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29 Abstract

30 Genome-wide association studies (GWAS) of schizophrenia (SCZ) have revealed
31 over 100 risk loci. We investigated whether these SCZ-associated variants regulate
32 gene expression by cell type. Using a fully unsupervised deconvolution method, we
33 calculated gene expression by clusters of estimated cell types (cell-groups, CGSs).
34 Five CGs emerged in the dorsolateral prefrontal cortices (DLPFC) of 341 donors with
35 and without SCZ. By mapping expression quantitative trait loci (eQTL) per CG, we
36 partitioned the heritability of SCZ risk in GWAS by CGs. CG-specific expressions and
37 eQTLs were replicated in both a deconvoluted bulk tissue data set with a different
38 method and also in sorted-cell expression data. Further, we characterized CG-
39 specific gene differential expression and cell proportion changes in SCZ brains. We
40 found upper-layer neurons in the DLPFC to be associated with SCZ based on
41 enrichment of SCZ heritability in eQTLs, disease-related transcriptional signatures,
42 and decreased cell proportion. Our study suggests that neurons and related
43 anomalous circuits in the upper layers of the DLPFC may have a major contribution
44 to SCZ risk.
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54 Introduction

55 Schizophrenia (SCZ) is a complex psychiatric disorder, with approximately 80% of
56 phenotypic variation explained by genetics®. In recent years, a surge of genetic
57 markers associated with SCZ has flowed from genome-wide association studies
58 (GWAS)2 Nonetheless, interpreting the biological meaning of these GWAS signals
59 remains a challenge. SCZ GWAS loci are located largely within non-coding regions
60 of the genome, pointing to a mechanistic involvement in gene regulation®. Expression
61 quantitative trait loci (eQTL) mapping provides an effective means for connecting and
62 interpreting GWAS results with underlying relevant expression regulation®. The
63 PsychENCODE2, CommonMind®, Brain Cloud’, and UK Brain Expression
64 Consortium? projects produced large-scale eQTL resources. These data have been
65 integrated with GWAS in the effort to pinpoint risk genes*™,

66

67 A primary pitfall of current brain eQTL analyses, however, is the indifference to cell-
68 type specificity*2. All existing brain eQTL resources originate from homogenate bulk
69 tissues in the brain, a mixture of many cell types or subtypes. Bulk tissue eQTL
70 mapping offers only averaged effects across the composite cell types. It is therefore
71 confounded by variations in proportion and gene expression. Reports of cell-type
72 specificity of eQTLs from blood® provide evidence that at least some common
73 genetic variants shape gene expression by cell types'*. However, the cell-type-
74  specific eQTLs in the human brain have not yet been reported.

75

76 To date, the majority of transcriptomic studies of SCZ have similarly relied on data
77 derived from bulk tissue,using differential analysis and co-expression analyses*>%¢,
78 Such studies bear two major limitations: 1) it is unclear whether genes that are
79 differentially expressed between individuals with SCZ and controls are attributed to

80 differences in expression or changes in cell proportion, and 2) it is unknown whether
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81 changes in SCZ-related expression occur only within one specific cell type or multiple
82 cell types.
83
84 Researchers investigate cell-type-specific expression using either of two approaches:
85 1) sequencing individual or sorted cells using single-cell or single-nuclei sequencing
86 (scRNA-seq or snRNA-seq), or 2) the computational deconvolution of bulk tissue
87 transcriptomic data. To date, fewer than 50 human brain samples have been
88 sequenced and published using scRNA-seq or snRNA-seq**. For the time being,
89 such methods are impractical for most genetic or case-control studies due to the
90 large sample size and associated costs required to achieve adequate statistical
91 power.2 Alternatively, the computational approach can deconvolute bulk tissue data
92 into cell-type-specific data with sufficient accuracy?%.
93
94 The computational deconvolution of bulk tissue data can estimate cell type proportion
95 and cell type-specific expression in either a supervised or an unsupervised manner.
96 Supervised deconvolution relies on an accurate reference, for example, cell type-
97 specific expression from the same species and brain region. However, suitable
98 references are often unavailable, and whether references developed from control
99 samples can be used to deconvolute patient data is uncertain. In contrast, using
100 unsupervised deconvolution sidesteps this problem by estimating cell-type-specific
101 expression and cell proportion without prior information. Unsupervised deconvolution
102 classifies a group of cells algorithmically to differentiate them from other groups.
103 Since these groups may not always reflect biologically homogeneous cell types, we
104 instead use the term cell groups (CGs). The resulting CGs represent an estimated
105 cluster of cell sub-types extractable from bulk tissue. Using unsupervised
106 deconvolution methods, like convex analysis of mixture (CAM), 2% identifies CGs
107 based on gene expression patterns from all tested individuals.

108
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109 Some advanced deconvolution methods can infer cell-type-specific expression per
110 individual, based upon the methylation® or gene expression? profile from the donor’s
111 bulk tissue. Again, such supervised methods rely on suitable references. Ideally,
112 sample-wise and unsupervised deconvolution methods are needed to investigate
113 CG-specific expressions from bulk tissue data in a cost-effective manner.

114

115 We hypothesized that GWAS variants associated with the risk for SCZ regulate gene
116 expression within one or more specific brain cell types. To identify CG-specific
117 expressions at the sample level, we applied the newly-developed method®%
118 sample-wise convex analysis of mixtures (swWCAM) to RNA-seq data from 93
119 postmortem brain samples of donors with SCZ and 248 healthy donors
120 (Supplemental fig.1). An independent postmortem brain dataset of 605 samples was
121 used to replicate the swCAM deconvolution results. Further, we generated CG-
122 specific eQTLs and tested whether the CG-specific eQTLs were enriched for SCZ
123 GWAS signals. To detect SCZ-related transcriptional changes per CG, we performed
124 differential expression analyses, followed by co-expression network and
125 transcriptome-wide association analyses of the deconvoluted expression data. We
126 integrated results from GWAS enrichment, cell proportion, and transcriptomic
127 changes to target SCZ-associated CGs. The processed data and results are

128 accessible on our website (http://lbpg.upstate.edu/module _search/).

129

130 Results

131 Sample-wise deconvolution of RNA-seq data from bulk brain tissue of donors

132 with and without SCZ

133 Five CGs emerged from swCAM deconvolution of bulk tissue data. Their identities

134 were first annotated by enrichment testing of known cell-type marker genes. We
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135 calculated the enrichment of marker genes of major brain cell types# (Supplemental
136 table 1) in the top cell-type differentially expressed genes (ctDEG) for each CG. Top
137 ctDEGs were selected by differential expression analysis of target CG versus the
138 remainder of CGs (log2FC>2, False Discovery Rate [FDR] g <0.05, Wilcoxon signed-
139 rank test). The five annotated CGs represented astrocytes, two neuronal groups, a
140 mixture of astrocytes, microglia, and endothelial cells, and oligodendrocytes (p value
141 <0.05, Fisher’'s exact test, Fig. 1A, Supplemental Fig. 2). We also used Expression
142 Weighted Cell Type Enrichment (EWCE) test as a replication for annotating CGs. We
143 applied EWCE to two snRNA-seq data sets*“# from the human frontal cortex and
144 tested to determine if ctDEGs are expressed more highly in a given cell type than
145 that by chance. The EWCE results were consistent with previous CG annotations
146 except for CG1 (Fig. 1B). Because CG1 was enriched for two glial cell subtypes in
147 the EWCE test of two snRNA-seq data sets, we defined CG1l as a mixture of
148 astrocyte and endothelial cells.

149

150 To test the expression similarity between estimated CGs and corresponding cell
151 types, we performed a Spearman correlation test between CG expressions and
152 snRNA-seq data from the human frontal cortex?®®. We corrected the batch effects
153 between the tested data prior to the correlation test. The three CGs that only
154  enriched for single cell types showed high correlations with corresponding cell types
155 (averaged rhOneyron ce2 =0.83, MOneyron ces =0.81, rh0giigodendrocyte ce5=0.86, all three p
156 values < 0.05, Supplemental Fig. 3) The averaged correlation coefficient for two glial
157 mixture CGs was 0.55 (SD=0.15).

158

159 To further differentiate the two neuronal clusters, marker gene-sets of standard
160 neuronal subtypes were applied. We initially suspected that CG2 and CG3
161 represented inhibitory and excitatory neurons but were dissuaded because there was

162 not convincing statistical differentiation provided by marker genes of these neuron
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163 types (Fisher's exact test p>0.05, Supplemental Fig. 4). We then speculated that
164 CG2 and CG3 may reflect the origin of specific cortical layers. With only two detected
165 neuronal CGs and six cortical layers, we took a quantitative approach in allocating
166 gene expression to gradient cortical layers: 770 upper-layer (upperL) genes were
167 expressed most abundantly in the uppermost layer (layer 1) steadily decreasing by
168 layer with the least expression in the layer 6, while 875 deep-layer (deepL) genes
169 were distributed in the opposite direction (FDR<0.05, linear regression). UpperL and
170 deepL genes corresponded to the CG2 and CG3 clusters respectively (Fisher’s exact
171  test, Pupper<2.2€-16, Pyecp=7.90e-10, Fig. 1C).

172

173 The expression data of manually isolated neurons from each of the six layers of the
174 middle temporal cortex’2 was used to validate the identity of neuronal CGs. We
175 calculated the CG-specific difference for each gene by comparing the expression of
176 CG2 and CG3 individually to that of the other CGs. Layer-specific differences were
177 also calculated for each gene by comparing the neuronal expression of one specific
178 layer to that of the other layers. CG-specific differences and layer-specific differences
179 were then tested for correlation. CG3-specific differences were highly correlated to
180 layer-specific differences of neurons from layers 1 through 3, while CG3-specific
181 differences were poorly correlated to layer-specific differences of neurons from layers
182 4 through 6. In contrast, correlations for CG2-specific differences ran in the opposite
183 direction (Supplemental Fig. 5). We also performed an EWCE test on this snRNA-
184 seq data. The EWCE results showed CG2 enriched for neurons from layer 4
185 (FDR<0.05) and layer 5 (FDR<0.05) and CG3 enriched for neurons from layer 2
186 (FDR=0.006), layer 3 (p=0.04, FDR=0.40), and layer 4 (FDR=0.002, Fig. 1D). Based
187 on these tests, we defined CG2 as representing deep-layer neurons (deepN) and
188 CG3 as upper-layer neurons (upperN). At this juncture, the gene expression profiles
189 for the five CGs were now garnered from the bulk brain tissue of donors with and

190 without SCZ, i.e., upperN, deepN, a mixture of astrocytes and endothelial cells

8


https://doi.org/10.1101/2020.10.22.351213
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.22.351213; this version posted March 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

191 (ast_endo), oligodendrocytes (oli), and a mixture CG of astrocytes, microglia, and
192 endothelial cells (mic_ast_endo) (Fig. 1E).

193

194 Results of this swCAM deconvolution analysis were replicated with another sample-
195 wise deconvolution method, bMIND®. We applied bMIND to our tested data and
196 identified expressions of five CGs with similar composition to those identified by
197 swCAM. We used the Spearman correlation test to examine the similarity between

198 CG-specific expressions estimated by swCAM and bMIND. The correlation

199 coefficients were 0.85+0.03 (FDR<0.05) across corresponding CGs (Supplemental

200 Fig. 6A). The showed that our deconvolution results were robust to different methods.
201

202 swCAM deconvolution results were replicated on a second RNA-seq dataset of 605
203 brain samples®. We detected five CGs in the replication dataset. (Supplemental Fig.
204 7). Through marker gene enrichment tests and EWCE test, we found the five CGs in
205 these data were upperN (FDR of layer 2 neuron <0.05, p value of layer 1 neuron =
206 0.03), deepN (FDR of layer 4 neuron and layer 5 neuron <0.05), astrocyte
207 (FDR<0.05), a mixture of microglia and endothelial cells (FDR<0.05) and a CG
208 showing oligodendrocyte expression with non-significant p value (p =0.14). The
209 dominant CGs such as upperN and deepN CGs were consistently identified.

210

211 Generation of eQTLs for CGs

212 eQTL mapping was used to examine the genetic regulation of CG-specific
213 expression. We included 72 additional brain samples from individuals with bipolar
214 disorder (BD) to increase the sample size. Since we regressed out the affection
215 status, the inclusion of BD patients did not interfere with the eQTL mapping results.

216 The same five CGs were still detected by swCAM deconvolution after adding the BD
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217 samples. After removing known and hidden covariates in the CG-specific
218 transcriptome, we focused on local eQTLs (cis-eQTLs), searching for any
219 associations between individual expression of genes with common variants within £1
220 Mb of the gene body region. In total, we identified 1,878,815 genome-wide significant
221 eQTLs (FDR q < 0.05). After subtracting shared eQTL across all CGs, we observed
222 more eQTL signals in neuronal CGs (both of upperN and deepN) than in glial CGs
223 (Fig. 2A). The number of single nucleotide polymorphisms of eQTL (eSNPs) of
224 neuronal CGs (n=302,608) was more than that of eSNPs of oligodendrocyte CGs
225 (n=80,229). No eQTL survived multiple testing corrections in mixture CGs of
226 astrocyte and endothelial cell data. We annotated the genomic regions for eSNPs
227 with Ensembl annotations using ANNOVAR software2. The majority of eSNPs were
228 located in intergenic and intronic regions within non-coding RNAs (Fig. 2C).

229

230 To examine the replication rate of eQTLs of the three CGs enriched for singular cell
231 types (deepN, upperN, and oli), we compared our results to a sorted-cell study?3,
232 which profiled the gene expression and genotype of neurons (n =42) and
233 oligodendrocytes (n =36). Using the same eQTL mapping pipeline described earlier,
234 we calculated the eQTLs using these replication data. From this small sorted-cell
235 dataset, we could identify 644 eQTLs for neurons and 190 eQTLs for
236 oligodendrocytes (FDR q<0.05). We used Tl from Storey's method* to calculate the
237 proportion of replicated eQTLs. We applied this method to the nominal p-values of
238 replicated eQTLs in sorted cell populations, uncorrected for multiple comparisons.
239 We found that upperN (11=0.56) and deepN (11=0.55) had greater reproducibility
240 than oli (111=0.35). Because 1l is the estimated proportion of the true alternative
241 hypothesis, it has loose criteria for power and p-values. We used replication rate to
242 quantify the replications, which was calculated by the ratio of replicated eQTLs
243 among eQTLs in sorted populations with the criteria FDR<0.05. We found 29% of the

244  neuron eQTLs were specifically replicated in neuronal CGs and 15% of the

10
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245 oligodendrocyte eQTLs were replicated in all CGs (Supplemental Fig. 8).

246

247 We compared our eQTL results with CG-specific eQTLs identified by bMIND. We
248 found our results were well replicated by bMIND, with the 1 >0.98 for all CGs
249 (Supplemental Fig. 6B). We also compared our results with eQTLs from bulk brain
250 tissue samples from BrainGVEX. CG-specific eQTLs showed high reproducibility in
251 the BrainGVEX dataset (171 >0.97 in four CGs, 1= 0.92 in mic_ast_endo, Fig. 2B).

252

253 Neuronal CGs and a mixture CG containing astrocyte and endothelial cells

254 explain the risk heritability of SCZ

255 To associate brain cell type with SCZ, we used CG-specific eQTLs to assess the
256 SCZ GWAS risk heritability. We hypothesized that if a CG is associated with SCZ,
257 their eQTLs will explain greater GWAS heritability. To test this hypothesis, we applied
258 stratified linkage disequilibrium (LD) score regression® (sLDSC) on GWAS summary
259 statistics and CG-specific eQTLs to partition risk heritability from summary statistics.
260 The SNP-based heritability analysis showed neuronal CGs and a CG mixture
261 containing astrocyte and endothelial cells significantly enriched for risk heritability of
262 SCZ (Fig. 3A). The upper-layer neuron CG explained 19.24% of heritability with 14%
263 SNPs (adjusted p value=2.97e-04, Fig. 3B). The deep-layer neuron CG explained
264 19.03% of heritability with 14% SNPs (adjusted p value=4.81e-04). Mixture CG of
265 astrocyte and endothelial cells explained 12% of heritability with 8% of SNPs
266 (adjusted p value=1.04e-03). These results suggest the regulatory regions in the
267 neuronal CGs and a mixture CG of astrocyte and endothelial cells have a higher
268 proportion of SCZ common variants than that in oligodendrocyte CG and a CG
269 mixture containing microglia, astrocyte, and endothelial cells. We also compared

270 enrichment score in bulk tissue eQTLs and CG-specific eQTLs. We found the

11
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271 enrichment scores at bulk level (1.29+0.07) and cell levels (1.42+0.17) were very

272 close (Fig. 3A).

273

274 Decreased proportion of upper-layer neuron CGs from donors with SCZ

275 To determine if the proportion of each CG was altered in the brains of patients with
276 SCZ, we estimated the proportion of CGs for each sample using CAM. The
277 proportion of upperN was reduced by 2.76% in patients with SCZcompared with
278 controls, and the mixture CG of mic_ast endo increased by 0.8% in patients with
279 SCZ (Wilcoxon signed-rank test, p value<0.05, Fig. 4A). Other CGs did not show
280 significant change. The proportional change in upper-layer neurons was statistically
281 significant in a permutation test (p<0.001, Supplemental Fig. 9).

282

283 Based on our testing for genetic enrichment, we hypothesized that the changes in
284 CG proportion could arise from genetic risk variants. We used two strategies to test
285 this hypothesis. First, we performed QTL mapping using CG proportions as the
286 phenotype, but we did not detect any significant CG proportion-QTL signals. Second,
287 we used polygenic risk score (PRS) as a measure of genetic risk burden for each
288 individual and tested the correlation between PRS and CG proportions. We observed
289 weak negative correlations between SCZ PRS and the upperN proportion and the p
290 value did not survive multiple testing (r=-0.1, p value=0.04, FDR=0.1, Fig. 4B).

291

292 CG-specific differential gene expression in SCZ

293 We further analyzed CG-specific differential expression comparing individuals with
294 and without SCZ using Wilcoxon signed-rank test with significance by FDR q <0.05,
295 (Supplemental Table 2). We compared our results with differential expression results

12
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296 from bMIND and observed significant consistency (Fisher’s exact test p value<0.05,
297 Supplemental Fig. 6C). We found substantial overlap in differentially expressed
298 genes (DEG) across five CGs, with 330 upregulated genes and 344 downregulated
299 genes shared across five CGs (Supplemental Fig. 10). The number of shared DEGs
300 across all CGs was greater than the number of CG-specific DEGs, except for
301 upregulated genes in CG mic_ast_endo, with 367 genes. Approximately 33% of the
302 genes (n=14,865, Gencode v19) were affected in at least one CG in the SCZ cohort.
303 The two neuronal CGs possessed greater transcriptional changes than the three glial
304 CGs, (fold change: 0.20 in neuronal CGs versus 0.09 in glial related CGs, p
305 value<2.2e-16, Kolmogorov—Smirnov test). We performed permutation tests to
306 determine the empirical probability of transcriptional changes in CGs. We found that
307 the fold changes observed in all CGs were significant (p<0.001). Larger fold changes
308 in neuronal CGs than that in the glia CG were also significant in permutations
309 (p<0.001, Supplemental Fig. 11).

310

311 We used Gene Ontology (GO) enrichment to annotate the function of DEGs (Table
312 1), focusing on the functions of dysregulated genes in neuronal groups. A total of
313 1,537 downregulated DEGs were detected in the upperN. These were enriched for
314 protein folding (FDR g= 3.20e-09) and antigen processing (FDR g= 8.01e-05). The
315 1,407 downregulated DEGs within deepN were enriched for positive regulation of cell
316 proliferation (FDR g= 2.24e-06) and trans-synaptic signaling (FDR g=4.10e-06).
317 Upregulated genes in both the upperN (n=229) and deepN (n=223) GCs were
318 enriched for carboxylic acid breakdown (FDR Qgeepn=1.04€-06, FDR quppern =6.93e-
319 08).

320
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321 Transcriptome-wide association analysis identified SCZ-associated genes in all

322 CGs

323 To determine which genes had CG-specific dysregulated expression driven by
324 genetics, we performed a TWAS analysis using the CG-specific eQTLs. We identified
325 51 SCZ risk genes across 43 genetic loci (adjusted p value<0.05, Supplemental
326 Table 3). We compared our TWAS results to the 193 SCZ risk genes identified in bulk
327 tissue by TWAS in Gandal et al*®. Twelve genes in our results had been previously
328 identified in Gandal's results. Our analysis attributed these 12 genes to all 5 CGs:
329 deepN (CYP17A1-AS1, AS3MT, CSPG4P11, EMB), upperN (CYP17A1-AS1, AS3MT,
330 CSPG4P11, EMB, GATAD2A, NAGA, RP11-73M18.8, TYWS5), ast endo (RP11-
331 73M18.8, CYP17A1-AS1, EMB), oli (SNX19, AC011330.5, CSPG4P11, EMB), and
332 mic_ast_endo (BTN3A2, TOM1L2, CSPG4P11). Additionally, 39 CG-specific TWAS
333 genes are novel to bulk tissue-based TWAS.

334

335 Out of the 51 TWAS genes, 17 genes are in deepN and 30 in upperN. Eight genes
336 existed in both subtypes (CYP17A1-AS1, AS3MT, PIGB, GOLGA6L9, CSPG4P11,
337 CNPPD1, EMB, ENDOG). Twenty-two genes were uniquely identified in upperN
338 (DIABLO, C12orf65, RP11-73M18.8, STRC, AP3B2, WHAMM, SLX1B, ARL17B,
339 GATAD2A, RPS5, ADAM15, RP1-130H16.16, WBP2NL, NAGA, ALMS1, TYWS5,
340 ITIH4, TMEM110, SFMBT1, NDUFAF2, BTN2Al, DNPH1). Nine genes were
341 identified in the deepN only (CWF19L2, MORNS3, TIE1, RBBP5, CBR3, RFTN2,
342 RP11-10L12.4, REEP2, STK4). Twenty-four TWAS genes are specific to glial CGs (9
343 from ast_endo, 10 from oli and 5 from mic_ast_endo).

344
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345 Co-expression network analysis refined CG-specific biological processes

346 associated with SCZ

347 To investigate the coordinated expression changes in each CG, we performed
348 weighted gene correlation network analysis® (WGCNA) on CG-specific expressions
349 (Supplemental Table 4). For this study, we identified CG-specific modules, a group of
350 genes showing concordant variation across samples in one specific CG. Modules of
351 upperN and deepN were highly consistent. In total, we identified eight CG-specific
352 modules out of the 149 detected modules. Seven of the eight showed either
353 differential expression of eigengenes in SCZ or enrichment of SCZ GWAS signals.
354 These seven modules were defined as “SCZ-associated modules” (Table 2).

355

356 The neuronal CGs shared five of the seven SCZ-associated modules (Fig. 5). The
357 eigengenes of two modules showed upregulated expression in SCZ: neuron_ME28
358 (log2FC=0.02, FDR=6.8e-03) and neuron_ME30 (log2FC=0.03, FDR=6.3e-07).
359 These two were enriched in the pathways of neural stem cell maintenance and
360 carbohydrate transmembrane transport (FDR <0.05). The other three modules
361 showed only enrichment of GWAS signals (neuron_ME32, neuron_MEZ27, and
362 neuron_ME29)and were enriched within pathways of regulation of actin filament
363 polymerization, regulation of dendritic spine morphogenesis, and SWI/SNF
364 superfamily-type complex, respectively (FDR g<0.05).

365

366 The other two SCZ-associated modules were specific to glial CGs. In the mixed CG
367 of astrocytes and endothelial cells, we identified ast _endo_ME28, enriched for SCZ
368 GWAS signals, and involved with the RNA splicing pathway (FDR <0.05). In the
369 oligodendrocyte CG-related module (oli_ME14), the eigengene was downregulated in
370 SCZ (log2FC=-0.01, FDR=0.04). Member genes in this oli_ ME14 were involved in

371 neuron ensheathment (FDR g<0.05).
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372

373 Discussion

374 Combining CG-specific eQTL analysis and GWAS can reveal how (the regulation of
375 gene expression) and where (within which CGs) variants contribute to disease risk.
376 Recent studies have employed this approach identifying cell-type-specific eQTLs in
377 blood that have heightened risk heritability for immune-related diseases®*% However,
378 cell-type-specific eQTLs for human brains are not available and are difficult to obtain.
379 To bridge genetic findings of SCZ to brain cell types, we generated CG, a proxy of
380 cell type, using an unsupervised deconvolution method. We then mapped CG-
381 specific eQTLs using computationally partitioned gene expression specific to each
382 CG per individual. Based on GWAS data, we found enrichment for risk heritability in
383 the eQTLs of upper-layer DLPFC neuronal CGs (upperN). Furthermore, we found
384 that the upperN CGs also displayed dramatic gene expression changes and altered
385 cell proportions in the individuals with SCZ.

386

387 Our results are consistent with previous bulk tissue studies of human and cell-type-
388 specific studies of mice in implicating neurons in the risk for SCZ. In a case-control
389 study of bulk brain tissues, Gandal et al. showed the neuron-specific co-expression
390 module to be downregulated in SCZ*2. Skene et al. calculated the neuronal specificity
391 of the human-homologous gene in mouse scRNA-seq data and correlated this
392 specificity to risk heritability enrichment within the genetic region®%. They found that
393 four neuron subtypes in the mouse brain (i.e., medium spiny neurons, pyramidal cells
394 in hippocampal CA1, pyramidal cells in the somatosensory cortex, and cortical
395 interneurons) are associated with SCZ. Our study expands upon those findings,
396 confirming that a subtype of neurons, the group of upper-layer neurons in human

397 DLPFC, are associated with SCZ.
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398

399 Our study provides genetic support for an association between the upper-layer
400 neurons of the DLPFC and SCZ. This is supported by the enrichment of GWAS
401 signals, dysregulated gene expression, and decreased proportions within the upperN
402 CGs. Previous research has shown upper-layer neurons of the DLPFC are over-
403 represented in humans compared with other species,*® and to be actively engaged in
404 the delayed activity of working memory?, the impairment of which is a major feature
405 of SCZ. Some phenotypes of upper-layer neurons within the DLPFC have been
406 reported to be associated with SCZ in terms of cell shape*, dendritic

4344 and candidate mRNA expression®2. However, no genetic evidence

407 abnormalities
408 that we are aware of to date has pinpointed upper-layer neurons as having a role in
409 SCZ risk. In this study, we observed that GWAS risk variants contribute to SCZ by
410 altering gene expression within the upper-layer neurons. Our coexpression network
411 analysis and TWAS analysis further narrowed down specific genes and pathways.
412 Therefore, we suspect that previously reported phenotypic changes®2° within the
413 upper-layer neurons of patients with SCZ may be rooted in these genetic variants
414 and their related gene expression regulation.

415

416 Our findings of SCZ-associated changes in upper-layer neurons were validated by
417 multiple lines of experiments from other studies. In a recent snRNA-seq study of
418 cortical layers from seven SCZ patients and 11 controls, the selective vulnerability of
419 supragranular layer neurons was revealed in SCZ in terms of dramatic transcriptomic
420 changes and cell proportion changes®. A decreased proportion of upper-layer neuron
421 subtypes was also observed in mouse model SCZ-predisposing 22q11.2

250 Moreover, the functional

422 microdeletion® and human postmortem brains
423 mechanism of a differential expressed gene in upper-layer neuron CYFIP1 (log2FC=-
424 0.13, FDR=0.0004) has been discovered in the mouse cortex. It has been reported

425 that CYFIP1 deficiency causes upper-layer neurons to present in deep layers and
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426 deep-layer neurons to present in upper layers®. Moreover, the changes in upper-
427 layer neurons also have been noted in association with another psychiatric disorder,
428 autism, based on snRNA-seq study®®. In summary, this study strengthened the
429 findings of upper-layer neuron dysfunction in SCZ and provided more detailed cell-
430 subtype evidence based on a relatively large brain collection. It provides strong
431 support to previous studies of animal models, cell models, and brain transcriptome
432  studies with limited samples.

433

434  Our findings suggest the SCZ-associated changes in upper-layer neurons may occur
435 in neuron development. Neuron development in human brain includes proliferation,
436 differentiation, neuron migration and synaptic formation. This process is coupled with
437 substantial transcriptome changes®. We found that the DEGs in upperN were
438 enriched in the pathways of cell proliferation and trans-synaptic signaling, which has
439 previously been suggested as involved in SCZ risk. For example, the disrupted
440 proliferation of neurons has been reported in primate and murine models of SCZ>.
441 Five TWAS genes in upperN are related to neuronal development as well: AS3MT,
442 CSPG4P11, ADAM15, STRC, and WHAMM. For example, AS3MT participates in
443 neural stem cell differentiation and is a risk gene for SCZ>%. CSPG4P11 is also an
444 eQTL gene in fetal brains, and its expression has also been linked to SCZ risk®>=8,
445 ADAM15, STRC, and WHAMM function in cell-matrix adhesion, which is linked to

446  neurodevelopment and SCZ>"%

. Therefore, our findings support the hypothesis that
447 the disturbed gene expression in neurodevelopment is involved in SCZ molecular
448 pathology. While our study cannot provide causality of these genes in SCZ pathology,
449 future functional experiments in cells and useful animal models could potentially
450 confirm the functional mechanism of genes.

451

452  While swCAM yielded reproducible unsupervised deconvolution results, particularly

453 for neuronal CGs, it also has its limitations. The CGs estimated by swCAM represent
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454  groupings of cells with similar transcriptional profiles. Correspondingly, swCAM has
455 relatively poor resolution in separating rare cell types. Glial subtypes with small
456 compositions, such as microglia, have been particularly challenging. As single-cell
457 data are accumulating, a hybrid model integrating a suitable reference may boost
458 swCAM’s resolution. Despite these constraints, swCAM enhances the merit of
459 existing bulk-tissue data by deriving expression for major CGs. With this method, it is
460 possible to determine whether disease-related gene expression is a feature of
461 specific CGs or a pattern of composite CGs. Furthermore, gene networks and
462 genetic regulatory relationships can emerge that may help to ferret out hidden clues

463 to the molecular mechanisms of complex psychiatric disorders.

464 Conclusion

465 Of five clusters of cell types estimated by gene expression in silico, the upper-layer
466 neurons within the DLPFC display distinctive enrichment of risk heritability and
467 transcriptional changes in the brain tissue of donors with SCZ. Furthermore,
468 decreased proportion of upper-layer neurons relative to al cell groups was observed
469 within the SCZ brain. The uniquely dysregulated genes and pathways associated
470 with upper-layer neurons, particularly those related to neurodevelopment, should be
471 targeted in future experimental studies and quantitative analysis of SCZ to further
472 understand the molecular mechanism of SCZ.

473

474 Materials and methods

475 Brain tissues

476 The PsychENCODE/BrainGVEX project has 427 postmortem DLPFC samples,

477 including healthy controls, BD and SCZ patients. Brain samples originated from the
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478 Stanley Medical Research Institute (SMRI) and the Banner Sun Health Research
479 Institute (BSHRI). Detailed information can be found at
480 https://www.synapse.org/#!Synapse:syn4590909.

481

482 RNA sequencing

483 Total RNA was isolated from brain tissue at the University of lllinois at Chicago and at
484 the University of Chicago with the Qiagen miRNeasy mini kit. Quality of RNA samples
485 was measured with an Agilent Bioanalyzer RNA 6000 Nano assay kit and all samples
486 had a RIN score of 5.5 or greater. All total RNAs were processed into stranded,
487 rRNA-depleted libraries for sequencing in an Illumina HiSeq2000. Libraries were
488 triplexed per lane to reach 40 million paired-end reads per library. Details of library
489 preparation and RNA sequencing can be found in our previous study.

490

491 Data processing

492 Data processing included three steps: reads processing, quantification, and post-
493 quantification processing. Fastq files underwent adapter removal using cutadapt
494  (https://pypi.python.org/pypi/cutadapt), after which the resulting adapter-trimmed
495 fastq files were checked for quality using FastQC
496 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). A subset of 10,000 reads
497 estimated the insert mean size and standard deviation for use with Tophat. STAR
498 was used to align trimmed reads to the GENCODEvV19 reference (modified to include
499 artificial ERCC RNA ExFold spike-in sequences). BAM files were sorted in samtools
500 (v1.3). Expression level was then calculated using RSEM (v1.2.29). Quality control
501 metrics were calculated using RNA-SeQC (v1.1.8), featureCounts (v1.5.1),

502 PicardTools (v1.128), and Samtools (v1.3.1). The quantified fragments per kilobase
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503 of transcript per million mapped reads (FPKM) were used for downstream analysis.
504 Mitochondrial genes, pseudoautosomal genes, and genes with FPKM fewer than 1 in
505 more than 75% of samples were dropped. We calculated the distance between
506 samples and removed samples with a z-score of normalized connectivity to other
507 samples lower than -2. After filtering, 341 samples and 14865 genes were retained
508 for subsequent analyses. Linear regression removed the effect of covariates
509 including age, sex, RIN, PMI, brain bank, batches, and principal components of
510 sequencing statistics (seqPC). The seqPCs was composed of the top 29 principal
511 components analyzed from the sequencing statistics. Covariates were selected by
512 multivariate adaptive regression splines (MARS).

513

514 Genotype processing

515 Genotypes were called from three platforms, including 277 samples by whole
516 genome sequencing, 257 samples by Psych v1.1 beadchips, and 137 samples by
517 Affymetrix 5.0 450K. Genotypes were imputed by Michigan Imputation Server using
518 HRC (r1.1 2016) EUR samples as references from each platform. Variants with R
519 squared less than 0.3 or HWE (Hardy-Weinberg Equilibrium) p-value less than le-6
520 were removed. We used DRAMS software® to correct mixed-up data IDs for the
521 three platforms based on relationships across various omics data. We had 251
522 samples genotyped by whole genome sequencing and beadchip. The genotypes
523 called from the two platforms were highly consistent (r= 0.986). Genotypes of the
524 three platforms were combined, with discordant genotypes marked as missing.
525 Polygenic risk scores were calculated using PRSice (2.1.4) with GWAS summary

526 data from Ripke et al? as base data set.
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527 Sample-specific deconvolution

528 To isolate CGs in-silico, we developed a novel sample-wise deconvolution technique
529 (swCAMZ), applying it to the processed RNA-seq data. The original CAM framed the
530 deconvolution of mixture expression to solve the blind source separation problem
531 (sBSS), which was accomplished by nuclear norm regularization. The basic
532 assumption in the deconvolution was

533 X=AS+E (1)

534 which is the mixture sample being the weighted sum of the CG-specific expression S.
535 In the classic deconvolution method, S is a common matrix for all mixture samples.
536 However, each sample may have its sample-specific S;.

537 Si=+ASi(i=1, ..., M) (2)

538 The associated sample-specific BSS model is given by

539 x=ai(+ AS) +e(3)

540 If some samples have a group pattern in a particular source or some molecules’
541 expression are more highly correlated in one particular source, the associated
542 samples may share a similar pattern of AS;, leading to the following swCAM objective

543 function:

544 min2 T, |lx; — a;(S+ASDIZ + AT 1Tl (@)

545 Where T consists of the kth column in all AS; representing between-sample
546 variability in source K; |[T||* is the nuclear norm of Ty. A is the regularization
547 parameter of nuclear norms. We solved equation (4) using quadratic programming

548 and the alternating direction method of multipliers (ADMM). Code of swCAM can be

549 accessed at https://github.com/Lululuella/swCAM.

550 We used CAM to estimate the CG proportion in an unsupervised manner. The
551 processed expression data was the input of CAM. The minimum description length
552 (MDL) algorithm was used in CAM# to automatically determine the number of CGs
553 (K). MDL is a widely-adopted and consistent information theoretic criterion in model
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554  selection. The shortest MDL denotes the best model. Shortest MDL was shown when
555 K=5 for the data. The proportions of five CGs and processed RNA-seq data were
556 entered into swCAM to infer the CG-specific expression for each sample. To obtain
557 the top ctDEGs and thereby differentiate the CGs, Wilcoxon signed-rank test
558 determined the difference of expression in each CG (log2FC>2, FDR<0.05).

559

560 Processing of single-cell datasets

561 Three single-cell datasets provided further confirmation of CG identities®%2%, We
562 downloaded raw counts from frontal cortices and used the Seurat package (v2.0) for
563 data processing®:. We filtered out the following: genes expressing in less than half of
564 the smallest CGs, cells with unique feature counts (i.e., >5,000 and <200), and cells
565 with mitochondrial counts >5%. The data were then normalized by library size and
566 log-transformed. The cell identities from the original studies were used for cell
567 clustering. The averaged expression was calculated to represent gene expressions
568 for the specific cell type.

569

570 Processing the ROSMAP dataset for replication

571 The synapse website (10.7303/syn3388564) provided a replication dataset with 640
572 postmortem human DLPFCs from the Religious Orders Study and Memory and Aging
573 Project (ROSMAP)2. Gene expression was measured by RNA-seq. The downloaded
574 raw expression matrix was quantified in FPKM. After quality control, the data retained
575 19,144 genes and 605 samples. Expression was log2-transformed and normalized
576 by quantile normalization. The confounder effects from age, sex, diagnosis,
577 sequencing batch, study, ancestry, education year, and PMI were removed by linear

578 regression.
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579

580 Cell group identification

581 We used two strategies to annotate the CGs; gene sets enrichment and correlation
582 with scRNA-seq data. In the identification of five general CGs, the marker genes of

583 five major cell types were collected from Zhang et al*

and the marker genes for
584 inhibitory neurons and excitatory neurons were collected from Lake et al®®. Fisher’s
585 exact test was used to test the enrichment of marker genes in CGs. Meanwhile,

2880 \was used to measure

586 Spearman correlation testing with scRNA-seq datasets
587 similarities between CG expression and that of known cell types. To identify genes
588 expressed in gradient cortical layers, we downloaded RNA-seq data across human
589 DLPFC layers from the He et al. study®®. Gene expression was set as a linear
590 regression function for DLPFC layers (from layer 1 to layer 6). Genes with coefficient
591 >0 and FDR <0.05 were named “deep-layer genes.” Those with coefficient <O and

592 FDR <0.05 were named “upper-layer genes”. scRNA-seq data used for correlation

593 testing with neuronal CGs was downloaded from https://portal.brain-map.org/atlases-

594 and-data/rnaseq, which provided neuronal expression for the multiple layers of

595 human middle temporal gyri®2. Spearman correlation test was performed on layered
596 neuronal expression and that of CG2 and CG3.

597

598 Expression Weighted Cell Type Enrichment® (EWCE) test was used as a replication
599 of CG annotations. The purpose of EWCE is to determine the chance of a target
600 gene list having higher expression in a specific cell type than a random gene list. The
601 ctDEGs identified in each CG were used as target lists. Two snRNA-seq data sets

602 from frontal cortext’2

and one snRNA-seq data set from six cortical layers® were
603 used as tested data. The test was repeated 10000 times. The p values were

604 corrected by the Benjamini-Hochberg method.
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605

606 CG-specific differential expression

607 Differential expression analysis was conducted in each CG with the Wilcoxon rank-
608 sum test. The p values were corrected by FDR. Genes with FDR ¢ value <0.05 were
609 identified as differentially expressed genes. To calculate the empirical probability of
610 observed fold changes, we conducted a permutation test as follows. In each CG, we
611 permutated the case/control labels and calculated the fold changes of case-control
612 differential expression. The permutation test was repeated 1000 times.

613

614 Pathway analysis

615 Gene ontology enrichment tests for biological processes, molecular function, and
616 cellular components were performed using gProfileR®, with p-values FDR-corrected.

617

618 CG-specific eQTL mapping

619 To identify CG-specific eQTLs in the brain, we performed cis-eQTL mapping using
620 package FastQTLY. eQTL mapping was performed independently for each CG. We
621 used CG-specific expression estimations from swCAM as phenotype data. The
622 phenotype data were gene expression matrixes for five CGs (five matrixes formatted
623 in genes * samples). A cis-window was defined for genes in each CG as 1 mega
624 base up- and down-stream of the gene body. Each CG expression matrix was
625 adjusted for hidden covariates using PEER®® with FDR-corrected p-values. eQTLs
626 with FDR <0.05 were retained.

627

628 To compare CG-specific eQTLs with sorted-cell eQTLs and bulk brain eQTLs, we
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629 used Storey’s Qvalue package®® and replication rate. The proportion of true
630 associations (1) was estimated for significant CG-specific eQTLs in the sorted-cell
631 eQTLs/BrainGVEX DLPFC eQTLs. With the distribution of corresponding p values for
632 the overlapping eQTLs, we calculated 10, i.e., the proportion of true null associations
633 based on distribution. Then, TT1 = 1 - M0 estimated the lowest bound for true-positive
634 associations. The replication rate is the ratio of replicated eQTLs with FDR<0.05

635 among all significant eQTLs in sorted cell populations.

636 Heritability estimation with GWAS summary statistics

637 Partitioned heritability was measured through LD Score Regression v1.0.0%,
638 identifying enrichment of GWAS summary statistics among CG-specific eQTLs by
639 accounting for LD. CG-specific eQTL annotation files were created by eSNPs
640 detected in each CG. The annotation file was produced by marking all HapMap3
641 SNPs that fell within the eQTL annotations. LD-scores were calculated for SNPs
642 within the file (LD window of 1cM). The LD reference panel was downloaded from
643 1000 Genomes European Phase Three. SNP LD-scores were interwoven in the
644 computation of partitioned heritability (proportion of h?). Enrichment for each
645 annotation file was calculated by the proportion of heritability explained by each
646 annotation file divided by the proportion of SNPs falling in that annotation file.
647 Enrichment p values were then corrected by multiple testing.

648

649 Estimation and case-control comparison of cell proportions

650 To compare the CG composition in SCZ patients and healthy controls, we used CAM
651 to estimate the proportion of each CG. Wilcoxon rank-sum test was used to compare
652 the CG proportions between SCZ patients and healthy controls. FDR correction was

653 performed on the p values. To determine the empirical probability of proportion
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654 changes in upper-layer neuron CG, we permutated the case/control labels and
655 calculated the case-control proportion changes in upper-layer neuron CG. This
656 process was repeated 1000 times.

657

658 Transcriptome-wide association study

659 We performed TWAS analysis on the GWAS summary statistics”® and the CG-
660 specific eQTLs using the TWAS/FUSION package®. To identify risk genes with
661 evidence of genetic control, we used genome-wide complex trait analysis to estimate
662 cis-SNP heritability h2g (z1MB window around gene body). We identified genes with
663 significant h2g (nominal p-value <0.05), which were used to calculate the SNP-based
664 predictive weights per gene. Using the FUSION package, we calculated five-fold
665 cross-validation of five models of expression prediction and evaluated the prediction
666 models for accuracy. The five models are best cis-eQTL, best linear unbiased
667 predictor, Bayesian sparse linear mixed model [BSLMM], and elastic-net regression,
668 LASSO regression. The model with the largest cross-validation R?> was chosen for
669 downstream association analyses. TWAS statistics were calculated using different
670 cell-group weights, LD SNP correlations from the 1000 Genomes European Phase 3
671 reference panel. TWAS association p values were FDR-corrected and were corrected
672 for multiple CGs.

673

674 Gene co-expression analysis

675 We constructed the gene co-expression network for each CG using Weighted Gene
676 Co-Expression Network Analysis (WGCNA) on deconvoluted CG-specific expression
677 data. A correlation matrix was calculated for the genes, which was then weighted

678 after a scale-free topology was approximated. The following weighted powers were
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chosen for the respective CGs: 12 for ast endo and deepN, 14 for upperN,
mic_ast_endo, and oli. The signed adjacency, biweight midcorrelation, and
blockwiseModules parameters were selected to build the network. Other parameter
settings included the following: mergeCutHeight= 0.1, minModuleSize= 30,

pamStage=FALSE, and deepSplit=4.

Associating the gene modules with SCZ

Two strategies were used to test the association between gene modules and SCZ.
First, we constructed a linear model in which the dependent variable is the module
eigengene across all samples and the independent variable is the disease state for
the samples (FDR-adjusted p value<0.05). Second, we tested the correlation
between GWAS significance and the module membership (KME), which is the
expression correlation between each module member gene and the module
eigengene. GWAS significance of each module member gene was calculated by
MAGMA v1.062 using the European subset of the 1000 Genomes as a reference
panel for LD. An annotation step was performed first in which GWAS significant
SNPs were mapped to genes, based on the presence of a GWAS significant SNP in
the region between a gene’s start and stop sites +/- 10kb. A competitive gene-set
analysis was then performed using sets defined by gene co-expression modules.
Resulting p values were FDR-corrected for multiple comparisons. Modules meeting

any of the two criteria above were defined as “SCZ-associated modules”.

Gene module preservation test

To test the similarity among the CG-specific modules, we tested preservation among

the modules detected per CG using Zsummay- The network-based preservation test

28
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704 generated two types of statistics: 1) density-based preservation statistics to
705 determine whether the nodes in the reference network were still highly connected in
706 the test network; 2) connectivity-based preservation statistics to determine whether
707 the connectivity pattern in the reference network was preserved in test network. We

|E

708 applied Zsummary test by Peter Langfelder et al*=, in the formula

_ Zdensity + Zconnectivity
Zsummary - 2

709 Zgensty SUmmarizes density preservation statistics, and Zconneciviiy SUmmarizes
710 connectivity-based statistics.

711

712 Data availability

713 Access to the raw BrainGVEX data is controlled by the NIMH Repository and
714 Genomics Resources (NRGR), https://www.nimhgenetics.org/. Instructions can be
715 found in the PsychENCODE Knowledge Portal:
716 https://www.synapse.org/#!Synapse:syn4921369. Deconvoluted data can be reached

717  at http://Ibpg.upstate.edu/module_search/. Source data are provided with this paper.
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719 Code availability

720 Scripts used in the data analysis for this manuscript can be found at GitHub:
721 https://github.com/RujiaDai/CellSpecificAnalysis. Code for swCAM can be found at
722 https://github.com/Lululuella/swCAM.
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761 Fig. 1 Cell-group-specific expression for each individual. (A) Expression of brain cell-type
762 marker genes per individual estimated cell groups (CGs). Oli: oligodendrocytes, Mic:
763 microglia, Ast: astrocytes, Endo: endothelial cells. (B) Annotation of CGs with Expression
764  Weighted Cell Type Enrichment (EWCE) test. Two snRNA-seq data sets from human frontal
765 cortex were used. The black asterisks denote enrichment p value <0.05. (C) Gradients of
766 gene expression across cortical layers in deconvoluted neuronal CGs. The red column
767 denotes upper-layer genes (upperL genes), which express in a decreasing gradient from
768 layers 1 to 6, and the blue column denotes deep-layer genes (deepL genes), which express in

769 an increasing gradient from layers 1 to 6 (FDR<0.05, Spearman correlation). (D) EWCE
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770 results showed neuronal CGs enriched in neurons of different cortical layers. The black
771 asterisks denote enrichment p value <0.05 and the yellow asterisk denotes nominal p value
772 <0.05. (E) tSNE plot of deconvoluted groups, color-coded by the annotated CG. Each dot
773 denotes one deconvoluted cell within a sample. Ast_endo: mixture CG of astrocyte and
774 endothelial cells, deepN: deep-layer neuron CG, upperN: upper-layer neuron CG,
775 mic_ast_endo: mixture CG of microglia, astrocyte, and endothelial cells, oli: oligodendrocyte
776 CG.
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794  Fig. 2 Summary of cell-group-specific eQTLs. (A) The number of eQTLs and eSNPs
795 detected in each cell group (CG) (FDR corrected p value<0.05). (B) The similarity between
796 CG-specific eQTLs, bulk brain tissue eQTLs, and single-cell eQTLs, evaluated by 1Tl values.
797 (C) Genomic annotation of eSNPs. Ast_endo: mixture CG of astrocyte and endothelial cells,
798 deepN: deep-layer neuron CG, upperN: upper-layer neuron CG, mic_ast_endo: mixture CG of
799 microglia, astrocyte, and endothelial cells, oli: oligodendrocyte CG.
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809 Heritability enrichment (h2/proportion of SNPs) Proportion of heritability (h2)

810 Fig. 3 Genetic risk heritability enrichment in cell groups. GWAS heritability was
811 partitioned in five estimated cell groups (CGs). The SNPs of CG-specific eQTLs (FDR
812 corrected p value<0.05) were cataloged in annotated files in sLDSC. (A) the SCZ risk
813 heritability enrichment in different categories (calculated by the proportion of heritability (h2) /
814 proportion of SNPs) and (B) the h2 explained by different categories. The asterisk denotes a
815 corrected p value <0.05 in the enrichment test. ast_endo: mixture CG of astrocyte and
816 endothelial cell, deepN: deep-layer neuron CG, upperN: upper-layer neuron CG,
817 mic_ast_endo: mixture CG of microglia, astrocyte, and endothelial cells, oli: oligodendrocyte
818 CG.

819

820

821

822

823

824

825

826

35


https://doi.org/10.1101/2020.10.22.351213
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.22.351213; this version posted March 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

827
828

829
830
831
832
833
834
835

836

837

838

839

available under aCC-BY-NC-ND 4.0 International license.

Aos o T B
i mic_ast_endo *
0.4
-
= o oli .
il .
503 ] Group
g i . B CTL ast_endo I
L]
So2 . : E3 scz
8 . . __-___S__ upperN .
' H‘ i
0.1 1=k
deepN I
0.0 .
deeph upperi oli ast_endo mic_ast_endo -0.1 0.0 0.1

Rho

Fig. 4 Proportion per cell group and association with SCZ. (A) Proportions of the five cell
groups (CGs) for donors with and without SCZ, estimated with the CAM method. The asterisk
denotes corrected p-values of the Wilcoxon rank-sum test <0.05. (B) Spearman correlation
between polygenic risk score (PRS) and CG proportion. The red asterisk denotes corrected p-
values of correlation test <0.05 and the yellow asterisk denotes nominal p value <0.05.
Ast_endo: mixture CG of astrocyte and endothelial cells, deepN: deep-layer neuron CG,
upperN: upper-layer neuron CG, mic_ast_endo: mixture CG of microglia, astrocyte, and

endothelial cells, oli: oligodendrocyte CG.
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840

841 Fig. 5 Neuron-specific co-expression modules related to SCZ. Top 10 genes ordered by
842 module membership (KME, i.e., correlation between gene expression and module eigengene)
843  are shown for each neuron-group-specific module.
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855 Table 1 Summary of cell group-specific differential gene expression

Cellgroup  #Upreg- #Downreg- Mean Most prominent Most prominent functional
ulated ulated (|logzfold- functional pathway of downregulated
gene gene change|) pathways of genes

+sd upregulated genes
ast_endo 950 1660 0.11+0.18 carboxylic acid defense response

catabolic process

deepN 1254 1297 0.22+0.26 organic acid positive regulation of cell
metabolic process  proliferation

upperN 1304 1882 0.26+0.25 carboxylic acid protein folding
catabolic process

mic_ast_ en 1197 1083 0.11+0.18 regulation of positive regulation of

do cellular immune system process
component size

oli 747 1445 0.14+0.18 modulation of positive regulation of
chemical synaptic  immune system process

transmission

Ast_endo: mixture CG of astrocytes and endothelial cells, deepN: deep-layer neuron CG, upperN:
upper-layer neuron CG, mic_ast_endo: mixture CG of microglia, astrocyte, and endothelial cells, oli:
oligodendrocyte CG.
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869 Table 2 Cell group-specific co-expression modules

870

Cell Module  Trait GWAS Representative GO term  Top 3 hub genes
group name associat enrichment (FDR<0.05)
ion
ast ned Ast end - SCZz2014, RNA splicing SEC62, PPIG, PNN
0 o) Education, IBD
_ME28
neuron neuron_ SCZ? SCZ2014, neuronal stem cell TSC22D1, ENTPD3,
ME28 Education population maintenance  SYNE1
neuron_ - SCZ2014, SWI/SNF superfamily- WDRA48, STOML2,
MEZ29 Education type complex 0Ss9
neuron_ SCZ? SCZ2014, carhydrate FKBP5, SORT1,
ME30 Education, transmembrane WIPF3
Neuroticism transport
neuron - SCZz2014, negative regulation of GRIA4, CUX2,
_ME32 Education actin filament EPHX4
polymerization
neuron - SCZ2014, regulation of dendritic RIMS3, NGEF,
_ME27 Education, spine morphogenesis LZTS3
Neuroticism,
BD2016
mic_ast mic_ast - - Defense response to RSAD2, DDX58,
_endo _endo_ virus PSME2
ME25
oli oli ME1 SCzZ| - Ensheathment of RNASEL1, GPR37,
4 neuron PLP1

Ast_endo: mixture CG of astrocyte and endothelial cells, deepN: deep-layer neuron CG, upperN:

upper-layer neuron CG, mic_ast_endo: mixture CG of microglia, astrocyte, and endothelial cells, oli:

oligodendrocyte CG.
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873 Supplemental Fig. 1 Overview of the study. Using the sample-wise convex analysis of
874 mixtures (swCAM) deconvolution method, we extracted cell-group-specific (CG-specific)
875 expression from RNA-seq data from bulk brain tissue of 341 samples (SCZ=93, CTL=248). To
876 annotate the identified CGs, maker gene enrichment and correlation testing with scRNA-seq
877 data were used. To discover SCZ-associated cell types and genes, we performed CG-specific
878 eQTL mapping, GWAS heritability enrichment, CG-specific differential expression, CG-
879 specific co-expression, and transcriptome-wide association study. These analyses offer a
880 framework for discerning cell subtypes and underlying genes and pathways associated with
881 SCZ. We found upper-layer neuron CGs in human DLPFC to be associated with SCZ.
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884 Supplemental Fig. 2 Cell-group enrichment of brain cell marker genes. Enrichment
885 of the top cell-type differentially expressed genes (ctDEGS) in estimated cell groups
886 (CGs) (log,FC>2, FDR <0.05) for human brain cell marker genes. Color denotes
887 logie-scaled p values of enrichment for significant associations and text in cell
888 denotes odds ratio (Fisher’'s exact test).

889

890

891

892

893

894

895

896

897

898

41


https://doi.org/10.1101/2020.10.22.351213
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.22.351213; this version posted March 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A N o v o B 5 8 8 3 8
b o 8 & 8 S o o o O
ASC | 0.63| 0.59 0.65 0.62| 0.56|
ASC = 0.66 0.57 08 :
06  END 0.65 0.6
END
054 0.55 iy 0.4
EX 054 09 075 0
02 :
Ve 0.79
0 IN | 0.51 0.87 0.75 0
Neuron 0.88| 0.62 0.2 ~0.2
MG 0.54
04 —0.4
obc 086§ . oDC 0.57| 0.53 0.86 |1-0.6
oPC 0.63 08 opc 0.64| 0.61 0.57 %8
899 - -

900 Supplemental Fig. 3 Correlations between estimated cell-group-specific (CG-
901 specific) expression and (A) single-cell expression (Darmanis et al. 2015) and (B)
902 single-nuclei expression (Habib et al. 2017). The Spearman correlation test was
903 used. The number and the color both denote the correlation coefficient. ASC:
904 astrocytes, END: endothelial cells, MG: microglia, ODC: oligodendrocytes, OPC:
905 oligodendrocyte precursor cells, EX: excitatory neurons, IN: inhibitory neurons.
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908 Supplemental Fig. 4 Expression of marker genes of the inhibitory and excitatory
909 neuronal subtypes in deconvoluted neuronal cell groups (CGs). Ex: excitatory
910 neurons; In: inhibitory neurons. The data of subtypes was from a single-nucleus
911 study of human brains (Lake et al, 2017).
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918

919 Supplemental Fig. 5 Spearman correlation between expressions of estimated

920 neuronal cell groups (CGs) and expressions of neurons from different layers of the

921 middle temporal gyrus.
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925 Supplemental Fig. 6 Comparison with an alternative deconvolution method bMIND. (A)
926 Spearman correlations between CG-specific expressions estimated from swCAM (rows) and
927 bMIND (columns). (B) Replication of CG-specific eQTLs by bMIND. (C) Comparison of SCZ

928 differentially expressed genes identified by swCAM and bMIND.
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929
930 Supplemental Fig. 7 Deconvolution of replication dataset from ROSMAP project. (A) Marker

931 gene expression in estimated cell groups (CGs). (B) To annotate the identity of CGs, an
932 EWCE test with snRNA-seq data from human cortex was conducted. (C) Expressions of
933 upper-layer and deep-layer genes in estimated CGs. (D) To annotate the identity of neuronal
934 CG1 and CG5, EWCE test with snRNA-seq data of neurons from cortical layers was
935 conducted. Ast: astrocytes, End: endothelial cells, Mic: microglia, Oli: oligodendrocytes, Opc:

936 oligodendrocyte precursor cells, Ex: excitatory neurons, In: inhibitory neurons.

46


https://doi.org/10.1101/2020.10.22.351213
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.22.351213; this version posted March 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
0.7
0.6
0.5
- 04
o3
0.2
0.1
0
CG1 cG2 CcG3 CcG4 CG5
m Neuron m Oligodendrocyte
B
0.35

0.3
0.25
0.2

0.15
0.1
0.05
0 |
CG1 CG2 CG3 CG4 CG5

mNeuron ® Oligodendrocyte

Replication rate

937
938 Supplemental Fig. 8 Replication of CG-specific eQTLs in eQTLs from sorted cell

939 populations. (A) The degree of replication is indexed by M1 and (B) replication rate.

940 T11 is the proportion of true alternative hypothesis of replicated eQTLs in sorted

941 population. Replication rate is the ratio of replicated eQTLs over eQTLs in sorted
942 populations (FDR<0.05).
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946 Proprotion change of upper-layer neurons

947 Supplemental Fig. 9 Permutation test of proportion changes observed in upper-layer
948 neurons. The sample labels were shuffled and the proportion changes were
949 calculated from two randomly selected groups. This process was permutated 1000
950 times. The black line is the distribution of proportion changes in permutations and the

951 red line is the observed proportion changes.
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953 Supplemental Fig. 10 Overlap of differentially expressed genes detected in each
954 cell group. The differential expression of genes in patients with SCZ was calculated
955  with Wilcoxon signed-rank test (p value <0.05) per cell group (CG). The left-side bars
956 denote the number of differentially expressed genes in each CG. The upper bars
957 denote the intersection size between sets of differentially expressed genes. Dark
958 connected dots on the bottom panel denote which substrates are considered for each
959 intersection.

960
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962 Supplemental Fig. 11 Permutation test of fold changes of differentially expressed
963 genes in schizophrenia. The sample labels were shuffled and fold changes were
964 calculated from two randomly selected groups. This process was repeated 1000
965 times. The black lines are the distribution of permutated fold changes and the red
966 lines are the observed fold changes in each CG.
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968

969 Supplemental table 1 Collected brain cell marker genes

970 Supplemental table 2 Differential expressed genes in SCZ per cell group

971 Supplemental table 3 TWAS genes in SCZ per cell group

972 Supplemental table 4 Coexpression-module member genes and their module
973 membership in each cell group

974 Supplemental table 5 Source data used in figures and tables
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