

1 **Trade-Offs Between Antibacterial Resistance and Fitness Cost in the
2 Production of Metallo- β -Lactamase by Enteric Bacteria Manifest as Sporadic
3 Emergence of Carbapenem Resistance in a Clinical Setting.**

4

5 Ching Hei Phoebe Cheung^{1*}, Mohammed Alorabi^{1,2*}, Fergus Hamilton³, Yuiko
6 Takebayashi¹, Oliver Mounsey,¹ Kate J. Heesom⁴, Philip B. Williams^{3,5}, O. Martin
7 Williams^{3,5}, Maha Albur³, Alasdair P. MacGowan³, Matthew B. Avison^{1#}.

8

9 ¹School of Cellular & Molecular Medicine, University of Bristol, United Kingdom.

10 ²Department of Biotechnology, Faculty of Sciences, Taif University, Kingdom of
11 Saudi Arabia.

12 ³Department of Infection Sciences, Severn Infection Partnership, Southmead
13 Hospital, Bristol, United Kingdom.

14 ⁴Bristol Proteomics Facility, University of Bristol. United Kingdom.

15 ⁵Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation
16 Trust, United Kingdom.

17

18 *Ching Hei Phoebe Cheung and Mohammed Alorabi contributed equally to this work.

19 #Correspondence: Matthew B. Avison, School of Cellular & Molecular Medicine,
20 Biomedical Sciences Building, University Walk, Bristol. BS81TD. UK.
21 bimba@bris.ac.uk.

22 **Abstract**

23 **Meropenem is a clinically important antibacterial reserved for treatment of**
24 **multi-resistant infections. In meropenem-resistant bacteria of the family**
25 **Enterobacteriales, NDM-1 is considerably more common than IMP-1, despite**
26 **both metallo- β -lactamases (MBLs) hydrolysing meropenem with almost**
27 **identical kinetics. We show that *bla*_{NDM-1} consistently confers meropenem**
28 **resistance in wild-type Enterobacteriales, but *bla*_{IMP-1} does not. The reason is**
29 **higher *bla*_{NDM-1} expression because of its stronger promoter. However, the cost**
30 **of meropenem resistance is reduced fitness of *bla*_{NDM-1} positive**
31 **Enterobacteriales because of amino acid starvation. In parallel, from a clinical**
32 **case, we identified multiple *Enterobacter* spp. isolates carrying a plasmid-**
33 **encoded *bla*_{NDM-1} having a modified promoter region. This modification**
34 **lowered MBL production to a level associated with zero fitness cost but,**
35 **consequently, the isolates were not meropenem resistant. However, we**
36 **identified a *Klebsiella pneumoniae* isolate from this same clinical case**
37 **carrying the same *bla*_{NDM-1} plasmid. This isolate was meropenem resistant**
38 **despite low-level NDM-1 production because of a *ramR* mutation, reducing**
39 **envelope permeability. Overall, therefore, we show how the resistance/fitness**
40 **trade-off for MBL carriage can be resolved. The result is sporadic emergence**
41 **of meropenem resistance in a clinical setting.**

42 Introduction

43 β -Lactamases are the most frequent cause of β -lactam resistance among Gram-
44 negative bacteria. In β -lactamases of molecular classes A, C and D, an active site
45 serine catalyses hydrolysis of the β -lactam ring. Members of class B utilize zinc ions
46 in catalysis and are known as metallo- β -lactamases (MBLs). Based on their
47 sequence homology, MBLs are classified into three subclasses: B1, B2 and B3 (1).
48 Chromosomally encoded MBLs belonging to subclasses B2 and B3 have been
49 isolated from environmental and opportunistic pathogenic bacteria such CphA
50 (*Aeromonas hydrophila*) (2), L1 (*Stenotrophomonas maltophilia*) (3), IND
51 (*Chryseobacterium indologenes*) (4), and Sfh-1 (*Serratia fonticola*) (5). However, the
52 most common MBLs in human pathogens are from subclass B1 and are encoded on
53 mobile genetic elements, particularly VIM (6), IMP (7), and NDM (8). These enzymes
54 can efficiently catalyse the hydrolysis of all clinically relevant β -lactams except the
55 monobactams (1).

56 The genes encoding VIM-1 and IMP-1 are held within class 1 integrons as gene
57 cassettes (6,7). Integrons are gene capture systems consisting of a 5' conserved
58 sequence including *intI*, encoding an integrase enzyme, an array of gene cassettes,
59 and a 3' conserved sequence. Gene cassettes are promoter-less and consist of an
60 open reading frame and an adjacent recombination site, *attC*, specifically recognized
61 by the integrase enzyme. A common promoter (Pc) located within the *intI* sequence
62 directs expression of all gene cassettes in an integron (9). There are essentially
63 three strengths of Pc: PcS – strong, PcW – weak, and PcH – intermediate (10).

64 The *bla_{NDM-1}* gene is not a gene cassette but has been mobilised by an insertion
65 sequence (IS) element, ISAb_{a125} (11). This mobilisation also drives expression of
66 *bla_{NDM-1}*, because ISAb_{a125} carries an outward facing promoter, P_{out} (12).

67 In a recent UK study, NDM-1 was found to be the dominant MBL in
68 Enterobacterales clinical isolates, with IMP-1 not being found at all (13). One
69 possible explanation is that NDM-1 is a lipoprotein and has evolved to perform well
70 in the sort of low zinc environment often seen at sites of infection (14), something
71 which is enhanced in various NDM variants, particularly NDM-4 (15). However, it is
72 possible that positive selection for NDM-1 production is driven by something more
73 fundamental. There is some evidence that IMP-1-encoding plasmids only confer
74 borderline resistance to carbapenems in *E. coli* even when zinc concentration are
75 high (e.g. as seen in Ref 16), whereas minimum inhibitory concentrations (MICs) of
76 carbapenems against *E. coli* transconjugants carrying NDM-1 plasmids are much
77 higher (e.g. as seen in Ref 8). We hypothesise that a more consistent ability to
78 confer carbapenem resistance is part of the reason why NDM-1 is dominant over
79 IMP-1. If correct, this would imply that the levels of active enzyme produced are
80 frequently greater for NDM-1- than for IMP-1-positive Enterobacterales because,
81 catalytically, the enzymes are very similar (8).

82 The aims of the work presented here was to test the hypothesis that NDM-1 and
83 IMP-1 confer different carbapenem MICs because they are produced at different
84 levels from their native expression environments. Furthermore, we have investigated
85 the fitness trade-offs that come in to play when selection for higher level MBL
86 production is necessary to confer resistance. Finally, we report a clinical case
87 demonstrating how these fitness trade-offs manifest in the real world.

88

89 **Results and Discussion**

90 *bla_{NDM-1}* is expressed at higher levels than *bla_{IMP-1}* and confers meropenem
91 resistance in *Enterobacteriales* clinical isolates.

92 A blastn search of GenBank using the nucleotide sequences of *bla_{IMP-1}* and *bla_{NDM-1}*
93 revealed that, of entries that matched with 100% coverage and identity, *E. coli*
94 ($\chi^2=9.82$, $p<0.005$) and *Klebsiella* spp. ($\chi^2=12.72$, $p<0.0005$) are more likely to carry
95 *bla_{NDM-1}* than *bla_{IMP-1}*. This analysis is supported by global surveillance data from
96 clinical isolates. For example, from a recent SENTRY study where, of 1298
97 carbapenem resistant *Enterobacteriales* analysed in 2014-16, *bla_{NDM}* positivity was
98 12.7% whilst *bla_{IMP}* positivity was 0.4% (17). In contrast, the non-*Enterobacteriales*
99 *Pseudomonas* spp. is more likely to carry *bla_{IMP-1}* than *bla_{NDM-1}* ($\chi^2=30.18$,
100 $p<0.00001$).

101 We next sought to test the hypothesis that *bla_{NDM-1}* is dominant over *bla_{IMP-1}* in
102 *Enterobacteriales* because only *bla_{NDM-1}* reliably confers carbapenem resistance.
103 The *bla_{NDM-1}* gene is almost exclusively found downstream of an *ISAb125*
104 sequence, which provides an outward facing promoter, P_{out} , which drives *bla_{NDM-1}*
105 expression (11). In contrast, *bla_{IMP-1}* is encoded as an integron gene cassette (7),
106 and so can be present downstream of several different promoter (Pc) sequences
107 (10). Of the 26 *bla_{IMP-1}* GenBank entries involving *E. coli*, *Klebsiella* spp. and
108 *Enterobacter* spp. where sufficient sequence was present to identify the Pc promoter
109 variant, 24/26 were intermediate strength as previously defined (10) and of these,
110 ten were Pch1 variants (**Table S1**). We therefore chose to compare the impact of
111 carrying *bla_{IMP-1}* located downstream of the Pch1 promoter with *bla_{NDM-1}* located
112 downstream of P_{out} from *ISAb125* on susceptibility to the carbapenem meropenem.

113 Thirteen out of thirteen *bla*_{NDM-1} Enterobacteriales clinical isolate transformants
114 tested were meropenem resistant, but only 1/13 *bla*_{IMP-1} transformants (**Table S2**).

115 These data support our primary hypothesis, that NDM-1 more readily confers
116 meropenem resistance than IMP-1 in the Enterobacteriales.

117 IMP-1 and NDM-1 are, in terms of meropenem catalytic efficiency, very similar
118 enzymes (8), so our next hypothesis was that more NDM-1 is produced than IMP-1
119 in cells, explaining the difference in meropenem MIC. This hypothesis was also
120 supported by experiment; the amount of meropenem hydrolysing activity in cell
121 extracts of representative *bla*_{NDM-1} transformants of *E. coli*, *K. pneumoniae* and
122 *Enterobacter* (*Klebsiella*) *aerogenes* was 3 to 6-fold higher than in *bla*_{IMP-1}
123 transformants ($p<0.002$ for each). As expected, elevated meropenem hydrolysing
124 activity was due to greater production of NDM-1 than IMP-1 protein as measured
125 using LC-MS/MS proteomics (**Fig. 1**).

126 Changing the ribosome binding sequence upstream of *bla*_{NDM-1} to be identical to that
127 found upstream of *bla*_{IMP-1} did not significantly reduce NDM-1 production or
128 meropenem hydrolysing activity. However, generating the N* variant, by replacing
129 the entire *bla*_{NDM-1} upstream sequence with that upstream of *bla*_{IMP-1}, reduced NDM-1
130 production to be very similar to that of IMP-1 in all three species (**Fig. 1**).

131

132 *The correlation between high gene expression and fitness cost when carrying bla*_{NDM-1}
133 *is associated with amino acid starvation.*

134 We next investigated whether the greater production of NDM-1 relative to IMP-1
135 imposes a fitness cost. Using pairwise competition experiments, where
136 transformants were directly competed over 4 days in the absence of β -lactams, we

137 showed that there is no cost of carrying *bla*_{IMP-1} in *E. coli* and *K. pneumoniae*, but
138 there was a significant cost of carrying *bla*_{NDM-1} in both species (**Table 1**).

139 Higher production of NDM-1 versus IMP-1 could impose a fitness cost because of
140 depletion of resources required to make the additional MBL, or it could be due to
141 some toxicity that the MBL imposes. To differentiate between these possibilities, we
142 investigated the physiological impact of carrying *bla*_{IMP-1} or *bla*_{NDM-1} in *E. coli*. To do
143 this, we used LC-MS/MS proteomics to quantify steady state protein abundance
144 differences in transformants.

145 Of 1390 proteins identified and quantified in the *bla*_{IMP-1} vs plasmid only control
146 comparison, 66 were significantly up or down regulated (**Table S3**) but Chi squared
147 analysis did not reveal clustering of these proteins into any KEGG functional group,
148 suggesting that there is little concerted physiological response to carrying *bla*_{IMP-1}
149 (**Table S4**). The *bla*_{NDM-1} versus control comparison identified and quantified 1670
150 proteins, of which 88 were differentially regulated (**Table S5**). In this case Chi
151 squared analysis did identify clustering (**Table S6**) of these regulated proteins into a
152 specific KEGG pathway: eco00260, glycine, serine, and threonine metabolism.
153 Upregulated proteins include the committed enzymes GlyA (18), SerA (19), ThrC
154 (20), and IlvA, which directs these amino acids into other amino acid biosynthetic
155 pathways (21). Therefore, production of NDM-1, which is approximately 6-fold more
156 than production of IMP-1 in *E. coli* (**Fig. 1**), comes with a significantly fitness cost
157 (**Table 1**), which is associated with regulatory signals of amino acid starvation.

158

159

160

161 *Increasing IMP-1 production increases fitness cost*

162 To further test the hypothesis that the amount of MBL protein production is a major
163 part of the fitness cost imposed by carrying MBL genes and to exclude any NDM-1
164 specific effects, we aimed to increase IMP-1 production. To do this we turned to our
165 recently reported *bla*_{IMP-1} synonymous lysine codon variant, IMP-1-KV where 17 AAA
166 lysine codons were converted to the alternative synonymous codon, AAG (22). LC-
167 MS/MS proteomics showed that the amount of IMP-1 produced from the variant
168 *bla*_{IMP-1-KV} was 2.2-fold ($p=0.005$) more than from wild-type *bla*_{IMP-1} in *E. coli* (Fig. 2).
169 As hypothesised, this increase in IMP-1 protein production was associated with an
170 increase in fitness cost, which was approximately 7% per day in *E. coli* and
171 approximately 20% per day in *K. pneumoniae* ($p<0.001$ for both comparisons) (Table
172 1). We attempted to repeat this experiment by cloning *bla*_{IMP-1} downstream of a
173 strong integron promoter, which drives high-level gene expression, but very few *E.*
174 *coli* transformants were recovered. In all cases, the transformants had mutations
175 upstream of *bla*_{IMP-1} expected to reduce gene expression, e.g. those affecting the -35
176 or -10 promoter sequences or the spacing in between. Accordingly, we conclude that
177 the fitness cost of carrying this highly expressed form of *bla*_{IMP-1} is too great for
178 transformants to bear.

179

180 *Reduced NDM-1 production due to rearrangements in the bla_{NDM-1} promoter region*
181 *explains lack of meropenem resistance in Enterobacter spp. isolates from a clinical*
182 *case.*

183 A patient was admitted directly to the intensive care unit after developing a small
184 bowel obstruction and an aspiration pneumonia. Bronchoalveolar lavage grew

185 *Citrobacter freundii*, *K. pneumoniae* and *Bacteroides vulgatus*. The patient was
186 initially treated with piperacillin-tazobactam and azithromycin and noted to have a
187 strangulated inguinal hernia which was repaired. Two days after admission, the
188 patient was escalated to meropenem due to continued fever. Vancomycin was
189 added for a possible coagulase negative *Staphylococcus* spp. line infection. They
190 continued to require ventilation and a tracheostomy was performed on day 7. By 20
191 days after admission, symptoms had resolved and C-reactive protein had fallen to 10
192 from 368 mg/L on admission, and meropenem was stopped.

193 Five days later, fever restarted, and a sputum sample grew *K. pneumoniae* resistant
194 to piperacillin-tazobactam and ciprofloxacin, but Extended-Spectrum β -Lactamase
195 (ESBL) negative and susceptible to third-generation cephalosporins. Ceftazidime
196 and vancomycin were started. After 6 days of ceftazidime, a routine multi-resistant
197 coliform screen of the patient's tracheostomy site noted a ceftazidime resistant
198 *Enterobacter* spp. (Ent1). This was ESBL positive and had a multi-drug resistance
199 phenotype (**Table S7**). Due to an apparently raised meropenem MIC, a Cepheid
200 Xpert-Carba R PCR test was performed, suggesting the presence of *bla*_{NDM}. Despite
201 this, Ent1 was not meropenem resistant and so ceftazidime treatment was switched
202 to meropenem. After 10 days of meropenem, the patient improved, and antibiotic
203 therapy was discontinued. Routine screens continued to isolate *Enterobacter* spp.
204 with the same resistance pattern and being *bla*_{NDM} positive (e.g. Ent2) but 12 days
205 after the isolation of Ent1, another routine screen identified an ESBL negative *K.*
206 *pneumoniae*, which was fully resistant to meropenem (KP3), as well as to third-
207 generation cephalosporins, piperacillin-tazobactam and ciprofloxacin (**Table S7**).
208 The Cepheid Xpert-Carba also identified *bla*_{NDM} in KP3. The patient, however,
209 remained well and continued off antibiotics and was discharged to the surgical ward.

210 Subsequent routine screens continued to identify this meropenem resistant *K.*
211 *pneumoniae* and the *bla*_{NDM} positive *Enterobacter* spp. that was not meropenem
212 resistant and specialist infection control precautions were continued.

213 Whole genome sequence (WGS) analysis of the *Enterobacter* spp. isolates Ent1 and
214 Ent2 showed them to be *Enterobacter hormaechei* and confirmed that *bla*_{NDM-1} is
215 present on the same IncFIB(K) plasmid in both. The plasmid was assembled into a
216 single contig of 84,659 nt carrying genes conferring resistance to
217 amikacin/ciprofloxacin (*aacA4-cr*), rifampicin (*arr-3*), co-trimoxazole (*sul1*) and
218 streptomycin (*aadA1*), all part of the same complex class 1 integron alongside
219 *bla*_{NDM-1}. Otherwise, on the chromosome, other relevant resistance genes carried by
220 Ent1 and Ent2 were to ampicillin (*bla*_{TEM-1}), and the expected ESBL (*bla*_{CTX-M-15}). The
221 isolates also carried chromosomal mutations in *gyrA* (Ser83Ile) and *parC* (Ser80Ile)
222 causing ciprofloxacin resistance. Collectively this acquired resistance genotype
223 explains the antibiograms of Ent1 and Ent2, except for the fact that meropenem
224 resistance should have been provided by the *bla*_{NDM-1} gene but was not.

225 LC-MS/MS proteomics revealed that NDM-1 production was the same in Ent1 and
226 Ent2. The amount normalised to ribosomal proteins was 0.41 +/- 0.03 (mean +/- SD),
227 which was not significantly different ($p=0.13$) from the amount of IMP-1 produced
228 from its native Pch1 promoter in *bla*_{IMP-1} transformants of *E. coli* and *K. pneumoniae*
229 described above (0.49 +/- 0.18, **Fig. 1**). In contrast, NDM-1 production in Ent1 and
230 Ent2 was significantly different ($p<0.0005$), and approximately 6-fold less than
231 NDM-1 production in transformants of *E. coli* and *K. pneumoniae* where *bla*_{NDM-1} was
232 expressed from the typical ISAb125 P_{out} promoter (3.24 +/- 0.69, **Fig. 1**). This low-
233 level production of NDM-1 in Ent1 and Ent2 likely explains why these isolates are not
234 meropenem resistant (MIC<4 mg/L), as seen for *bla*_{IMP-1} transformants (**Table S2**).

235 To explain the reason for low-level NDM-1 production in Ent1 and Ent2, we
236 compared the sequence upstream of *bla*_{NDM-1} in these two isolates with those from *E.*
237 *coli* IR10, the source of the recombinant plasmids used above, and from *K.*
238 *pneumoniae* KP05-506, which is the original isolate from which *bla*_{NDM-1} was
239 identified (8). We found a significant rearrangement immediately adjacent to the
240 IS*Aba*125 P_{out} promoter in Ent1 and Ent2 (**Fig. 3**). There has been an insertion of an
241 element containing a truncated *bla*_{OXA-10} gene.

242 The upstream variation seen in Ent1 is rare but not unique. It matched to 14 NCBI
243 database entries reporting isolates collected in China, Taiwan, Japan, Pakistan, and
244 the UK (**Table S8**). Notably, but not commented on by the authors, an *E. coli*
245 transconjugant carrying plasmid pLK78, encoding *bla*_{NDM-1} with this *bla*_{OXA-10}
246 upstream insertion, was not meropenem resistant (23). Moreover, isolates from
247 Pakistan where the *bla*_{OXA-10} insertion upstream of *bla*_{NDM-1} was identified in several
248 related plasmids (24) were originally collected in 2010 and the authors noted that
249 53% of NDM-1 producing isolates were meropenem susceptible (25).

250

251 *Low-level NDM-1 production confers meropenem resistance in a background with*
252 *reduced envelope permeability.*

253 Isolate KP3, from the same clinical case, was meropenem resistant. LC-MS/MS
254 proteomics analysis confirmed that KP3 produced NDM-1 at the same level as Ent1
255 and Ent2. WGS showed that as well as carrying *bla*_{NDM-1}, *aacA4-cr*, *sul1*, *arr-3* and
256 *aadA1* on an IncFIB(K) plasmid identical to that found in Ent1 and Ent2, KP3 carried
257 *bla*_{TEM-1} and *bla*_{OXA-9}, found together on a second plasmid, plus the chromosomal

258 *bla*_{SHV-1}. KP3 also has Ser83Phe and Asp87Ala mutations in GyrA plus a Ser80Ile
259 mutation in ParC explaining ciprofloxacin resistance.

260 The β -lactamases produced by KP3 in addition to NDM-1 cannot explain the very
261 much higher MIC of meropenem against KP3 versus Ent1 and Ent2. Analysis of KP3
262 WGS data for known factors that contribute to carbapenem resistance revealed only
263 one: that KP3 is a *ramR* mutant, having an 8 nt insertion into *ramR* after nucleotide
264 126, causing a frameshift. We have shown that loss of RamR in *K. pneumoniae*
265 leads to enhanced AcrAB-TolC efflux pump production, reduced OmpK35 porin
266 production, and enhanced carbapenem MICs in the presence of weak
267 carbapenemases (26). Hence this mutation in KP3 enhances the meropenem MIC
268 against KP3, making it resistant despite low-level production of NDM-1 due to
269 modification of the ISAb125 outward facing promoter region by insertion of a
270 truncated *bla*_{OXA-10}.

271

272 *Conclusions*

273 Overall, we have observed that modest expression of *bla*_{IMP-1} from a native
274 intermediate strength integron common promoter (PcH1), which is regularly seen in
275 *bla*_{IMP-1} clinical isolates, does not provide meropenem resistance in representative
276 Enterobacteriales strains, but neither does it cause a fitness cost. In contrast, *bla*_{NDM-1}
277 is expressed at higher levels from its native ISAb125 outward facing promoter and
278 this gives higher meropenem MICs, clear resistance, but this comes with a
279 significant fitness cost. A fitness cost associated with carrying *bla*_{NDM-1} was also
280 found in a previous report (27). We conclude that the likely reason for this fitness

281 cost, is that NDM-1 is produced at high levels when *bla*_{NDM-1} is expressed from its
282 native promoter, and that this results in amino acid starvation.

283 Our findings provide a real-world example of fitness/resistance trade-offs. It may be
284 that the reason for *bla*_{NDM-1} being so common in the Enterobacteriales is repeated
285 selective pressure via carbapenem use, driving its presence despite the cost.
286 Alternatively, natural plasmids or certain strains carrying them, or even variant *bla*_{NDM}
287 genes encoded on these plasmids, might have accumulated mutations that
288 compensate for reduced fitness. For example, we have identified the insertion of a
289 truncated *bla*_{OXA-10}, damaging the *bla*_{NDM-1} promoter region and reducing NDM-1
290 production in *Enterobacter* spp. from a clinical case, a genetic arrangement found in
291 commensal carriage Enterobacteriales isolates from as far back as 2010 (25).

292 Low-level NDM-1 producers avoid the fitness cost associated with *bla*_{NDM-1} carriage
293 but, consequently, are not meropenem resistant. This highlights a potential infection
294 control issue where phenotypic meropenem resistance is necessary for a positive
295 screening outcome. As seen here, the isolates Ent1 and Ent2 were still identified as
296 being of interest due to extra vigilance in respect of a seriously ill patient. With less
297 vigilance, it may have been that the only notice of the presence of an NDM-1
298 producing isolate in or around this patient would have been following mobilisation of
299 the *bla*_{NDM-1} encoding plasmid into the *ramR* mutant *K. pneumoniae* with reduced
300 envelope permeability, to create meropenem resistant isolate KP3. This ability of
301 reduced envelope permeability to enhance meropenem MIC against a low-level MBL
302 producer may also explain our finding that *bla*_{IMP-1} is more common in *P. aeruginosa*,
303 a species renowned for having much lower envelope permeability than wild-type
304 Enterobacteriales (28). In the context of “under the radar” NDM-1 production defined
305 here, which also relies on reduced envelope permeability, we show that sudden

306 emergence of clinically-relevant meropenem resistance can occur in a manner that is
307 not dependent on new importation events and so cannot be prevented by standard
308 infection control measures.

309 **Experimental**

310 *Bacteria Used and Susceptibility Testing Assays*

311 Bacterial strains used in the study were *E. coli* MG1655 (29) and a collection of
312 human clinical isolate from urine (a gift from Dr Mandy Wooton, Public Health
313 Laboratory for Wales), a human clinical isolate of *K. aerogenes*, NDM-1 producing
314 isolates of *E. coli* IR10 and *K. pneumoniae* KP05_506 (gifts from Prof T Walsh,
315 Cardiff University), and *K. pneumoniae* strains SM, ECL8 and NCTC 5055 (30).
316 Antibiotic susceptibility was determined using disc testing or broth microdilution MIC
317 assays according to EUCAST guidelines.

318

319 *Molecular Biology*

320 Creation of pSUHIMP, being the cloned *bla_{IMP-1}* gene downstream of a native Pch1
321 was via PCR using template DNA from *P. aeruginosa* clinical isolate 206-3105A (a
322 gift from Dr Mark Toleman, Department of Medical Microbiology, Cardiff University).
323 The sequence of plasmid pYUI-1, the *bla_{IMP-1}* encoding plasmid from this isolate has
324 been deposited under GenBank accession number MH594579. PCR used a forward
325 primer targeting the 5' end of the Pch1 promoter (5'-
326 ACCCAGTGGACATAAGCCTGTTGGTTCGTAAC-3') and a reverse primer
327 targeting the 5' end of a *bla_{OXA-1}* gene cassette, which is downstream of *bla_{IMP-1}* in
328 this isolate (5'-AGCGAAGTTGATATGTATTGTG-3'). The PCR amplicon was TA
329 cloned into the pCR2.1TOPO cloning vector (Invitrogen), removed with EcoRI and
330 ligated into EcoRI linearized broad host range p15A-derived vector pSU18 (31). Site
331 directed mutagenesis to create pSUHIMP-KV containing 14 AAA-AAG transitions
332 was performed using the methods and primers previously reported (22). Creation of

333 pSUNDM, being the cloned *bla*_{NDM-1} gene downstream of its native IS*Aba*125
334 promoter in plasmid pSU18 has been reported previously (32). Site directed
335 mutagenesis using pSUNDM as the template was performed using the QuikChange
336 Lightning Site-Directed Mutagenesis Kit (Agilent, UK) according to the
337 manufacturer's instructions. The aim was to convert the native ribosome binding site
338 upstream of *bla*_{NDM-1} (AAAAGGAAAACTTGATGAGCAAGTTATCT) to be the same
339 as that upstream of *bla*_{IMP-1} (AAAAGGAAAAGTATGAGCAAGTTATCT – differences
340 underlined), using the mutagenic primer 5'-
341 GGGGTTTTAATGCTGAATAAAGGAAAAGTATGGAATTGCCAAT-3'. The
342 resultant plasmid was named pSUNDM-RBS. Switching the entire upstream
343 sequence from the ATG of *bla*_{NDM-1} to be the same as *bla*_{IMP-1} was performed by
344 gene synthesis recreating the entire pSUNDM insert sequence, but with the same
345 upstream sequence carried in pSUHIMP. The resultant plasmid was named
346 pSUNDM-N*

347

348 *Proteomic Analysis*

349 A volume of 1 ml of overnight liquid culture was transferred to a 50 ml of fresh LB
350 broth and incubated at 37°C until an OD₆₀₀ of 0.5-0.6 was achieved. Samples were
351 centrifuged at 4,000 rpm for 10 min at 4°C and the supernatants discarded. Cells
352 were re-suspended into lysis buffer (35 ml of 30mM Tris-HCl pH 8) and broken by
353 sonication using a cycle of 1 s on, 1 s off for 3 min at amplitude of 63% using a
354 Sonics Vibracell VC-505TM (Sonics and Materials Inc., Newton, Connecticut, USA).
355 This was followed by centrifugation at 8000 rpm (Sorval RC5B PLUS using an SS-34
356 rotor) for 15 min at 4°C to pellet non-lysed cells. Soluble proteins were concentrated
357 to a volume of 1 ml using centrifugal filter units (AMICON ULTRA-15, 3 KDa cutoff).

358 Then, the concentration of the proteins in each sample was measured using Biorad
359 Protein Assay Dye Reagent Concentrate according to the manufacturer's
360 instructions and normalised. LC-MS/MS was performed and analysed as described
361 previously (33) using 5 µg of protein for each run. Analysis was performed in
362 triplicate, each from a separate batch of cells. Protein abundance was normalised
363 using the average abundance of ribosomal proteins, unless stated in the text.

364

365 *Measurement of meropenem hydrolysis*

366 Twenty microlitres of concentrated total cell protein (prepared and assayed for
367 concentration as above) was transferred to 180 µl of 50 mM HEPES (pH 7.5)
368 containing 50 µM ZnSO₄ and 100 µM meropenem. Change of absorbance was
369 monitored at 299 nm over 10 min. Specific enzyme activity (pmol meropenem
370 hydrolysed per milligram of protein per second) in each extract was calculated using
371 9600 M⁻¹ as the extinction coefficient of meropenem and dividing enzyme activity
372 with the total amount of protein in each assay.

373

374 *Pairwise Fitness Cost Experiments*

375 Pairwise competition experiments were performed by using M9 minimal medium to
376 evaluate the fitness cost of carrying pSUHIMP, pSUHIMP-KV or pSUNDM, each
377 relative to the carriage of the pSU18 cloning vector alone. Initially, liquid cultures of
378 both transformants in the pairwise competition were established separately in LB
379 broth at 37°C with shaking at 160 rpm. Then, 5 µl of each overnight liquid culture was
380 inoculated into 10 ml M9 minimal medium separately in flasks and incubated as
381 above for 24 h as before. After this incubation, 5 µl of each overnight M9 minimal

382 medium was again inoculated separately into 10 ml M9 minimal medium as before
383 and grown overnight. The next day, for each competing bacterium, 75 μ l of the
384 previous day's culture was inoculated into fresh 15 ml M9 minimal medium to obtain
385 a mixed culture (day one). After 24 h of incubation, 150 μ l of the mixed culture was
386 transferred into a fresh 15 ml M9 minimal medium to obtain the day-two culture.
387 Then, this step was performed successively until the day-four mixed liquid culture
388 was attained. For each pairwise competition experiment, the above process was
389 carried out six times in parallel and on each day, the colony forming units per ml
390 (cfu/ml) of the two bacteria was counted in triplicate using LB agar selective for the
391 cloning vector (the total count of both competitors, as both are chloramphenicol
392 resistant) and agar containing 20 mg/L ceftazidime (to count bacteria producing IMP-
393 1 or NDM-1). The pSU18 containing transformant count was calculated by
394 subtracting the pSUHIMP or pSUNDM containing transformant count from the total
395 count of bacteria in the competition.

396 The fitness cost of the resistant strain relative to the sensitive strain was estimated
397 by calculating the Malthusian parameter of the strain (M) as described (34):

398 $M = \ln(N_1/N_0)$

399 Where N_0 indicates the density of the strain at the start of the day (cfu/ml) and N_1
400 represents the density of the strain at the end of the day (cfu/ml).

401 Then the selection rate for a pairwise competition is calculated as below:

402 $W = M_1/M_2$

403 Where M_1 represents growth of the sensitive strain and M_2 refers to growth of the
404 resistant strain. If W is positive, then $M_1 > M_2$ which implies that the sensitive strain

405 grows faster than the resistant strain and as a result has a fitness advantage and
406 vice versa.

407 For each day of competition, 36 values are achieved as for each pair-wise
408 competition there are 6 R values and there are 6 competitions each day (6 mixed
409 cultures a day).

410 Differences in the two sets of data for each pairwise comparison were assessed
411 using mean and standard deviation of R, and an unpaired t-test (with Welch's
412 correction) was used to assess the statistical significance of the differences
413 observed.

414

415 *Analysis to identify clustering of differentially regulated proteins*

416 The KEGG Mapper tool: http://www.genome.jp/kegg/tool/map_pathway2.html was
417 used. We searched against *E. coli* MG1655 (organism: eco) and entered a list of the
418 Uniprot accession numbers for the differentially regulated proteins. As a control, an
419 equal number of *E. coli* MG1655 Uniprot accession numbers was randomly selected
420 and entered in the KEGG Mapper as above. To determine the total number of
421 proteins in the *E. coli* MG1655 proteome that fall into each KEGG, the entire Uniprot
422 MG1655 accession number list was used to feed the KEGG Mapper tool. These
423 values were used to perform a χ^2 analysis considering the significance of clustering
424 of differentially regulated proteins by reference to random proteins into a KEGG
425 functional group. To maximise specificity, the comparison with random proteins was
426 performed 10 times, each with a different list of random proteins and the result
427 reported was the lowest χ^2 value obtained across all 10 comparisons.

428

429 *WGS and data analysis*

430 Genomes were sequenced by MicrobesNG (Birmingham, UK) on a HiSeq 2500
431 instrument (Illumina, San Diego, CA, USA). Reads were trimmed using Trimmomatic
432 (35) and assembled into contigs using SPAdes (36) 3.13.0
433 (<http://cab.spbu.ru/software/spades/>) and contigs were annotated using Prokka (37).
434 The presence of plasmids and resistance genes was determined using
435 PlasmidFinder (38) and ResFinder 2.1 (39).

436

437 *Ethics Statement.*

438 This project is not part of a trial or wider clinical study requiring ethical review. The
439 patient signed to give informed consent that details of their case be referred to in a
440 publication and for educational purposes.

441

442 **Acknowledgements**

443 This work was funded by grant MR/N013646/1 to M.B.A., O.M.W., A.P.M. and K.J.H.
444 and grant MR/S004769/1 to M.B.A. from the Antimicrobial Resistance Cross Council
445 Initiative supported by the seven United Kingdom research councils and the National
446 Institute for Health Research, and grant MR/T005408/1 to P.W. and M.B.A. from the
447 Medical Research Council. M. Alorabi. was supported by a Postgraduate
448 Scholarship from the Cultural Bureau of the Kingdom of Saudi Arabia. F.H. was
449 supported by a clinical fellowship from the Wellcome Trust. Genome sequencing was
450 provided by MicrobesNG (<http://www.microbesng.uk>). We are grateful to Dr Aisha
451 Alamri and to Ka Wang Mak, both lately of the School of Cellular & Molecular

452 Medicine, University of Bristol for constructing pSUHIMP and attempting to clone
453 *bla*_{IMP-1} downstream of PcS.

454

455 **The authors declare no conflicts of interest.**

456

457 **Author Contributions**

458 Conceived the Study: M.B.A., F.H.

459 Collection of Data: C.C., M. Alorabi, Y.T., O.M, K.J.H, F.H., supervised by M. Albur,
460 A.P.M., M.B.A.

461 Cleaning and Analysis of Data: C.C., M. Alorabi, Y.T., O.M, K.J.H, F.H., O.M.W., P.
462 W. supervised by M. Albur, A.P.M., M.B.A.

463 Initial Drafting of Manuscript: M. Alorabi, F.H., M.B.A.

464 Corrected and Approved Manuscript: All Authors.

465 **References**

466 1. Walsh TR. Emerging carbapenemases: a global perspective. *Int J Antimicrob*
467 *Agents*. 2010;36 Suppl 3:S8-14

468 2. Massidda O, Rossolini GM, Satta G. The *Aeromonas hydrophila* *cphA* gene:
469 molecular heterogeneity among class B metallo-beta-lactamases. *J Bacteriol*.
470 1991;173:4611-7

471 3. Walsh TR, Hall L, Assinder SJ, Nichols WW, Cartwright SJ, MacGowan AP,
472 Bennett PM. Sequence analysis of the L1 metallo-beta-lactamase from
473 *Xanthomonas maltophilia*. *Biochim Biophys Acta*. 1994;1218:199-201

474 4. Bellais S, Léotard S, Poirel L, Naas T, Nordmann P. Molecular characterization of
475 a carbapenem-hydrolyzing beta-lactamase from *Chryseobacterium*
476 (*Flavobacterium*) *indologenes*. *FEMS Microbiol Lett*. 1999;171:127-32.

477 5. Saavedra MJ, Peixe L, Sousa JC, Henriques I, Alves A, Correia A. Sfh-I, a
478 subclass B2 metallo-beta-lactamase from a *Serratia fonticola* environmental
479 isolate. *Antimicrob Agents Chemother*. 2003;47:2330-3

480 6. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R,
481 Rossolini GM. Cloning and characterization of *blaVIM*, a new integron-borne
482 metallo-beta-lactamase gene from a *Pseudomonas aeruginosa* clinical isolate.
483 *Antimicrob Agents Chemother*. 1999;43:1584-90.

484 7. Osano E, Arakawa Y, Wacharotayankun R, Ohta M, Horii T, Ito H, Yoshimura F,
485 Kato N. Molecular characterization of an enterobacterial metallo beta-lactamase
486 found in a clinical isolate of *Serratia marcescens* that shows imipenem
487 resistance. *Antimicrob Agents Chemother*. 1994;38:71-8.

488 8. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR.
489 Characterization of a new metallo-beta-lactamase gene, *bla*(NDM-1), and a novel

490 erythromycin esterase gene carried on a unique genetic structure in *Klebsiella*
491 *pneumoniae* sequence type 14 from India. *Antimicrob Agents Chemother.*
492 2009;53:5046-54

493 9. Gillings MR. Integrons: past, present, and future. *Microbiol Mol Biol Rev.*
494 2014;78:257-77

495 10. Jové T, Da Re S, Denis F, Mazel D, Ploy MC. Inverse correlation between
496 promoter strength and excision activity in class 1 integrons. *PLoS Genet.*
497 2010;6:e1000793

498 11. Toleman MA, Spencer J, Jones L, Walsh TR. *bla*_{NDM-1} is a chimera likely
499 constructed in *Acinetobacter baumannii*. *Antimicrob Agents Chemother.*
500 2012;56:2773-6

501 12. Kamruzzaman M, Patterson JD, Shoma S, Ginn AN, Partridge SR, Iredell JR.
502 Relative Strengths of Promoters Provided by Common Mobile Genetic Elements
503 Associated with Resistance Gene Expression in Gram-Negative Bacteria.
504 *Antimicrob Agents Chemother.* 2015;59:5088-91

505 13. Findlay J, Hopkins KL, Alvarez-Buylla A, Meunier D, Mustafa N, Hill R, Pike R,
506 McCrae LX, Hawkey PM, Woodford N. Characterization of carbapenemase-
507 producing Enterobacteriaceae in the West Midlands region of England: 2007-14.
508 *J Antimicrob Chemother.* 2017;72:1054-1062

509 14. Bahr G, Vitor-Horen L, Bethel CR, Bonomo RA, González LJ, Vila AJ. Clinical
510 Evolution of New Delhi Metallo-β-Lactamase (NDM) Optimizes Resistance under
511 Zn(II) Deprivation. *Antimicrob Agents Chemother.* 2017;62. pii: e01849-17

512 15. Stewart AC, Bethel CR, VanPelt J, Bergstrom A, Cheng Z, Miller CG, Williams C,
513 Poth R, Morris M, Lahey O, Nix JC, Tierney DL, Page RC, Crowder MW, Bonomo

514 RA, Fast W. Clinical Variants of New Delhi Metallo- β -Lactamase Are Evolving To
515 Overcome Zinc Scarcity. ACS Infect Dis. 2017;3:927-940

516 16. Ito H, Arakawa Y, Ohsuka S, Wacharotayankun R, Kato N, Ohta M. Plasmid-
517 mediated dissemination of the metallo-beta-lactamase gene *blaIMP* among
518 clinically isolated strains of *Serratia marcescens*. Antimicrob Agents Chemother.
519 1995;39:824-9.

520 17. Castanheira M, Deshpande LM, Mendes RE, Canton R, Sader HS, Jones RN.
521 Variations in the Occurrence of Resistance Phenotypes and Carbapenemase
522 Genes Among Enterobacteriaceae Isolates in 20 Years of the SENTRY
523 Antimicrobial Surveillance Program. Open Forum Infect Dis. 2019;6(Suppl
524 1):S23-S33.

525 18. Schirch V, Hopkins S, Villar E, Angelaccio S. Serine hydroxymethyltransferase
526 from *Escherichia coli*: purification and properties. J Bacteriol. 1985;163:1-7.

527 19. Lam HM, Winkler ME. Metabolic relationships between pyridoxine (vitamin B6)
528 and serine biosynthesis in *Escherichia coli* K-12. J Bacteriol. 1990;172:6518-28.

529 20. Thèze J, Saint-Girons I. Threonine locus of *Escherichia coli* K-12: genetic
530 structure and evidence for an operon. J Bacteriol. 1974;118:990-8.

531 21. Calhoun DH, Gray JE. Cloning of the *ilvA538* gene coding for feedback-
532 hypersensitive threonine deaminase from *Escherichia coli* K-12. J Bacteriol.
533 1982;151:274-80.

534 22. Alorabi M, AlAmri AM, Takebayashi Y, Heesom KJ, Avison MB. Synonymous
535 lysine codon usage modification in a mobile antibiotic resistance gene similarly
536 alters protein production in bacterial species with divergent lysine codon usage
537 biases because it removes a duplicate AAA lysine codon bioRxiv 2018; doi:
538 <https://doi.org/10.1101/294173>.

539 23. Chen CJ, Wu TL, Lu PL, Chen YT, Fung CP, Chuang YC, Lin JC, Siu LK. Closely
540 related NDM-1-encoding plasmids from *Escherichia coli* and *Klebsiella*
541 *pneumoniae* in Taiwan. *PLoS One*. 2014;9:e104899.

542 24. Wailan AM, Sartor AL, Zowawi HM, Perry JD, Paterson DL, Sidjabat HE. Genetic
543 Contexts of *bla*_{NDM-1} in Patients Carrying Multiple NDM-Producing Strains.
544 *Antimicrob Agents Chemother*. 2015;59:7405-10.

545 25. Perry JD, Naqvi SH, Mirza IA, Alizai SA, Hussain A, Ghirardi S, Orenga S,
546 Wilkinson K, Woodford N, Zhang J, Livermore DM, Abbasi SA, Raza MW.
547 Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase
548 at military hospitals in Pakistan, and evaluation of two chromogenic media. *J*
549 *Antimicrob Chemother*. 2011;66:2288-94.

550 26. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J,
551 Schneiders T, Heesom KJ, Avison MB. Envelope proteome changes driven by
552 RamA overproduction in *Klebsiella pneumoniae* that enhance acquired β-lactam
553 resistance. *J Antimicrob Chemother*. 2018;73:88-94.

554 27. Göttig S, Riedel-Christ S, Saleh A, Kempf VA, Hamprecht A. Impact of *bla*_{NDM-1}
555 on fitness and pathogenicity of *Escherichia coli* and *Klebsiella pneumoniae*. *Int J*
556 *Antimicrob Agents*. 2016;47:430-5.

557 28. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant *Pseudomonas*
558 *aeruginosa*: clinical impact and complex regulation of chromosomally encoded
559 resistance mechanisms. *Clin Microbiol Rev*. 2009;22:582-610.

560 29. Guyer MS, Reed RR, Steitz JA, Low KB. Identification of a sex-factor-affinity site
561 in *E. coli* as gamma delta. *Cold Spring Harb Symp Quant Biol*. 1981;45:135-40.

562 30. Jiménez-Castellanos JC, Wan Ahmad Kamil WN, Cheung CH, Tobin MS, Brown
563 J, Isaac SG, Heesom KJ, Schneiders T, Avison MB. Comparative effects of

564 overproducing the AraC-type transcriptional regulators MarA, SoxS, RarA and
565 RamA on antimicrobial drug susceptibility in *Klebsiella pneumoniae*. *J Antimicrob*
566 *Chemother*. 2016;71:1820-5.

567 31. Martinez E, Bartolomé B, de la Cruz F. pACYC184-derived cloning vectors
568 containing the multiple cloning site and *lacZ* alpha reporter gene of pUC8/9 and
569 pUC18/19 plasmids. *Gene*. 1988;68:159-62.

570 32. Brem J, Cain R, Cahill S, McDonough MA, Clifton IJ, Jiménez-Castellanos JC,
571 Avison MB, Spencer J, Fishwick CW, Schofield CJ. Structural basis of metallo-β-
572 lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic
573 boronates. *Nat Commun*. 2016;7:12406.

574 33. Takebayashi T, Wan Nur Ismah WAK, Findlay J, Heesom KJ, Zhang J, Williams
575 OM, MacGowan AP, Avison MB. Prediction of cephalosporin and carbapenem
576 susceptibility in multi-drug resistant Gram-negative bacteria using liquid
577 chromatography-tandem mass spectrometry. *bioRxiv* 2017; doi:
578 <https://doi.org/10.1101/138594>

579 34. Bennett AF, Lenski RE. Evolutionary adaptation to temperature II. Thermal
580 niches of experimental lines of *Escherichia coli*. *Evolution*. 1993;47:1-12.

581 35. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
582 sequence data. *Bioinformatics*. 2014;30:2114-20.

583 36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
584 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotnik AV, Vyahhi N, Tesler
585 G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and
586 its applications to single-cell sequencing. *J Comput Biol*. 2012;19:455-77.

587 37. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*.
588 2014;30:2068-9.

589 38. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L,
590 Møller Aarestrup F, Hasman H. In silico detection and typing of plasmids using
591 PlasmidFinder and plasmid multilocus sequence typing. *Antimicrob Agents
592 Chemother* 2014;58:3895–903.

593 39. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O,
594 Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance
595 genes. *J Antimicrob Chemother*. 2012;67:2640-4.

Table 1. Fitness effect of carrying *bla*_{IMP-1} or *bla*_{NDM-1} in *E. coli* and *K. pneumoniae*

Strain	Competition	Mean fitness (W)	+/- SEM
<i>E. coli</i> MG1655	pSU18 vs pSUH IMP	+4.5	0.5
	pSU18 vs pSU NDM	-8.0	0.4
	pSU18 vs pSUH IMP-KV	-1.9	0.5
<i>K. pneumoniae</i> ECL8	pSU18 vs pSUH IMP	+5.9	0.6
	pSU18 vs pSU NDM	-29.3	0.7
	pSU18 vs pSUH IMP-KV	-13.6	2.2

Figure Legends

Figure 1. MBL Production in Enterobacteriales carrying *bla*_{IMP-1} or *bla*_{NDM-1} with variant upstream sequences.

MBL production was measured in *K. pneumoniae*, *E. coli* or *K. aerogenes* (*Ent. aerogenes*) recombinants carrying the pSU18 cloning vector, into which had been ligated *bla*_{IMP-1} with its upstream *Pc(H1)* promoter (dark blue bars), *bla*_{NDM-1} with its wild-type *ISAb125* promoter (bed bars), *bla*_{NDM-1} with site directed mutation to convert its ribosome binding site to be identical to that upstream of *bla*_{IMP-1} (N RBS, light blue bars), and *bla*_{NDM-1} synthesised to have the same upstream sequence as *bla*_{IMP-1} (N*, purple bars). In (A) meropenem hydrolysing activity (nmol.min⁻¹.mg total protein⁻¹) was measured in whole cell extracts. In (B) IMP-1 or NDM-1 protein abundance derived from LC-MS/MS analysis of whole cell extracts is reported normalised to the average abundance of 30S and 50S ribosomal proteins in each extract. Data are means +/- Standard Error of the Mean, n=3.

Figure 2. Increased production of IMP-1 following introduction of 17 AAA-AAG lysine codon variants into *bla*_{IMP-1}.

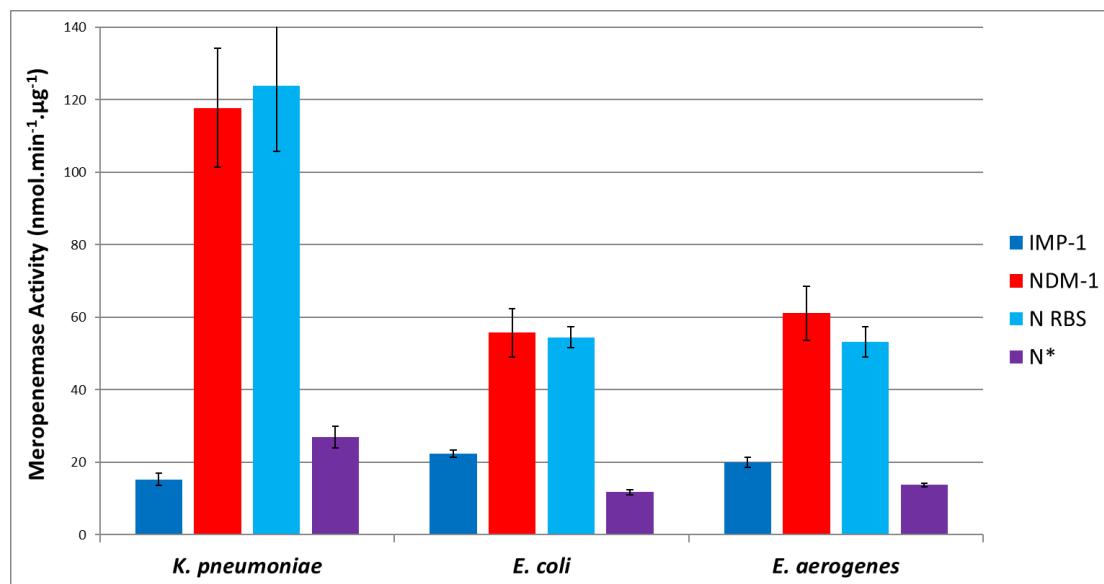

E. coli MG1655 recombinants carry pSU18 with *bla*_{IMP-1} or a variant (22) in which 17 AAA lysine codons had been mutated to AAG (IMP-1-KV) were analysed. IMP-1 protein abundance derived from LC-MS/MS analysis of whole cell extracts is reported normalised to the average abundance of 30S and 50S ribosomal proteins in each extract. Data are means +/- Standard Error of the Mean, n=3.

Figure 3. Altered Upstream Sequence in Ent1/2 and KP3 versus *bla*_{NDM-1} Source Sequences.

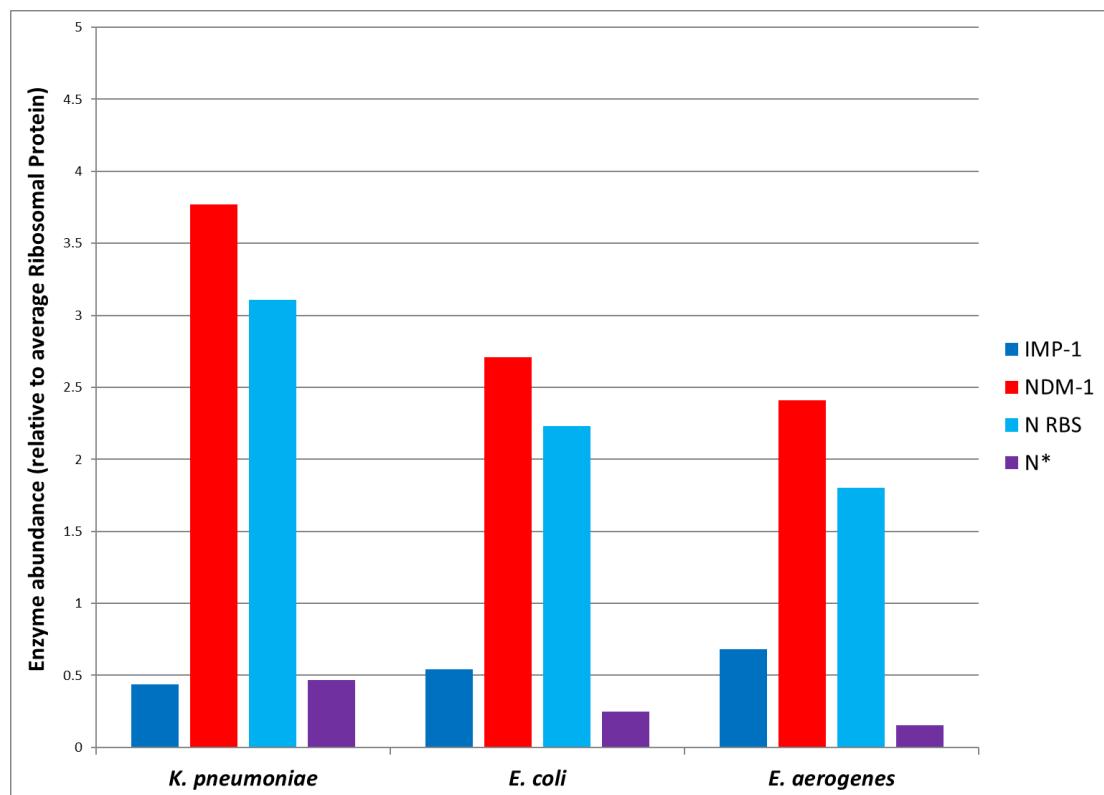
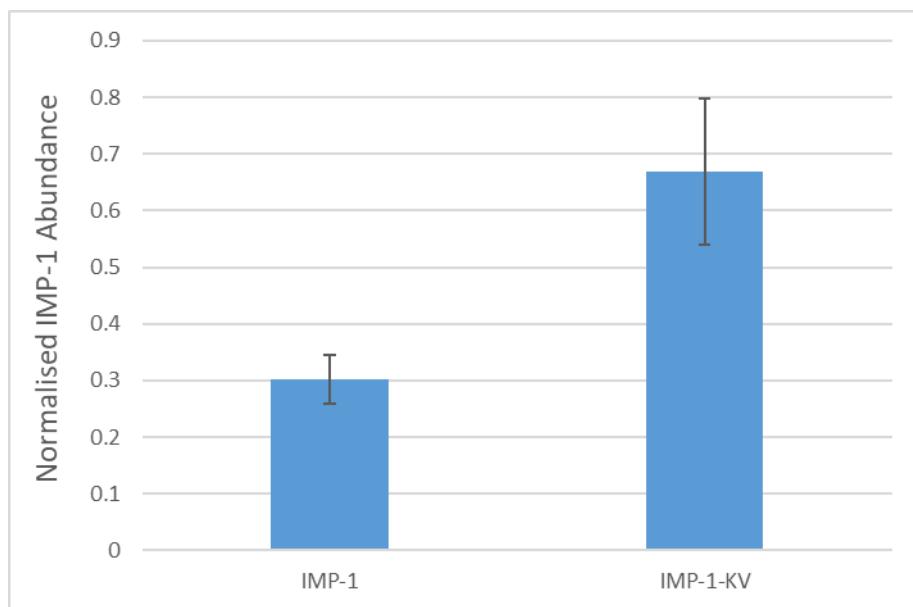

The Clustal Omega alignment used WGS data from two isolates carrying wild-type *bla*_{NDM-1}: *E. coli* IR10 and *K. pneumoniae* KP05-506 plus the sequence shared by clinical isolates Ent1, Ent 2 and KP3. Identities across all three sequences are annotated with stars.

Figure 1


A

B

Figure 2

Figure 3.

KP05_506	-----acaccattagagaaaattgctcgttgcattatcatatggctttgaaac	53
IR10	-----acaccattagagaaaattgctcgttgcattatcatatggctttgaaac	53
Ent1	ccagctaattccgtatctcgaaagacagcttgcattatcatatggctttgaaac	56

KP05_506	tgtcgacccatgtttgaattcgcggcatatggctacagtgaaccaaattaagatc	113
IR10	tgtcgacccatgtttgaattcgcggcatatggctacagtgaaccaaattaagatc	113
Ent1	tgtcgacccatgtttgaattcgcggcatatggctacagtgaaccaaattaagatc	116
