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Short Title

Role of CP190 in architectural protein Pita activity

Abstract

The architectural protein Pita is critical for Drosophila embryogenesis and predominantly binds
to gene promoters and insulators. In particular, Pita is involved in the organization of boundaries
between regulatory domains that controlled the expression of three sox genes in the Bithorax
complex (BX-C). The best-characterized partner for Pita is the BTB/POZ-domain containing
protein CP190. Using in vitro pull-down analysis, we precisely mapped two unstructured regions

of Pita that interact with the BTB domain of CP190. Then we constructed transgenic lines
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expressing the Pita protein of the wild-#ype and mutant variants lacking CP190-interacting
regions. The expression of the mutant protein completely complemented the null pita mutation.
ChIP-seq experiments with wild-type and mutant embryos showed that the deletion of the
CP190-interacting regions did not significantly affect the binding of the mutant Pita protein to
most chromatin sites. However, the mutant Pita protein does not support the ability of
multimerized Pita sites to prevent cross-talk between the iab-6 and iab-7 regulatory domains that
activate the expression of Abdominal-B (Abd-B), one of the genes in the BX-C. The recruitment
of a chimeric protein consisting of the DNA-binding domain of GAL4 and CP190-interacting
region of the Pita to the GAL4 binding sites on the polytene chromosomes of larvae induces the
formation of a new interband, which is a consequence of the formation of open chromatin in this
region. These results suggested that the interaction with CP190 is required for the primary Pita
activities, but other architectural proteins may also recruit CP190 in flies expressing only the

mutant Pita protein.

Author Summary

Pita is required for Drosophila development and binds specifically to a long motif in active
promoters and insulators. Pita belongs to the Drosophila family of zinc-finger architectural
proteins, which also includes Su(Hw) and the conserved among higher eukaryotes CTCF. The
architectural proteins maintain the active state of regulatory elements and the long-distance
interactions between them. The CP190 protein is recruited to chromatin through interaction with
the architectural proteins. Here we mapped two regions in Pita that are required for interaction
with the CP190 protein. We have demonstrated that CP190-interacting region of the Pita can
maintain nucleosome-free open chromatin and is critical for Pita-mediated enhancer blocking

activity. At the same time, interaction with CP190 is not required for the in vivo function of the
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mutant Pita protein, which binds to the same regions of the genome as the wild-type protein.
Unexpectedly, we found that CP190 was still associated with the most of genome regions bound
by the mutant Pita protein, which suggested that other architectural proteins were continuing to
recruit CP190 to these regions. These results support a model in which the regulatory elements
are composed of combinations of binding sites that interact with several architectural proteins

with similar functions.
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Introduction

The development of modern approaches for the study of genome architecture, including
chromosome conformation capture methods, coupled to high-throughput sequencing (Hi-C) and
high-resolution microscopy techniques has revealed the hierarchical organization of genome (1,
2). Chromosomes are composed of discrete sub-megabase domains, called topologically
associated domains (TADs) (3-5). In genomes, regulatory elements, including enhancers,
promoters, insulators, and silencers, actively interact with each other, which determines the
correct and stable level of gene expression (6, 7). The boundaries between TADs delineate
specific genomic regions, and more effective interactions between regulatory elements occur
within these regions than between different regions (8). According to the generally accepted
model, the cohesin complex, which is retained at CTCF protein binding sites, plays a primary
role in the formation of chromatin loops in mammals (9). Auxiliary roles in the organization of
specific interactions between enhancers and promoters have been assigned to the proteins LBD1,
yin yang 1 (YY1), and ZF143 (10-13). Because the LBD1 protein is the only one of these
proteins to contain a well-described homodimerization domain (14), how specific interactions
between enhancers and promoters occurs remains unclear.

In Drosophila, we suggested the existence of a large family of architectural proteins, which
typically contain N-terminal homodimerization domains and arrays of the zinc-finger Cys2-His2
(C2H2) domains (15-22). The specific interactions that occur between the N-terminal domains of
architectural proteins can support selective distance interactions between regulatory elements.
Pita belongs to a large family of architectural proteins that feature zinc finger-associated domains
(ZADs) at the N-terminus (21, 23). Investigations of three architectural proteins, Pita, Zw5, and
ZIPIC, showed that the ZAD domains form only homodimers and support specific distance
interactions between sites bound by the same architectural protein (17). The 683 aa Pita protein

contains an N-terminal ZAD domain (17-93 aa) and a central cluster, consisting of 10 C2H2
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83  zinc-finger domains (286-562 aa) (24, 25). Pita is an essential Drosophila protein, and null pita
84  mutants die during embryogenesis (24, 26).
85  Pita binds to a large 15 bp consensus site that is frequently found in gene promoters and
86 intergenic regulatory elements, including boundary/insulator elements in the Bithorax complex
87  (Bx-C) (Maksimenko et al. 2015; Kyrchanova et al. 2017). The Bithorax complex (BX-C)
88  contains three homeotic genes, Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B
89  (Abd-B), which are responsible for specifying the parasegments (PS5 to PS13) that comprise the
90  posterior two-thirds of the fly segments (27-29). The expression of each homeotic gene in the
91  appropriate parasegment-specific pattern is controlled by independent cis-regulatory domains
92  that are separated by boundaries. For example, the regulatory domains iab-5, iab-6, and iab-7,
93  determine the expression of Abd-B in the abdominal segments A5, A6, and A7, respectively. The
94  MCP, Fab-6, Fab-7, and Fab-8 boundaries ensure the autonomous function of iab domains (30-
95  37). Pita binds to Fab-7 and MCP and is required for their boundary activities (19, 20, 38). Five
96  Pita binding sites can functionally substitute the Fab-7 boundary that separates the iab-6 and iab-
97 7 regulatory domains (19). Previously, Pita was found to interact with CP190 (25), which is also
98  known to bind several other C2H2 architectural proteins, including dCTCF and suppressor of
99  hairy wing [Su(Hw)] (25, 39-43).
100  Here, we studied the interaction mechanisms between Pita and CP190. Two domains that interact
101 with the BTB domain of CP190 were mapped in Pita. The recruitment of CP190 is required for
102  the chromatin opening and insulator functions of Pita. However, mutant flies that express Pita
103  lacking the CP190 interaction region display normal viability and wild-type (wt) phenotype,
104  demonstrating that these activities are not essential for Pita functions in vivo.

105

106

107
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108 Results

109  Mapping regions within the Pita protein that interact with the BTB domain of CP190

110  To understand the interaction mechanism between the architectural protein Pita and the BTB
111 domain of CP190, we attempted to precisely map the interaction regions in Pita. Previously, we
112 found that the BTB domain of CP190 interacted with the 95-302 aa region of Pita, which was
113  mapped between the ZAD and the C2H2 clusters (25). We used bacteria to express overlapping
114  glutathione S-transferase (GST)-fusion peptides that covered the 95-302 aa region of Pita. The
115  borders of the deletion derivatives were set according to conserved blocks of amino acids in Pita
116  protein from various Drosophila species. The obtained GST-peptides were tested for interactions
117  with the CP190 BTB domain, fused with 6xHis, in a pull-down assay (Fig. 1A). This process
118  allowed us to map two binding regions between 95-165 aa and 220-232 aa (Fig. 1B, C).

119  Interestingly, the deletion of 220-232 aa, which was defined as a 13 aa core, resulted in the

120  complete loss of interaction between the 95-302 fragment and BTB in a pull-down assay, even
121 though this protein fragment still contained the second binding region. The 13 aa core was

122 predicted to be unstructured, but it contains several conserved hydrophobic residues (Fig. 1D).
123 Taken together, these results showed that the BTB domain interacts with the 95-165 aa region
124  and the 13 aa core, whose sequences have no obvious homology. The 95-165 aa region appeared
125  to stabilize the interaction between the BTB domain and the 13 aa core.

126 To better understand the functional significance of the interaction between Pita and CP190, we
127  deleted the 13 aa core that is necessary for Pita to bind with CP190 in vivo (Pita®‘P!). The Pita™t
128  and Pita®‘P! proteins were tagged with 3xFLAG (Fig. 2A) and co-expressed with CP190 in S2
129  cells (Fig. 2B). The mutant Pita®CP! did not interact with CP190, in contrast with the Pita"’

130  protein. This result confirmed the critical role played by the 13 aa domain in the interaction

131 between Pita and CP190 in vivo.

132
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The CP190 interacting domain in Pita is not essential for its role in Drosophila development
To understand the functional roles of the 13 aa core (CP1) and the 95-165 aa regions (CP2) in
Pita, we used previously described null mutations in the pita/spdk gene: pita’?!3? and pita*0>66
(Bloomington stock numbers 11179 and 10390, respectively). Pita protein is essential for early
Drosophila development and mitoses, and homozygotes bearing the null mutation died during
the embryonic stage (24, 26). Transgenes expressing Pita¥-FLAG, Pita®‘PI-FLAG, or Pita®cP1*2-
FLAG under control of the Ubi promoter (Ubi-Pita*!, Ubi-Pita*°?!, and Ubi-Pita®*'*?) were
inserted into the same 86Fb region on the third chromosome, using a ¢C31 integrase-based
integration system (44). Western blot analysis showed that Pita"-FLAG, Pita®"!"2-FLAG, and
Pita®“PI_-FLAG were expressed in transgenic flies at similar levels (Fig. 2C). The transgenes
were crossed into the pita’?!3?/pitak0°66 null mutations background (24). Unexpectedly, Ubi-
Pita"', Ubi-Pita®c?!, and Ubi-Pita®“"'*? all complemented the null pita mutation, which
suggested that the CP190-interacting domains are not critical for the in vivo functions of the Pita
protein.

To test the role played by the CP190-interacting domain in Pita in the recruitment of Pita and
CP190 to chromatin, we compared the binding of CP190 and Pita to chromatin in Ubi-Pita" and
Ubi-Pita®°?*2 embryos. To identify the chromatin binding sites of CP190 and Pita-FLAG in
embryos, we performed chromatin immunoprecipitation (ChIP) experiments, followed by
sequencing (ChIP-seq) using Illumina’s massive parallel sequencing technology.

To investigate changes in the chromatin binding of CP190 and Pita in the Pita®“?!*2 mutant,
ChIP-seq signal values were estimated in the set of Flag peaks reproduced in Pita*' and Pita®P!1*2
embryos. We found 5,023 such FLAG peaks (Fig. 3B). Then, we defined 1,029 peaks that
overlapped with the Pita motif site obtained from previously published data (17). From among
these 1,029 peaks, we selected 44 peaks that demonstrated an enhanced signal in Pita** embryos
compared with Pita®“P1*2 embryos (Fig. 3A). Among the 3,994 FLAG peaks that did not

7
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158 intersect with Pita motif sites, we found only 10 peaks with enhanced signals in Pita** compared
159  with Pita®“P1*2, As a result, the Pita®P!*2 binding efficiency was only significantly reduced in a
160  minor proportion of the binding sites. Thus, CP190 binding is not essential for Pita binding to
161  most chromatin sites.

162  All Pita peaks were divided into three groups. In group 1, we included Pita motif site peaks with
163  at least a 2-fold decrease in the average signal for Pita®“P!*2 embryos compared with that in

164  Pita"* embryos (Fig. 3C). Group 2 consisted of peaks with Pita motif sites in which no significant
165  changes in the FLAG signals were observed when comparing the results of Pita*and PitaACP1*2
166  embryos (Fig. 3D). All FLAG peaks that did not intersect with a Pita motif were included in

167  Group 3 (Fig. S1A).

168  Then we compared the CP190 signal in these three groups of peaks. CP190 binding falls

169  extremely low among the sites in Group 1 (Fig. 3C), whereas no visible changes were observed
170  for the sites from Groups 2 (Fig. 3D) and 3 (Fig. S1A). The analysis of individual FLAG-binding
171  sites showed that in Group 1 (Fig. 4A), in parallel with the 2-fold decrease in FLAG binding in
172 Pita®“P1*2 compared with Pita", a significant decrease in CP190 binding occurred (Fig. 4B, top).
173 At the same time, in Groups 2 (Fig. 4A) and 3 (Fig. S1B), on the background of stable FLAG
174  binding, the partial weakening of CP190 binding was observed at several sites (Fig. 4B, bottom),
175  although most sites demonstrated the maintenance of stable CP190 binding. These results

176  suggested the existence of additional DNA-binding proteins located near the Pita binding sites,
177  which are capable of attracting the CP190 protein through a similar mechanism, masking the

178  effects of mutant Pita ACP172,

179

180

181
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182  CP190-interacting domains in Pita are critical for the formation of the interband region in
183  larvae polytene chromosome.

184  Pita binding sites are typically located in the promoter regions and interbands of Drosophila

185  polytene chromosomes (17, 25). Recent studies showed that the interbands of polytene

186  chromosomes typically correspond to the promoter regions of broadly expressed housekeeping
187  genes and display an “open” chromatin conformation (45, 46). Interbands have been reported to
188  be preferentially associated with the CP190 and Chromator (Chrom/Chriz) proteins (47-49).

189  Because the linker region (94285 aa) of Pita recruits CP190, we explored whether the linker
190  region was sufficient for the organization of open chromatin. To address this question, we used a
191  previously established model system based on Drosophila polytene chromosomes (50). In this
192  model, 16 GAL4 binding sites were inserted into the silent region 10A1-2. The pita gene region
193  encoding the linker (94-285 aa) was fused in-frame with the DNA-binding domain of the yeast
194  protein GAL4 (GAL4DBD), under the control of the hsp70 promoter. The expression vector was
195 inserted into the 51C region on the second chromosome, using the ¢C31-based integration

196  system (44). The 10A1-2 insertion was combined with the hsp70 Pita[94-295]GAL4DBD

197  construct. To express the chimeric protein, flies were maintained at 29°C from the embryonic to
198  pupal stages, as described in (50).

199  We used a previously described transgenic line (50), which expresses the GAL4 binding region
200 under the control of the hsp70 promoter (G4(DBD)), as a negative control. In this line, the

201 G4(DBD) is recruited to the 10A2 region but does not change the polytene organization and fails
202 to recruit CP190 (Fig. 5). The expression of Pita[94-295] (G4(DBD)Pita) gave rise to a

203  prominently decondensed zone on the edge of 10A1-2 that split away from a distal part of the
204  10A1-2 band. Thus, the recruitment of Pita[94-295] to the GAL4 site was sufficient for interband
205  formation. On polytene chromosomes, CP190 and Chriz co-localized with the decondensed

206  region, suggesting that both proteins were recruited to the GAL4 sites by the Pita linker. As
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controls, we used the same model system to test Pita linkers featuring the deletion of either the
13 aa core (Pita[94-295]2C¢P1) or CP190-binding regions (Pita[94-295]2CP1*2) For both deletions,
we did not observe the formation of decondensed regions and or the recruitment of the CP190
and Chriz proteins. These results confirmed the role played by the 220-232 aa core region of Pita

in the recruitment of CP190 and Chriz proteins and in chromatin opening.

The deletion of the CP190-interacting domain in Pita affects the boundary functions of
multimerized Pita sites in vivo

To test the functional role of the Pita-CP190 interaction in insulation, we used a model system
(Fig. 6A) based on a transgenic line in which the Fab-7 boundary has been replaced with five
Pita binding sites (Pita*®) (19, 51). The Fab-7 boundary blocks cross-talk between the iab-6 and
iab-7 regulatory domains, which respectively stimulate lower levels of 4bd-B transcription in
PS11 and higher levels in PS12 (31). In w¢ cells in the A6 (PS11) and A7 (PS12), the abdominal
segments have different fates in adult males. The A6 cells form distinct cuticular structures
(tergites and sternites) and the internal tissues of the abdominal segment, whereas the A7 cells
are lost during morphogenesis (Fig. 6B). In the absence of a boundary between these two
domains (Fab-7""3 mutant males), iab-7 is ectopically activated in all A6 (PS11) cells, and they
assume an A7 (PS12) identity. These males lack both the A6 and A7 segments (Fig. 6B). The
insertion of the Pita*> sites blocks the cross-talk between the iab-6 and iab-7 domains but does
not allow for communications between the iab-6 enhancers and the 4bd-B promoter. As a result,
the iab-5 enhancers stimulate the Abd-B transcription in A6, which results in the conversion of
the A6 segment into one that resembles the A5 segment (Fig. 6B). Decreasing the protein level
by half due to the introduction of the Pita mutation leads to the loss of the insulating function of
the Pita*> boundary in some cells, which is reflected by the reduction and deformation of the A6

sternite (Fig. 6B).

10
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232 Boundaries typically function better when present on both homologous chromosomes, which is
233 likely because homologous pairing improves the binding of proteins to boundaries.

234  Heterozygous Pita™/+ males display a very weak A6 = A5 transformation, suggesting that,
235  even in one copy, Pita*> can block the cross-talk between the iab-6 and iab-7 regulatory domains
236  (Fig. 6B). However, Pita*’/+ males that also carry heterozygous cp2/+ (or cp3/+) display the
237  partial transformation of A6 into a copy of A7 (Fig. 6B). The equally high sensitivity to

238  mutations in genes encoding both Pita and CP190 suggests that CP190 acts as a key factor in the
239  organization of the Pita-mediated boundary.

240  Next, we combined one copy of the Ubi-Pita* or Ubi-Pita®°?! with Pita* (Fig. 6C). In contrast
241 with Pita"-FLAG, the overexpression of Pita®“P!-FLAG led to a partial transformation of A6
242 towards A7 (Fig. 6C). To test changes in the binding of Pita variants and CP190 with the Pita*’
243 region, we used the quantitative analysis of ChIP (ChIP-qPCR) performed in extracts obtained
244  from adult three-day-old males (Fig. 6D). Anti-FLAG antibodies were used to test the over-

245  expressed Pita variants. The ChIP study showed that Pita*-FLAG and Pita®“?!-FLAG bound
246  with similar efficiency to the Pita™’ region. In contrast, the binding of CP190 to the Pita*’ region
247  was reduced in a transgenic line expressing Pita®“?!. Thus, boundary activity mediated by Pita*>
248  was closely correlated with the efficiency of attracting CP190 to this region.

249  To directly demonstrate the role played by the CP190-Pita interaction during boundary activity,
250  we constructed transgenic lines homozygous for Pita* and either the Ubi-Pita*' or Ubi-Pita”CP!
251 transgenes in the null pita background. Pita"’ supported the boundary activity of the Pita*’

252 region (Fig. 6C). In contrast, the expression of Pita®P! led to an almost complete loss of

253 boundary activity for the Pita*® region (the absence of the A6 segment). In the ChIP analysis,
254  Pita"-FLAG and Pita®“’'-FLAG both bound to the Pita™’ region with similar efficiencies (Fig.

255  6D). CP190 was only observed at the Pita™> sites in the transgenic line expressing Pita™'. These

11
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256  results confirmed that the 13 aa core is essential for the binding between CP190 and the Pita sites

257  and that CP190 is essential for the boundary activity of Pita.

258

259  Discussion

260 In this study, we mapped the regions of the Pita and CP190 proteins that are involved in their
261  interaction. The interaction primarily occurs between the 13 aa core (CP1) of Pita and the BTB
262  domain of CP190. The Pita 114-164 aa (CP2) region plays only an auxiliary role in the

263  interaction, which might stabilize the CP190-Pita complex on chromatin. The knockdown of
264  CP190 in Drosophila cell lines was previously found to affect Su(Hw) binding but not dCTCF
265  binding (48). Here, we demonstrated that the interaction with CP190 is required only for the
266  binding of Pita to a small region of the chromatin site. We did not observe any differences in the
267  binding of Pita%T and Pita®P! to the Pita*> sites. Moreover, the mutant protein can effectively
268  compete with the wild-type analog to bind with the Pita™ sites.

269  In polytene chromosomes, interbands appear as decondensed regions that coincide with the

270  promoters of housekeeping genes and TAD boundaries (47, 50, 52-54). The constant

271 decondensation of interband regions is a consequence of nucleosome destabilization, the

272 appearance of open chromatin sites, and the binding of transcription factors. Here, we

273 demonstrated that the 13 aa CP1 of the Pita 94-295 aa linker is critical for the efficient

274 recruitment of CP190 to the 14 GAL4 binding sites located in the condensed region of the 10A2
275  band. The recruitment of CP190 induces the decondensation of the region and the formation of
276  the new interband. We found that CP190 can recruit the Chromator (Chrom/Chriz) protein,

277  which is associated with all interband of polytene chromosomes (47, 49). Currently, the role
278  played by Chriz during chromatin organization is unknown; however, Chriz and CP190 may be
279  involved in the recruitment of complexes participated in nucleosome remodeling and chromatin
280 modifications. For example, experimental evidence has suggested that CP190 is involved in the

12
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recruitment of nucleosome remodeling factor (NURF), the Spt—Ada—GcenS—acetyltransferase
(SAGA) complex, the dimerization partner, RB-like, E2F, and multi-vulval class B (dAREAM)
complex, and the histone methyltransferase dMes4 (55-59). Further study remains necessary to
understand the role played by CP190 in the recruitment of different complexes involved in the
organization of open transcriptionally active chromatin.

The architectural proteins Pita, Su(Hw), and dCTCF are involved in organization of
boundaries/insulators in the BX-C (20). When placed in the context of Fab-7, multimerized Pita-
binding sites insulate the interaction between the active iab-6 initiator and the inactive iab-7
initiator, which block the premature activation of the iab-7 domain in the A12 parasegment. Our
results showed that even the partial reduction of CP190 recruitment strongly affected the
boundary activities of the Pita sites, suggesting a critical role played by CP190 in Pita-mediated
insulation. The mechanism associated with CP190-dependent insulation remains unknown.
CP190 might be involved in the formation of chromatin loops via interactions with Chriz (60).
Alternatively, CP190, Chriz, or other proteins recruited to the Pita sites may directly interfere
with the ability of the initiators to interact functionally. Direct protein-protein interactions may
be used to block the active signals from the iab-6 to iab-7 domain. Further study research
remains necessary to resolve this question.

Although the complete inactivation of Pita leads to embryonic lethality, the mutant Pita®“P! and
Pita®CP1*2 proteins, which failed to interact with CP190, had no discernable effects on fly
viability. Thus, interactions with CP190 are not critical for the primary function of Pita during
transcriptional regulation. The Pita mutants that lack the ability to recruit CP190 remained
capable of binding DNA efficiently and support specific distance interactions through the ZAD
domain, which is capable of homodimerization. Our recent model suggested that regulatory
elements contain different combinations of binding sites for architectural proteins (21). For

example, Pita and dCTCEF sites form the Mcp boundary between the iab domains that are
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involved in the regulation of the abd-A and Abd-B genes (19, 61). The binding of dCTCF to
MCP is highly dependent on the presence of the Pita site, suggesting that Pita may function to
assist the binding between other architectural proteins and regulatory elements. The inability of
Pita to interact with CP190 is likely compensated for by other architectural proteins that
cooperate with Pita in the organization of the same regulatory regions. Indeed, we observed that
CP190 still binds to most genomic sites associated with the Pita®“P1*2 protein in embryos. In
many cases, these sites are associated with proteins that are known to be able to recruit CP190
(25, 39-41, 62-65). Such functional redundancy creates a stable and reliable architecture of

regulatory elements, which is necessary for the correct regulation of genes during development.

Materials and Methods

Pulldown assays and chemical cross-linking

GST-pulldown was performed with Immobilized Glutathione Agarose (Pierce) in buffer C (20 mM
Tris-HCI, pH 7.5; 150 mM NacCl, 10mM MgCl,, 0.1 mM ZnCl,, 0.1% NP40, 10% (w/w) Glycerol).
BL21 cells co-transformed with plasmids expressing GST-fused derivatives of Pita and 6xHis-
Thioredoxin-fused CP190[1-126] were grown in LB media to an A600 of 1.0 at 37°C and then
induced with 1 mM IPTG at 18°C overnight. ZnCl, was added to final concentration 100 uM before
induction. Cells were disrupted by sonication in 1ml of buffer C, after centrifugation lysate was
applied to pre-equilibrated resin for 10 min at +4°C; after that, resin was washed four times with 1
ml of buffer C containing 500 mM NaCl, and bound proteins were eluted with 50 mM reduced
glutathione, 100 mM Tris, pH 8.0, 100 mM NacCl for 15 min. 6xHis-pulldown was performed
similarly with Zn-IDA resin (Cube Biotech) in buffer A (30 mM HEPES-KOH pH 7.5, 400 mM
NaCl, 5 mM B-mercaptoethanol, 5% glycerol, 0.1% NP40, 10 mM Imidazole) containing 1 mM

PMSF and Calbiochem Complete Protease Inhibitor Cocktail VII (5 pL/mL), washed with buffer A
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330 containing 30 mM imidazole, and proteins were eluted with buffer B containing 250 mM imidazole
331 (20 min at +4°C).

332

333  Plasmid construction

334  For in vitro experiments, protein fragments were either PCR-amplified using corresponding
335  primers, or digested from Pita or CP190 cDNA and subcloned into pGEX-4T1 (GE Healthcare)
336 or into a vector derived from pACYC and pET28a(+) (Novagen) bearing pl5A replication
337  origin, Kanamycin resistance gene, and pET28a(+) MCS.

338  To express 3xFLAG-tagged Pita and CP190 in the S2 cells, protein-coding sequences were
339  subcloned into the pAcS5.1 plasmid (Life Technologies). Different full-sized variants of Pita
340  were fused with 3XFLAG and cloned into an expression vector. This vector contains attB site for
341  ¢C31-mediated recombination, Ubi67c promoter with its 5’UTR, 3°’UTR with SV40
342 polyadenylation signal, intron-less yellow gene as a reporter for detection of transformants.
343  Details of the cloning procedures, primers, and plasmids used for plasmid construction are
344  available upon request.

345

346  Co-immunoprecipitation assay

347  Drosophila S2 cells were grown in SFX medium (HyClone) at 25°C. S2 cells grown in SFX
348  medium were co-transfected by 3XxFLAG-Pita (wild-type and with deletion of CP190-interacting
349  region) and CP190 plasmids with Cellfectin II (Life Technologies), as recommended by the
350 manufacturer. Protein extraction and co-immunoprecipitation procedure were performed as
351  described in (17). Anti-CP190 antibodies and rat IgG were used for co-immunoprecipitations.
352  The results were analysed by Western blotting. Proteins were detected using the ECL Plus
353  Western Blotting substrate (Pierce) with anti-FLAG and anti-CP190 antibodies.

354
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Fly crosses and transgenic lines

Drosophila strains were grown at 25°C under standard culture conditions. The transgenic
constructs were injected into preblastoderm embryos using the @C31-mediated site-specific
integration system at locus 86Fb (44). The emerging adults were crossed with the y ac w!!’8 flies,
and the progeny carrying the transgene in the 86Fb region were identified by y* pigmented

cuticle. Details of the crosses and primers used for genetic analysis are available upon request.

Fly extract preparation

20 adult flies were homogenized with a pestle in 200 pL of 1xPBS containing 1% B-
mercaptoethanol, 10 mM PMSF, and 1:100 Calbiochem Complete Protease Inhibitor Cocktail
VII. Suspension was sonicated 3 times for 5 s at 5 W. Then, 200 uL. of 4xSDS-PAGE sample
buffer was added and mixture was incubated for 10 min at 100°C and centrifuged at 16,000 g for

10 min.

Immunostaining of polytene chromosomes

Salivary glands were dissected from third-instar larvae reared at 29°C. Polytene chromosome
staining was performed as described (50). The following primary antibodies were used: rabbit
anti-CP190 (1:150), rabbit anti-Chriz (1:600). 3-4 independent staining, and 4-5 samples of

polytene chromosomes were performed with each Pita-expressing transgenic line.

ChIP-qPCR analysis

Chromatin for subsequent immunoprecipitations was prepared from adult flies as described in
(25) with some modifications. Aliquots of chromatin were incubated with mouse anti-FLAG
(1:200), rat anti-CP190 (1:500) antibodies or with nonspecific IgG purified from mouse and rat

(control). At least two independent biological replicas were made for each chromatin sample.
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The enrichment of specific DNA fragments was analysed by real-time PCR using a QuantStudio
3 Cycler (Applied Biosystems). The results of chromatin immunoprecipitation are presented as a
percentage of input genomic DNA after triplicate PCR measurements. The tub coding region
(devoid of binding sites for the test proteins) was used as a negative control; /00C region was

used as positive control. The sequences of used primers are available on request.

ChIP-Seq analysis

Embryo collection and ChIP were performed as previously described (66). Briefly, embryos
were collected at 8-16 h and fixed with formaldehyde. Chromatin was precipitated with mouse
anti-Flag (1:100), anti-CP190 (1:200) antibodies, or with nonspecific mouse IgG. The ChIP-seq
libraries were prepared with NEBNext® Ultra™ II DNA Library Prep kit, as described in the
manufacturer’s instructions. Amplified libraries were quantified using fluorometry with DS-11
(DeNovix, United States) and Bioanalyzer 2100 (Agilent, United States). Diluted libraries were
clustered on a pair-read flowcell and sequenced using a NovaSeq 6000 system (Illumina, United
States). Raw and processed data were deposited in the NCBI Gene Expression Omnibus (GEO)
under accession number (temporary folder because GEO servers are currently down:
https://drive.google.com/file/d/1XaOdvbKWkYHiUiWfpcrv89vYQQPSzxZ1/view?usp=sharing
).

ChIP-seq analysis was performed for 4 samples (Flag and CP190 in Pita** and Pita®“"1*2 lines);
two biological replicates were obtained for each sample. Paired-end sequencing technology was
applied, with an average read length of 101. Adapters, poly-N, and poly-A read ends were
removed using cutadapt software (67). Cutadapt was also used to trim low-quality ends (quality
threshold was set to 20 and reads with lengths less than 20 bp after trimming were discarded).
The remaining reads were aligned against version dmé6 of the Drosophila melanogaster genome

using Bowtie version 2 (68). Only reads that aligned concordantly exactly one time were passed
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for further analysis. The average insert size between mates was 156 bps. After alignment, read
duplicates were removed using the Picard MarkDuplicates function

(http://broadinstitute.github.io/picard/). Peaks that overlapped with blacklist regions were

discarded (blacklist regions were previously converted from the dm3 to the constructed dm6

genome  (https://sites.google.com/site/anshulkundaje/projects/blacklists). Peak calling was

performed using MACS version 2 against a preimmune control (69), in paired-end mode (option
format = BAMPE). Peaks with p-values less than 1x10-2 were passed to the irreproducible (IDR)

pipeline to assess the reproducibility of ChIP-seq replicates

(https://sites.google.com/site/anshulkundaje/projects/idr). All samples showed ideal or
acceptable reproducibility status with a 0.05 IDR, p-value threshold [both the Rescue Ratio (RR)
and the Self-consistency Ratio (SR) was less than 2, see Table Sl1)]

(https://www.encodeproject.org/data-standards/terms/#concordance). An optimal set of

reproduced peaks was chosen for each sample for further analysis. To ensure the comparability
of signals in defined peaks comparable, the peak boundaries were defined as 250 bp from the
peak summit for all further analyses. ChIP-seq coverage tracks (BedGraph) were obtained using
deepTools (70), bamCoverage function with bin-width 100 bp, and the normalization of and
reads per kilobase of transcript, per million mapped reads (RPKM).

To investigate the changes in CP190 and Flag binding activity after Pita modifications, their
ChlIP-seq signal values were estimated in the set of Flag peaks reproduced in Pita** and Pita®cP1*2
lines. To address the non-specificity of Flag binding, this peak set was additionally divided
according to the Pita motif appearance in the region +500 bp from the peak summit. The peaks
intersecting with the Pita motif site were defined using SPRy-SARUS software
(https://github.com/autosome-ru/sarus), with a 10 p-value threshold and PWM obtained from
previously published data (17) (Table S2). Additionally, from the peak set that intersects with

Pita motif sites, we selected a number of peaks for which we observed enhanced signals in Pita™t
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lines compared to Pita®“P!*2 lines. The peaks containing enhanced signals were identified by
applying the Grubbs outlier detection method to the distribution of log fold change values
between the Flag signals in Pita* and Pita®“P!*2 lines: logy(Flag Pita“Y/Flag Pita®‘P1*2). The
Grubbs method for one outlier was iteratively applied, while the p-value for the detected upper
outlier was less than 0.05 (http://ftp.uni-

bayreuth.de/math/statlib/R/CRAN/doc/packages/outliers.pdf).

Further analysis was performed in R version 3.6.3 (71). Colocalization analysis was performed
using ChIPpeakAnno package version 3.20.1 (72). Average signal calculation and heatmaps
were constructed with the use of ChIPseeker package version 1.22.1 (73). Genomic tracks were

visualized by applying svistdget software (74).
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695  Figure 1. Mapping the CP190-interacting regions in the Pita protein. A) Schematic

696  representation of full-length Pita protein showing the CP190-binding regions (gray boxes). B)
697  GST- and 6xHis-pulldown of GST-fused Pita protein fragments co-expressed with the

698  Thioredoxin-6xHis-fused CP190 BTB-domain. The positions of the amino acids are given in
699  square brackets. C) Schematic summary of the pull-down results. D Multiple sequence

700 alignment of the CP190 BTB-domain-interacting peptide in Pita protein from various Drosophila
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701  species shows the high conservation of hydrophobic and positively-charged residues. Residue

702  numbers above the alignment are for D. melanogaster Pita protein.
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707  Figure 2. Mutations in the c¢p190 and pita genes. A) A schematic showing the constructs used

708  to express wild-type and mutant variants of CP190 and Pita in transgenic Drosophila lines. B)

709  Co-immunoprecipitation of CP190 with wild-type and CP190-interacting region-deleted Pita

710  protein fused with 3XFLAG in S2 cells. Protein extracts from Drosophila S2 cells cotransfected

711 with 3XFLAG-Pita and CP190 plasmids were immunoprecipitated with antibodies against CP190

712 (using nonspecific IgG as a negative control), and the immunoprecipitates (IP) were analyzed by

713 western blotting for the presence of FLAG-tagged Pita proteins. The quality of

714  immunoprecipitation was controlled by western blotting for the presence of CP190 protein.

715  “Input” refers to samples of the initial protein extract; “output” refers to the supernatant after the

716  removal of the immunoprecipitate (IP). C) Western blot analysis of protein extracts from

717  transgenic flies expressing wild-type and mutated variants of Pita.
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Figure 3. Flag and CP190 ChIP-seq signal analysis for different sets of Flag peaks. A) The
distribution of log fold changes between Flag signals in Pita* and Pita®“P!*? lines among the
Flag peaks that intersect (on the left) and do not intersect (on the right) with previously defined

Pita motif sites (17) (see Methods). Outliers of the distributions are colored in blue. Outlier peaks
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724  from the peak set that intersects with Pita motif sites (N = 44) were further analyzed as an
725  independent peak set. B) The numbers of peaks in the investigated peak sets. C) Average signal
726  (RPKM) (on the top) and signal heatmaps (on the bottom) for Flag and CP190 signals among the
727  Flag peaks that intersect with Pita motif sites and demonstrate enhanced Flag signal in Pita™
728  (N=44) (Group 1). On the heatmaps, the peaks are ranked according to the average Flag signal in
729  Pita“ and Pita®C?!'*2 lines. D) Average signal (RPKM) (on the top) and signal heatmaps (on the
730  bottom) for Flag and CP190 signal among the Flag peaks that intersect with Pita motif sites
731  without enhanced Flag signal in Pita** (N = 985) (Group 2). On the heatmaps, the peaks are

732 ranked according to the average Flag signal in Pita*and Pita®“P!*2 lines.
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737  Figure 4. Flag and CP190 ChIP-seq signal depletion in the Pita*‘P!*? line. A) Log, of the
738  average Flag and CP190 signal (RPKM) in Flag peaks that intersect with Pita motif sites (N =
739  1,029), ranked according to the average Flag signal in Pita*' and Pita®CP!*2 lines. Peaks with
740  enhanced Flag signals in Pita"* are marked with black circles (N = 44). The black line shows the
741  average curve shape obtained in Pita™ lines for Flag and CP190 signals. B) Examples of CP190
742  signal depletion in the Pita®CP!*2 line among Flag peaks with and without Flag signal depletion in

743 the Pita®“?*2 line (RPKM).
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G4(DBD)

G4(DBD)Pita

G4(DBD)Pita ACP1

G4(DBD)Pita ACP1+2

744
745  Figure 5. Testing the role played by the CP190-binding region of Pita to induce an “open”

746 chromatin structure on a polytene chromosome model. The left panel demonstrates the polytene
747  chromosomes in phase contrast. The right panel is an overlay of phase contrast and

748  immunostaining with antibodies against to Gal4 (red), Chriz (green), and CP190 (green). A)

749  Targeting the 94-285 aa Pita region (Pita) fused with the GAL4 DNA binding region
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750 (GAL4DBD) to the 16 GAL4 binding sites in the 10A1-2 disc. At the top, the recruitment of
751  GALA4DBD did not induce the formation of the interband in the 10A1-2 band (negative control).
752 At the bottom, the recruitment of the 94-285 aa Pita region fused with GAL4DBD

753  (G4(DBD)Pita) resulted in interband formation inside the band, and Chriz and CP190 proteins
754  are detected in the decompacted area (shown in brackets and arrows). B) The recruitment of the
755  10A1-2 region of chimeric proteins featuring the deletion of CP1 (G4(DBD)PitaACP1) or

756  CP1+CP2 (G4(DBD)PitaACP1+2) regions did not induce interband formation inside the 10A1-2
757  disc. The absence of CP190 and Chriz protein recruitment was detected simultaneously with the

758  presence of a signal for Gal4 at the compact disk structure (red arrow).
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760  Figure 6. CP190 is required for Pita boundary activity. A) A schematic showing the
761

regulatory regions of the 4bd-B gene. The green arrow indicates the Abd-B gene. The iab-
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762  domains (iab-5 - iab-8) are separated by boundaries (Mcp, Fab-6, Fab-7, and Fab-8) that are
763 shown by vertical black bars. Below, a schematic representation of the Fab-7 boundary

764  replacements at the Fab-74""0 deletion. The HS*, HS1, HS2, and HS3 hypersensitive sites are
765  indicated as grey boxes. The Fab-7¢P30 deletion contains an attP site for transgene integration
766  and lox- and ft-sites for the excision of the reporter genes and plasmid sequences. B) The

767  morphologies of abdominal segments (numbered) in males carrying different combinations of
768  mutations. The red arrows show the signs of a gain-of-function (GOF) phenotype

769  (transformation of the A6 segment into a copy of A7). The blue arrows show the signs of a loss-
770  of-function (LOF) transformation (transformation of the A6 segment into a copy of A5) that is
771  directly correlated with the boundary functions of tested DNA fragments. In Fab-74">? males,
772 A6 transforms into A7 (GOF), which leads to the absence of a corresponding segment. In wt
773 males, the AS sternite has a quadrangular shape and is covered with bristles, whereas the A6
774  sternite has a distinctly concave, elongated shape and lacks bristles. In Pita™’ males, the A6

775  segment is transformed into a copy of A5: both sternites have a quadrangular shape and are

776  covered with bristles. pita’/CyO and Pita indicate pita*?°%96/CyO and pita’?!3?/pita*036%,

777  respectively. C) Morphologies of the abdominal segments (numbered) in Pita™’ males expressing
778  Ubi:Pita" or Ubi:Pita’’? in the wild-type or Pita” (pita’?'3?/pita*035%%) background. D) Compared
779  with the binding of FLAG-Pita and CP190, the binding region in males expressing Ubi:Pita™" or
780  Ubi:Pita”’3 were assessed in the wild-type or Pita” background. Histograms show ChIP

781  enrichments at the Pita* region on chromatin isolated from males expressing different variants
782  (wt and lacking the CP190-binding region) of Pita protein. The results are presented as a

783  percentage of input genomic DNA, normalized to the corresponding positive autosomal genome
784  region at the 100C cytological locus. Error bars show standard deviations of triplicate PCR

785  measurements for two independent experiments. Asterisks indicate significance levels: *p <

786 0.05, **p < 0.01.
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788  Supporting Information.

789

790  S1 Table. Reproducibility of Chip-seq experiments according to IDR pipeline

791

792 S2 Table. PWM of PITA motif

793

794  S1 Figure. Flag and CP190 ChIP-seq signal analysis among the Flag peaks that did not

795 intersect with Pita motif sites. A) Average signal (RPKM) (on the top) and signal heatmaps (on
796  the bottom) for Flag and CP190 signals among the Flag peaks that do not intersect with Pita

797  motif sites (N = 3994) (Group 3). Heatmaps show the peaks ranked according to the average
798  Flag signal in Pita“and Pita®C?!*2, B) Log, of the average Flag and CP190 signal (RPKM)

799  among Flag peaks that do not intersect with Pita motif sites (N = 3,994), ranked according to the
800  average Flag signal in Pita“'and Pita®CP!*2 lines. The black lines show the average curve shape

801  obtained in Pita*!lines for the Flag and CP190 signals.
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