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ABSTRACT Viticulture has to cope with climate change and decrease pesticide inputs, while maintaining yield and wine

quality. Breeding is a potential key to meet this challenge, and genomic prediction is a promising tool to accelerate breeding

programs, multivariate methods being potentially more accurate than univariate ones. Moreover, some prediction methods

also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and allowing the identification of positional

candidate genes. We applied several methods, interval mapping as well as univariate and multivariate penalized regression, in

a bi-parental grapevine progeny, in order to compare their ability to predict genotypic values and detect QTLs. We used a new

denser genetic map, simulated two traits under four QTL configurations, and re-analyzed 14 traits measured in semi-controlled

conditions under different watering conditions. Using simulations, we recommend the penalized regression method Elastic Net

(EN) as a default for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize

the QTLs. Indeed, penalized methods were more powerful than interval mapping for QTL detection across various genetic

architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation

between traits. Using experimental data, penalized regression methods proved as very efficient for intra-population prediction

whatever the genetic architecture of the trait, with accuracies reaching 0.68. These methods applied on the denser map found

new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. These methods can be applied

to other traits and species.

KEYWORDS genomic prediction; QTL detection; genetic correlation; breeding; candidate gene; water stress; grapevine

Introduction

Viticulture is facing two major challenges, coping with climate1

change and decreasing inputs such as pesticides, while maintain-2

ing yield and quality. This requires understanding the physiolog-3

ical processes and their genetic basis that determine adaptation4

to climate change, such as water use efficiency (Condon et al.5
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2004). Breeding schemes could then incorporate genotypes bear-6

ing genetic architecture favorable to high water use efficiency7

to be crossed with genotypes resistant to downy and powdery8

mildew (Vezzulli et al. 2019) and by selecting offspring combin-9

ing favorable combinations. In crops, the widespread use of10

molecular markers through Marker Assisted Selection (MAS) or11

Genomic Prediction (GP) substantially accelerates the genetic12

gain compared to traditional phenotypic selection, by allowing13

early selection of promising genotypes, without phenotypic in-14

formation (Heffner et al. 2009). This is of acute interest in fruiting15

perennial species because of the long juvenile period during16

which most traits of interest cannot be phenotyped. MAS and17

GP are now widely developed in many perennial species such18
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as pear (Kumar et al. 2019), oil palm (Kwong et al. 2017; Cros19

et al. 2015), citrus (Gois et al. 2016), apple (Muranty et al. 2015)20

and coffea (Ferrão et al. 2019). In grapevine, QTL detection in bi-21

parental populations led up to the identification of major genes22

for traits with a simple genetic architecture such as resistance to23

downy and powdery mildew, berry color, seedlessness and Mus-24

cat flavor (Fischer et al. 2004; Welter et al. 2007; Fournier-Level25

et al. 2009; Emanuelli et al. 2010; Mejía et al. 2011; Schwander et al.26

2012). Currently, most breeding effort in grapevine consists in27

improving disease resistance with MAS based on these results.28

However, genetic improvement is also needed for traits with29

more complex genetic determinism. Many minor QTLs have30

been found for the tolerance to abiotic stresses (Coupel-Ledru31

et al. 2014, 2016), yield components (Doligez et al. 2010, 2013)32

and fruit quality (Huang et al. 2012), as reviewed in Vezzulli33

et al. (2019). But MAS is not well suited for traits with many34

underlying minor QTLs (Bernardo 2008). Genomic prediction,35

which relies on high density genotyping is a promising tool for36

breeding for such complex traits, especially in perennial plants37

(Kumar et al. 2012). Nevertheless, in grapevine, GP has rarely38

been used yet, only once on experimental data (Viana et al. 2016a)39

and once on simulated data (Fodor et al. 2014). Thus, before ap-40

plying GP to this species, it has to be empirically validated by41

thoroughly investigating the efficiency of different methods on42

traits with various genetic architectures.43

Both QTL detection and genomic prediction rely on finding44

statistical associations between genotypic and phenotypic vari-45

ation. So far, QTL detection in grapevine has been achieved46

mainly by using interval mapping (IM) methods in bi-parental47

populations, or more recently genome-wide association stud-48

ies (GWAS) in diversity panels (see Vezzulli et al. (2019) for a49

comprehensive review of QTL detection studies in grapevine).50

However, most quantitative traits are explained by many minor51

QTLs which are hardly detected neither by interval mapping52

methods nor GWAS where each QTL has to individually over-53

come a significance threshold. In contrast, GP methods, by54

focusing on prediction, are less restrictive on the number of use-55

ful markers, sometimes resulting in all markers being retained56

as predictive with a non-zero effect. That is why GP methods are57

more efficient to predict genotypic values (Goddard and Hayes58

2007) and therefore have become more and more popular with59

breeders (Heffner et al. 2010; Crossa 2017; Kumar et al. 2020).60

Widely used methods for GP are based on penalized re-61

gression (Hastie et al. 2009), notably RR (Ridge Regression,62

equivalent to Genomic BLUP, GBLUP, Habier et al. (2007)) and63

the LASSO (Least Absolute Shrinkage and Selection Operator).64

Bayesian approaches are also commonly used in GP (e.g., de los65

Campos et al. (2013); Kemper et al. (2018)), see Desta and Ortiz66

(2014) for a classification of GP methods. However, Bayesian67

methods globally does not give better predictive ability than RR68

or LASSO, and they bear a heavy computational cost when fitted69

using Markov chains Monte-Carlo algorithms (Ferrão et al. 2019).70

Other methods based on non-parametric models (e.g., Support71

Vector Machine, Reproducing Kernel Hilbert Space, Random72

Forest) have been shown to yield lower predictive ability than73

parametric models (frequentist or Bayesian) when the genetic74

architecture of the trait was additive (Azodi et al. 2019).75

Traits are often analyzed one by one in GP, using univari-76

ate methods. Nevertheless, breeders want to select the best77

genotypes which combine good performance for many traits.78

Analyzing several traits jointly in GP allows to take into account79

genetic correlation between traits (Henderson and Quaas 1976).80

Calus and Veerkamp (2011); Jia and Jannink (2012); Hayashi and81

Iwata (2013); Guo et al. (2014) compared univariate vs multi-82

variate models’ performance. They found a slight advantage of83

multivariate analysis when heritability was low and data were84

missing. Predictive ability was particularly improved if the test85

set had been phenotyped for one trait while prediction was ap-86

plied to another correlated trait (trait-assisted prediction) as in87

Thompson and Meyer (1986); Jia and Jannink (2012); Pszczola88

et al. (2013); Lado et al. (2018); Velazco et al. (2019); Liu et al. (2020).89

However, this breaks independence between the training and90

the test set, leading to an over-optimistic prediction accuracy91

(Runcie and Cheng 2019). Multivariate methods have also been92

proposed for QTL detection by Jiang and Zeng (1995); Korol et al.93

(1995); Meuwissen and Goddard (2004), notably for distinguish-94

ing between linkage and pleiotropy when a QTL is common95

to several traits. Some methods of multivariate penalized re-96

gression, such as in Chiquet et al. (2017), were designed to be97

useful for both QTL detection and prediction of genotypic value.98

Multivariate GP methods are expected to perform better if traits99

are genetically correlated but this remains worth testing with100

additional data. We also hypothesize that these methods will101

have higher power for QTL detection, by making a better use of102

information on the genetic architecture of several intertwined103

traits.104

Methods designed for QTL detection are rarely used for geno-105

typic value prediction. As they select only the largest QTLs, we106

hypothesize that these methods will provide an accurate pre-107

diction as long as the genetic architecture is simple, but yield108

poor prediction performance otherwise, as concluded in several109

studies (Heffner et al. 2011; Wang et al. 2014; Arruda et al. 2016).110

Conversely, some methods for GP like the LASSO and its exten-111

sions are also able to select markers with non-null effects, hence112

to perform QTL detection. Their accuracy in detecting QTLs has113

been partially investigated by Li and Sillanpää (2012) on a single114

trait in an inbred species and on simulated data and by Cho115

et al. (2010) on human data and binary trait, hence additional116

analyzes are needed.117

This article aims to compare the ability of various methods118

to predict genotypic values and to detect QTLs in a bi-parental119

progeny of grapevine, by focusing on traits related to adap-120

tation to climate change. We first complemented the available121

sparse SSR genetic map (Huang et al. 2012) by restriction-assisted122

DNA sequencing to construct a saturated SNP map. Then, we123

simulated phenotypic data using this map to compare several124

univariate and multivariate methods and assess the impact of125

simulation parameters. Finally, we reanalyzed the phenotypic126

data on water stress from Coupel-Ledru et al. (2014, 2016) ob-127

tained in semi-controlled conditions. The same genotyping data128

and methods as those applied to simulated data were compared,129

providing deeper insights into the genetic determinism of key130

traits underlying water use efficiency by finding new QTLs and131

candidate genes.132

Materials and Methods133

Plant Material134

This study was based on a pseudo-F1 progeny of 188 offspring135

of Vitis vinifera L. from a reciprocal cross made in 1995 between136

cultivars Syrah and Grenache (Adam-Blondon et al. 2005).137

Genetic maps138

SSR map139
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We used the genetic map with 153 multi-allelic SSR mark-140

ers already published (Huang et al. 2012), constructed with the141

Kosambi mapping function (Doligez et al. 2013). In the following,142

we used the JoinMap version 3 format, according to which each143

marker genotype is encoded into one of the following segrega-144

tion types: ab×cd, ef×eg, hk×hk, nn×np and lm×ll. Each of them145

comprises several allelic effects: e.g., for abxcd, the additive146

effects are a, b, c and d, and the dominance effects are ac, ad,147

bc and bd. Among the 153 SSRs, 50 were ab×cd, 58 ef×eg, 10148

hk×hk, 16 lm×ll and 19 nn×np.149

The physical positions of SSR markers absent from the150

latest URGI JBrowse (https://urgi.versailles.inra.fr/Species/Vitis/151

Genome-Browser) were retrieved by aligning their forward152

primer with BLAST (Altschul et al. 1990) on the PN40024 12X.v2153

reference sequence (Canaguier et al. 2017) using default param-154

eter values, except for the Expect threshold which was set to 1155

or 10. Physical positions were still missing for six SSRs and one156

was uncertain (high Expect value).157

SNP map158

GBS markers Further genotyping was done by sequencing af-159

ter genomic reduction, using RAD-sequencing technology with160

ApeKI restriction enzyme (Elshire et al. 2011), as described in161

Flutre et al. (2020). Keygene N.V. owns patents and patent appli-162

cations protecting its Sequence Based Genotyping technologies.163

This yielded a final number of 17,298 SNPs.164

Consensus genetic map The genetic map was built with Lep-165

MAP3 (Rastas 2017). The resulting map had 3,961 fully-166

informative markers (abxcd segregation) without missing data.167

These data were numerically recoded in biallelic doses (0,1,2)168

according to the initial biallelic segregation and phase (Table S1).169

Design matrices The resolution of multiple linear regressions170

described below requires a design matrix, which is built from the171

genotyping data. At a given marker, each genotype encoded in172

the JoinMap v3 format corresponded to several columns, yield-173

ing one predictor per allelic effect. From each genetic map (153174

SSRs and 3,961 SNPs), we derived two design matrices, coded175

with 0, 1 and 2. The first one included only additive allelic effects176

(464 and 15,844, respectively). The second one included both177

additive and dominance allelic effects (996 and 31,688, respec-178

tively).179

As mentioned before, we also recoded the 3,961 markers into180

additive gene dose (i.e., 0, 1 or 2), which yielded an additional181

design matrix with 3,961 predictors.182

Simulation183

Phenotype simulations were used to i) compare several meth-184

ods for prediction accuracy, and ii) assess the efficacy of these185

methods to select the markers most strongly associated with186

trait variation.187

Two traits, y1 and y2 were jointly simulated according to the188

following bivariate linear regression model: Y = XB + E, where189

Y is the n × k matrix of traits, X the n × p design matrix of allelic190

effects, B the p× k matrix of allelic effects, and E the n× k matrix191

of errors. For X, the 3,961 SNP markers mapped for the SxG192

progeny were used, encoded in additive and dominance effects.193

Therefore n = 188, k = 2, and p = 31,688. For B, allelic effects cor-194

responding to s additive QTLs were drawn from a matrix-variate195

Normal distribution, B ∼ MV(0, I, VB), with I being the p × p196

identity matrix and VB the k × k genetic variance-covariance197

matrix between traits such that VB =





σ2
B1

ρBσB1
σB2

ρBσB1
σB2

σ2
B2



198

where ρB is the genetic correlation among traits and σ2
B1

and199

σ2
B2

the genetic variances for both traits y1 and y2. In the same200

way, E ∼ MV(0, I, VE), with the k × k error variance-covariance201

matrix VE =





σ2
E1

ρEσE1
σE2

ρEσE1
σE2

σ2
E2



 where ρE is the residual202

error correlation among traits, and σ2
E the error variance. We set203

ρB to 0.8, σ2
B1

and σ2
B2

to 0.1, ρE to 0 and narrow-sense heritability204

to 0.1, 0.2, 0.4 or 0.8 and σ2
E was deduced.205

To explore different genetic architectures, we simulated s =206

2 or s = 50 additive QTLs, located at s SNP markers, so that all207

corresponding additive allelic effects had non-zero values in B.208

Since all allelic effects were drawn from the same distribution,209

all QTLs had "major" or "minor" effects for s = 2 and s = 50,210

respectively. All dominant allelic effects were set to zero. Two211

QTL distributions across traits were also simulated. For the first212

one, called "same", all QTLs were at the same markers for both213

traits. For the second one, called "diff", the two traits had no214

QTL in common. Thus, there was genetic correlation among215

traits only for the "same" QTL distribution.216

For each configuration (2 or 50 QTLs combined with "same"217

or "diff" distribution), the simulation procedure was replicated218

t = 10 times, each with a different seed for the pseudo-random219

number generator, resulting in different QTL positions and ef-220

fects.221

In a first simulation set, narrow-sense heritability was as-222

sumed equal for both traits and prediction was done with all223

methods. In a second set, we simulated two traits with different224

heritability values (0.1 and 0.5), for the "same" QTL distribution225

with s = 20 and s = 200 QTLs, with QTL effects drawn from a226

matrix-variate distribution with σ2
B=1 and ρB = 0.5, in order to227

test the simulation parameters from Jia and Jannink (2012) with228

our genotyping data. For this second simulation set, prediction229

was done with a subset of methods only. Simulation parameters230

are summarized in Table 1.231

Experimental design, phenotyping and statistical analysis232

Seven phenotypes related to drought tolerance had already been233

measured in two years on the Syrah x Grenache progeny (on234

186 genotypes among the 188 existing) in semi-controlled condi-235

tions on the PhenoArch platform (https://www6.montpellier.inrae.236

fr/lepse_eng/M3P) in Montpellier, France, as detailed in Coupel-237

Ledru et al. (2014, 2016). Briefly, six replicates per genotype238

were used in 2012 (five in 2013). Three (in 2012) or two (in239

2013) replicates were maintained under well-watered conditions240

(Well-Watered condition, WW), whereas the three other ones241

were submitted to a moderate water deficit (Water Deficit con-242

dition, WD). Specific transpiration, i.e. transpiration rate per243

leaf area unit, was measured during daytime (TrS) and night-244

time (TrS_night). Midday leaf water potential (ψM,PsiM) was245

also measured and the difference between soil and leaf water246

potential (∆ψ, DeltaPsi) was calculated. Soil-to-leaf hydraulic247

conductance on a leaf area basis (KS) was calculated as the ra-248

tio between TrS and DeltaPsi. Growth rate (DeltaBiomass) was249

estimated by image analysis. Transpiration efficiency (TE) was250

calculated over a period of 10 to 15 days as the ratio between251

growth and total water loss by transpiration during this period.252

These seven phenotypes were studied under each wa-253

tering condition (WW and WD). We thus considered 14254
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Simulation parameter Same heritability values Different heritability values

QTL number 2-50 20-200

Heritability value 0.8/0.8 – 0.4/0.4 – 0.2/0.2 – 0.1/0.1 0.1/0.5

Genetic variance 0.1/0.1 1/1

Genetic correlation 0.8 0.5

QTL distribution Same-Diff Same

Table 1 Parameter values in two sets of simulation of two traits in a bi-parental population

traits in this study, a trait being defined as a pheno-255

type x watering condition combination, and used the raw256

data available online (https://data.inrae.fr/privateurl.xhtml?token=257

383f6606-1c3c-4d90-8607-704cd53de068). For each trait, a lin-258

ear mixed model was fitted with R/lme4 version 1.1-21 (Bates259

et al. 2014) using data from both years. First, a model with260

two random effects (genotype and genotype-year interaction)261

and nine fixed effects (year, replicate, coordinates in the plat-262

form within the greenhouse, coordinates in the controlled-263

environment chamber where PsiM and TrS were measured,264

operator for PsiM measurements, controlled-environment cham-265

ber and date of measurement) were fitted with maximum likeli-266

hood (ML). The best model among all sub-models was chosen267

using R/lmerTest version 3.1-2 (Kuznetsova et al. 2017) based268

on Fisher tests for fixed effects and likelihood ratio tests for269

random effects, with a p-value threshold of 0.05. This model270

was then fitted with restricted maximum likelihood (ReML)271

to obtain unbiased estimates of the variance components and272

empirical BLUPs (Best Linear Unbiased Predictions) of the geno-273

typic values. The acceptability of underlying assumptions (ho-274

moscedasticity, normality, independence) was assessed visually275

by plotting residuals and BLUPs. Broad-sense heritability was276

computed according to Nanson (1970), dividing the residual277

variance by the mean number of trials (years) and replicates per278

trial. Its coefficient of variation was estimated by bootstrapping279

with R/lme4 and R/boot packages.280

Interval Mapping methods281

Two univariate interval mapping methods were compared,282

using R/qtl version 1.46-2 (Broman et al. 2003). For both, the283

probability of each genotypic class was first inferred at markers284

and every 0.1 cM between markers along the genetic map, using285

the R/qtl::calcgenoprob function.286

Simple Interval Mapping (SIM, Lander and Botstein (1989)) as-287

sumes that there is at most one QTL per chromosome. A LOD288

score was computed every 0.1 cM with R/qtl::scanone, then 1000289

permutations were performed to determine the LOD threshold290

so that the family-wise (genome wide) error rate (FWER) was291

controlled at 5292

Multiple Interval Mapping (MIM, Kao et al. (1999)) allows the si-293

multaneous detection of several QTLs. It was performed with294

R/qtl::stepwiseqtl, using a forward / backward selection of295

Haley-Knott regression model (Haley and Knott 1992), with a296

maximum number of QTLs set to 4 (or 10 for ROC curve con-297

struction, see below), replicated 10 times to overcome occasional298

instability issues. Only main effects were included (no pairwise299

QTL x QTL interaction). The LOD threshold was computed300

with permutations (1000 for QTL detection and 10 for cross-301

validation of GP, see below) to determine the main penalty with302

R/qtl::scantwo. QTL positions and effects were determined with303

R/qtl::refineqtl and R/qtl::fitqtl, respectively. For both methods,304

QTL positions were determined as those of LOD peaks above305

the threshold, with LOD-1 confidence intervals (Lander and306

Botstein 1989).307

Penalized regression methods308

Genomic prediction can be seen as a high-dimension regres-309

sion problem with more allelic effects (in B) to estimate than310

observations (in Y), known as the "n << p" problem. The likeli-311

hood of such models must be regularized and various extensions,312

called penalized regression of the Ordinary Least Squares (OLS)313

algorithm were proposed. Such a penalization generally induces314

a bias in the estimation of allelic effects.315

Univariate methods316

Ridge Regression (RR, Hoerl and Kennard (1970)) adds to the317

OLS a penalty on the effects using the L2 norm. As a result,318

all estimated allelic effects are shrunk towards zero, yet none319

is exactly zero. The amount of shrinkage is controlled by a320

regularization parameter (λ). We tuned it by cross-validation321

using the glmnet function of the R/glmnet package version 3.0-2322

(Friedman et al. 2010) with default parameters except family =323

"gaussian" and α = 0, keeping the λ value that minimizes the324

Mean Square Error (MSE). Note that effects associated to corre-325

lated predictors are averaged so that they are close to identical,326

for a high level of regularization.327

The Least Absolute Shrinkage and Selection Operator (LASSO,328

Tibshirani (1996)) adds to the OLS a penalty on the effects us-329

ing the L1 norm, causing some allelic effects to be exactly zero,330

while others are shrunk towards zero. Hence LASSO performs331

predictor selection, i.e., provides a sparse solution of predictors332

included in the best model, in addition to estimating their allelic333

effect. The LASSO regularization parameter (λ) was tuned by334

cross-validation with cv.glmnet (family = "gaussian", α = 1). In335

the case of n < p, LASSO selects at most n predictors.336

Extreme Gradient Boosting Mason et al. (1999) is a machine337

learning method. We first applied the LASSO for reduction di-338

mension and then Extreme Gradient Boosting to better estimate339

marker effect, based on the LASSO marker selection. Hence,340

we called that method LASSO.GB. As the LASSO estimation of341

allelic effect is biased, LASSO.GB could provide a better estima-342

tion, as well as the estimation of non-linear effects. Briefly, the343
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Gradient Boosting iteratively updates the estimation of weak344

predictors, in order to reduce the loss. This method requires an345

optimization of many parameters associated with a loss function346

(MSE). This optimization has been done with train function from347

R/caret version 6.0-86 (Kuhn 2008) using the "xgbTree" method.348

As the optimization of numerous parameters was computation-349

ally heavy, we fixed some of them (nrounds = max_depth = 2,350

colsample_bytree = 0.7, gamma = 0, min_child_weight = 1 and351

subsample = 0.5), while testing a grid of varying parameters352

(nrounds = 25, 50, 100, 150; eta = 0.07, 0.1, 0.2).353

The Elastic Net (EN, Zou and Hastie (2005)) adds to the OLS354

both L1 and L2 penalties, the balance between them being con-355

trolled by a parameter (α). Both α and λ were tuned by a nested356

cross-validation: 20 values of α were tested between 0 and 1 and,357

for each of them, we used cv.glmnet function (from R/glmnet358

package) to choose between 500 values of λ. The parameter pair359

minimizing the MSE was kept. EN performs predictor selection360

but is less sparse than LASSO.361

Note that RR, LASSO and EN all assume a common variance362

for all allelic effects.363

Multivariate methods364

The multi-task group-LASSO (MTV_LASSO, Hastie and Qian365

(2016)) is a multivariate extension of the LASSO, λ parameter366

was tuned using glmnet (family = "mgaussian", α = 1). It as-367

sumes that each predictor variable has either a zero or a non-368

zero effect across all traits, allowing non-zero effects to have369

different values among traits. MTV_RR is the multivariate ex-370

tension of RR, also tuned with glmnet (family = "mgaussian",371

α = 0). Similarly, MTV_EN is the multivariate extension of EN.372

The implementation of these three methods is identical.373

The multivariate structured penalized regression (called SPRING374

in Chiquet et al. (2017)) applies a L1 − penalty (λ1 parameter)375

for controlling sparsity (like LASSO) and a smooth L2 − penalty376

(λ2 parameter) for controlling the amount of structure among377

predictor variables to add in the model, i.e., the correlation be-378

tween markers according to their position on the genetic map.379

Both parameters were tuned by cross-validation using cv.spring380

function (from R/spring package, version 0.1-0). Unlike multi-381

task group-LASSO, SPRING selects specific predictors for each382

trait, i.e., a selected predictor can have a non-zero effect for a383

subset of the traits. SPRING allows the distinction between the384

direct effects of predictors on a trait and their indirect effects385

by using conditional Gaussian graphical modeling. These ef-386

fects are due to covariance of the noise such as environmental387

effects affecting several traits simultaneously. This distinction388

results in two kinds of estimated allelic effects: the direct ones,389

re-estimated with OLS, which are best suited for QTL detection390

(we called the corresponding prediction method spring.dir.ols)391

and the regression ones, which involve both direct and indirect392

effects and are best suited for prediction (spring.reg method).393

Robust extension for marker selection394

To enhance the reliability of marker selection by penalized395

methods, we used two approaches: Stability Selection (Mein-396

shausen and Buhlmann 2009) and marginal False Discovery Rate397

(Breheny 2019), which both aim at controlling the number of398

false positive QTLs. We did not use these methods for genomic399

prediction, as they are not designed for this purpose.400

Stability selection (SS) is a method which controls the FWER,401

computes the empirical selection probability of each predictor402

by applying a high-dimensional variable selection procedure,403

e.g., LASSO, to a different subset of half the observations for404

each λ value from a given set, and then keeps only predictors405

with a selection probability above a user-chosen threshold. Sta-406

bility selection is implemented in R/stabs package version 0.6-3407

(Hofner and Hothorn 2017) and can also be adapted to a multi-408

variate framework. For QTL detection on experimental data, the409

probability threshold we applied was 0.6 for LASSO.SS and 0.7410

for MTV_LASSO.SS.411

Marginal False Discovery Rate (mFDR) allows to choose a more412

conservative value of λ for LASSO and EN with the R/nvcreg413

package version 3.12.0 (Breheny 2019). For QTL detection on414

experimental data, we set mFDR to 10% for LASSO.mFDR and415

EN.mFDR. This approach is not adapted to a multivariate frame-416

work.417

Evaluation and comparison of methods418

All methods were compared on two aspects: their ability to419

predict genotypic values, and their ability to select relevant mark-420

ers, i.e., to detect QTLs. To assess the prediction of genotypic421

values on simulated data, we used the Pearson’s correlation422

coefficient between the predicted genotypic values and the sim-423

ulated ones (prediction accuracy). On experimental data, we424

used the same criterion, but the true genotypic values being425

unknown, we used their empirical BLUPs instead (predictive426

ability).427

For QTL detection on simulated data, the methods were com-428

pared using criteria of binary classification based on the numbers429

of true positives and false negatives. On experimental data, be-430

cause true QTLs are unknown, no such comparison could be431

performed; instead, we compared the outcome of the different432

methods and QTLs were deemed reliable when found by several433

methods.434

Genomic prediction435

A nested cross-validation (CV) was applied to assess predic-436

tion by the various methods.437

• An outer k1 − f old CV was performed to estimate the per-438

formance metrics, with an inner k2 − f old CV applied to439

the training set of each outer fold to find the optimal tuning440

parameters for the method under study (Figure S2). Both441

k1 and k2 were set to 5 (see Arlot and Lerasle (2016). The442

folds of the outer CV were kept constant among traits and443

methods.444

• For interval mapping methods, the optimal tuning param-445

eter was the LOD threshold obtained from permutations,446

and the effects for the four additive genotypic classes (ac,447

ad, bc and bd) were estimated by fitting a multiple linear448

regression model with genotype probabilities at all QTL449

peak positions as predictors, using R/stat::lm. For penal-450

ized regression methods, parameters were optimized with451

specific functions such as cv.glmnet and cv.spring.452

• As performance metrics, we used mainly the Pearson’s453

correlation (corP) but we also calculated the root mean454

square predicted error (RMSPE), the Spearman correlation455

(corS), the model efficiency (Mayer and Butler 1993) and456

test statistics on bias and slope from the linear regression of457

observations on predictions (Piñeiro et al. 2008).458
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For experimental data, the whole nested cross-validation459

process was repeated 10 times (r=10), whereas for simulated460

data it was performed only once, but on 10 different simulation461

replicates (r=1 and t=10). The 14 traits were analyzed jointly for462

MTV_RR, MTV_LASSO and MTV_EN. But for SPRING, since463

analyzing all traits together was computationally too heavy, we464

split traits into three groups by hierarchical clustering (Figure465

S3) performed with R/hclust applied to genotypic BLUPs. All466

traits within each group were analyzed together.467

For simulated data with the same heritability values for both468

traits, performance results were averaged not only over simu-469

lation replicates and partitions of outer CV, but also over traits,470

because both traits were equivalent in terms of simulation pa-471

rameters. For simulated data with different heritability values,472

performance results were averaged only over simulation repli-473

cates and partitions of outer CV. For experimental data, perfor-474

mance results were averaged over partitions of outer CV and475

outer CV replicates.476

Moreover, in terms of design matrices, for experimental data,477

we compared several ones based on the mean predictive abil-478

ity of eight methods across the 14 traits of experimental data.479

For IM methods, only SSR and SNP maps coded in JoinMap480

format were compared. We showed that for most methods, the481

SNP genotypes recoded into gene doses gave the best predictive482

ability (Figure S4), tied with other SNP design matrices. For com-483

putational reasons, we hence chose to use this one for method484

comparison. For simulated data, as QTLs correspond to SNP485

markers, we only used the SNP map as the design matrix, coded486

in gene doses for penalized methods and in JoinMap format for487

IM methods.488

QTL detection489

Simulated data The quality of a predictor selection method is490

usually assessed with the relationship between statistical power491

(i.e. the True Positive Rate, TPR) and type I error rate (i.e. the492

False Positive Rate, FPR). To compare methods, we thus used493

the ROC (receiver operating characteristic) curve (Swets et al.494

1979), which is the plot of TPR as a function of FPR over a range495

of parameters (Table 2), and the pAUC (partial Area Under the496

Curve; McClish (1989); Dodd and Pepe (2003)). Any marker497

selected at +/- 2 cM of a simulated QTL was counted as a True498

Positive.499

For methods with two tuning parameters, one parameter was500

kept constant (α at 0.7 for EN and EN.mFDR, and λ2 at 10e-8501

for SPRING). We tested several values of α for EN but it did not502

change much the results (not shown). For MIM, the maximum503

number of QTLs that can be integrated into the model was set504

to 10.505

Experimental data Comparison between methods was based on506

the number of detected QTLs, the magnitude of their effects and507

the percentage of variance globally explained by all detected508

QTLs.509

For MTV_LASSO and SPRING, we split traits into three510

groups as described above, for computational reasons (for511

SPRING) and to test whether such splitting gave more reliable512

QTLs (for MTV_LASSO). The parameters of penalized methods513

were tuned by cross-validation, with MSE as the cost function.514

We compared predictor selection between methods in terms515

of the number of common selected markers per trait, i.e. the516

intersection between markers selected by penalized methods517

(focusing on LASSO and EN) and markers inside confidence in-518

tervals found by interval mapping methods (focusing on MIM).519

Then all markers in high LD with those selected were considered520

as selected too. The threshold was defined as the 95% quantile521

of LD value distribution, for all pairs of markers belonging to522

the same chromosome (Figure S5), which gave a LD threshold523

of 0.84.524

We deemed selected markers as highly reliable if they were525

either i) selected by at least five methods, whatever the meth-526

ods, ii) or selected by both EN.mFDR and MIM (see Results).527

Then, we defined a highly reliable QTL as the interval of +/- 3528

cM around each highly reliable marker (Price 2006; Viana et al.529

2016b), as predicted by loess fitting of genetic positions to physi-530

cal positions. When several markers were selected inside the 6531

cM interval, the QTL interval was extended accordingly. The ge-532

netic positions of this interval were then converted into physical533

positions, by fitting a polynomial local regression (loess). QTLs534

overlapping for several traits on the SNP map were merged535

into a single QTL, by physical intervals’ union. We determined536

QTLs overlapping between SSR and SNP genetic maps based537

on physical positions.538

Candidate genes exploration After merging the most highly re-539

liable QTLs colocalized between traits, we proceeded to search540

for underlying candidate genes. We retrieved the list of genes541

overlapping the intervals of our QTLs from the reference Vi-542

tis genome 12X.v2 and the VCost.v3 annotation (Canaguier543

et al. 2017). We then used the correspondence between IGGP544

(International Grapevine Genome Program) and NCBI RefSeq545

gene model identifiers provided by URGI (https://urgi.versailles.546

inra.fr/Species/Vitis/Annotations) to get putative functions from547

NCBI, when available. For those genes with a putative func-548

tion, we then refined the analysis to retrieve additional informa-549

tion about their function and expression. We searched UniProt550

(https://www.uniprot.org/) and TAIR (https://www.arabidopsis.org/)551

databases to get a complete description of the genes function,552

their name and the corresponding locus in Arabidopsis. In addi-553

tion, we used the GREAT (GRape Expression Atlas) RNA-seq554

data analysis workflow (https://great.colmar.inrae.fr/app/GREAT),555

which gathers published expression data, to assess the level556

of expression of our candidate genes in grapevine leaves and557

shoots, the organs relevant for the traits considered in this study.558

RNA-seq data are normalized as detailed on the ‘User manual’559

section of the GREAT platform: "from the raw read counts, the560

normalized counts (library size normalization) and the RPKM561

(gene size normalization) are calculated for each gene in each562

sample". Data were retrieved with all filters set to "Select All"563

except for the organ considered that was restricted to ‘Leaves’564

and ‘Shoot’.565

Data availability and reproducibility566

All software we used was free and open-source and most an-567

alyzes were done with R (R Core Team 2020), notably graphs568

were created using the ggplot2 package (Wickham 2016). All R569

scripts used for the analysis, i.e. genetic mapping, simulation,570

phenotypic analysis, prediction and QTL detection, are avail-571

able in a first, online repository at https://data.inrae.fr/privateurl.572

xhtml?token=d7ef7492-a2a7-499d-82c0-baad1d14a8dd. Many of573

the custom functions we used are available in a package for574

reproducibility purposes, R/rutilstimflutre (Flutre 2019). Raw575

and transformed genotypic data, as well as the genetic map, are576

available in a second, online repository at https://data.inrae.fr/577

privateurl.xhtml?token=782ff6ff-d79c-4714-b0da-b85c5a4514a5.578
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Method SIM / MIM LASSO / MTV_LASSO Stability Selection SPRING EN mFDR

Parameter name LOD λ probability threshold λ1 λ mFDR

Lowest constraint 0 10e-5 0.5 10e-8 10e-4 0.3

Highest constraint 14 0.25 0.9 0.25 8 0

Table 2 Parameter ranges for ROC curve computation for comparing predictor selection performance of different methods.

Results579

Genetic mapping580

We constructed a saturated consensus genetic map with 3,961581

SNP markers obtained by GBS. The SNP map covers 1,283 cM.582

It was essentially superimposed on the SSR map of 1,116 cM583

(Figure 1). Chromosome 17 had the largest contribution to this584

15% difference in length, its length being 37.8 cM with SSRs and585

63.7 cM with SNPs. Chromosomes 2, 3, 12, 13 and 15 were also586

longer on the SNP map. The average distance between markers587

was 0.34 cM for the SNP map (respectively 9.0 cM for the SSR588

map) and the maximum distance was 12.0 cM (respectively 29.4589

cM for the SSR map). At most places along the genome, genetic590

order was consistent with physical order.591

Comparison of methods with simulated data592

Prediction: cross-validation results593

Traits with the same heritability value Methods were compared594

for prediction accuracy by applying cross-validation on simu-595

lated data with four different configurations and four heritability596

values.597

Mean Pearson’s correlation coefficient varied from 0.16 to598

0.98, with a strong effect of heritability on prediction accuracy in599

all configurations, for the seven main methods (Figure 2). As ex-600

pected, MIM performed very well in the "major" configurations601

across all heritability values but yielded the least accurate pre-602

diction in the "minor" ones. On the opposite, RR performed very603

well in the "minor" configurations, but yielded the least accurate604

prediction in the "major" ones. EN prediction performance was605

always intermediate between those of RR and LASSO. QTL dis-606

tribution among traits - "same" (for QTLs at the same positions)607

or "diff" (for QTLs at different positions) - had very little effect608

on prediction accuracy. Moreover, we did not observe any supe-609

riority of multivariate methods over univariate ones, despite the610

strong genetic correlation simulated between traits (ρB=0.8) and611

no correlation between errors.612

The prediction accuracy of four additional methods is shown613

in Figures S6 and prediction accuracy values, as well as other614

performance metrics (see Materials and Methods) are in Table615

S7. All interval mapping methods yielded equivalent prediction616

accuracy. LASSO.GB did not improve performance compared to617

LASSO. MTV_RR showed equivalent performance as univariate618

RR. Prediction accuracy with spring.dir.ols was always lower619

than with spring.reg, and even very low for "minor" configu-620

rations. With 100 or 1000 simulated QTLs (under both QTL621

distributions) the ranking of methods based on prediction accu-622

racy did not change compared to "minor" configurations (Figure623

S8).624

Traits with different heritability values To further compare pre-625

diction accuracy of univariate and multivariate methods, we626

simulated two correlated traits with different heritability values,627

0.1 and 0.5. MTV_LASSO performed slightly better than univari-628

ate LASSO for the lowest heritability trait; however, differences629

were not significant (Figure S9). On the opposite, prediction630

accuracy was lower with MTV_LASSO than with univariate631

LASSO for the highest heritability trait, reaching quite low val-632

ues with 200 simulated QTLs. The same trends were also visible633

for MTV_EN and EN. MTV_RR never improved prediction com-634

pared to RR and spring.reg never performed better than RR.635

Since these results were unexpected, we also compared pre-636

diction accuracy of the above methods with the simulated data637

published by Jia and Jannink (2012). We obtained very similar638

differences among methods as with our simulated data, even639

though prediction accuracy was higher in all cases (Figure S10).640

QTL detection: ROC curve results641

We compared the main methods mentioned above (except642

RR which does not perform marker selection), as well as some643

robust extensions, for their marker selection performance with644

ROC curves, using the same simulated data (Figure 3) in the645

four configurations. On ROC curves, the closer a method gets646

to the optimum point (i.e. FPR =0 and TPR=1), the better. As647

expected, interval mapping methods (SIM and MIM) showed648

low selection performance when many minor QTLs were sim-649

ulated and high selection performance when few major QTLs650

were simulated. Note that the MIM curve was hardly visible; it651

roughly overlapped with the SIM curve but stopped at a low652

FPR because it could not select many QTLs by design.653

The penalized regression methods always performed at least654

as well as the interval mapping methods or even much better in655

the case of "minor" configurations. Among penalized methods,656

no method was clearly better than the others in all configu-657

rations, except for a slight superiority of MTV_LASSO in the658

"same_minor" configuration. These methods, and particularly659

spring.dir.ols, displayed a high variability in classification re-660

sults for two simulated QTLs ("major" configurations). Indeed,661

when one QTL was not detected among the two traits, there was662

a stronger impact on the TPR than with 50 simulated QTLs.663

The most interesting part of the ROC curve for QTL detection664

is the left most part, i.e. with a low FPR (e.g. below 0.1). We665

hence calculated the partial Area Under the Curve (pAUC) for666

FPR between 0 and 0.1 for methods reaching that value (Figure667

S11). EN resulted in constantly high pAUC across configura-668

tions and heritability values. In contrast, pAUC for SIM was669

quite high at low heritability values for the "same_major" con-670

figuration but dropped for other configurations and heritability671

values.672

Results on experimental data673

Computation of genotypic BLUPs674
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Figure 1 Comparison of SSR and SNP consensus genetic maps of a pseudo-F1 V. vinifera population, obtained by plotting genetic
positions as a function of physical positions for each chromosome. The position of the SSR marker indicated by a triangle on chro-
mosome 12 was uncertain.

We first recomputed the genotypic BLUPs from the raw phe-675

notypic data from (Coupel-Ledru et al. 2014, 2016) in order to676

control the model selection step in a reproducible way. These677

new BLUPs had a strong linear correlation (> 0.9) with those678

used in Coupel-Ledru et al. (2014, 2016), as shown in Figure S12.679

Note that in Coupel-Ledru et al. (2014), no BLUP was available680

for DeltaPsi and PsiM for WW condition because the genotype681

random effect was not selected (H²=0).682

The estimates of broad-sense heritability followed the same683

trend as in Coupel-Ledru et al. (2014, 2016) (Figure S13). Never-684

theless, values were not equal because we did not use exactly the685

same formula to estimate heritability. All the information about686

fitting linear mixed models (percentage of missing data, trans-687

formation applied if any, effects included in the selected model,688

residual variance, heritability estimate, coefficient of variation689

estimate and precision) is available in the first, online repository.690

Broad-sense heritability estimates were higher in WD condition691

than in WW for all traits except DeltaBiomass.692

Genetic correlation between traits varied widely, some abso-693

lute correlation values being very high (e.g. up to 0.99 between694

PsiM and DeltaPsi in both conditions) because some traits de-695

rived from others (Figure S14).696

Genomic predictive ability697

Mean genomic predictive ability per trait ranged from -0.10698

to 0.68 ((Figure 4 and Table S15). It decreased with broad-699

sense heritability. IM methods (in blue) were always among700

the three worst methods for prediction. Based on the mean701

predictive ability averaged across traits, MTV_EN yielded the702

highest correlation (0.384), followed by RR (0.3721), MTV_RR703

(0.3716), MTV_LASSO (0.369), EN (0.357), spring.reg (0.344),704

LASSO (0.329), LASSO.GB (0.313), MIM (0.200) and SIM (0.162).705

However, based on the number of traits for which each method706

gave the best prediction, spring.reg had the highest score, with707

6 traits out of 14, followed by MTV_EN (3 out of 14) and EN (2708

out of 14).709

In a nutshell, MTV_EN and RR, tied with MTV_RR, pro-710

vided the best mean predictive ability across traits. Even711

though spring.reg outperformed them for some traits, its perfor-712

mance was unstable, and especially low for DeltaBiomass.WW,713

DeltaBiomass.WD, DeltaPsi.WW and DeltaPsi.WD. For compu-714

tational reasons, all traits could not be analyzed together with715

spring.reg, but were divided into three groups. These four traits716

with low predictive ability belonged to the same group. Yet,717

the effect of group membership on predictive ability was not718

significant at 5% (p-value=0.30 and percentage of variance ex-719

plained=24%).720

QTL detection721
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Figure 2 Genomic prediction accuracy (Pearson’s correlation between predicted and true genotypic values) of seven methods
applied to 3,961 markers and two simulated traits in a bi-parental population with different heritability values and four QTL config-
urations (number x distribution among traits). major: 2 QTLs; minor: 50 QTLs; same: QTLs at the same positions for both traits; diff:
QTLs at different positions between traits. For each heritability value and configuration, prediction accuracy was averaged over
100 values (2 traits x 10 simulation replicates x 5 cross-validation folds). The error bar corresponds to the 95% confidence interval
around the mean.
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Figure 4 Mean genomic predictive ability (Pearson’s correlation between genotypic BLUPs and their predicted values), obtained by
cross-validation for 10 methods applied to 14 traits related to water deficit and GBS gene-dose data, within a grapevine bi-parental
population. Broad-sense heritability values are reported for each trait (y-position of the number corresponds to heritability esti-
mate). Traits are ordered by decreasing heritability. For each trait, predictive ability is averaged over 10 cross-validation replicates x
5 cross-validation folds).

Interval mapping methods: comparison with previous results For722

the 14 traits we analyzed, 26 QTLs were detected in Coupel-723

Ledru et al. (2014, 2016) using Composite Interval Mapping724

(CIM) on the SSR map. In comparison, using Multiple Interval725

Mapping (MIM), we found 21 QTLs on the SSR map and 25 with726

MIM on the SNP map (Figure S16).727

Based on physical positions, we found 13 new QTLs (i.e. with728

non-overlapping CIM SSR QTLs physical positions) (Table S17)729

on six chromosomes for eight traits, and confirmed 21 of the 26730

published QTLs, with a notable reduction of QTL intervals on731

chromosome 13 (Figure S16). The 15 QTLs found by all three732

methods (CIM SSR, MIM SSR and MIM SNP) explained the733

highest mean percentage of variance (Figure S18).734

Comparison of marker selection among a subset of methods Af-735

ter applying 11 methods for SNP selection (Table S19), we per-736

formed a first comparison of marker selection between MIM, as737

the reference method for QTL detection, and both LASSO and738

EN, because our simulation results showed that they selected739

relevant markers in various genetic determinism configurations740

(Figures 3 and S11).741

The number of markers selected by MIM, LASSO and EN was742

905, 1009 and 1550, respectively (Table S19). For each trait, MIM743

identified markers on a small number of chromosomes (from744

0 to 5), while both EN and LASSO selected markers on many745

chromosomes (from 6 to 19, Table S19). The number of selected746

markers per trait seemed partly linked to trait heritability: more747

markers were selected when heritability was high (Figures 4 and748

5). More markers were selected by EN than by other methods749

for all traits (except for KS.WW). Nearly all markers selected by750

LASSO were also selected by EN (954 out of 1009), i.e., there751

were only few markers selected by LASSO only. MIM selection752

was quite different from LASSO and EN selections (184 out of753

905 were common with EN, LASSO or both) but most markers754

selected by MIM and at least one penalized method were se-755

lected by both EN and LASSO. The number of markers selected756

by EN and MIM ranged from 0 to 59 over traits, with a median757

value of 16.758

Determination of highly reliable QTLs To address the intersection759

of SNP selection by all methods, and determine the number760

of reliable intervals (QTLs) and their position, we examined in761

more detail marker selection for each trait and chromosome.762

Detailed results, including genetic and physical positions and763

the percentage of variance explained, are given in Table S19. A764

visualization of these results is given in Figure 6 for night-time765

transpiration under water deficit ( TrS_night.WD) and in Figure766

S20 for all traits.767

Most of the time, more markers were selected for traits under768

water deficit than for traits in well-watered conditions, and they769

were most often selected by several methods. We showed that770

penalized methods tend to select the same markers, not only771

close ones; for example, for TrS_night.WD on chromosome 4, the772

same marker (at physical position 21,079,664 bp) was selected773

by seven methods (Figure 6).774

We considered markers selected by both MIM and EN.mFDR775

as highly reliable ones for three reasons: 1) markers selected by776

both MIM and EN were considered as reliable ones (see above);777

2) simulations showed that MIM and mFDR methods led to778

a very low FPR; 3) these methods belong to different method779

classes (interval mapping vs penalized regression). We also780

considered as highly reliable the markers selected by at least five781

methods. These criteria resulted in a set of 59 highly reliable782

selected markers, which were converted to genetic intervals of ±783

3 cM around each selected marker. Overlapping intervals per784

trait were merged, resulting in 25 highly reliable QTLs.785
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Figure 5 Number of selected markers per method or group of methods, for three methods applied to 14 traits related to water
deficit and GBS gene-dose data, within a grapevine bi-parental population. Traits are ordered as in Figure 4. Number of selected
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These 25 QTLs involved nine traits, mostly under water786

deficit, and were located on seven chromosomes (Figure S21).787

QTLs colocalized for different traits, such as on chromosome788

1, had similar distributions of genotypic BLUPs according to789

genotypic classes (Figure S22).790

Among these 25 QTLs, 16 had overlapping physical inter-791

vals with CIM SSR QTLs and one was very close to a CIM SSR792

QTL (details about these 25 QTLs are in Table S23). Thus, we793

found eight new highly reliable QTLs, among which five were794

not detected by MIM. In particular, a completely new QTL for795

TrS_night.WD was found alone on chromosome 12. Most other796

new QTLs were colocalized with previously found QTLs in797

single year analysis and/or for the other watering condition.798

Notably, we observed colocalization of TrS_night.WD, TE.WD799

and DeltaBiomass.WD QTLs on chromosomes 4 and 17.800

In total, the percentage of variance explained (adjusted R²)801

per trait was 51.28% for TrS_night.WD (36% in 2012 for Coupel-802

Ledru et al. (2016), 33.88% for PsiM.WD, 31.41% for DeltaPsi.WD,803

26.88% for DeltaBiomass.WW, 19.38% for TE.WD, 18.62% for804

TE.WW, 16.99% for KS.WD, 14.88% for DeltaBiomass.WD and805

8.55% for TrS.WD.806

Candidate genes807

After merging the QTLs colocalized between traits, we ob-808

tained 12 intervals, located on chromosomes 1, 4, 10, 12, 13, 17809

and 18, harboring a total of 3,461 genes according to the VCost.v3810

annotation (Canaguier et al. 2017). Among them, 2,379 had a811

NCBI Refseq identifier and 1,757 a putative function (Table S24).812

We then focused our analysis on the eight "new" intervals, i.e.813

those which were not overlapping with CIM SSR intervals. They814

encompassed 1,155 genes, half of which were annotated. We815

were able to retrieve from TAIR and/or UniProt a more precise816

description of the genes function for 86% of the annotated genes817

(Table S24). The remaining ones either did not have any homolo-818

gous gene in Arabidopsis thaliana or were not described in the819

above-mentioned databases. RNA-seq data was available on the820

GREAT platform for 90% of the annotated genes. We further821

focused our analysis on the highly reliable QTL co-located on822

chromosome 4 for TE, TrS_night and DeltaBiomass under various823

conditions. We proceeded to a functional classification of the 161824

annotated genes underlying this QTL, based on the full descrip-825

tion previously retrieved (Table S25 and 7). For 75 genes, an inte-826

grated function at the plant or organ level was explicitly quoted827

in the description. We grouped these integrated functions into 12828

major groups: stomata, trichomes development, xylem develop-829

ment, growth or development, photosynthesis, wall, reproduc-830

tion, pathogen resistance, detoxification, secondary metabolism,831

senescence, germination, and nutrition. A substantial number of832

genes were related to the functions of major interest in relation833

to the traits for which QTLs co-localized on this chromosome: 15834

genes related to hydraulics (stomata, xylem, trichomes), relevant835

for TrS_night and thus TE; 27 to growth or development and one836

to photosynthesis, both relevant to DeltaBiomass and thus TE. For837

the 86 genes for which an integrated function was not explicitly838

quoted, we further built a classification based on their cellular839

or molecular function. Among them, we found six genes related840

to carbon metabolism, one to wall formation (both relevant for841

DeltaBiomass) and six to drought stress signaling and drought842

related hormones (relevant for TrS_night).843

Discussion844

To provide new insights into the complex genetic determinism of845

vegetative traits under different watering conditions, the contri-846

butions of this study are three-fold. We compared by simulation847

several univariate and multivariate methods for genomic pre-848

diction and QTL detection, increased the density of genotyping849

Genomic prediction and QTL detection 11
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Figure 6 Marker selection by all methods for TrS_night.WD trait on chromosomes 1,4,12,13 and 17. Each marker selected by a given
method is represented by a colored point, the color indicating the number of methods that have selected that specific marker. The
boxes correspond to chromosomes and the x-axis to the position along the genetic map (in cM).

Figure 7 Functional classification of the annotated genes underlying the highly reliable QTL detected on chromosome 4 for night-
time transpiration, growth and transpiration efficiency. Hierarchical classification of the 161 genes based on their functions. See
Table S25 for the details of this classification. When an integrated function at the organ or plant level was explicitly quoted in the
gene annotation, genes were classified on this basis. When no integrated function was explicitly quoted, they were classified based
on their cellular or molecular function. In both cases, functions were then classified as "Related" if related to the traits of interest in
this QTL, or "Unrelated" if not.

data, and re-analyzed grapevine phenotypes obtained under850

semi-controlled conditions. In particular, we showed that penal-851

ized methods are valuable not only for prediction but also for852

QTL detection. Indeed, we found new QTL using these methods853

and identified relevant candidate genes.854

Methodological aspects: method comparisons855

Handling linkage disequilibrium856

Interval mapping methods estimate genotypic probabilities857

between markers according to a genetic map which is compu-858

12 Brault et al.
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tationally costly to build. On the other hand, most penalized859

methods do not require any previous knowledge on LD.860

The LASSO assumption that all predictor variables are inde-861

pendent is all the more violated that there are many markers. In862

the case of a group of correlated predictors (e.g., SNPs in LD),863

EN selects either none or all predictors within the group with864

close estimated values (Zou and Hastie 2005) whereas LASSO865

selects a single predictor. In that sense, EN aims at correcting866

the drawbacks of LASSO when predictor variables are highly867

correlated. By exploring a large number of configurations of868

the finite-sample high-dimensional regression problem, Wang869

et al. (2020) showed that EN is competitive for both prediction870

and selection in most cases with highly correlated predictors. In871

agreement with these results, we showed that EN performed872

well for both prediction and selection on our simulated data,873

and that multivariate EN performed the best for prediction on874

the grapevine experimental data.875

We also compared SPRING that can explicitly make use of a876

genetic map. We observed that SPRING had a larger increase877

in predictive ability from SSR to SNP design matrix than other878

methods (Figure S4). This was probably due to the fact that879

SPRING uses LD pattern for prediction, this pattern being better880

captured with a dense genetic map. However, SPRING showed881

no systematic advantage over other penalized methods for pre-882

diction with the dense SNP map (Figures 2, 4).883

Comparison between interval-mapping and penalized regres-884

sion methods for genomic prediction885

As expected, IM methods performed poorly to predict accu-886

rate genotypic values when QTL number was large (Bernardo887

and Yu 2007; Lorenzana and Bernardo 2009; Mayor and Bernardo888

2009; Olatoye et al. 2019) (Figures 2 and S6). Therefore, for com-889

plex traits, genomic prediction should not be based only on890

QTLs detected by IM methods.891

Among univariate penalized methods, none performed best892

in all cases (Figures 2, 4 and S6), as also found in the literature893

(Riedelsheimer et al. 2012; Heslot et al. 2012; Azodi et al. 2019). As894

shown by simulation, RR was better adapted to highly polygenic895

genetic architecture whereas LASSO was better adapted to a few896

major QTLs. Moreover, in the case of many minor QTLs, RR was897

the most stable method across heritability values, as previously898

described for several traits and species (Heslot et al. 2012; Azodi899

et al. 2019). However, RR prediction accuracy dropped when900

QTL number was too small whereas EN still predicted as well901

as LASSO. EN was hence well adapted to various numbers and902

distributions of QTLs.903

Multivariate vs univariate When the same heritability was sim-904

ulated for both trait variables, no superiority of multivariate905

methods was observed, even when both traits had QTLs at the906

same positions (Figures 2 and S6).When different heritability907

values were simulated for the two traits, we observed a slight908

superiority of MTV_LASSO (resp. MTV_EN) over LASSO (resp.909

EN) only in the "same" and "major" configuration (with both910

traits sharing the same two QTLs) for the trait with small heri-911

tability (Figure S9).912

Other authors which tested multivariate GP on simulated913

data systematically applied different heritability values and they914

found a superiority of multivariate methods over univariate ones915

for the trait with the smallest heritability (Calus and Veerkamp916

2011; Guo et al. 2014; Jiang et al. 2015; Dagnachew and Meuwis-917

sen 2019). However, all these studies were based on a smaller,918

more favorable, p/n ratio, a key component of high-dimensional919

models (Verzelen 2012). For example, in Jia and Jannink (2012),920

their 500 observations for 2,020 predictors correspond to a ratio921

of ∼ 4, compared to our 188 observations for 3,961 predictors922

corresponding to a ratio of ∼ 21. Indeed, parameters n and p are923

involved in the sample complexity function defined in Obozin-924

ski et al. (2011), which predicts the theoretical cases where the925

MTV_LASSO is superior to its univariate counterpart in terms926

of variable selection. Accordingly, applying our methods on Jia927

and Jannink (2012) data allowed us to display a higher differ-928

ence between univariate and multivariate LASSO than with our929

simulated data.930

Unexpectedly, when reanalyzing the data simulated by Jia931

and Jannink (2012), we obtained lower prediction accuracy with932

our MTV_LASSO (Figure S11) than they did with their multi-933

variate BayesA (their Figure 1A). A similar result in a univariate934

setting was found by Guan and Stephens (2011) who compared935

BSVR (comparable to BayesA) and the LASSO. They found that936

BSVR had a markedly higher power than the LASSO. Moreover,937

the parameters of both BSVR (in Guan and Stephens (2011))938

and BayesA (in Jia and Jannink (2012)) were estimated with a939

MCMC algorithm. No inner cross-validation was needed, hence940

the sample used to train the model was larger. This difference941

may explain why Figure 1A from Jia and Jannink (2012) shows942

better prediction accuracies for multi-trait models compared943

to their single-trait counterparts, although their figure did not944

display any confidence interval. Note that our RR prediction945

accuracies were close to those of their GBLUP (univariate and946

multivariate). As a conclusion, prediction accuracy is affected947

both by the dimension of the problem (i.e., n and p) and the948

method used (i.e., Bayesian with MCMC or cross-validation).949

For experimental data, we observed that MTV_LASSO (re-950

spectively MTV_EN) was superior to LASSO (resp. EN) for the951

five traits with the smallest heritability (Figure 4). This improve-952

ment suggests that MTV_LASSO (resp. MTV_EN) was able to953

borrow signal from the most heritable traits to the least heritable954

ones, likely because of a genetic architecture partially overlap-955

ping between these traits. This interpretation is reinforced by956

the fact that a QTL for low-H2 trait, TE.WW, colocalizes on957

chromosome 4 with QTLs for four high-to-moderate-H2 traits958

(TrS_night.WD, DeltaBiomass.WW, DeltaBiomass.WD and TE.WD).959

This improvement was not found in Jia and Jannink (2012), who960

also tested their methods on real pine data from Resende et al.961

(2012). These observations suggest that the number of traits962

analyzed (14 in our case and 2 in Jia and Jannink (2012) study)963

may also play a role in the prediction accuracy of multivariate964

over univariate methods.965

Comparison between interval-mapping and penalized regres-966

sion methods for QTL detection967

To the best of our knowledge, comparison with the ROC968

curve between IM and penalized regression methods has never969

been done before in terms of marker selection. Other publica-970

tions (Cho et al. 2010; Li and Sillanpää 2012; Waldmann et al.971

2013) successfully applied LASSO or EN for performing GWAS,972

but none of them compared IM and penalized methods for QTL973

identification. As expected, we found that IM methods are974

adapted to detect a few major QTLs but not many minor QTLs975

(Figure 3). Moreover, we found that penalized methods could976

be as good at marker selection as IM methods, and even far977

better when there are many minor QTLs. Among the penalized978

methods we compared, none clearly outperformed the others979

for marker selection in all configurations.980
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Multivariate vs univariate As the MTV_LASSO selects one pre-981

dictor for all traits, its superiority over univariate LASSO de-982

pends on QTL distribution across traits, notably on the amount983

of genetic basis shared by the traits (Obozinski et al. 2011). How-984

ever, as for prediction, we showed that MTV_LASSO perfor-985

mance was not different whether QTLs were at the same or at986

different positions across traits (Figure 3). Nevertheless, we ob-987

served that MTV_LASSO was slightly better than LASSO when988

many QTLs were simulated. SPRING had never been evaluated989

before for its quality of predictor selection. As for prediction,990

SPRING showed unstable results across our simulation repli-991

cates and hyper-parameter values. However, for the ROC curve,992

we did not include predictor structure in the model, which may993

hamper marker selection quality.994

Efficient default method for both QTL detection and genomic995

prediction996

IM methods were designed for marker selection; hence they997

are not expected to be optimal for prediction, and we confirmed998

that. Among penalized regression methods, some may be better999

at prediction than marker selection, and vice versa. For exam-1000

ple, our results showed that EN performed well across several1001

configurations for both aims. Some methods such as SPRING1002

are specially adapted to handle both purposes but it gave too1003

variable results for either prediction or QTL detection. However,1004

SPRING is a recent method that still can be improved in order1005

to correct this drawback.1006

New penalized regression methods are continuously being1007

developed. In particular, graph structured sparse subset selec-1008

tion (Grass) recently proved to outperform existing methods1009

for both prediction and predictor selection, thanks to a L0 regu-1010

larization that limits the number of nonzero coefficients in the1011

model (Do et al. 2020). It could be tested on our data when1012

its implementation becomes available. Moreover, multivariate1013

methods are presented as being more efficient at using the whole1014

signal in the data, whether for marker selection (Inouye et al.1015

2012) or prediction (Jia and Jannink 2012; Guo et al. 2014), but1016

our results revealed no systematic advantage of multivariate1017

methods over univariate ones for both aims.1018

Using penalized methods for both marker selection and ge-1019

nomic prediction requires adapted hyper-parameter values. For1020

EN, LASSO and SPRING, the λ value controls sparsity (e.g., the1021

number of selected markers). Thus, the optimal value of λ might1022

not be the same if the aim is to limit the FPR or to maximize1023

the predictive ability (Li and Sillanpää 2012). For prediction, we1024

traditionally use cross-validation to tune hyper-parameters by1025

minimizing MSE. For marker selection, there is no direct equiva-1026

lence. That is why we tested extensions of these methods (mFDR1027

and SS) which control sparsity for robust marker selection and1028

they proved to be efficient to select the most relevant markers.1029

In order to shed light on the link between prediction accuracy1030

and marker selection, we plotted the prediction accuracy at each1031

point of the ROC curve for EN and EN.mFDR against FPR for1032

minor configurations (with 50 simulated QTLs) (Figure S26). For1033

EN, we showed that prediction accuracy reached its maximum1034

when FPR was below 0.05. Then, FPR increased while prediction1035

accuracy decreased, until it reached a plateau. This means that1036

prediction quality is intimately linked to selection quality, espe-1037

cially at low heritability. For EN.mFDR, the FPR stayed always1038

below 0.015 but the prediction accuracy was lower.1039

As a consequence, as an efficient default method, we advise1040

at this stage to apply EN for performing genomic prediction, and1041

its extension EN.mFDR for performing sparser marker selection.1042

Genetic determinism and prediction of grapevine response to1043

water deficit1044

Based on experimental data on the Syrah x Grenache progeny1045

(new genotypic data and already published phenotypic data),1046

we compared the same methods as above for both prediction1047

and marker selection. To the best of our knowledge, grapevine1048

GP within a bi-parental family has been applied only to a limited1049

number of traits, with very few methods and never using multi-1050

variate GP. Fodor et al. (2014) studied GP in grapevine with sim-1051

ulated data on a diverse and structured population, they tested1052

RR-BLUP, Bayesian Lasso, and a combination of marker selec-1053

tion and RR. Viana et al. (2016a) used an inter-specific grapevine1054

bi-parental population. They predicted cluster and berry pheno-1055

types (number and length of clusters, number of berries, berry1056

weight, juice pH, titrable acidity) with RR-BLUP and Bayesian1057

LASSO applied to table grape breeding. In addition to yield-1058

ing further insights into method comparison beyond those ob-1059

tained by simulation, our study brought valuable novel biologi-1060

cal knowledge about grapevine water use under different water-1061

ing conditions. Indeed, new methods and the new SNP genetic1062

map allowed us to find novel QTLs, as compared to those previ-1063

ously detected with the same phenotypic data (Coupel-Ledru1064

et al. 2014, 2016).1065

Predictive ability and genetic architecture1066

Among univariate penalized methods, RR generally had1067

equivalent or better predictive ability than LASSO. For the traits1068

with the largest discrepancy between RR and LASSO, this sug-1069

gests that trait variability was rather due to many minor QTLs1070

rather than to a few major ones. On the other hand, predictive1071

abilities of sparse methods (e.g. LASSO and IM methods) were1072

better than RR for PsiM.WD, DeltaPsi.WD and TE.WW traits,1073

suggesting a more major genetic architecture. We observed that1074

some genomic regions were less densely covered by the SNP1075

genetic map (e.g., a 10 cM gap on chromosome 19), which might1076

lead to a decrease in predictive ability for traits with QTLs in1077

these regions. We tested this hypothesis for penalized meth-1078

ods, by using the raw genotypic data imputed with the mean1079

(SNP.raw on Figure S4). For most traits, this design matrix gave1080

worse predictions than with other SNP ones, except for TE.WW,1081

for which the raw matrix gave the best predictive abilities (data1082

not shown). This suggests that some QTLs for TE.WW were lost1083

(markers not selected) when we predicted with sparser design1084

matrices, whereas this was not the case for other traits. Filtering1085

markers by genetic mapping for prediction purpose thus proved1086

to be useful for most traits.1087

Furthermore, we tested several design matrices for GP on1088

experimental data. The matrices derived from the SNP map led1089

to better predictive ability than those derived from the SSR map,1090

due to higher density, while the additive + dominant coding of1091

allelic effects did not provide any increase in predictive ability1092

(Figure S4). This could suggest that dominance effects have1093

negligible impact on these traits. Nevertheless, the additive +1094

dominant coding double the matrix dimension (up to 31,6881095

predictors), which might hamper allelic effect estimation and1096

thus, prediction.1097
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Finally, non-additive genetic effects such as epistasis could1098

be involved while not considered by the penalized methods1099

used. We therefore tested the superiority of LASSO.GB over1100

LASSO. Extreme Gradient Boosting methods are indeed among1101

the best machine learning methods (Chen and Guestrin 2016).1102

LASSO.GB did not markedly increase predictive ability on ex-1103

perimental data (Figure 4). However, we cannot exclude that1104

this might be due to a poor optimization of Extreme Gradient1105

Boosting parameters or to insufficient number of observations1106

to correctly fit the model.1107

Candidate gene analysis1108

The thorough methodology deployed for candidate genes1109

analysis allowed us not only to retrieve a list of the genes un-1110

derlying the QTLs of interest, but also to classify them based on1111

their function and expression in order to point at more likely1112

candidates. We focused on the highly reliable QTL detected on1113

chromosome 4 for TrS_night, TE and DeltaBiomass. TrS_night1114

QTL was previously described as a promising target for marker1115

assisted selection, as alleles limiting night-time transpiration1116

also favor plant growth, resulting in a double, beneficial im-1117

pact on improving transpiration efficiency (Coupel-Ledru et al.1118

2016). Moreover, this QTL was found by seven methods. Within1119

a plethora of integrated functions represented within the list1120

of annotated genes underlying this QTL, we show here that1121

a subset of more likely candidates can be defined as possibly1122

related to the traits of interest. These include on one hand,1123

genes related to broad-sense hydraulics and water loss, with1124

a possible direct impact on TrS_night: seven genes involved in1125

stomatal development, nine genes involved in stomatal open-1126

ing -sometimes through the abscicic acid signalling pathway-,1127

one to xylem development and one to trichome development1128

(Table S25). One of these genes, the trihelix transcription factor1129

GT-2 (Vitvi04g01604), was specifically shown to impact transpi-1130

ration and transpiration efficiency in Arabidopsis by acting as1131

a negative regulator of stomatal density. On the other hand,1132

27 genes among the list are directly related to growth, devel-1133

opment, or photosynthesis, meaning a possible direct impact1134

on DeltaBiomass. A histidine kinase 1 (Vitvi04g01483) may be a1135

particularly interesting candidate for its multiple roles in ABA1136

signalling, stomatal development and plant growth known in1137

Arabidopsis, hence potentially simultaneously acting on both1138

components of TE. Both these likely candidates were often highly1139

expressed in grapevine leaves according to the data retrieved1140

from the RNA-seq database. The reduction of confidence inter-1141

val did drastically reduce the number of genes as well as the1142

subsequent analyses, but the list is still extensive. More precise1143

analyses of these candidate genes, including functional genomic1144

work and possible gene editing of some of them will be now1145

necessary to identify the genes under these new QTLs.1146

Conclusion1147

Faced with the threat of climate change and the challenge of de-1148

creasing inputs while maintaining yield and quality, deciphering1149

the genetic architecture of target traits is a most needed endeavor.1150

In this goal of importance to all agricultural species whatever1151

the traits under investigation, the approach developed in this1152

article aimed at harnessing the most information as possible1153

from dense genotyping and accurate phenotypic data. Among1154

the wealth of available methods, we focused our comparison on1155

univariate vs multivariate ones. Moreover, rather than decou-1156

pling genomic prediction from the identification of major QTLs,1157

we argue for the need to purse both goals jointly. Indeed, they1158

provide complementary information on the genetic architecture1159

of the target traits as well the key functions underlying them.1160

As such, we provided an in-depth investigation mobilizing both1161

simulated and experimental data, hence of interest beyond our1162

grapevine case study, hoping that it will contribute to a way1163

forward to other researchers working on other species. Of inter-1164

est to quantitative geneticists, our results notably emphasized1165

the interest of the Elastic Net, available as both a univariate and1166

a multivariate version, as an efficient, default method for ge-1167

nomic prediction, followed by the mFDR control for the robust1168

identification of QTLs. Moreover, of interest to plant biologists1169

who seek to understand the response to water stress, our results1170

highlighted several candidate genes underlying the integrated1171

traits of night-time transpiration, transpiration efficiency and1172

biomass production. For some of them, their functions confirm1173

and suggest causal links with stomatal functioning, trichome1174

development or the ABA pathway.1175
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