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Abstract 29 

Genome-wide association studies (GWAS) of schizophrenia (SCZ) have revealed 30 

over 100 risk loci. We investigated whether these SCZ-associated variants regulate 31 

gene expression by cell type. Using a fully unsupervised deconvolution method, we 32 

calculated gene expression by clusters of estimated cell types (cell-groups, CGs). 33 

Five CGs emerged in the dorsolateral prefrontal cortices (DLPFC) of 341 donors with 34 

and without SCZ. By mapping expression quantitative trait loci (eQTL) per CG, we 35 

partitioned the heritability of SCZ risk in GWAS by CGs. CG-specific expressions and 36 

eQTLs were replicated in both a deconvoluted bulk tissue data set with a different 37 

method and also in sorted-cell expression data. Further, we characterized CG-38 

specific gene differential expression and cell proportion changes in SCZ brains. We 39 

found upper-layer neurons in the DLPFC to be associated with SCZ based on 40 

enrichment of SCZ heritability in eQTLs, disease-related transcriptional signatures, 41 

and decreased cell proportion. Our study suggests that neurons and related 42 

anomalous circuits in the upper layers of the DLPFC may have a major contribution 43 

to SCZ risk.  44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 
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Introduction 54 

Schizophrenia (SCZ) is a complex psychiatric disorder, with approximately 80% of 55 

phenotypic variation explained by genetics1. In recent years, a surge of genetic 56 

markers associated with SCZ has flowed from genome-wide association studies 57 

(GWAS)2. Nonetheless, interpreting the biological meaning of these GWAS signals 58 

remains a challenge. SCZ GWAS loci are located largely within non-coding regions 59 

of the genome, pointing to a mechanistic involvement in gene regulation3. Expression 60 

quantitative trait loci (eQTL) mapping provides an effective means for connecting and 61 

interpreting GWAS results with underlying relevant expression regulation4. The 62 

PsychENCODE5, CommonMind6, Brain Cloud7, and UK Brain Expression 63 

Consortium8 projects produced large-scale eQTL resources. These data have been 64 

integrated with GWAS in the effort to pinpoint risk genes9-11.  65 

 66 

A primary pitfall of current brain eQTL analyses, however, is the indifference to cell-67 

type specificity12. All existing brain eQTL resources originate from homogenate bulk 68 

tissues in the brain, a mixture of many cell types or subtypes. Bulk tissue eQTL 69 

mapping offers only averaged effects across the composite cell types. It is therefore 70 

confounded by variations in proportion and gene expression. Reports of cell-type 71 

specificity of eQTLs from blood13 provide evidence that at least some common 72 

genetic variants shape gene expression by cell types14. However, the cell-type-73 

specific eQTLs in the human brain have not yet been reported.  74 

 75 

To date, the majority of transcriptomic studies of SCZ have similarly relied on data 76 

derived from bulk tissue,using differential analysis and co-expression analyses15,16. 77 

Such studies bear two major limitations: 1) it is unclear whether genes that are 78 

differentially expressed between individuals with SCZ and controls are attributed to 79 

differences in expression or changes in cell proportion, and 2) it is unknown whether 80 
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changes in SCZ-related expression occur only within one specific cell type or multiple 81 

cell types.  82 

 83 

Researchers investigate cell-type-specific expression using either of two approaches: 84 

1) sequencing individual or sorted cells using single-cell or single-nuclei sequencing 85 

(scRNA-seq or snRNA-seq), or 2) the computational deconvolution of bulk tissue 86 

transcriptomic data. To date, fewer than 50 human brain samples have been 87 

sequenced and published using scRNA-seq or snRNA-seq17,18. For the time being, 88 

such methods are impractical for most genetic or case-control studies due to the 89 

large sample size and associated costs required to achieve adequate statistical 90 

power.19 Alternatively, the computational approach can deconvolute bulk tissue data 91 

into cell-type-specific data with sufficient accuracy20.  92 

 93 

The computational deconvolution of bulk tissue data can estimate cell type proportion 94 

and cell type-specific expression in either a supervised or an unsupervised manner. 95 

Supervised deconvolution relies on an accurate reference, for example, cell type-96 

specific expression from the same species and brain region. However, suitable 97 

references are often unavailable, and whether references developed from control 98 

samples can be used to deconvolute patient data is uncertain. In contrast, using 99 

unsupervised deconvolution sidesteps this problem by estimating cell-type-specific 100 

expression and cell proportion without prior information. Unsupervised deconvolution 101 

classifies a group of cells algorithmically to differentiate them from other groups. 102 

Since these groups may not always reflect biologically homogeneous cell types, we 103 

instead use the term cell groups (CGs). The resulting CGs represent an estimated 104 

cluster of cell sub-types extractable from bulk tissue. Using unsupervised 105 

deconvolution methods, like convex analysis of mixture (CAM),21,22  identifies CGs 106 

based on gene expression patterns from all tested individuals.  107 

 108 
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Some advanced deconvolution methods can infer cell-type-specific expression per 109 

individual, based upon the methylation23 or gene expression24 profile from the donor’s 110 

bulk tissue. Again, such supervised methods rely on suitable references. Ideally, 111 

sample-wise and unsupervised deconvolution methods are needed to investigate 112 

CG-specific expressions from bulk tissue data in a cost-effective manner.  113 

 114 

We hypothesized that GWAS variants associated with the risk for SCZ regulate gene 115 

expression within one or more specific brain cell types. To identify CG-specific 116 

expressions at the sample level, we applied the newly-developed method25,26 117 

sample-wise convex analysis of mixtures (swCAM) to RNA-seq data from 93 118 

postmortem brain samples of donors with SCZ and 248 healthy donors 119 

(Supplemental fig.1). An independent postmortem brain dataset of 605 samples was 120 

used to replicate the swCAM deconvolution results. Further, we generated CG-121 

specific eQTLs and tested whether the CG-specific eQTLs were enriched for SCZ 122 

GWAS signals. To detect SCZ-related transcriptional changes per CG, we performed 123 

differential expression analyses, followed by co-expression network and 124 

transcriptome-wide association analyses of the deconvoluted expression data. We 125 

integrated results from GWAS enrichment, cell proportion, and transcriptomic 126 

changes to target SCZ-associated CGs. The processed data and results are 127 

accessible on our website (http://lbpg.upstate.edu/module_search/). 128 

 129 

Results 130 

Sample-wise deconvolution of RNA-seq data from bulk brain tissue of donors 131 

with and without SCZ  132 

Five CGs emerged from swCAM deconvolution of bulk tissue data. Their identities 133 

were first annotated by enrichment testing of known cell-type marker genes. We 134 
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calculated the enrichment of marker genes of major brain cell types27 (Supplemental 135 

table 1) in the top cell-type differentially expressed genes (ctDEG) for each CG. Top 136 

ctDEGs were selected by differential expression analysis of target CG versus the 137 

remainder of CGs (log2FC>2, False Discovery Rate [FDR] q <0.05, Wilcoxon signed-138 

rank test). The five annotated CGs represented astrocytes, two neuronal groups, a 139 

mixture of astrocytes, microglia, and endothelial cells, and oligodendrocytes (p value 140 

<0.05, Fisher’s exact test, Fig. 1A, Supplemental Fig. 2). We also used Expression 141 

Weighted Cell Type Enrichment (EWCE) test as a replication for annotating CGs. We 142 

applied EWCE to two snRNA-seq data sets17,28 from the human frontal cortex and 143 

tested to determine if ctDEGs are expressed more highly in a given cell type than 144 

that by chance. The EWCE results were consistent with previous CG annotations 145 

except for CG1 (Fig. 1B). Because CG1 was enriched for two glial cell subtypes in 146 

the EWCE test of two snRNA-seq data sets, we defined CG1 as a mixture of 147 

astrocyte and endothelial cells.  148 

 149 

To test the expression similarity between estimated CGs and corresponding cell 150 

types, we performed a Spearman correlation test between CG expressions and 151 

snRNA-seq data from the human frontal cortex28. We corrected the batch effects 152 

between the tested data prior to the correlation test. The three CGs that only 153 

enriched for single cell types showed high correlations with corresponding cell types 154 

(averaged rhoneuron_CG2 =0.83, rhoneuron_CG3 =0.81, rhooligodendrocyte_CG5=0.86, all three p 155 

values < 0.05, Supplemental Fig. 3) The averaged correlation coefficient for two glial 156 

mixture CGs was 0.55 (SD=0.15). 157 

 158 

To further differentiate the two neuronal clusters, marker gene-sets of standard 159 

neuronal subtypes were applied. We initially suspected that CG2 and CG3 160 

represented inhibitory and excitatory neurons but were dissuaded because there was 161 

not convincing statistical differentiation provided by marker genes of these neuron 162 
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types (Fisher’s exact test p>0.05, Supplemental Fig. 4). We then speculated that 163 

CG2 and CG3 may reflect the origin of specific cortical layers. With only two detected 164 

neuronal CGs and six cortical layers, we took a quantitative approach in allocating 165 

gene expression to gradient cortical layers: 770 upper-layer (upperL) genes were 166 

expressed most abundantly in the uppermost layer (layer 1) steadily decreasing by 167 

layer with the least expression in the layer 6, while 875 deep-layer (deepL) genes 168 

were distributed in the opposite direction (FDR<0.05, linear regression). UpperL and 169 

deepL genes corresponded to the CG2 and CG3 clusters respectively (Fisher’s exact 170 

test, pupperL<2.2e-16, pdeepL=7.90e-10, Fig. 1C).  171 

 172 

The expression data of manually isolated neurons from each of the six layers of the 173 

middle temporal cortex29 was used to validate the identity of neuronal CGs. We 174 

calculated the CG-specific difference for each gene by comparing the expression of 175 

CG2 and CG3 individually to that of the other CGs. Layer-specific differences were 176 

also calculated for each gene by comparing the neuronal expression of one specific 177 

layer to that of the other layers. CG-specific differences and layer-specific differences 178 

were then tested for correlation. CG3-specific differences were highly correlated to 179 

layer-specific differences of neurons from layers 1 through 3, while CG3-specific 180 

differences were poorly correlated to layer-specific differences of neurons from layers 181 

4 through 6. In contrast, correlations for CG2-specific differences ran in the opposite 182 

direction (Supplemental Fig. 5). We also performed an EWCE test on this snRNA-183 

seq data. The EWCE results showed CG2 enriched for neurons from layer 4 184 

(FDR<0.05) and layer 5 (FDR<0.05) and CG3 enriched for neurons from layer 2 185 

(FDR=0.006), layer 3 (p=0.04, FDR=0.40), and layer 4 (FDR=0.002, Fig. 1D). Based 186 

on these tests, we defined CG2 as representing deep-layer neurons (deepN) and 187 

CG3 as upper-layer neurons (upperN). At this juncture, the gene expression profiles 188 

for the five CGs were now garnered from the bulk brain tissue of donors with and 189 

without SCZ, i.e., upperN, deepN, a mixture of astrocytes and endothelial cells 190 
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(ast_endo), oligodendrocytes (oli), and a mixture CG of astrocytes, microglia, and 191 

endothelial cells (mic_ast_endo) (Fig. 1E). 192 

 193 

Results of this swCAM deconvolution analysis were replicated with another sample-194 

wise deconvolution method, bMIND30. We applied bMIND to our tested data and 195 

identified expressions of five CGs with similar composition to those identified by 196 

swCAM. We used the Spearman correlation test to examine the similarity between 197 

CG-specific expressions estimated by swCAM and bMIND. The correlation 198 

coefficients were 0.85±0.03 (FDR<0.05) across corresponding CGs (Supplemental 199 

Fig. 6A). The showed that our deconvolution results were robust to different methods. 200 

 201 

swCAM deconvolution results were replicated on a second RNA-seq dataset of 605 202 

brain samples31. We detected five CGs in the replication dataset. (Supplemental Fig. 203 

7). Through marker gene enrichment tests and EWCE test, we found the five CGs in 204 

these data were upperN (FDR of layer 2 neuron <0.05, p value of layer 1 neuron = 205 

0.03), deepN (FDR of layer 4 neuron and layer 5 neuron <0.05), astrocyte 206 

(FDR<0.05), a mixture of microglia and endothelial cells (FDR<0.05) and a CG 207 

showing oligodendrocyte expression with non-significant p value (p =0.14). The 208 

dominant CGs such as upperN and deepN CGs were consistently identified.  209 

 210 

Generation of eQTLs for CGs  211 

eQTL mapping was used to examine the genetic regulation of CG-specific 212 

expression. We included 72 additional brain samples from individuals with bipolar 213 

disorder (BD) to increase the sample size. Since we regressed out the affection 214 

status, the inclusion of BD patients did not interfere with the eQTL mapping results. 215 

The same five CGs were still detected by swCAM deconvolution after adding the BD 216 
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samples. After removing known and hidden covariates in the CG-specific 217 

transcriptome, we focused on local eQTLs (cis-eQTLs), searching for any 218 

associations between individual expression of genes with common variants within ±1 219 

Mb of the gene body region. In total, we identified 1,878,815 genome-wide significant 220 

eQTLs (FDR q < 0.05). After subtracting shared eQTL across all CGs, we observed 221 

more eQTL signals in neuronal CGs (both of upperN and deepN) than in glial CGs 222 

(Fig. 2A). The number of single nucleotide polymorphisms of eQTL (eSNPs) of 223 

neuronal CGs (n=302,608) was more than that of eSNPs of oligodendrocyte CGs 224 

(n=80,229). No eQTL survived multiple testing corrections in mixture CGs of 225 

astrocyte and endothelial cell data. We annotated the genomic regions for eSNPs 226 

with Ensembl annotations using ANNOVAR software32. The majority of eSNPs were 227 

located in intergenic and intronic regions within non-coding RNAs (Fig. 2C).  228 

  229 

To examine the replication rate of eQTLs of the three CGs enriched for singular cell 230 

types (deepN, upperN, and oli), we compared our results to a sorted-cell study33, 231 

which profiled the gene expression and genotype of neurons (n =42) and 232 

oligodendrocytes (n =36). Using the same eQTL mapping pipeline described earlier, 233 

we calculated the eQTLs using these replication data. From this small sorted-cell 234 

dataset, we could identify 644 eQTLs for neurons and 190 eQTLs for 235 

oligodendrocytes (FDR q<0.05). We used π1 from Storey's method34 to calculate the 236 

proportion of replicated eQTLs. We applied this method to the nominal p-values of 237 

replicated eQTLs in sorted cell populations, uncorrected for multiple comparisons. 238 

We found that upperN (π1=0.56) and deepN (π1=0.55) had greater reproducibility 239 

than oli (π1=0.35). Because π1 is the estimated proportion of the true alternative 240 

hypothesis, it has loose criteria for power and p-values. We used replication rate to 241 

quantify the replications, which was calculated by the ratio of replicated eQTLs 242 

among eQTLs in sorted populations with the criteria FDR<0.05. We found 29% of the 243 

neuron eQTLs were specifically replicated in neuronal CGs and 15% of the 244 
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oligodendrocyte eQTLs were replicated in all CGs (Supplemental Fig. 8).  245 

 246 

We compared our eQTL results with CG-specific eQTLs identified by bMIND. We 247 

found our results were well replicated by bMIND, with the π1 >0.98 for all CGs 248 

(Supplemental Fig. 6B). We also compared our results with eQTLs from bulk brain 249 

tissue samples from BrainGVEX. CG-specific eQTLs showed high reproducibility in 250 

the BrainGVEX dataset (π1 >0.97 in four CGs, π1= 0.92 in mic_ast_endo, Fig. 2B).  251 

 252 

Neuronal CGs and a mixture CG containing astrocyte and endothelial cells 253 

explain the risk heritability of SCZ 254 

To associate brain cell type with SCZ, we used CG-specific eQTLs to assess the 255 

SCZ GWAS risk heritability. We hypothesized that if a CG is associated with SCZ, 256 

their eQTLs will explain greater GWAS heritability. To test this hypothesis, we applied 257 

stratified linkage disequilibrium (LD) score regression35 (sLDSC) on GWAS summary 258 

statistics and CG-specific eQTLs to partition risk heritability from summary statistics. 259 

The SNP-based heritability analysis showed neuronal CGs and a CG mixture 260 

containing astrocyte and endothelial cells significantly enriched for risk heritability of 261 

SCZ (Fig. 3A). The upper-layer neuron CG explained 19.24% of heritability with 14% 262 

SNPs (adjusted p value=2.97e-04, Fig. 3B). The deep-layer neuron CG explained 263 

19.03% of heritability with 14% SNPs (adjusted p value=4.81e-04). Mixture CG of 264 

astrocyte and endothelial cells explained 12% of heritability with 8% of SNPs 265 

(adjusted p value=1.04e-03). These results suggest the regulatory regions in the 266 

neuronal CGs and a mixture CG of astrocyte and endothelial cells have a higher 267 

proportion of SCZ common variants than that in oligodendrocyte CG and a CG 268 

mixture containing microglia, astrocyte, and endothelial cells. We also compared 269 

enrichment score in bulk tissue eQTLs and CG-specific eQTLs. We found the 270 
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enrichment scores at bulk level (1.29±0.07) and cell levels (1.42±0.17) were very 271 

close (Fig. 3A).  272 

 273 

Decreased proportion of upper-layer neuron CGs from donors with SCZ 274 

To determine if the proportion of each CG was altered in the brains of patients with 275 

SCZ, we estimated the proportion of CGs for each sample using CAM. The 276 

proportion of upperN was reduced by 2.76% in patients with SCZcompared with 277 

controls, and the mixture CG of mic_ast_endo increased by 0.8% in patients with 278 

SCZ (Wilcoxon signed-rank test, p value<0.05, Fig. 4A). Other CGs did not show 279 

significant change. The proportional change in upper-layer neurons was statistically 280 

significant in a permutation test (p<0.001, Supplemental Fig. 9).  281 

 282 

Based on our testing for genetic enrichment, we hypothesized that the changes in 283 

CG proportion could arise from genetic risk variants. We used two strategies to test 284 

this hypothesis. First, we performed QTL mapping using CG proportions as the 285 

phenotype, but we did not detect any significant CG proportion-QTL signals. Second, 286 

we used polygenic risk score (PRS) as a measure of genetic risk burden for each 287 

individual and tested the correlation between PRS and CG proportions. We observed 288 

weak negative correlations between SCZ PRS and the upperN proportion and the p 289 

value did not survive multiple testing (r=-0.1, p value=0.04, FDR=0.1, Fig. 4B).  290 

 291 

CG-specific differential gene expression in SCZ 292 

We further analyzed CG-specific differential expression comparing individuals with 293 

and without SCZ using Wilcoxon signed-rank test with significance by FDR q <0.05, 294 

(Supplemental Table 2). We compared our results with differential expression results 295 
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from bMIND and observed significant consistency (Fisher’s exact test p value<0.05, 296 

Supplemental Fig. 6C). We found substantial overlap in differentially expressed 297 

genes (DEG) across five CGs, with 330 upregulated genes and 344 downregulated 298 

genes shared across five CGs (Supplemental Fig. 10). The number of shared DEGs 299 

across all CGs was greater than the number of CG-specific DEGs, except for 300 

upregulated genes in CG mic_ast_endo, with 367 genes. Approximately 33% of the 301 

genes (n=14,865, Gencode v19) were affected in at least one CG in the SCZ cohort. 302 

The two neuronal CGs possessed greater transcriptional changes than the three glial 303 

CGs, (fold change: 0.20 in neuronal CGs versus 0.09 in glial related CGs, p 304 

value<2.2e-16, Kolmogorov–Smirnov test). We performed permutation tests to 305 

determine the empirical probability of transcriptional changes in CGs. We found that 306 

the fold changes observed in all CGs were significant (p<0.001). Larger fold changes 307 

in neuronal CGs than that in the glia CG were also significant in permutations 308 

(p<0.001, Supplemental Fig. 11).  309 

 310 

We used Gene Ontology (GO) enrichment to annotate the function of DEGs (Table 311 

1), focusing on the functions of dysregulated genes in neuronal groups. A total of 312 

1,537 downregulated DEGs were detected in the upperN. These were enriched for 313 

protein folding (FDR q= 3.20e-09) and antigen processing (FDR q= 8.01e-05). The 314 

1,407 downregulated DEGs within deepN were enriched for positive regulation of cell 315 

proliferation (FDR q= 2.24e-06) and trans-synaptic signaling (FDR q=4.10e-06). 316 

Upregulated genes in both the upperN (n=229) and deepN (n=223) GCs were 317 

enriched for carboxylic acid breakdown (FDR qdeepN=1.04e-06, FDR qupperN =6.93e-318 

08).  319 

 320 
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Transcriptome-wide association analysis identified SCZ-associated genes in all 321 

CGs 322 

To determine which genes had CG-specific dysregulated expression driven by 323 

genetics, we performed a TWAS analysis using the CG-specific eQTLs. We identified 324 

51 SCZ risk genes across 43 genetic loci (adjusted p value<0.05, Supplemental 325 

Table 3). We compared our TWAS results to the 193 SCZ risk genes identified in bulk 326 

tissue by TWAS in Gandal et al16. Twelve genes in our results had been previously 327 

identified in Gandal’s results. Our analysis attributed these 12 genes to all 5 CGs: 328 

deepN (CYP17A1-AS1, AS3MT, CSPG4P11, EMB), upperN (CYP17A1-AS1, AS3MT, 329 

CSPG4P11, EMB, GATAD2A, NAGA, RP11-73M18.8, TYW5), ast_endo (RP11-330 

73M18.8, CYP17A1-AS1, EMB), oli (SNX19, AC011330.5, CSPG4P11, EMB), and 331 

mic_ast_endo (BTN3A2, TOM1L2, CSPG4P11). Additionally, 39 CG-specific TWAS 332 

genes are novel to bulk tissue-based TWAS. 333 

 334 

Out of the 51 TWAS genes, 17 genes are in deepN and 30 in upperN. Eight genes 335 

existed in both subtypes (CYP17A1-AS1, AS3MT, PIGB, GOLGA6L9, CSPG4P11, 336 

CNPPD1, EMB, ENDOG). Twenty-two genes were uniquely identified in upperN 337 

(DIABLO, C12orf65, RP11-73M18.8, STRC, AP3B2, WHAMM, SLX1B, ARL17B, 338 

GATAD2A, RPS5, ADAM15, RP1-130H16.16, WBP2NL, NAGA, ALMS1, TYW5, 339 

ITIH4, TMEM110, SFMBT1, NDUFAF2, BTN2A1, DNPH1). Nine genes were 340 

identified in the deepN only (CWF19L2, MORN3, TIE1, RBBP5, CBR3, RFTN2, 341 

RP11-10L12.4, REEP2, STK4). Twenty-four TWAS genes are specific to glial CGs (9 342 

from ast_endo, 10 from oli and 5 from mic_ast_endo).  343 

 344 
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Co-expression network analysis refined CG-specific biological processes 345 

associated with SCZ  346 

To investigate the coordinated expression changes in each CG, we performed 347 

weighted gene correlation network analysis36 (WGCNA) on CG-specific expressions 348 

(Supplemental Table 4). For this study, we identified CG-specific modules, a group of 349 

genes showing concordant variation across samples in one specific CG. Modules of 350 

upperN and deepN were highly consistent. In total, we identified eight CG-specific 351 

modules out of the 149 detected modules. Seven of the eight showed either 352 

differential expression of eigengenes in SCZ or enrichment of SCZ GWAS signals. 353 

These seven modules were defined as “SCZ-associated modules” (Table 2). 354 

 355 

The neuronal CGs shared five of the seven SCZ-associated modules (Fig. 5). The 356 

eigengenes of two modules showed upregulated expression in SCZ: neuron_ME28 357 

(log2FC=0.02, FDR=6.8e-03) and neuron_ME30 (log2FC=0.03, FDR=6.3e-07). 358 

These two were enriched in the pathways of neural stem cell maintenance and 359 

carbohydrate transmembrane transport (FDR q<0.05). The other three modules 360 

showed only enrichment of GWAS signals (neuron_ME32, neuron_ME27, and 361 

neuron_ME29)and were enriched within pathways of regulation of actin filament 362 

polymerization, regulation of dendritic spine morphogenesis, and SWI/SNF 363 

superfamily-type complex, respectively (FDR q<0.05).  364 

 365 

The other two SCZ-associated modules were specific to glial CGs. In the mixed CG 366 

of astrocytes and endothelial cells, we identified ast _endo_ME28, enriched for SCZ 367 

GWAS signals, and involved with the RNA splicing pathway (FDR q<0.05). In the 368 

oligodendrocyte CG-related module (oli_ME14), the eigengene was downregulated in 369 

SCZ (log2FC=-0.01, FDR=0.04). Member genes in this oli_ME14 were involved in 370 

neuron ensheathment (FDR q<0.05).  371 
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 372 

Discussion 373 

Combining CG-specific eQTL analysis and GWAS can reveal how (the regulation of 374 

gene expression) and where (within which CGs) variants contribute to disease risk. 375 

Recent studies have employed this approach identifying cell-type-specific eQTLs in 376 

blood that have heightened risk heritability for immune-related diseases37,38 However, 377 

cell-type-specific eQTLs for human brains are not available and are difficult to obtain. 378 

To bridge genetic findings of SCZ to brain cell types, we generated CG, a proxy of 379 

cell type, using an unsupervised deconvolution method. We then mapped CG-380 

specific eQTLs using computationally partitioned gene expression specific to each 381 

CG per individual. Based on GWAS data, we found enrichment for risk heritability in 382 

the eQTLs of upper-layer DLPFC neuronal CGs (upperN). Furthermore, we found 383 

that the upperN CGs also displayed dramatic gene expression changes and altered 384 

cell proportions in the individuals with SCZ.  385 

 386 

Our results are consistent with previous bulk tissue studies of human and cell-type-387 

specific studies of mice in implicating neurons in the risk for SCZ. In a case-control 388 

study of bulk brain tissues, Gandal et al. showed the neuron-specific co-expression 389 

module to be downregulated in SCZ16. Skene et al. calculated the neuronal specificity 390 

of the human-homologous gene in mouse scRNA-seq data and correlated this 391 

specificity to risk heritability enrichment within the genetic region39. They found that 392 

four neuron subtypes in the mouse brain (i.e., medium spiny neurons, pyramidal cells 393 

in hippocampal CA1, pyramidal cells in the somatosensory cortex, and cortical 394 

interneurons) are associated with SCZ. Our study expands upon those findings, 395 

confirming that a subtype of neurons, the group of upper-layer neurons in human 396 

DLPFC, are associated with SCZ.  397 
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 398 

Our study provides genetic support for an association between the upper-layer 399 

neurons of the DLPFC and SCZ. This is supported by the enrichment of GWAS 400 

signals, dysregulated gene expression, and decreased proportions within the upperN 401 

CGs. Previous research has shown upper-layer neurons of the DLPFC are over-402 

represented in humans compared with other species,40 and to be actively engaged in 403 

the delayed activity of working memory41, the impairment of which is a major feature 404 

of SCZ. Some phenotypes of upper-layer neurons within the DLPFC have been 405 

reported to be associated with SCZ in terms of cell shape42, dendritic 406 

abnormalities43,44, and candidate mRNA expression45. However, no genetic evidence 407 

that we are aware of to date has pinpointed upper-layer neurons as having a role in 408 

SCZ risk. In this study, we observed that GWAS risk variants contribute to SCZ by 409 

altering gene expression within the upper-layer neurons. Our coexpression network 410 

analysis and TWAS analysis further narrowed down specific genes and pathways. 411 

Therefore, we suspect that previously reported phenotypic changes42-46 within the 412 

upper-layer neurons of patients with SCZ may be rooted in these genetic variants 413 

and their related gene expression regulation.  414 

 415 

Our findings of SCZ-associated changes in upper-layer neurons were validated by 416 

multiple lines of experiments from other studies. In a recent snRNA-seq study of 417 

cortical layers from seven SCZ patients and 11 controls, the selective vulnerability of 418 

supragranular layer neurons was revealed in SCZ in terms of dramatic transcriptomic 419 

changes and cell proportion changes47. A decreased proportion of upper-layer neuron 420 

subtypes was also observed in mouse model SCZ-predisposing 22q11.2 421 

microdeletion48 and human postmortem brains49,50. Moreover, the functional 422 

mechanism of a differential expressed gene in upper-layer neuron CYFIP1 (log2FC=-423 

0.13, FDR=0.0004) has been discovered in the mouse cortex. It has been reported 424 

that CYFIP1 deficiency causes upper-layer neurons to present in deep layers and 425 
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deep-layer neurons to present in upper layers51. Moreover, the changes in upper-426 

layer neurons also have been noted in association with another psychiatric disorder, 427 

autism, based on snRNA-seq study18. In summary, this study strengthened the 428 

findings of upper-layer neuron dysfunction in SCZ and provided more detailed cell-429 

subtype evidence based on a relatively large brain collection. It provides strong 430 

support to previous studies of animal models, cell models, and brain transcriptome 431 

studies with limited samples. 432 

 433 

Our findings suggest the SCZ-associated changes in upper-layer neurons may occur 434 

in neuron development. Neuron development in human brain includes proliferation, 435 

differentiation, neuron migration and synaptic formation. This process is coupled with 436 

substantial transcriptome changes52. We found that the DEGs in upperN were 437 

enriched in the pathways of cell proliferation and trans-synaptic signaling, which has 438 

previously been suggested as involved in SCZ risk. For example, the disrupted 439 

proliferation of neurons has been reported in primate and murine models of SCZ53. 440 

Five TWAS genes in upperN are related to neuronal development as well: AS3MT, 441 

CSPG4P11, ADAM15, STRC, and WHAMM. For example, AS3MT participates in 442 

neural stem cell differentiation and is a risk gene for SCZ54. CSPG4P11 is also an 443 

eQTL gene in fetal brains, and its expression has also been linked to SCZ risk55,56. 444 

ADAM15, STRC, and WHAMM function in cell-matrix adhesion, which is linked to 445 

neurodevelopment and SCZ57,58. Therefore, our findings support the hypothesis that 446 

the disturbed gene expression in neurodevelopment is involved in SCZ molecular 447 

pathology. While our study cannot provide causality of these genes in SCZ pathology, 448 

future functional experiments in cells and useful animal models could potentially 449 

confirm the functional mechanism of genes.  450 

 451 

While swCAM yielded reproducible unsupervised deconvolution results, particularly 452 

for neuronal CGs, it also has its limitations. The CGs estimated by swCAM represent 453 
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groupings of cells with similar transcriptional profiles. Correspondingly, swCAM has 454 

relatively poor resolution in separating rare cell types. Glial subtypes with small 455 

compositions, such as microglia, have been particularly challenging. As single-cell 456 

data are accumulating, a hybrid model integrating a suitable reference may boost 457 

swCAM’s resolution. Despite these constraints, swCAM enhances the merit of 458 

existing bulk-tissue data by deriving expression for major CGs. With this method, it is 459 

possible to determine whether disease-related gene expression is a feature of 460 

specific CGs or a pattern of composite CGs. Furthermore, gene networks and 461 

genetic regulatory relationships can emerge that may help to ferret out hidden clues 462 

to the molecular mechanisms of complex psychiatric disorders.  463 

Conclusion  464 

Of five clusters of cell types estimated by gene expression in silico, the upper-layer 465 

neurons within the DLPFC display distinctive enrichment of risk heritability and 466 

transcriptional changes in the brain tissue of donors with SCZ. Furthermore, 467 

decreased proportion of upper-layer neurons relative to al cell groups was observed 468 

within the SCZ brain. The uniquely dysregulated genes and pathways associated 469 

with upper-layer neurons, particularly those related to neurodevelopment, should be 470 

targeted in future experimental studies and quantitative analysis of SCZ to further 471 

understand the molecular mechanism of SCZ. 472 

 473 

Materials and methods  474 

Brain tissues 475 

The PsychENCODE/BrainGVEX project has 427 postmortem DLPFC samples, 476 

including healthy controls, BD and SCZ patients. Brain samples originated from the 477 
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Stanley Medical Research Institute (SMRI) and the Banner Sun Health Research 478 

Institute (BSHRI). Detailed information can be found at 479 

https://www.synapse.org/#!Synapse:syn4590909. 480 

 481 

RNA sequencing 482 

Total RNA was isolated from brain tissue at the University of Illinois at Chicago and at 483 

the University of Chicago with the Qiagen miRNeasy mini kit. Quality of RNA samples 484 

was measured with an Agilent Bioanalyzer RNA 6000 Nano assay kit and all samples 485 

had a RIN score of 5.5 or greater. All total RNAs were processed into stranded, 486 

rRNA-depleted libraries for sequencing in an Illumina HiSeq2000. Libraries were 487 

triplexed per lane to reach 40 million paired-end reads per library. Details of library 488 

preparation and RNA sequencing can be found in our previous study16.  489 

 490 

Data processing 491 

Data processing included three steps: reads processing, quantification, and post-492 

quantification processing. Fastq files underwent adapter removal using cutadapt 493 

(https://pypi.python.org/pypi/cutadapt), after which the resulting adapter-trimmed 494 

fastq files were checked for quality using FastQC 495 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). A subset of 10,000 reads 496 

estimated the insert mean size and standard deviation for use with Tophat. STAR 497 

was used to align trimmed reads to the GENCODEv19 reference (modified to include 498 

artificial ERCC RNA ExFold spike-in sequences). BAM files were sorted in samtools 499 

(v1.3). Expression level was then calculated using RSEM (v1.2.29). Quality control 500 

metrics were calculated using RNA-SeQC (v1.1.8), featureCounts (v1.5.1), 501 

PicardTools (v1.128), and Samtools (v1.3.1). The quantified fragments per kilobase 502 
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of transcript per million mapped reads (FPKM) were used for downstream analysis. 503 

Mitochondrial genes, pseudoautosomal genes, and genes with FPKM fewer than 1 in 504 

more than 75% of samples were dropped. We calculated the distance between 505 

samples and removed samples with a z-score of normalized connectivity to other 506 

samples lower than -2. After filtering, 341 samples and 14865 genes were retained 507 

for subsequent analyses. Linear regression removed the effect of covariates 508 

including age, sex, RIN, PMI, brain bank, batches, and principal components of 509 

sequencing statistics (seqPC). The seqPCs was composed of the top 29 principal 510 

components analyzed from the sequencing statistics. Covariates were selected by 511 

multivariate adaptive regression splines (MARs). 512 

 513 

Genotype processing  514 

Genotypes were called from three platforms, including 277 samples by whole 515 

genome sequencing, 257 samples by Psych v1.1 beadchips, and 137 samples by 516 

Affymetrix 5.0 450K. Genotypes were imputed by Michigan Imputation Server using 517 

HRC (r1.1 2016) EUR samples as references from each platform. Variants with R 518 

squared less than 0.3 or HWE (Hardy-Weinberg Equilibrium) p-value less than 1e-6 519 

were removed. We used DRAMS software59 to correct mixed-up data IDs for the 520 

three platforms based on relationships across various omics data. We had 251 521 

samples genotyped by whole genome sequencing and beadchip. The genotypes 522 

called from the two platforms were highly consistent (r= 0.986). Genotypes of the 523 

three platforms were combined, with discordant genotypes marked as missing. 524 

Polygenic risk scores were calculated using PRSice (2.1.4) with GWAS summary 525 

data from Ripke et al2 as base data set. 526 
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Sample-specific deconvolution 527 

To isolate CGs in-silico, we developed a novel sample-wise deconvolution technique 528 

(swCAM26), applying it to the processed RNA-seq data. The original CAM framed the 529 

deconvolution of mixture expression to solve the blind source separation problem 530 

(sBSS), which was accomplished by nuclear norm regularization. The basic 531 

assumption in the deconvolution was  532 

X=AS+E (1) 533 

which is the mixture sample being the weighted sum of the CG-specific expression S. 534 

In the classic deconvolution method, S is a common matrix for all mixture samples. 535 

However, each sample may have its sample-specific Si: 536 

Si= + ∆Si (i=1, …, M) (2) 537 

The associated sample-specific BSS model is given by  538 

xi=ai ( + ∆Si) + ei (3) 539 

If some samples have a group pattern in a particular source or some molecules’ 540 

expression are more highly correlated in one particular source, the associated 541 

samples may share a similar pattern of ∆Si, leading to the following swCAM objective 542 

function:  543 

min
�

�
∑ ||�� � 	�
�� 
 ∆���||�

��
��� 
 � ∑ ||��||�

	
���   (4) 544 

Where Tk consists of the kth column in all ∆Si, representing between-sample 545 

variability in source K; ||Tk||* is the nuclear norm of Tk. λ is the regularization 546 

parameter of nuclear norms. We solved equation (4) using quadratic programming 547 

and the alternating direction method of multipliers (ADMM). Code of swCAM can be 548 

accessed at https://github.com/Lululuella/swCAM. 549 

We used CAM to estimate the CG proportion in an unsupervised manner. The 550 

processed expression data was the input of CAM. The minimum description length 551 

(MDL) algorithm was used in CAM21 to automatically determine the number of CGs 552 

(K).  MDL is a widely-adopted and consistent information theoretic criterion in model 553 
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selection. The shortest MDL denotes the best model. Shortest MDL was shown when 554 

K=5 for the data. The proportions of five CGs and processed RNA-seq data were 555 

entered into swCAM to infer the CG-specific expression for each sample. To obtain 556 

the top ctDEGs and thereby differentiate the CGs, Wilcoxon signed-rank test 557 

determined the difference of expression in each CG (log2FC>2, FDR<0.05).  558 

 559 

Processing of single-cell datasets 560 

Three single-cell datasets provided further confirmation of CG identities28,29,60. We 561 

downloaded raw counts from frontal cortices and used the Seurat package (v2.0) for 562 

data processing61. We filtered out the following: genes expressing in less than half of 563 

the smallest CGs, cells with unique feature counts (i.e., >5,000 and <200), and cells 564 

with mitochondrial counts >5%. The data were then normalized by library size and 565 

log-transformed. The cell identities from the original studies were used for cell 566 

clustering. The averaged expression was calculated to represent gene expressions 567 

for the specific cell type. 568 

 569 

Processing the ROSMAP dataset for replication 570 

The synapse website (10.7303/syn3388564) provided a replication dataset with 640 571 

postmortem human DLPFCs from the Religious Orders Study and Memory and Aging 572 

Project (ROSMAP)31. Gene expression was measured by RNA-seq. The downloaded 573 

raw expression matrix was quantified in FPKM. After quality control, the data retained 574 

19,144 genes and 605 samples. Expression was log2-transformed and normalized 575 

by quantile normalization. The confounder effects from age, sex, diagnosis, 576 

sequencing batch, study, ancestry, education year, and PMI were removed by linear 577 

regression.  578 
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 579 

Cell group identification 580 

We used two strategies to annotate the CGs; gene sets enrichment and correlation 581 

with scRNA-seq data. In the identification of five general CGs, the marker genes of 582 

five major cell types were collected from Zhang et al27 and the marker genes for 583 

inhibitory neurons and excitatory neurons were collected from Lake et al63. Fisher’s 584 

exact test was used to test the enrichment of marker genes in CGs. Meanwhile, 585 

Spearman correlation testing with scRNA-seq datasets28,60 was used to measure 586 

similarities between CG expression and that of known cell types. To identify genes 587 

expressed in gradient cortical layers, we downloaded RNA-seq data across human 588 

DLPFC layers from the He et al. study64. Gene expression was set as a linear 589 

regression function for DLPFC layers (from layer 1 to layer 6). Genes with coefficient 590 

>0 and FDR <0.05 were named “deep-layer genes.” Those with coefficient <0 and 591 

FDR <0.05 were named “upper-layer genes”. scRNA-seq data used for correlation 592 

testing with neuronal CGs was downloaded from https://portal.brain-map.org/atlases-593 

and-data/rnaseq, which provided neuronal expression for the multiple layers of 594 

human middle temporal gyri29. Spearman correlation test was performed on layered 595 

neuronal expression and that of CG2 and CG3. 596 

 597 

Expression Weighted Cell Type Enrichment65 (EWCE) test was used as a replication 598 

of CG annotations. The purpose of EWCE is to determine the chance of a target  599 

gene list having higher expression in a specific cell type than a random gene list. The 600 

ctDEGs identified in each CG were used as target lists. Two snRNA-seq data sets 601 

from frontal cortex17,28 and one snRNA-seq data set from six cortical layers29 were 602 

used as tested data. The test was repeated 10000 times. The p values were 603 

corrected by the Benjamini-Hochberg method.  604 
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 605 

CG-specific differential expression  606 

Differential expression analysis was conducted in each CG with the Wilcoxon rank-607 

sum test. The p values were corrected by FDR. Genes with FDR q value <0.05 were 608 

identified as differentially expressed genes. To calculate the empirical probability of 609 

observed fold changes, we conducted a permutation test as follows. In each CG, we 610 

permutated the case/control labels and calculated the fold changes of case-control 611 

differential expression. The permutation test was repeated 1000 times.  612 

 613 

Pathway analysis 614 

Gene ontology enrichment tests for biological processes, molecular function, and 615 

cellular components were performed using gProfileR66, with p-values FDR-corrected.  616 

 617 

CG-specific eQTL mapping 618 

To identify CG-specific eQTLs in the brain, we performed cis-eQTL mapping using 619 

package FastQTL67.  eQTL mapping was performed independently for each CG. We 620 

used CG-specific expression estimations from swCAM as phenotype data. The 621 

phenotype data were gene expression matrixes for five CGs (five matrixes formatted 622 

in genes * samples). A cis-window was defined for genes in each CG as 1 mega 623 

base up- and down-stream of the gene body. Each CG expression matrix was 624 

adjusted for hidden covariates using PEER68 with FDR-corrected p-values. eQTLs 625 

with FDR <0.05 were retained.  626 

 627 

To compare CG-specific eQTLs with sorted-cell eQTLs and bulk brain eQTLs, we 628 
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used Storey’s Qvalue package34 and replication rate. The proportion of true 629 

associations (π1) was estimated for significant CG-specific eQTLs in the sorted-cell 630 

eQTLs/BrainGVEX DLPFC eQTLs. With the distribution of corresponding p values for 631 

the overlapping eQTLs, we calculated π0, i.e., the proportion of true null associations 632 

based on distribution. Then, π1 = 1 - π0 estimated the lowest bound for true-positive 633 

associations. The replication rate is the ratio of replicated eQTLs with FDR<0.05 634 

among all significant eQTLs in sorted cell populations.  635 

Heritability estimation with GWAS summary statistics 636 

Partitioned heritability was measured through LD Score Regression v1.0.069, 637 

identifying enrichment of GWAS summary statistics among CG-specific eQTLs by 638 

accounting for LD. CG-specific eQTL annotation files were created by eSNPs 639 

detected in each CG. The annotation file was produced by marking all HapMap3 640 

SNPs that fell within the eQTL annotations. LD-scores were calculated for SNPs 641 

within the file (LD window of 1cM). The LD reference panel was downloaded from 642 

1000 Genomes European Phase Three. SNP LD-scores were interwoven in the 643 

computation of partitioned heritability (proportion of h2). Enrichment for each 644 

annotation file was calculated by the proportion of heritability explained by each 645 

annotation file divided by the proportion of SNPs falling in that annotation file. 646 

Enrichment p values were then corrected by multiple testing.  647 

 648 

Estimation and case-control comparison of cell proportions 649 

To compare the CG composition in SCZ patients and healthy controls, we used CAM 650 

to estimate the proportion of each CG. Wilcoxon rank-sum test was used to compare 651 

the CG proportions between SCZ patients and healthy controls. FDR correction was 652 

performed on the p values. To determine the empirical probability of proportion 653 
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changes in upper-layer neuron CG, we permutated the case/control labels and 654 

calculated the case-control proportion changes in upper-layer neuron CG. This 655 

process was repeated 1000 times.  656 

 657 

Transcriptome-wide association study 658 

We performed TWAS analysis on the GWAS summary statistics70 and the CG-659 

specific eQTLs using the TWAS/FUSION package9. To identify risk genes with 660 

evidence of genetic control, we used genome-wide complex trait analysis to estimate 661 

cis-SNP heritability h2g (±1MB window around gene body). We identified genes with 662 

significant h2g (nominal p-value <0.05), which were used to calculate the SNP-based 663 

predictive weights per gene. Using the FUSION package, we calculated five-fold 664 

cross-validation of five models of expression prediction and evaluated the prediction 665 

models for accuracy. The five models are best cis-eQTL, best linear unbiased 666 

predictor, Bayesian sparse linear mixed model [BSLMM], and elastic-net regression, 667 

LASSO regression. The model with the largest cross-validation R2 was chosen for 668 

downstream association analyses. TWAS statistics were calculated using different 669 

cell-group weights, LD SNP correlations from the 1000 Genomes European Phase 3 670 

reference panel. TWAS association p values were FDR-corrected and were corrected 671 

for multiple CGs. 672 

 673 

Gene co-expression analysis  674 

We constructed the gene co-expression network for each CG using Weighted Gene 675 

Co-Expression Network Analysis (WGCNA) on deconvoluted CG-specific expression 676 

data. A correlation matrix was calculated for the genes, which was then weighted 677 

after a scale-free topology was approximated. The following weighted powers were 678 
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chosen for the respective CGs: 12 for ast_endo and deepN, 14 for upperN, 679 

mic_ast_endo, and oli. The signed adjacency, biweight midcorrelation, and 680 

blockwiseModules parameters were selected to build the network. Other parameter 681 

settings included the following: mergeCutHeight= 0.1, minModuleSize= 30, 682 

pamStage=FALSE, and deepSplit=4.  683 

 684 

Associating the gene modules with SCZ 685 

Two strategies were used to test the association between gene modules and SCZ. 686 

First, we constructed a linear model in which the dependent variable is the module 687 

eigengene across all samples and the independent variable is the disease state for 688 

the samples (FDR-adjusted p value<0.05). Second, we tested the correlation 689 

between GWAS significance and the module membership (kME), which is the 690 

expression correlation between each module member gene and the module 691 

eigengene. GWAS significance of each module member gene was calculated by 692 

MAGMA v1.0671 using the European subset of the 1000 Genomes as a reference 693 

panel for LD. An annotation step was performed first in which GWAS significant 694 

SNPs were mapped to genes, based on the presence of a GWAS significant SNP in 695 

the region between a gene’s start and stop sites +/- 10kb. A competitive gene-set 696 

analysis was then performed using sets defined by gene co-expression modules. 697 

Resulting p values were FDR-corrected for multiple comparisons. Modules meeting 698 

any of the two criteria above were defined as “SCZ-associated modules”.  699 

 700 

Gene module preservation test 701 

To test the similarity among the CG-specific modules, we tested preservation among 702 

the modules detected per CG using Zsummary. The network-based preservation test 703 
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generated two types of statistics: 1) density-based preservation statistics to 704 

determine whether the nodes in the reference network were still highly connected in 705 

the test network; 2) connectivity-based preservation statistics to determine whether 706 

the connectivity pattern in the reference network was preserved in test network. We 707 

applied Zsummary test by Peter Langfelder et al72, in the formula 708 

�
���
�� �
�������� 
 �������������

2
 

Zdensity summarizes density preservation statistics, and Zconnectivity summarizes 709 

connectivity-based statistics.  710 

 711 

Data availability 712 

Access to the raw BrainGVEX data is controlled by the NIMH Repository and 713 

Genomics Resources (NRGR), https://www.nimhgenetics.org/. Instructions can be 714 

found in the PsychENCODE Knowledge Portal: 715 

https://www.synapse.org/#!Synapse:syn4921369. Deconvoluted data can be reached 716 

at http://lbpg.upstate.edu/module_search/. Source data are provided with this paper. 717 

 718 

Code availability 719 

Scripts used in the data analysis for this manuscript can be found at GitHub: 720 

https://github.com/RujiaDai/CellSpecificAnalysis. Code for swCAM can be found at 721 

https://github.com/Lululuella/swCAM.  722 
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Figures and tables 759 

 760 

Fig. 1 Cell-group-specific expression for each individual. (A) Expression of brain cell-type 761 

marker genes per individual estimated cell groups (CGs). Oli: oligodendrocytes, Mic: 762 

microglia, Ast: astrocytes, Endo: endothelial cells. (B) Annotation of CGs with Expression 763 

Weighted Cell Type Enrichment (EWCE) test. Two snRNA-seq data sets from human frontal 764 

cortex were used. The black asterisks denote enrichment p value <0.05. (C) Gradients of 765 

gene expression across cortical layers in deconvoluted neuronal CGs. The red column 766 

denotes upper-layer genes (upperL genes), which express in a decreasing gradient from 767 

layers 1 to 6, and the blue column denotes deep-layer genes (deepL genes), which express in 768 

an increasing gradient from layers 1 to 6 (FDR<0.05, Spearman correlation). (D) EWCE 769 
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results showed neuronal CGs enriched in neurons of different cortical layers. The black 770 

asterisks denote enrichment p value <0.05 and the yellow asterisk denotes nominal p value 771 

<0.05. (E) tSNE plot of deconvoluted groups, color-coded by the annotated CG. Each dot 772 

denotes one deconvoluted cell within a sample. Ast_endo: mixture CG of astrocyte and 773 

endothelial cells, deepN: deep-layer neuron CG, upperN: upper-layer neuron CG, 774 

mic_ast_endo: mixture CG of microglia, astrocyte, and endothelial cells, oli: oligodendrocyte 775 

CG. 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 
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 793 

Fig. 2 Summary of cell-group-specific eQTLs. (A) The number of eQTLs and eSNPs 794 

detected in each cell group (CG) (FDR corrected p value<0.05). (B) The similarity between 795 

CG-specific eQTLs, bulk brain tissue eQTLs, and single-cell eQTLs, evaluated by π1 values. 796 

(C) Genomic annotation of eSNPs. Ast_endo: mixture CG of astrocyte and endothelial cells, 797 

deepN: deep-layer neuron CG, upperN: upper-layer neuron CG, mic_ast_endo: mixture CG of 798 

microglia, astrocyte, and endothelial cells, oli: oligodendrocyte CG. 799 
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 809 

Fig. 3 Genetic risk heritability enrichment in cell groups. GWAS heritability was 810 

partitioned in five estimated cell groups (CGs). The SNPs of CG-specific eQTLs (FDR 811 

corrected p value<0.05) were cataloged in annotated files in sLDSC. (A)  the SCZ risk 812 

heritability enrichment in different categories (calculated by the proportion of heritability (h2) / 813 

proportion of SNPs) and (B) the h2 explained by different categories. The asterisk denotes a 814 

corrected p value <0.05 in the enrichment test. ast_endo: mixture CG of astrocyte and 815 

endothelial cell, deepN: deep-layer neuron CG, upperN: upper-layer neuron CG, 816 

mic_ast_endo: mixture CG of microglia, astrocyte, and endothelial cells, oli: oligodendrocyte 817 

CG. 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 
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 827 

Fig. 4 Proportion per cell group and association with SCZ. (A) Proportions of the five cell 828 

groups (CGs) for donors with and without SCZ, estimated with the CAM method. The asterisk 829 

denotes corrected p-values of the Wilcoxon rank-sum test <0.05. (B) Spearman correlation 830 

between polygenic risk score (PRS) and CG proportion. The red asterisk denotes corrected p-831 

values of correlation test <0.05 and the yellow asterisk denotes nominal p value <0.05. 832 

Ast_endo: mixture CG of astrocyte and endothelial cells, deepN: deep-layer neuron CG, 833 

upperN: upper-layer neuron CG, mic_ast_endo: mixture CG of microglia, astrocyte, and 834 

endothelial cells, oli: oligodendrocyte CG. 835 

 836 

 837 

 838 

 839 
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 840 

Fig. 5 Neuron-specific co-expression modules related to SCZ. Top 10 genes ordered by 841 

module membership (kME, i.e., correlation between gene expression and module eigengene) 842 

are shown for each neuron-group-specific module.  843 

 844 
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Table 1 Summary of cell group-specific differential gene expression  855 

Cell group #Upreg-

ulated 

gene 

#Downreg-

ulated 

gene  

Mean 

(|log2fold-

change|)  

± sd 

Most prominent 

functional 

pathways of 

upregulated genes  

Most prominent functional 

pathway of downregulated 

genes  

ast_endo 950 1660 0.11±0.18 carboxylic acid 

catabolic process  

 

defense response 

deepN 1254 1297 0.22±0.26 organic acid 

metabolic process 

positive regulation of cell 

proliferation 

upperN 1304 1882 0.26±0.25 carboxylic acid 

catabolic process 

protein folding 

mic_ast_en

do 

1197 1083 0.11±0.18 regulation of 

cellular 

component size 

positive regulation of 

immune system process 

oli 747 1445 0.14±0.18 modulation of 

chemical synaptic 

transmission 

positive regulation of 

immune system process 

Ast_endo: mixture CG of astrocytes and endothelial cells, deepN: deep-layer neuron CG, upperN: 

upper-layer neuron CG, mic_ast_endo: mixture CG of microglia, astrocyte, and endothelial cells, oli: 

oligodendrocyte CG. 
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Table 2 Cell group-specific co-expression modules 869 

Cell 

group 

Module 

name 

Trait 

associat

ion 

GWAS 

enrichment 

Representative GO term 

(FDR<0.05) 

Top 3 hub genes 

ast_ned

o 

Ast_end

o 

_ME28 

- SCZ2014, 

Education, IBD 

RNA splicing SEC62, PPIG, PNN 

neuron  neuron_

ME28 

SCZ↑ SCZ2014, 

Education 

neuronal stem cell 

population maintenance 

TSC22D1, ENTPD3, 

SYNE1 

neuron_

ME29 

- SCZ2014, 

Education 

SWI/SNF superfamily-

type complex 

WDR48, STOML2, 

OS9 

neuron_

ME30 

SCZ↑ SCZ2014, 

Education, 

Neuroticism 

carhydrate 

transmembrane 

transport 

FKBP5, SORT1, 

WIPF3 

neuron 

_ME32 

- SCZ2014, 

Education 

negative regulation of 

actin filament 

polymerization 

GRIA4, CUX2, 

EPHX4 

neuron 

_ME27 

- SCZ2014, 

Education, 

Neuroticism, 

BD2016 

regulation of dendritic 

spine morphogenesis 

RIMS3, NGEF, 

LZTS3 

mic_ast

_endo 

mic_ast

_endo_

ME25 

- - Defense response to 

virus 

RSAD2, DDX58, 

PSME2 

oli oli_ME1

4 

SCZ↓ - Ensheathment of 

neuron 

RNASE1, GPR37, 

PLP1 

Ast_endo: mixture CG of astrocyte and endothelial cells, deepN: deep-layer neuron CG, upperN: 

upper-layer neuron CG, mic_ast_endo: mixture CG of microglia, astrocyte, and endothelial cells, oli: 

oligodendrocyte CG. 
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Supplemental materials 871 

 872 

Supplemental Fig. 1 Overview of the study. Using the sample-wise convex analysis of 873 

mixtures (swCAM) deconvolution method, we extracted cell-group-specific (CG-specific) 874 

expression from RNA-seq data from bulk brain tissue of 341 samples (SCZ=93, CTL=248). To 875 

annotate the identified CGs, maker gene enrichment and correlation testing with scRNA-seq 876 

data were used. To discover SCZ-associated cell types and genes, we performed CG-specific 877 

eQTL mapping, GWAS heritability enrichment, CG-specific differential expression, CG-878 

specific co-expression, and transcriptome-wide association study. These analyses offer a 879 

framework for discerning cell subtypes and underlying genes and pathways associated with 880 

SCZ. We found upper-layer neuron CGs in human DLPFC to be associated with SCZ. 881 

 882 
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 883 

Supplemental Fig. 2 Cell-group enrichment of brain cell marker genes.  Enrichment 884 

of the top cell-type differentially expressed genes (ctDEGs) in estimated cell groups 885 

(CGs) (log2FC>2, FDR <0.05) for human brain cell marker genes. Color denotes 886 

log10-scaled p values of enrichment for significant associations and text in cell 887 

denotes odds ratio (Fisher’s exact test). 888 

 889 

 890 
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 894 
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 899 

Supplemental Fig. 3 Correlations between estimated cell-group-specific (CG-900 

specific) expression and (A) single-cell expression (Darmanis et al. 2015) and (B) 901 

single-nuclei expression (Habib et al. 2017). The Spearman correlation test was 902 

used. The number and the color both denote the correlation coefficient. ASC: 903 

astrocytes, END: endothelial cells, MG: microglia, ODC: oligodendrocytes, OPC: 904 

oligodendrocyte precursor cells, EX: excitatory neurons, IN: inhibitory neurons. 905 

 906 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2020.10.22.351213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.351213
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 

 907 

Supplemental Fig. 4 Expression of marker genes of the inhibitory and excitatory 908 

neuronal subtypes in deconvoluted neuronal cell groups (CGs). Ex: excitatory 909 

neurons; In: inhibitory neurons. The data of subtypes was from a single-nucleus 910 

study of human brains (Lake et al, 2017).  911 

 912 

 913 

 914 

 915 

 916 

 917 
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 918 

Supplemental Fig. 5 Spearman correlation between expressions of estimated 919 

neuronal cell groups (CGs) and expressions of neurons from different layers of the 920 

middle temporal gyrus.   921 

 922 

 923 
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 924 

Supplemental Fig. 6 Comparison with an alternative deconvolution method bMIND. (A) 925 

Spearman correlations between CG-specific expressions estimated from swCAM (rows) and 926 

bMIND (columns). (B) Replication of CG-specific eQTLs by bMIND. (C) Comparison of SCZ 927 

differentially expressed genes identified by swCAM and bMIND. 928 
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 929 

Supplemental Fig. 7 Deconvolution of replication dataset from ROSMAP project. (A) Marker 930 

gene expression in estimated cell groups (CGs). (B) To annotate the identity of CGs, an 931 

EWCE test with snRNA-seq data from human cortex was conducted. (C) Expressions of 932 

upper-layer and deep-layer genes in estimated CGs. (D) To annotate the identity of neuronal 933 

CG1 and CG5, EWCE test with snRNA-seq data of neurons from cortical layers was 934 

conducted. Ast: astrocytes, End: endothelial cells, Mic: microglia, Oli: oligodendrocytes, Opc: 935 

oligodendrocyte precursor cells, Ex: excitatory neurons, In: inhibitory neurons. 936 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2020.10.22.351213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.351213
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

 937 

Supplemental Fig. 8 Replication of CG-specific eQTLs in eQTLs from sorted cell 938 

populations. (A) The degree of replication is indexed by Π1 and (B) replication rate. 939 

Π1 is the proportion of true alternative hypothesis of replicated eQTLs in sorted 940 

population. Replication rate is the ratio of replicated eQTLs over eQTLs in sorted 941 

populations (FDR<0.05). 942 

 943 

 944 

 945 
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 946 

Supplemental Fig. 9 Permutation test of proportion changes observed in upper-layer 947 

neurons. The sample labels were shuffled and the proportion changes were 948 

calculated from two randomly selected groups. This process was permutated 1000 949 

times. The black line is the distribution of proportion changes in permutations and the 950 

red line is the observed proportion changes.  951 
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 952 

Supplemental Fig. 10 Overlap of differentially expressed genes detected in each 953 

cell group. The differential expression of genes in patients with SCZ was calculated 954 

with Wilcoxon signed-rank test (p value <0.05) per cell group (CG). The left-side bars 955 

denote the number of differentially expressed genes in each CG. The upper bars 956 

denote the intersection size between sets of differentially expressed genes. Dark 957 

connected dots on the bottom panel denote which substrates are considered for each 958 

intersection. 959 

 960 
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 961 

Supplemental Fig. 11 Permutation test of fold changes of differentially expressed 962 

genes in schizophrenia. The sample labels were shuffled and fold changes were 963 

calculated from two randomly selected groups. This process was repeated 1000 964 

times. The black lines are the distribution of permutated fold changes and the red 965 

lines are the observed fold changes in each CG.  966 
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Supplemental table 1 Collected brain cell marker genes 969 

Supplemental table 2 Differential expressed genes in SCZ per cell group 970 

Supplemental table 3 TWAS genes in SCZ per cell group 971 

Supplemental table 4 Coexpression-module member genes and their module 972 

membership in each cell group 973 

Supplemental table 5 Source data used in figures and tables 974 
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