <https://data.inrae.fr/privateurl.xhtml?token=d7ef7492-a2a7-499d-82c0-baad1d14a8dd>. Many of
573 the custom functions we used are available in a package for
574 reproducibility purposes, R/rutilstlmfltre (Flutre 2019). Raw
575 and transformed genotypic data, as well as the genetic map, are
576 available in a second, online repository at <https://data.inrae.fr/privateurl.xhtml?token=782ff6ff-d79c-4714-b0da-b85c5a4514a5>.

Method	SIM / MIM	LASSO / MTV_LASSO	Stability Selection	SPRING	EN	mFDR
Parameter name	LOD	λ	probability threshold	λ_1	λ	<i>mFDR</i>
Lowest constraint	0	10e-5	0.5	10e-8	10e-4	0.3
Highest constraint	14	0.25	0.9	0.25	8	0

Table 2 Parameter ranges for ROC curve computation for comparing predictor selection performance of different methods.

579 **Results**

580 **Genetic mapping**

581 We constructed a saturated consensus genetic map with 3,961
 582 SNP markers obtained by GBS. The SNP map covers 1,283 cM.
 583 It was essentially superimposed on the SSR map of 1,116 cM
 584 (Figure 1). Chromosome 17 had the largest contribution to this
 585 15% difference in length, its length being 37.8 cM with SSRs and
 586 63.7 cM with SNPs. Chromosomes 2, 3, 12, 13 and 15 were also
 587 longer on the SNP map. The average distance between markers
 588 was 0.34 cM for the SNP map (respectively 9.0 cM for the SSR
 589 map) and the maximum distance was 12.0 cM (respectively 29.4
 590 cM for the SSR map). At most places along the genome, genetic
 591 order was consistent with physical order.

592 **Comparison of methods with simulated data**

593 **Prediction: cross-validation results**

594 **Traits with the same heritability value** Methods were compared
 595 for prediction accuracy by applying cross-validation on simu-
 596 lated data with four different configurations and four heritability
 597 values.

598 Mean Pearson's correlation coefficient varied from 0.16 to
 599 0.98, with a strong effect of heritability on prediction accuracy in
 600 all configurations, for the seven main methods (Figure 2). As ex-
 601 pected, MIM performed very well in the "major" configurations
 602 across all heritability values but yielded the least accurate pre-
 603 diction in the "minor" ones. On the opposite, RR performed very
 604 well in the "minor" configurations, but yielded the least accurate
 605 prediction in the "major" ones. EN prediction performance was
 606 always intermediate between those of RR and LASSO. QTL dis-
 607 tribution among traits - "same" (for QTLs at the same positions)
 608 or "diff" (for QTLs at different positions) - had very little effect
 609 on prediction accuracy. Moreover, we did not observe any su-
 610 periority of multivariate methods over univariate ones, despite the
 611 strong genetic correlation simulated between traits ($\rho_B=0.8$) and
 612 no correlation between errors.

613 The prediction accuracy of four additional methods is shown
 614 in Figures S6 and prediction accuracy values, as well as other
 615 performance metrics (see **Materials and Methods**) are in Table
 616 S7. All interval mapping methods yielded equivalent prediction
 617 accuracy. LASSO.GB did not improve performance compared to
 618 LASSO. MTV_RR showed equivalent performance as univariate
 619 RR. Prediction accuracy with spring.dir.ols was always lower
 620 than with spring.reg, and even very low for "minor" configu-
 621 rations. With 100 or 1000 simulated QTLs (under both QTL
 622 distributions) the ranking of methods based on prediction accu-
 623 racy did not change compared to "minor" configurations (Figure
 624 S8).

625 **Traits with different heritability values** To further compare pre-
 626 diction accuracy of univariate and multivariate methods, we

627 simulated two correlated traits with different heritability values,
 628 0.1 and 0.5. MTV_LASSO performed slightly better than univari-
 629 ate LASSO for the lowest heritability trait; however, differences
 630 were not significant (Figure S9). On the opposite, prediction
 631 accuracy was lower with MTV_LASSO than with univariate
 632 LASSO for the highest heritability trait, reaching quite low val-
 633 ues with 200 simulated QTLs. The same trends were also visible
 634 for MTV_EN and EN. MTV_RR never improved prediction com-
 635 pared to RR and spring.reg never performed better than RR.

636 Since these results were unexpected, we also compared pre-
 637 diction accuracy of the above methods with the simulated data
 638 published by [Jia and Jannink \(2012\)](#). We obtained very similar
 639 differences among methods as with our simulated data, even
 640 though prediction accuracy was higher in all cases (Figure S10).

641 **QTL detection: ROC curve results**

642 We compared the main methods mentioned above (except
 643 RR which does not perform marker selection), as well as some
 644 robust extensions, for their marker selection performance with
 645 ROC curves, using the same simulated data (Figure 3) in the
 646 four configurations. On ROC curves, the closer a method gets
 647 to the optimum point (i.e. FPR =0 and TPR=1), the better. As
 648 expected, interval mapping methods (SIM and MIM) showed
 649 low selection performance when many minor QTLs were sim-
 650 ulated and high selection performance when few major QTLs
 651 were simulated. Note that the MIM curve was hardly visible; it
 652 roughly overlapped with the SIM curve but stopped at a low
 653 FPR because it could not select many QTLs by design.

654 The penalized regression methods always performed at least
 655 as well as the interval mapping methods or even much better in
 656 the case of "minor" configurations. Among penalized methods,
 657 no method was clearly better than the others in all configu-
 658 rations, except for a slight superiority of MTV_LASSO in the
 659 "same_minor" configuration. These methods, and particularly
 660 spring.dir.ols, displayed a high variability in classification re-
 661 sults for two simulated QTLs ("major" configurations). Indeed,
 662 when one QTL was not detected among the two traits, there was
 663 a stronger impact on the TPR than with 50 simulated QTLs.

664 The most interesting part of the ROC curve for QTL detection
 665 is the left most part, i.e. with a low FPR (e.g. below 0.1). We
 666 hence calculated the partial Area Under the Curve (pAUC) for
 667 FPR between 0 and 0.1 for methods reaching that value (Figure
 668 S11). EN resulted in constantly high pAUC across configu-
 669 rations and heritability values. In contrast, pAUC for SIM was
 670 quite high at low heritability values for the "same_major" con-
 671 figuration but dropped for other configurations and heritability
 672 values.

673 **Results on experimental data**

674 **Computation of genotypic BLUPs**

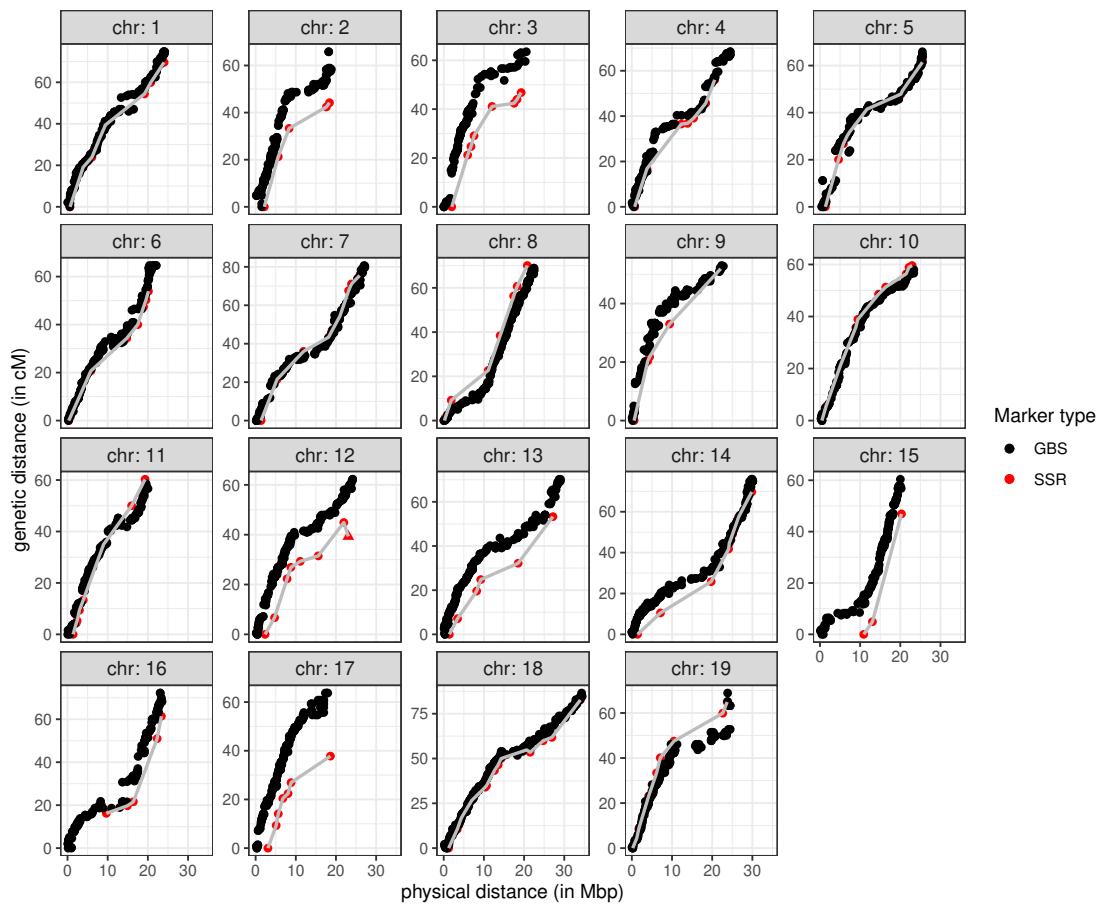


Figure 1 Comparison of SSR and SNP consensus genetic maps of a pseudo-F1 *V. vinifera* population, obtained by plotting genetic positions as a function of physical positions for each chromosome. The position of the SSR marker indicated by a triangle on chromosome 12 was uncertain.

675 We first recomputed the genotypic BLUPs from the raw phe- 698
 676 notypic data from (Coupel-Ledru *et al.* 2014, 2016) in order to 699
 677 control the model selection step in a reproducible way. These 700
 678 new BLUPs had a strong linear correlation (> 0.9) with those 701
 679 used in Coupel-Ledru *et al.* (2014, 2016), as shown in Figure S12. 702
 680 Note that in Coupel-Ledru *et al.* (2014), no BLUP was available 703
 681 for *DeltaPsi* and *PsiM* for WW condition because the genotype 704
 682 random effect was not selected ($H^2=0$).

683 The estimates of broad-sense heritability followed the same 710
 684 trend as in Coupel-Ledru *et al.* (2014, 2016) (Figure S13). Never- 711
 685 theless, values were not equal because we did not use exactly the 712
 686 same formula to estimate heritability. All the information about 713
 687 fitting linear mixed models (percentage of missing data, trans- 714
 688 formation applied if any, effects included in the selected model, 715
 689 residual variance, heritability estimate, coefficient of variation 716
 690 estimate and precision) is available in the first, online repository. 717
 691 Broad-sense heritability estimates were higher in WD condition 718
 692 than in WW for all traits except *DeltaBiomass*. 719
 693

694 Genetic correlation between traits varied widely, some abso- 720
 695 lute correlation values being very high (e.g. up to 0.99 between 721
 696 *PsiM* and *DeltaPsi* in both conditions) because some traits de- 722
 rived from others (Figure S14).

Mean genomic predictive ability per trait ranged from -0.10 to 0.68 ((Figure 4 and Table S15). It decreased with broad-sense heritability. IM methods (in blue) were always among the three worst methods for prediction. Based on the mean predictive ability averaged across traits, MTV_EN yielded the highest correlation (0.384), followed by RR (0.3721), MTV_RR (0.3716), MTV_LASSO (0.369), EN (0.357), spring.reg (0.344), LASSO (0.329), LASSO.GB (0.313), MIM (0.200) and SIM (0.162). However, based on the number of traits for which each method gave the best prediction, spring.reg had the highest score, with 6 traits out of 14, followed by MTV_EN (3 out of 14) and EN (2 out of 14).

In a nutshell, MTV_EN and RR, tied with MTV_RR, provided the best mean predictive ability across traits. Even though spring.reg outperformed them for some traits, its performance was unstable, and especially low for *DeltaBiomass.WW*, *DeltaBiomass.WD*, *DeltaPsi.WW* and *DeltaPsi.WD*. For computational reasons, all traits could not be analyzed together with spring.reg, but were divided into three groups. These four traits with low predictive ability belonged to the same group. Yet, the effect of group membership on predictive ability was not significant at 5% ($p\text{-value}=0.30$ and percentage of variance explained=24%).

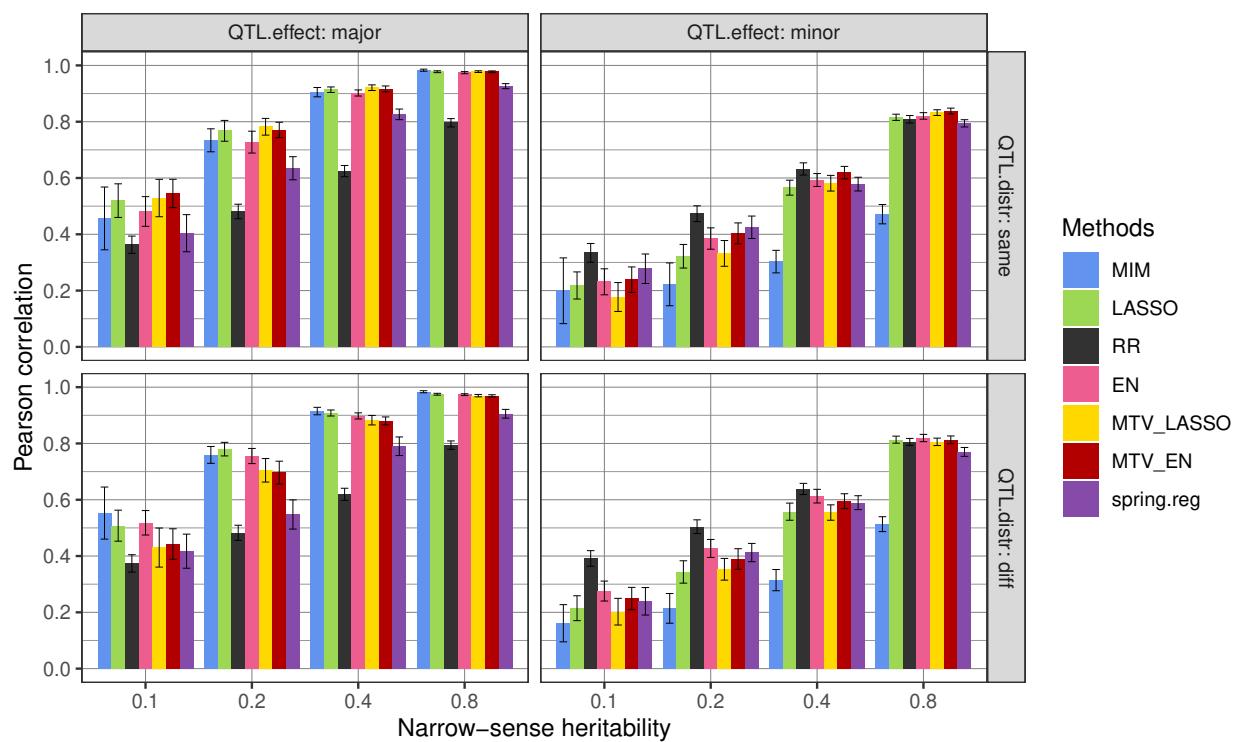


Figure 2 Genomic prediction accuracy (Pearson's correlation between predicted and true genotypic values) of seven methods applied to 3,961 markers and two simulated traits in a bi-parental population with different heritability values and four QTL configurations (number x distribution among traits). major: 2 QTLs; minor: 50 QTLs; same: QTLs at the same positions for both traits; diff: QTLs at different positions between traits. For each heritability value and configuration, prediction accuracy was averaged over 100 values (2 traits x 10 simulation replicates x 5 cross-validation folds). The error bar corresponds to the 95% confidence interval around the mean.

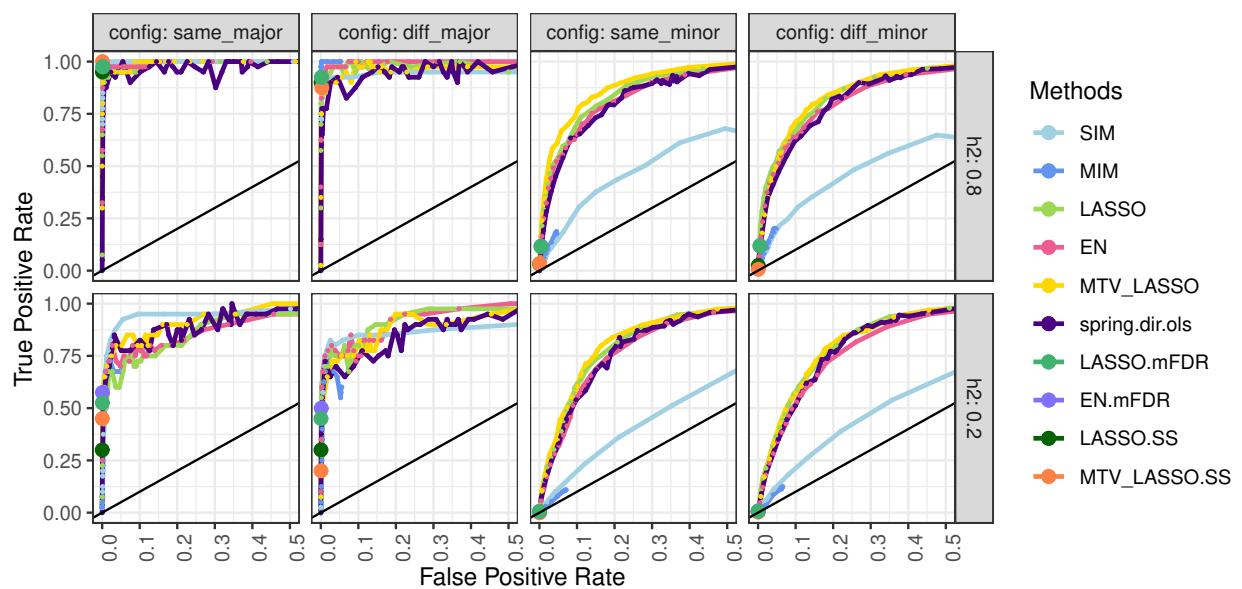


Figure 3 ROC curves for 10 methods applied to 3,961 markers and two simulated traits in a bi-parental population with two heritability values and four QTL configurations (number x distribution among traits). major: 2 QTLs; minor: 50 QTLs; same: QTLs at the same positions for both traits; diff: QTLs at different positions between traits. Results are averaged over 2 traits x 10 simulation replicates. TPR: True Positive Rate (number of correctly found QTLs / number of simulated QTLs), FPR: False Positive Rate (number of falsely found QTLs / number of markers outside a QTL). For robust methods (mFDR and SS), as the FPR remained very low, we display only a single point corresponding to the lowest parameter constraint and thus to the highest TPR.

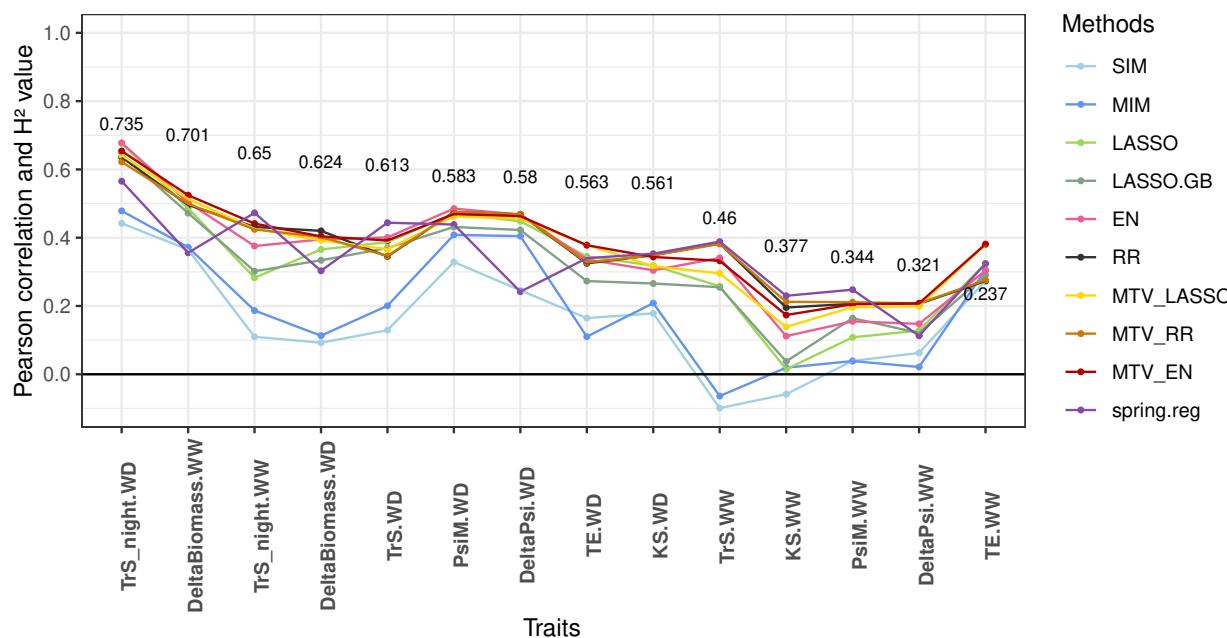


Figure 4 Mean genomic predictive ability (Pearson's correlation between genotypic BLUPs and their predicted values), obtained by cross-validation for 10 methods applied to 14 traits related to water deficit and GBS gene-dose data, within a grapevine bi-parental population. Broad-sense heritability values are reported for each trait (y-position of the number corresponds to heritability estimate). Traits are ordered by decreasing heritability. For each trait, predictive ability is averaged over 10 cross-validation replicates x 5 cross-validation folds).

722 **Interval mapping methods: comparison with previous results** For 723 the 14 traits we analyzed, 26 QTLs were detected in [Coupel- 724 Ledru et al. \(2014, 2016\)](#) using Composite Interval Mapping 725 (CIM) on the SSR map. In comparison, using Multiple Interval 726 Mapping (MIM), we found 21 QTLs on the SSR map and 25 with 727 MIM on the SNP map (Figure S16).

728 Based on physical positions, we found 13 new QTLs (i.e. with 729 non-overlapping CIM SSR QTLs physical positions) (Table S17) 730 on six chromosomes for eight traits, and confirmed 21 of the 26 731 published QTLs, with a notable reduction of QTL intervals on 732 chromosome 13 (Figure S16). The 15 QTLs found by all three 733 methods (CIM SSR, MIM SSR and MIM SNP) explained the 734 highest mean percentage of variance (Figure S18).

735 **Comparison of marker selection among a subset of methods** Af- 736 ter applying 11 methods for SNP selection (Table S19), we per- 737 formed a first comparison of marker selection between MIM, as 738 the reference method for QTL detection, and both LASSO and 739 EN, because our simulation results showed that they selected 740 relevant markers in various genetic determinism configurations 741 (Figures 3 and S11).

742 The number of markers selected by MIM, LASSO and EN was 743 905, 1009 and 1550, respectively (Table S19). For each trait, MIM 744 identified markers on a small number of chromosomes (from 745 0 to 5), while both EN and LASSO selected markers on many 746 chromosomes (from 6 to 19, Table S19). The number of selected 747 markers per trait seemed partly linked to trait heritability: more 748 markers were selected when heritability was high (Figures 4 and 749 5). More markers were selected by EN than by other methods 750 for all traits (except for KS.WW). Nearly all markers selected by 751 LASSO were also selected by EN (954 out of 1009), i.e., there 752 were only few markers selected by LASSO only. MIM selection 753 was quite different from LASSO and EN selections (184 out of 754

755 905 were common with EN, LASSO or both) but most markers 756 selected by MIM and at least one penalized method were se- 757 lected by both EN and LASSO. The number of markers selected 758 by EN and MIM ranged from 0 to 59 over traits, with a median 759 value of 16.

760 **Determination of highly reliable QTLs** To address the intersection 761 of SNP selection by all methods, and determine the number 762 of reliable intervals (QTLs) and their position, we examined in 763 more detail marker selection for each trait and chromosome. 764 Detailed results, including genetic and physical positions and 765 the percentage of variance explained, are given in Table S19. A 766 visualization of these results is given in Figure 6 for night-time 767 transpiration under water deficit (*TrS_night.WD*) and in Figure 768 S20 for all traits.

769 Most of the time, more markers were selected for traits under 770 water deficit than for traits in well-watered conditions, and they 771 were most often selected by several methods. We showed that 772 penalized methods tend to select the same markers, not only 773 close ones; for example, for *TrS_night.WD* on chromosome 4, the 774 same marker (at physical position 21,079,664 bp) was selected 775 by seven methods (Figure 6).

776 We considered markers selected by both MIM and EN.mFDR 777 as highly reliable ones for three reasons: 1) markers selected by 778 both MIM and EN were considered as reliable ones (see above); 779 2) simulations showed that MIM and mFDR methods led to 780 a very low FPR; 3) these methods belong to different method 781 classes (interval mapping vs penalized regression). We also 782 considered as highly reliable the markers selected by at least five 783 methods. These criteria resulted in a set of 59 highly reliable 784 selected markers, which were converted to genetic intervals of \pm 785 3 cM around each selected marker. Overlapping intervals per 786 trait were merged, resulting in 25 highly reliable QTLs.

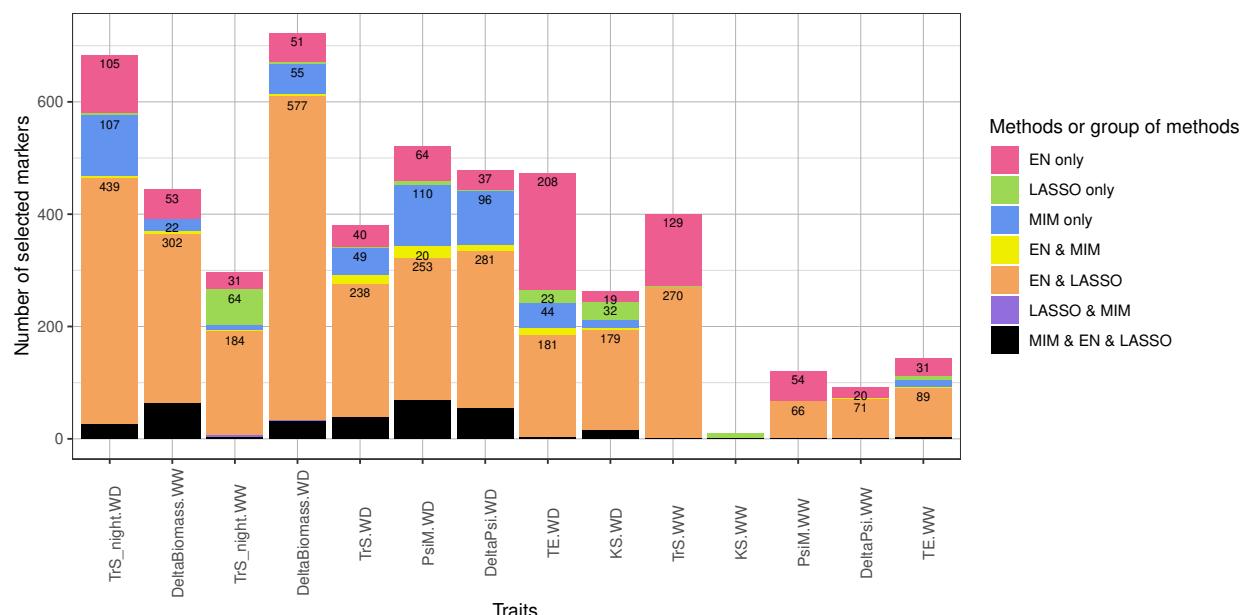


Figure 5 Number of selected markers per method or group of methods, for three methods applied to 14 traits related to water deficit and GBS gene-dose data, within a grapevine bi-parental population. Traits are ordered as in Figure 4. Number of selected markers (extended to markers in high LD, see Materials and Methods) per category are indicated at the top of each rectangle. Methods followed by « only » are for the number of markers selected by this method that are not selected by any of the two other methods (among EN, LASSO and MIM).

786 These 25 QTLs involved nine traits, mostly under water 818 deficit, and were located on seven chromosomes (Figure S21). 819 QTLs colocalized for different traits, such as on chromosome 820 1, had similar distributions of genotypic BLUPs according to 821 genotypic classes (Figure S22). 822

791 Among these 25 QTLs, 16 had overlapping physical inter- 823 vals with CIM SSR QTLs and one was very close to a CIM SSR 824 QTL (details about these 25 QTLs are in Table S23). Thus, we 825 found eight new highly reliable QTLs, among which five were 826 not detected by MIM. In particular, a completely new QTL for 827 *TrS_night.WD* was found alone on chromosome 12. Most other 828 new QTLs were colocalized with previously found QTLs in 829 single year analysis and/or for the other watering condition. 830 Notably, we observed colocalization of *TrS_night.WD*, *TE.WD* 831 and *DeltaBiomass.WD* QTLs on chromosomes 4 and 17. 832

801 In total, the percentage of variance explained (adjusted R^2) 833 per trait was 51.28% for *TrS_night.WD* (36% in 2012 for *CoupeL* 834 *Ledru et al. (2016)*, 33.88% for *PsiM.WD*, 31.41% for *DeltaPsi.WD*, 835 26.88% for *DeltaBiomass.WW*, 19.38% for *TE.WD*, 18.62% for 836 *TE.WW*, 16.99% for *KS.WD*, 14.88% for *DeltaBiomass.WD* and 837 8.55% for *TrS.WD*. 838

807 Candidate genes

808 After merging the QTLs colocalized between traits, we 842 obtained 12 intervals, located on chromosomes 1, 4, 10, 12, 13, 17 843 and 18, harboring a total of 3,461 genes according to the VCost.v3 844 annotation (*Canaguier et al. 2017*). Among them, 2,379 had a 845 NCBI Refseq identifier and 1,757 a putative function (Table S24). 846 We then focused our analysis on the eight "new" intervals, i.e. 847 those which were not overlapping with CIM SSR intervals. They 848 encompassed 1,155 genes, half of which were annotated. We 849 were able to retrieve from TAIR and/or UniProt a more precise 849 description of the genes function for 86% of the annotated genes

(Table S24). The remaining ones either did not have any homologous gene in *Arabidopsis thaliana* or were not described in the above-mentioned databases. RNA-seq data was available on the GREAT platform for 90% of the annotated genes. We further focused our analysis on the highly reliable QTL co-located on chromosome 4 for *TE*, *TrS_night* and *DeltaBiomass* under various conditions. We proceeded to a functional classification of the 161 annotated genes underlying this QTL, based on the full description previously retrieved (Table S25 and 7). For 75 genes, an integrated function at the plant or organ level was explicitly quoted in the description. We grouped these integrated functions into 12 major groups: stomata, trichomes development, xylem development, growth or development, photosynthesis, wall, reproduction, pathogen resistance, detoxification, secondary metabolism, senescence, germination, and nutrition. A substantial number of genes were related to the functions of major interest in relation to the traits for which QTLs co-localized on this chromosome: 15 genes related to hydraulics (stomata, xylem, trichomes), relevant for *TrS_night* and thus *TE*; 27 to growth or development and one to photosynthesis, both relevant to *DeltaBiomass* and thus *TE*. For the 86 genes for which an integrated function was not explicitly quoted, we further built a classification based on their cellular or molecular function. Among them, we found six genes related to carbon metabolism, one to wall formation (both relevant for *DeltaBiomass*) and six to drought stress signaling and drought related hormones (relevant for *TrS_night*).

844 Discussion

845 To provide new insights into the complex genetic determinism of 846 vegetative traits under different watering conditions, the contributions 847 of this study are three-fold. We compared by simulation 848 several univariate and multivariate methods for genomic prediction 849 and QTL detection, increased the density of genotyping

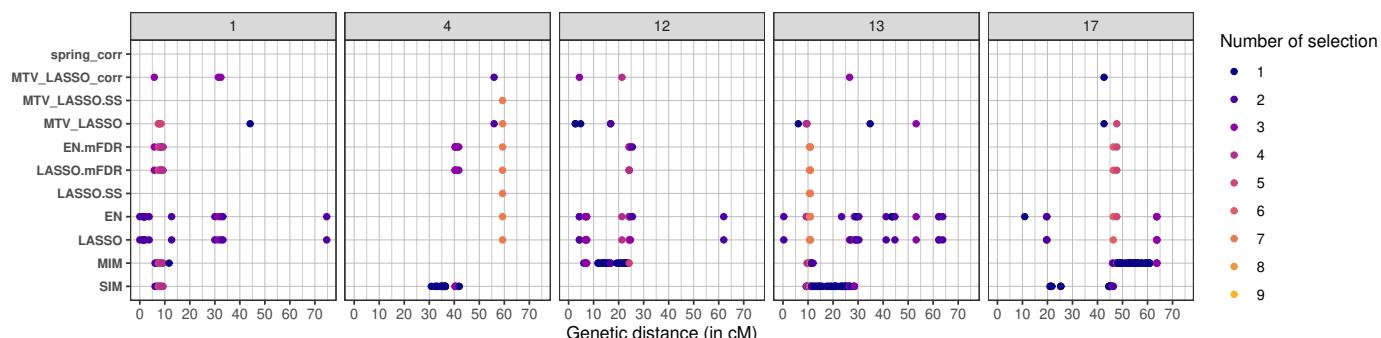


Figure 6 Marker selection by all methods for *TrS_night.WD* trait on chromosomes 1,4,12,13 and 17. Each marker selected by a given method is represented by a colored point, the color indicating the number of methods that have selected that specific marker. The boxes correspond to chromosomes and the x-axis to the position along the genetic map (in cM).

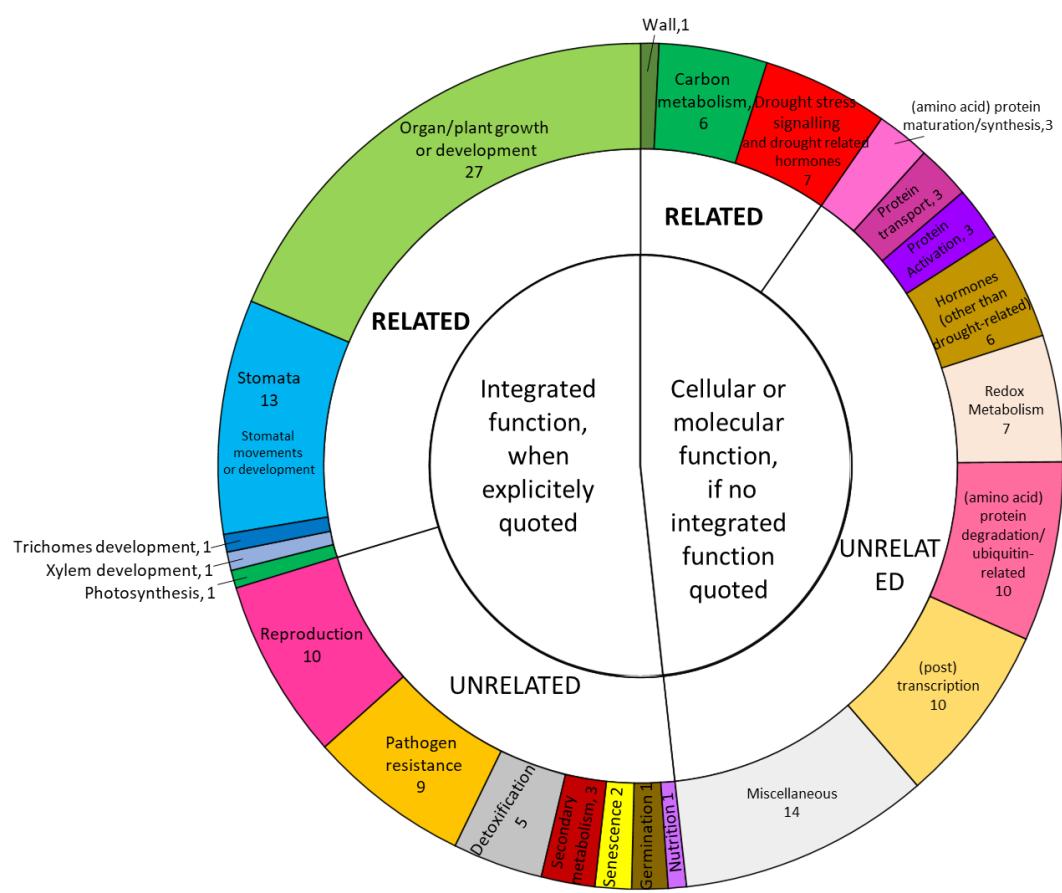


Figure 7 Functional classification of the annotated genes underlying the highly reliable QTL detected on chromosome 4 for night-time transpiration, growth and transpiration efficiency. Hierarchical classification of the 161 genes based on their functions. See Table S25 for the details of this classification. When an integrated function at the organ or plant level was explicitly quoted in the gene annotation, genes were classified on this basis. When no integrated function was explicitly quoted, they were classified based on their cellular or molecular function. In both cases, functions were then classified as "Related" if related to the traits of interest in this QTL, or "Unrelated" if not.

850 data, and re-analyzed grapevine phenotypes obtained under
 851 semi-controlled conditions. In particular, we showed that penal-
 852 ized methods are valuable not only for prediction but also for
 853 QTL detection. Indeed, we found new QTL using these methods
 854 and identified relevant candidate genes.

855 **Methodological aspects: method comparisons**

856 **Handling linkage disequilibrium**

857 Interval mapping methods estimate genotypic probabilities
 858 between markers according to a genetic map which is compu-

859 tationally costly to build. On the other hand, most penalized
860 methods do not require any previous knowledge on LD.

861 The LASSO assumption that all predictor variables are inde-
862 pendent is all the more violated that there are many markers. In
863 the case of a group of correlated predictors (e.g., SNPs in LD),
864 EN selects either none or all predictors within the group with
865 close estimated values (Zou and Hastie 2005) whereas LASSO
866 selects a single predictor. In that sense, EN aims at correcting
867 the drawbacks of LASSO when predictor variables are highly
868 correlated. By exploring a large number of configurations of
869 the finite-sample high-dimensional regression problem, Wang
870 *et al.* (2020) showed that EN is competitive for both prediction
871 and selection in most cases with highly correlated predictors. In
872 agreement with these results, we showed that EN performed
873 well for both prediction and selection on our simulated data,
874 and that multivariate EN performed the best for prediction on
875 the grapevine experimental data.

876 We also compared SPRING that can explicitly make use of a
877 genetic map. We observed that SPRING had a larger increase
878 in predictive ability from SSR to SNP design matrix than other
879 methods (Figure S4). This was probably due to the fact that
880 SPRING uses LD pattern for prediction, this pattern being better
881 captured with a dense genetic map. However, SPRING showed
882 no systematic advantage over other penalized methods for pre-
883 diction with the dense SNP map (Figures 2, 4).

884 **Comparison between interval-mapping and penalized regres- 885 sion methods for genomic prediction**

886 As expected, IM methods performed poorly to predict accu-
887 rate genotypic values when QTL number was large (Bernardo
888 and Yu 2007; Lorenzana and Bernardo 2009; Mayor and Bernardo
889 2009; Olatoye *et al.* 2019) (Figures 2 and S6). Therefore, for com-
890 plex traits, genomic prediction should not be based only on
891 QTLs detected by IM methods.

892 Among univariate penalized methods, none performed best
893 in all cases (Figures 2, 4 and S6), as also found in the literature
894 (Riedelsheimer *et al.* 2012; Heslot *et al.* 2012; Azodi *et al.* 2019). As
895 shown by simulation, RR was better adapted to highly polygenic
896 genetic architecture whereas LASSO was better adapted to a few
897 major QTLs. Moreover, in the case of many minor QTLs, RR was
898 the most stable method across heritability values, as previously
899 described for several traits and species (Heslot *et al.* 2012; Azodi
900 *et al.* 2019). However, RR prediction accuracy dropped when
901 QTL number was too small whereas EN still predicted as well
902 as LASSO. EN was hence well adapted to various numbers and
903 distributions of QTLs.

904 **Multivariate vs univariate** When the same heritability was sim-
905 ulated for both trait variables, no superiority of multivariate
906 methods was observed, even when both traits had QTLs at the
907 same positions (Figures 2 and S6). When different heritability
908 values were simulated for the two traits, we observed a slight
909 superiority of MTV_LASSO (resp. MTV_EN) over LASSO (resp.
910 EN) only in the "same" and "major" configuration (with both
911 traits sharing the same two QTLs) for the trait with small heri-
912 tability (Figure S9).

913 Other authors which tested multivariate GP on simulated
914 data systematically applied different heritability values and they
915 found a superiority of multivariate methods over univariate ones
916 for the trait with the smallest heritability (Calus and Veerkamp
917 2011; Guo *et al.* 2014; Jiang *et al.* 2015; Dagnachew and Meuwissen
918 2019). However, all these studies were based on a smaller,
919 more favorable, p/n ratio, a key component of high-dimensional

920 models (Verzelen 2012). For example, in Jia and Jannink (2012),
921 their 500 observations for 2,020 predictors correspond to a ratio
922 of ~ 4 , compared to our 188 observations for 3,961 predictors
923 corresponding to a ratio of ~ 21 . Indeed, parameters n and p are
924 involved in the sample complexity function defined in Obozinski
925 *et al.* (2011), which predicts the theoretical cases where the
926 MTV_LASSO is superior to its univariate counterpart in terms
927 of variable selection. Accordingly, applying our methods on Jia
928 and Jannink (2012) data allowed us to display a higher differ-
929 ence between univariate and multivariate LASSO than with our
930 simulated data.

931 Unexpectedly, when reanalyzing the data simulated by Jia
932 and Jannink (2012), we obtained lower prediction accuracy with
933 our MTV_LASSO (Figure S11) than they did with their multi-
934 variate BayesA (their Figure 1A). A similar result in a univariate
935 setting was found by Guan and Stephens (2011) who compared
936 BSVR (comparable to BayesA) and the LASSO. They found that
937 BSVR had a markedly higher power than the LASSO. Moreover,
938 the parameters of both BSVR (in Guan and Stephens (2011))
939 and BayesA (in Jia and Jannink (2012)) were estimated with a
940 MCMC algorithm. No inner cross-validation was needed, hence
941 the sample used to train the model was larger. This difference
942 may explain why Figure 1A from Jia and Jannink (2012) shows
943 better prediction accuracies for multi-trait models compared
944 to their single-trait counterparts, although their figure did not
945 display any confidence interval. Note that our RR prediction
946 accuracies were close to those of their GBLUP (univariate and
947 multivariate). As a conclusion, prediction accuracy is affected
948 both by the dimension of the problem (i.e., n and p) and the
949 method used (i.e., Bayesian with MCMC or cross-validation).

950 For experimental data, we observed that MTV_LASSO (re-
951 spectively MTV_EN) was superior to LASSO (resp. EN) for the
952 five traits with the smallest heritability (Figure 4). This improve-
953 ment suggests that MTV_LASSO (resp. MTV_EN) was able to
954 borrow signal from the most heritable traits to the least heritable
955 ones, likely because of a genetic architecture partially overlap-
956 ping between these traits. This interpretation is reinforced by
957 the fact that a QTL for low-H2 trait, TE.WW, colocalizes on
958 chromosome 4 with QTLs for four high-to-moderate-H2 traits
959 (*TrS_night.WD*, *DeltaBiomass.WW*, *DeltaBiomass.WD* and *TE.WD*).
960 This improvement was not found in Jia and Jannink (2012), who
961 also tested their methods on real pine data from Resende *et al.*
962 (2012). These observations suggest that the number of traits
963 analyzed (14 in our case and 2 in Jia and Jannink (2012) study)
964 may also play a role in the prediction accuracy of multivariate
965 over univariate methods.

966 **Comparison between interval-mapping and penalized regres- 967 sion methods for QTL detection**

968 To the best of our knowledge, comparison with the ROC
969 curve between IM and penalized regression methods has never
970 been done before in terms of marker selection. Other publica-
971 tions (Cho *et al.* 2010; Li and Sillanpää 2012; Waldmann *et al.*
972 2013) successfully applied LASSO or EN for performing GWAS,
973 but none of them compared IM and penalized methods for QTL
974 identification. As expected, we found that IM methods are
975 adapted to detect a few major QTLs but not many minor QTLs
976 (Figure 3). Moreover, we found that penalized methods could
977 be as good at marker selection as IM methods, and even far
978 better when there are many minor QTLs. Among the penalized
979 methods we compared, none clearly outperformed the others
980 for marker selection in all configurations.

981 **Multivariate vs univariate** As the MTV_LASSO selects one pre- 1040
982 predictor for all traits, its superiority over univariate LASSO de- 1041
983 pends on QTL distribution across traits, notably on the amount 1042
984 of genetic basis shared by the traits (Obozinski *et al.* 2011). How- 1043
985 ever, as for prediction, we showed that MTV_LASSO perfor- 1044
986 mance was not different whether QTLs were at the same or at 1045
987 different positions across traits (Figure 3). Nevertheless, we ob- 1046
988 served that MTV_LASSO was slightly better than LASSO when 1047
989 many QTLs were simulated. SPRING had never been evaluated 1048
990 before for its quality of predictor selection. As for prediction, 1049
991 SPRING showed unstable results across our simulation repli- 1050
992 cates and hyper-parameter values. However, for the ROC curve, 1051
993 we did not include predictor structure in the model, which may 1052
994 hamper marker selection quality. 1053

995 **Efficient default method for both QTL detection and genomic 1053** 996 **prediction**

997 IM methods were designed for marker selection; hence they 1054
998 are not expected to be optimal for prediction, and we confirmed 1055
999 that. Among penalized regression methods, some may be better 1056
1000 at prediction than marker selection, and vice versa. For exam- 1057
1001 ple, our results showed that EN performed well across several 1058
1002 configurations for both aims. Some methods such as SPRING 1059
1003 are specially adapted to handle both purposes but it gave too 1060
1004 variable results for either prediction or QTL detection. However, 1061
1005 SPRING is a recent method that still can be improved in order 1062
1006 to correct this drawback. 1063

1007 New penalized regression methods are continuously being 1064
1008 developed. In particular, graph structured sparse subset selec- 1065
1009 tion (Grass) recently proved to outperform existing methods 1066
1010 for both prediction and predictor selection, thanks to a L_0 regu- 1067
1011 larization that limits the number of nonzero coefficients in the 1068
1012 model (Do *et al.* 2020). It could be tested on our data when 1069
1013 its implementation becomes available. Moreover, multivariate 1070
1014 methods are presented as being more efficient at using the whole 1071
1015 signal in the data, whether for marker selection (Inouye *et al.* 1072
1016 2012) or prediction (Jia and Jannink 2012; Guo *et al.* 2014), but 1073
1017 our results revealed no systematic advantage of multivariate 1074
1018 methods over univariate ones for both aims. 1075

1019 Using penalized methods for both marker selection and ge- 1076
1020 nomic prediction requires adapted hyper-parameter values. For 1077
1021 EN, LASSO and SPRING, the λ value controls sparsity (e.g., the 1078
1022 number of selected markers). Thus, the optimal value of λ might 1079
1023 not be the same if the aim is to limit the FPR or to maximize 1080
1024 the predictive ability (Li and Sillanpää 2012). For prediction, we 1081
1025 traditionally use cross-validation to tune hyper-parameters by 1082
1026 minimizing MSE. For marker selection, there is no direct equiva- 1083
1027 lence. That is why we tested extensions of these methods (mFDR 1084
1028 and SS) which control sparsity for robust marker selection and 1085
1029 they proved to be efficient to select the most relevant markers. 1086

1030 In order to shed light on the link between prediction accuracy 1087
1031 and marker selection, we plotted the prediction accuracy at each 1088
1032 point of the ROC curve for EN and EN.mFDR against FPR for 1089
1033 minor configurations (with 50 simulated QTLs) (Figure S26). For 1090
1034 EN, we showed that prediction accuracy reached its maximum 1091
1035 when FPR was below 0.05. Then, FPR increased while prediction 1092
1036 accuracy decreased, until it reached a plateau. This means that 1093
1037 prediction quality is intimately linked to selection quality, espe- 1094
1038 cially at low heritability. For EN.mFDR, the FPR stayed always 1095
1039 below 0.015 but the prediction accuracy was lower. 1096

As a consequence, as an efficient default method, we advise at this stage to apply EN for performing genomic prediction, and its extension EN.mFDR for performing sparser marker selection.

1043 **Genetic determinism and prediction of grapevine response to 1052** 1044 **water deficit**

1045 Based on experimental data on the Syrah x Grenache progeny 1053
1046 (new genotypic data and already published phenotypic data), 1054
1047 we compared the same methods as above for both prediction 1055
1048 and marker selection. To the best of our knowledge, grapevine 1056
1049 GP within a bi-parental family has been applied only to a limited 1057
1050 number of traits, with very few methods and never using multi- 1058
1051 variate GP. Fodor *et al.* (2014) studied GP in grapevine with sim- 1059
1052 ulated data on a diverse and structured population, they tested 1060
1053 RR-BLUP, Bayesian Lasso, and a combination of marker selec- 1061
1054 tion and RR. Viana *et al.* (2016a) used an inter-specific grapevine 1062
1055 bi-parental population. They predicted cluster and berry pheno- 1063
1056 types (number and length of clusters, number of berries, berry 1064
1057 weight, juice pH, titrable acidity) with RR-BLUP and Bayesian 1065
1058 LASSO applied to table grape breeding. In addition to yielding 1066
1059 further insights into method comparison beyond those obtained 1067
1060 by simulation, our study brought valuable novel biological 1068
1061 knowledge about grapevine water use under different water- 1069
1062 ing conditions. Indeed, new methods and the new SNP genetic 1070
1063 map allowed us to find novel QTLs, as compared to those previ- 1071
1064 ously detected with the same phenotypic data (Coupel-Ledru 1072
1065 *et al.* 2014, 2016).

1073 **Predictive ability and genetic architecture**

1074 Among univariate penalized methods, RR generally had 1081
1075 equivalent or better predictive ability than LASSO. For the traits 1082
1076 with the largest discrepancy between RR and LASSO, this sug- 1083
1077 gests that trait variability was rather due to many minor QTLs 1084
1078 rather than to a few major ones. On the other hand, predictive 1085
1079 abilities of sparse methods (e.g. LASSO and IM methods) were 1086
1080 better than RR for *PsiM.WD*, *DeltaPsi.WD* and *TE.WW* traits, 1087
1081 suggesting a more major genetic architecture. We observed that 1088
1082 some genomic regions were less densely covered by the SNP 1089
1083 genetic map (e.g., a 10 cM gap on chromosome 19), which might 1090
1084 lead to a decrease in predictive ability for traits with QTLs in 1091
1085 these regions. We tested this hypothesis for penalized meth- 1092
1086 ods, by using the raw genotypic data imputed with the mean 1093
1087 (SNP.raw on Figure S4). For most traits, this design matrix gave 1094
1088 worse predictions than with other SNP ones, except for *TE.WW*, 1095
1089 for which the raw matrix gave the best predictive abilities (data 1096
1090 not shown). This suggests that some QTLs for *TE.WW* were lost 1097
1091 (markers not selected) when we predicted with sparser design 1098
1092 matrices, whereas this was not the case for other traits. Filtering 1099
1093 markers by genetic mapping for prediction purpose thus proved 1100
1094 to be useful for most traits.

1095 Furthermore, we tested several design matrices for GP on 1102
1096 experimental data. The matrices derived from the SNP map led 1103
1097 to better predictive ability than those derived from the SSR map, 1104
1098 due to higher density, while the additive + dominant coding of 1105
1099 allelic effects did not provide any increase in predictive ability 1106
1100 (Figure S4). This could suggest that dominance effects have 1101
1101 negligible impact on these traits. Nevertheless, the additive + 1102
1102 dominant coding double the matrix dimension (up to 31,688 1103
1103 predictors), which might hamper allelic effect estimation and 1104
1104 thus, prediction.

Finally, non-additive genetic effects such as epistasis could be involved while not considered by the penalized methods used. We therefore tested the superiority of LASSO.GB over LASSO. Extreme Gradient Boosting methods are indeed among the best machine learning methods (Chen and Guestrin 2016). LASSO.GB did not markedly increase predictive ability on experimental data (Figure 4). However, we cannot exclude that this might be due to a poor optimization of Extreme Gradient Boosting parameters or to insufficient number of observations to correctly fit the model.

Candidate gene analysis

The thorough methodology deployed for candidate genes analysis allowed us not only to retrieve a list of the genes underlying the QTLs of interest, but also to classify them based on their function and expression in order to point at more likely candidates. We focused on the highly reliable QTL detected on chromosome 4 for *TrS_night*, *TE* and *DeltaBiomass*. *TrS_night* QTL was previously described as a promising target for marker assisted selection, as alleles limiting night-time transpiration also favor plant growth, resulting in a double, beneficial impact on improving transpiration efficiency (Coupel-Ledru *et al.* 2016). Moreover, this QTL was found by seven methods. Within a plethora of integrated functions represented within the list of annotated genes underlying this QTL, we show here that a subset of more likely candidates can be defined as possibly related to the traits of interest. These include on one hand, genes related to broad-sense hydraulics and water loss, with a possible direct impact on *TrS_night*: seven genes involved in stomatal development, nine genes involved in stomatal opening -sometimes through the abscisic acid signalling pathway-, one to xylem development and one to trichome development (Table S25). One of these genes, the trihelix transcription factor GT-2 (Vitvi04g01604), was specifically shown to impact transpiration and transpiration efficiency in *Arabidopsis* by acting as a negative regulator of stomatal density. On the other hand, 27 genes among the list are directly related to growth, development, or photosynthesis, meaning a possible direct impact on *DeltaBiomass*. A histidine kinase 1 (Vitvi04g01483) may be a particularly interesting candidate for its multiple roles in ABA signalling, stomatal development and plant growth known in *Arabidopsis*, hence potentially simultaneously acting on both components of *TE*. Both these likely candidates were often highly expressed in grapevine leaves according to the data retrieved from the RNA-seq database. The reduction of confidence interval did drastically reduce the number of genes as well as the subsequent analyses, but the list is still extensive. More precise analyses of these candidate genes, including functional genomic work and possible gene editing of some of them will be now necessary to identify the genes under these new QTLs.

Conclusion

Faced with the threat of climate change and the challenge of decreasing inputs while maintaining yield and quality, deciphering the genetic architecture of target traits is a most needed endeavor. In this goal of importance to all agricultural species whatever the traits under investigation, the approach developed in this article aimed at harnessing the most information as possible from dense genotyping and accurate phenotypic data. Among the wealth of available methods, we focused our comparison on univariate *vs* multivariate ones. Moreover, rather than decoupling genomic prediction from the identification of major QTLs,

we argue for the need to pursue both goals jointly. Indeed, they provide complementary information on the genetic architecture of the target traits as well as the key functions underlying them. As such, we provided an in-depth investigation mobilizing both simulated and experimental data, hence of interest beyond our grapevine case study, hoping that it will contribute to a way forward to other researchers working on other species. Of interest to quantitative geneticists, our results notably emphasized the interest of the Elastic Net, available as both a univariate and a multivariate version, as an efficient, default method for genomic prediction, followed by the mFDR control for the robust identification of QTLs. Moreover, of interest to plant biologists who seek to understand the response to water stress, our results highlighted several candidate genes underlying the integrated traits of night-time transpiration, transpiration efficiency and biomass production. For some of them, their functions confirm and suggest causal links with stomatal functioning, trichome development or the ABA pathway.

Acknowledgments

We thank Marie Perrot-Dockès for her help concerning penalized regression methods, the South Green platform for computing, notably Bertrand Pitollat, and the GREAT platform, notably Amandine Velt and Camille Rustenholz. We also acknowledge the funding of the SelVi and FruitSelGen projects (BAP department and Selgen metaprogram of INRAE). Partial funding of the PhD was provided by ANRT (grant number 2018/0577), IFV and Inter-Rhône.

Literature Cited

Adam-Blondon, A.-F., A. Bernole, G. Faes, D. Lamoureux, S. Pateyron, *et al.*, 2005 Construction and characterization of BAC libraries from major grapevine cultivars. *Theoretical and Applied Genetics* **110**: 1363–1371.

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, 1990 Basic local alignment search tool. *Journal of Molecular Biology* **215**: 403–410.

Arlot, S. and M. Lerasle, 2016 Choice of V for V-fold cross-validation in least-squares density estimation. *The Journal of Machine Learning Research* **17**: 7256–7305.

Arruda, M. P., A. E. Lipka, P. J. Brown, A. M. Krill, C. Thurber, *et al.*, 2016 Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (*Triticum aestivum* L.). *Molecular Breeding* **36**: 84.

Azodi, C. B., E. Bolger, A. McCarron, M. Roantree, G. d. l. Campos, *et al.*, 2019 Benchmarking Parametric and Machine Learning Models for Genomic Prediction of Complex Traits. *G3: Genes, Genomes, Genetics* **9**: 3691–3702, Publisher: G3: Genes, Genomes, Genetics Section: Genomic Prediction.

Bates, D., M. Mächler, B. Bolker, and S. Walker, 2014 Fitting Linear Mixed-Effects Models using lme4. *arXiv:1406.5823 [stat]* arXiv: 1406.5823.

Bernardo, R., 2008 Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years. *Crop Science* **48**: 1649.

Bernardo, R. and J. Yu, 2007 Prospects for Genomewide Selection for Quantitative Traits in Maize. *Crop Science* **47**: 1082–1090.

Breheny, P. J., 2019 Marginal false discovery rates for penalized regression models. *Biostatistics* **20**: 299–314.

Broman, K. W., H. Wu, Sen, and G. A. Churchill, 2003 R/qtL: QTL mapping in experimental crosses. *Bioinformatics* **19**: 889–890, Publisher: Oxford Academic.

Calus, M. P. and R. F. Veerkamp, 2011 Accuracy of multi-trait genomic selection using different methods. *Genetics Selection Evolution* **43**.

Canaguier, A., J. Grimplet, G. Di Gaspero, S. Scalabrin, E. Duchêne, *et al.*, 2017 A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). *Genomics Data* **14**: 56–62.

Chen, T. and C. Guestrin, 2016 XGBoost: A Scalable Tree Boosting System. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '16* pp. 785–794, arXiv: 1603.02754.

Chiquet, J., T. Mary-Huard, and S. Robin, 2017 Structured regularization for conditional Gaussian graphical models. *Statistics and Computing* **27**: 789–804.

Cho, S., K. Kim, Y. J. Kim, J.-K. Lee, Y. S. Cho, *et al.*, 2010 Joint Identification of Multiple Genetic Variants via Elastic-Net Variable Selection in a Genome-Wide Association Analysis: Identifying multiple variants via EN. *Annals of Human Genetics* **74**: 416–428.

Condon, A. G., R. A. Richards, G. J. Rebetzke, and G. D. Farquhar, 2004 Breeding for high water-use efficiency. *Journal of Experimental Botany* **55**: 2447–2460, Publisher: Oxford Academic.

Coupel-Ledru, A., E. Lebon, A. Christophe, A. Gallo, P. Gago, *et al.*, 2016 Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. *Proceedings of the National Academy of Sciences* **113**: 8963–8968.

Coupel-Ledru, A., Lebon, A. Christophe, A. Doligez, L. Cabrera-Bosquet, *et al.*, 2014 Genetic variation in a grapevine progeny (*Vitis vinifera* L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. *Journal of Experimental Botany* **65**: 6205–6218.

Cros, D., M. Denis, L. Sánchez, B. Cochard, A. Flori, *et al.*, 2015 Genomic selection prediction accuracy in a perennial crop: case study of oil palm (*Elaeis guineensis* Jacq.). *Theoretical and Applied Genetics* **128**: 397–410.

Crossa, J., 2017 Genomic Selection in Plant Breeding: Methods, Models, and Perspectives | Elsevier Enhanced Reader. Library Catalog: reader.elsevier.com.

Dagnachew, B. and T. Meuwissen, 2019 Accuracy of within-family multi-trait genomic selection models in a sib-based aquaculture breeding scheme. *Aquaculture* **505**: 27–33.

de los Campos, G., J. M. Hickey, R. Pong-Wong, H. D. Daetwyler, and M. P. L. Calus, 2013 Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding. *Genetics* **193**: 327–345.

Desta, Z. A. and R. Ortiz, 2014 Genomic selection: genome-wide prediction in plant improvement. *Trends in Plant Science* **19**: 592–601.

Do, H., M.-S. Cheon, and S. B. Kim, 2020 Graph Structured Sparse Subset Selection. *Information Sciences* **518**: 71–94.

Dodd, L. E. and M. S. Pepe, 2003 Partial AUC Estimation and Regression. *Biometrics* **59**: 614–623, *eprint*: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/1541-0420.00071>.

Doligez, A., Y. Bertrand, S. Dias, M. Grolier, J.-F. Ballester, *et al.*, 2010 QTLs for fertility in table grape (*Vitis vinifera* L.). *Tree Genetics & Genomes* **6**: 413–422.

Doligez, A., Y. Bertrand, M. Farnos, M. Grolier, C. Romieu, *et al.*, 2013 New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (*Vitis vinifera* L.). *BMC Plant Biology* **13**: 217.

Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, *et al.*, 2011 A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. *PLOS ONE* **6**: e19379, Publisher: Public Library of Science.

Emanuelli, F., J. Battilana, L. Costantini, L. Le Cunff, J.-M. Bouriquot, *et al.*, 2010 A candidate gene association study on muscat flavor in grapevine (*Vitis vinifera* L.). *BMC Plant Biology* **10**: 241.

Ferrão, L. F. V., R. G. Ferrão, M. A. G. Ferrão, A. Fonseca, P. Carbonetto, *et al.*, 2019 Accurate genomic prediction of *Coffea canephora* in multiple environments using whole-genome statistical models. *Heredity* **122**: 261–275.

Fischer, B. M., I. Salakhutdinov, M. Akkurt, R. Eibach, K. J. Edwards, *et al.*, 2004 Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. *TAG Theoretical and Applied Genetics* **108**: 501–515.

Flutre, T., 2019 rutilstimflutre: Timothee Flutre's personal R.

Flutre, T., L. L. Cunff, A. Fodor, A. Launay, C. Romieu, *et al.*, 2020 Genome-wide association and prediction studies using a grapevine diversity panel give insights into the genetic architecture of several traits of interest. *bioRxiv* p. 2020.09.10.290890, Publisher: Cold Spring Harbor Laboratory Section: New Results.

Fodor, A., V. Segura, M. Denis, S. Neuenschwander, A. Fournier-Level, *et al.*, 2014 Genome-Wide Prediction Methods in Highly Diverse and Heterozygous Species: Proof-of-Concept through Simulation in Grapevine. *PLoS ONE* **9**: e110436.

Fournier-Level, A., L. Le Cunff, C. Gomez, A. Doligez, A. Ageorges, *et al.*, 2009 Quantitative Genetic Bases of Anthocyanin Variation in Grape (*Vitis vinifera* L. ssp. *sativa*) Berry: A Quantitative Trait Locus to Quantitative Trait Nucleotide Integrated Study. *Genetics* **183**: 1127–1139.

Friedman, J., T. Hastie, and R. Tibshirani, 2010 Regularization Paths for Generalized Linear Models via Coordinate Descent. *Journal of Statistical Software* **33**.

Goddard, M. E. and B. J. Hayes, 2007 Genomic selection. *Journal of Animal Breeding and Genetics* **124**: 323–330, *eprint*: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1439-0388.2007.00702.x>.

Gois, I., A. Borém, M. Cristofani-Yaly, M. de Resende, C. Azevedo, *et al.*, 2016 Genome wide selection in Citrus breeding. *Genetics and Molecular Research* **15**.

Guan, Y. and M. Stephens, 2011 Bayesian variable selection regression for genome-wide association studies and other large-scale problems. *Annals of Applied Statistics* **5**: 1780–1815, Publisher: Institute of Mathematical Statistics.

Guo, G., F. Zhao, Y. Wang, Y. Zhang, L. Du, *et al.*, 2014 Comparison of single-trait and multiple-trait genomic prediction models. *BMC Genetics* **15**: 30.

Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2007 The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values. *Genetics* **177**: 2389–2397.

Haley, C. S. and S. A. Knott, 1992 A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. *Heredity* **69**: 315–324.

Hastie, T. and J. Qian, 2016 Glmnet vignette.

Hastie, T., R. Tibshirani, and J. Friedman, 2009 *The Elements of Statistical Learning*. Springer Series in Statistics, Springer New York, New York, NY.

Hayashi, T. and H. Iwata, 2013 A Bayesian method and its variational approximation for prediction of genomic breeding

values in multiple traits. *BMC Bioinformatics* **14**: 34.

Heffner, E. L., J.-L. Jannink, and M. E. Sorrells, 2011 Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program. *The Plant Genome* **4**: 65–75.

Heffner, E. L., A. J. Lorenz, J.-L. Jannink, and M. E. Sorrells, 2010 Plant Breeding with Genomic Selection: Gain per Unit Time and Cost. *Crop Science* **50**: 1681.

Heffner, E. L., M. E. Sorrells, and J.-L. Jannink, 2009 Genomic Selection for Crop Improvement. *Crop Science* **49**: 1.

Henderson, C. R. and R. L. Quaas, 1976 Multiple Trait Evaluation Using Relatives' Records. *Journal of Animal Science* **43**: 1188–1197, Publisher: Oxford Academic.

Heslot, N., H.-P. Yang, M. E. Sorrells, and J.-L. Jannink, 2012 Genomic Selection in Plant Breeding: A Comparison of Models. *Crop Science* **52**: 146–160.

Hoerl, A. E. and R. W. Kennard, 1970 Ridge Regression: Biased Estimation for Nonorthogonal Problems. *Technometrics* **12**: 55–67, Publisher: Taylor & Francis.

Hofner, B. and T. Hothorn, 2017 stabs: Stability Selection with Error Control.

Huang, Y.-F., A. Doligez, A. Fournier-Level, L. Le Cunff, Y. Bertrand, *et al.*, 2012 Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. *BMC Plant Biology* **12**: 30.

Inouye, M., S. Ripatti, J. Kettunen, L.-P. Lyytikäinen, N. Oksala, *et al.*, 2012 Novel Loci for Metabolic Networks and Multi-Tissue Expression Studies Reveal Genes for Atherosclerosis. *PLOS Genetics* **8**: e1002907, Publisher: Public Library of Science.

Jia, Y. and J.-L. Jannink, 2012 Multiple-Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy. *Genetics* **192**: 1513–1522.

Jiang, C. and Z. B. Zeng, 1995 Multiple trait analysis of genetic mapping for quantitative trait loci. *Genetics* **140**: 1111–1127.

Jiang, J., Q. Zhang, L. Ma, J. Li, Z. Wang, *et al.*, 2015 Joint prediction of multiple quantitative traits using a Bayesian multivariate antedependence model. *Heredity* **115**: 29–36.

Kao, C.-H., Z.-B. Zeng, and R. D. Teasdale, 1999 Multiple Interval Mapping for Quantitative Trait Loci p. 14.

Kemper, K. E., P. J. Bowman, B. J. Hayes, P. M. Visscher, and M. E. Goddard, 2018 A multi-trait Bayesian method for mapping QTL and genomic prediction. *Genetics Selection Evolution* **50**.

Korol, A. B., Y. I. Ronin, and V. M. Kirzhner, 1995 Interval mapping of quantitative trait loci employing correlated trait complexes. *Genetics* **140**: 1137–1147, Publisher: Genetics Section: INVESTIGATIONS.

Kuhn, M., 2008 Building Predictive Models in R Using the caret Package. *Journal of Statistical Software* **28**: 1–26, Number: 1.

Kumar, S., D. Chagné, M. C. A. M. Bink, R. K. Volz, C. Whitworth, *et al.*, 2012 Genomic Selection for Fruit Quality Traits in Apple (*Malus*×*domestica* Borkh.). *PLoS ONE* **7**: e36674.

Kumar, S., E. Hilario, C. H. Deng, and C. Molloy, 2020 Turbocharging introgression breeding of perennial fruit crops: a case study on apple. *Horticulture Research* **7**: 47.

Kumar, S., C. Kirk, C. H. Deng, A. Shirtliff, C. Wiedow, *et al.*, 2019 Marker-trait associations and genomic predictions of interspecific pear (*Pyrus*) fruit characteristics. *Scientific Reports* **9**: 9072.

Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen, 2017 **lmerTest** Package: Tests in Linear Mixed Effects Models. *Journal of Statistical Software* **82**.

Kwong, Q. B., A. L. Ong, C. K. Teh, F. T. Chew, M. Tammi, *et al.*, 2017 Genomic Selection in Commercial Perennial Crops: Applicability and Improvement in Oil Palm (*Elaeis guineensis* Jacq.). *Scientific Reports* **7**.

Lado, B., D. Vázquez, M. Quincke, P. Silva, I. Aguilar, *et al.*, 2018 Resource allocation optimization with multi-trait genomic prediction for bread wheat (*Triticum aestivum* L.) baking quality. *Theoretical and Applied Genetics* **131**: 2719–2731.

Lander, E. S. and D. Botstein, 1989 Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps. *Genetics* **121**: 185.

Li, Z. and M. J. Sillanpää, 2012 Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. *Theoretical and Applied Genetics* **125**: 419–435.

Liu, X., X. Hu, K. Li, Z. Liu, Y. Wu, *et al.*, 2020 Genetic mapping and genomic selection for maize stalk strength. *BMC Plant Biology* **20**: 196.

Lorenzana, R. E. and R. Bernardo, 2009 Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. *Theoretical and Applied Genetics* **120**: 151–161.

Mason, L., J. Baxter, P. L. Bartlett, and M. R. Frean, 1999 Boosting Algorithms as Gradient Descent. *Advances in Neural Information Processing Systems* **12** p. 7.

Mayer, D. G. and D. G. Butler, 1993 Statistical validation. *Ecological Modelling* **68**: 21–32.

Mayor, P. J. and R. Bernardo, 2009 Genomewide Selection and Marker-Assisted Recurrent Selection in Doubled Haploid versus F2 Populations. *Crop Science* **49**: 1719–1725.

McClish, D. K., 1989 Analyzing a Portion of the ROC Curve. *Medical Decision Making* **9**: 190–195, Publisher: SAGE Publications Inc STM.

Meinshausen, N. and P. Bühlmann, 2009 Stability Selection p. 30.

Mejía, N., B. Soto, M. Guerrero, X. Casanueva, C. Houel, *et al.*, 2011 Molecular, genetic and transcriptional evidence for a role of *VvAGL11* in stenospermocarpic seedlessness in grapevine. *BMC Plant Biology* **11**: 57.

Meuwissen, T. H. and M. E. Goddard, 2004 Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. *Genetics Selection Evolution* **36**: 261.

Muranty, H., M. Troggio, I. B. Sadok, M. A. Rifaï, A. Auwerkerken, *et al.*, 2015 Accuracy and responses of genomic selection on key traits in apple breeding. *Horticulture Research* **2**.

Nanson, A., 1970 Heritability and gain of genetic origin in several types of experiments. *Silvae genetica* .

Obozinski, G., M. J. Wainwright, and M. I. Jordan, 2011 Support union recovery in high-dimensional multivariate regression. *The Annals of Statistics* **39**: 1–47, arXiv: 0808.0711.

Olatoye, M. O., L. V. Clark, J. Wang, X. Yang, T. Yamada, *et al.*, 2019 Evaluation of genomic selection and marker-assisted selection in Miscanthus and energycane. *Molecular Breeding* **39**: 171.

Piñeiro, G., S. Perelman, J. P. Guerschman, and J. M. Paruelo, 2008 How to evaluate models: Observed vs. predicted or predicted vs. observed? *Ecological Modelling* **216**: 316–322.

Price, A. H., 2006 Believe it or not, QTLs are accurate! *Trends in Plant Science* **11**: 213–216.

Pszczola, M., R. F. Veerkamp, Y. de Haas, E. Wall, T. Strabel, *et al.*, 2013 Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population. *animal* **7**: 1759–1768.

R Core Team, 2020 R: A language and environment for statistical computing.

Rastas, P., 2017 Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. *Bioinformatics* **33**: 3726–3732.

Resende, M. F. R., P. Muñoz, M. D. V. Resende, D. J. Garrick, R. L. Fernando, *et al.*, 2012 Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (*Pinus taeda* L.). *Genetics* **190**: 1503–1510, Publisher: Genetics Section: Investigations.

Riedelsheimer, C., F. Technow, and A. E. Melchinger, 2012 Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. *BMC Genomics* **13**: 452.

Runcie, D. and H. Cheng, 2019 Pitfalls and Remedies for Cross Validation with Multi-trait Genomic Prediction Methods. *G3: Genes, Genomes, Genetics* **9**: 3727–3741, Publisher: G3: Genes, Genomes, Genetics Section: Genomic Prediction.

Schwander, F., R. Eibach, I. Fechter, L. Hausmann, E. Zyprian, *et al.*, 2012 Rpv10: a new locus from the Asian *Vitis* gene pool for pyramiding downy mildew resistance loci in grapevine. *Theoretical and Applied Genetics* **124**: 163–176.

Swets, J. A., R. M. Pickett, S. F. Whitehead, D. J. Getty, J. A. Schnur, *et al.*, 1979 Assessment of diagnostic technologies. *Science* **205**: 753–759, Publisher: American Association for the Advancement of Science Section: Articles.

Thompson, R. and K. Meyer, 1986 A review of theoretical aspects in the estimation of breeding values for multi-trait selection. *Livestock Production Science* **15**: 299–313.

Tibshirani, R., 1996 Regression Shrinkage and Selection via the Lasso. *Journal of the Royal Statistical Society. Series B (Methodological)* **58**: 267–288.

Velazco, J. G., D. R. Jordan, E. S. Mace, C. H. Hunt, M. Malosetti, *et al.*, 2019 Genomic Prediction of Grain Yield and Drought-Adaptation Capacity in Sorghum Is Enhanced by Multi-Trait Analysis. *Frontiers in Plant Science* **10**.

Verzelen, N., 2012 Minimax risks for sparse regressions: Ultra-high dimensional phenomenons. *Electronic Journal of Statistics* **6**: 38–90, Publisher: The Institute of Mathematical Statistics and the Bernoulli Society.

Vezzulli, S., L. Zulini, and M. Stefanini, 2019 Genetics-assisted breeding for downy/powdery mildew and phylloxera resistance at fem. *BIO Web of Conferences* **12**: 01020.

Viana, A. P., M. D. V. d. Resende, S. Riaz, and M. A. Walker, 2016a Genome selection in fruit breeding: application to table grapes. *Scientia Agricola* **73**: 142–149.

Viana, J. M. S., F. F. e Silva, G. B. Mundim, C. F. Azevedo, and H. U. Jan, 2016b Efficiency of low heritability QTL mapping under high SNP density. *Euphytica* **213**: 13.

Waldmann, P., G. Mészáros, B. Gredler, C. Fuerst, and J. Sölkner, 2013 Evaluation of the lasso and the elastic net in genome-wide association studies. *Frontiers in Genetics* **4**.

Wang, F., S. Mukherjee, S. Richardson, and S. M. Hill, 2020 High-dimensional regression in practice: an empirical study of finite-sample prediction, variable selection and ranking. *Statistics and Computing* **30**: 697–719.

Wang, Y., M. F. Mette, T. Miedaner, M. Gottwald, P. Wilde, *et al.*, 2014 The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. *BMC Genomics* **15**: 556.

Welter, L. J., N. Göktürk-Baydar, M. Akkurt, E. Maul, R. Eibach, *et al.*, 2007 Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (*Vitis vinifera* L.). *Molecular Breeding* **20**: 359–374.

Wickham, H., 2016 *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

Zou, H. and T. Hastie, 2005 Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **67**: 301–320.