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Abstract

The biological processes that drive cellular function can be represented by a complex network of interactions
between regulators (transcription factors) and their targets (genes). A cell’s epigenetic state plays an important
role in mediating these interactions, primarily by influencing chromatin accessibility. However, effectively
leveraging epigenetic information when constructing regulatory networks remains a challenge. We developed
SPIDER, which incorporates epigenetic information (DNase-Seq) into a message passing framework in order to
estimate gene regulatory networks. We validated SPIDER’s predictions using ChlP-Seq data from ENCODE and
found that SPIDER networks were more accurate than other publicly available, epigenetically informed regulatory
networks as well as networks based on methods that leverage epigenetic data to predict transcription factor
binding sites. SPIDER was also able to improve the detection of cell line specific regulatory interactions. Notably,
SPIDER can recover ChlP-seq verified transcription factor binding events in the regulatory regions of genes that
do not have a corresponding sequence motif. Constructing biologically interpretable, epigenetically informed
networks using SPIDER will allow us to better understand gene regulation as well as aid in the identification of
cell-specific drivers and biomarkers of cellular phenotypes.

Introduction

The regulatory program of a cell can be defined by a complex set of interactions that occur when transcription
factors (TFs) bind and recruit the transcriptional machinery to the regulatory regions of their target genes’- 2.
Modeling these interactions in gene regulatory networks allows for the identification of cell-specific regulatory
processes, providing insights into how cells develop, respond to environmental perturbations, and are altered by
disease. However, gene regulation is a complex process. Transcription factors form protein complexes, leading
to co-regulatory events even in the absence of corresponding recognition sequences. These events are
mediated through various mechanisms, including DNA looping, piggyback recruitment, assisted binding, or
interaction with modified histones?. In particular, the epigenetic state of the cell, through chromatin architecture
and nucleosome positioning, plays a critical role in transcription factor binding events and, consequently, gene
regulation.

Enzymatic chromatin accessibility assays like DNase-seg® and ATAC-seq* can identify regions of open
(accessible) chromatin that are “protected” by bound proteins such as transcription factors, but these assays do
not provide the identity of the factors bound within these regions. In contrast, high-throughput DNA binding
experiments, such as ChlP-seq®, provide the genomic locations of specific TFs in a given context. However,
these assays cover only a small number of TFs due to a lack of good antibodies and the cost associated with
running many sequencing assays. Consequently, TFs are generally associated with genes by identifying
transcription factor binding sites (TFBS) using DNA recognition sequences, called motifs®®. Combining DNA
accessibility (and other omic data) with motif information is commonly done to improve TFBS prediction®'® and
infer the potential regulatory roles of transcription factors' '8,

TFBS prediction methods generally score each TF motif instance and validate performance based on ChlP-
seq TF binding data. Regulatory networks based on TFBS predictions, leverage the subset of these motif
instances that map within the promoter (or other regulatory) regions of genes. However, restricting the data to
only regulatory regions drastically reduces the network’s predictive performance compared to that observed in
genome-wide — and thereby gene location-agnostic — assessments (see Supplemental Figure 1 and
Supplemental Section S1). This indicates that TFBS information alone — even that which incorporates
chromatin state and other genomic data — is insufficient for reconstructing an accurate regulatory network. This
may be due to the fact that TFBS predictions do not generally incorporate any of the higher-order, co-regulatory
mechanisms that are mediated by epigenetic factors.

Here we propose a method to reconstruct gene regulatory networks based on information exchange between
epigenetically accessible motifs. SPIDER (Seeding PANDA Interactions to Derive Epigenetic Regulation)
integrates TF motif locations with epigenetic data and then applies a message passing algorithm (PANDA) to
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construct gene regulatory networks. We applied SPIDER to DNase-seq data for six human cell lines and
evaluated the predicted networks using independently derived ChlP-seq data. We find that SPIDER significantly
outperforms other methods. Importantly, we also show that SPIDER’s unique approach of melding epigenetic
data with message passing allows for the detection of indirect regulatory events. An implementation of SPIDER
is available at: https:/github.com/kimberlyglass/spider.

Results
SPIDER: Seeding PANDA Interactions to Derive Epigenetic Regulation

SPIDER is based on identifying transcription factor (TF) motifs found in accessible chromatin regions, using
this information to identify an initial “seed” network, and then applying message passing to harmonize
connections across all the transcription factors and genes (Figure 1a). SPIDER repurposes the message
passing approach implemented in PANDA, a multi-omic network reconstruction algorithm based on affinity-
propagation.’ PANDA constructs regulatory networks by integrating transcription factor motif information with
protein interaction and gene co-expression data. PANDA has been widely applied a wide range of biological
problems, including the study of human diseases®*??, tissues 2> 24, and cell lines®>%”. While PANDA has been
extremely successful, it does not explicitly incorporate epigenetic data. This means that in practice the input TF-
gene seed network used by PANDA often assumes that all motif sites on the genome are equally accessible.

The input to SPIDER includes the location of (1) TF motifs, defined by position weight matrices mapped onto
the DNA 28, (2) open chromatin regions, based on epigenetic data, and (3) gene regulatory regions, which can
be defined based on proximity to transcriptional start sites. SPIDER first constructs a “seed” regulatory network
between transcription factors and target genes by intersecting motif locations with open chromatin and gene
regulatory regions. Next, the weights of edges in this initial network are degree-normalized to emphasize
connections to high degree TFs and genes (see Supplemental Section S2.1); by definition, these TFs and
genes are associated with more open chromatin regions and are therefore more likely to be active players in the
regulatory process. This initial network is then run through PANDA’s message passing algorithm to optimize the
network structure given the input data. It should be noted that, although PANDA generally incorporates protein-
protein interaction (PPI) and gene co-expression data, these data are not required for the message passing
procedure. Because we wanted to understand how chromatin structure information influences regulatory network
reconstruction, we chose to exclude PPl and expression data when testing SPIDER. The output of SPIDER is a
bipartite, complete network with weighted edges that represent the likelihood of a regulatory relationship between
a TF and its target genes. For a more detailed description of the SPIDER method, see Supplemental Section
S2.1.

We tested SPIDER using data for six human cell lines (Table 1). In particular, for the input to SPIDER we
used (1) TF motif data derived from mapping transcription factors motifs from Cis-BP?° to the hg19 genome using
FIMO?, (2) open chromatin regions defined in narrow-Peak DNase-seq data files from ENCODE, and (3)
regulatory regions, defined as 2kb windows centered around the transcriptional start sites of genes based on
RefSeq annotations® (Figure 1b). For each cell line we estimated two epigenetically-informed networks: the
initial “seed” network constructed from integrating TF binding sites with open chromatin and gene regulatory
regions (orange parallelogram in Figure 1b) and a final SPIDER regulatory network estimated from performing
message passing on the seed network (red parallelogram). We also estimated two reference networks common
to all six cell lines: an initial “naive” network consisting of TF-gene associations based only on the intersection of
motif locations with regulatory regions promoters (gray parallelograms), and a final naive network derived by
applying message passing to refine the initial naive network (black parallelograms). These networks included
regulatory associations for 687 regulating TFs and 27090 target genes. Finally, we created six “gold standard”
validation networks, one for each of the six cell lines, by taking the intersection of experimental cell-specific ChIP-
seq peaks with regulatory regions. It should be noted that the dimensions of these ChlP-seq networks vary based
on the number of TFs assayed in each cell line (Table 1; Supplemental File 1). In total we have twenty
reconstructed networks — three for each cell line (SPIDER seed network, SPIDER regulatory network, ChlP-seq
regulatory network) plus the “naive” seed and regulatory networks — as well as six “gold standard” networks
based on ChlP-seq data. This set of networks allowed us to explore both the impact of including epigenetic
information as well as the message passing optimization in SPIDER. For more information on our data
processing and network construction pipeline, see Supplemental Sections S2.2-S2.3.

SPIDER predicts accurate gene regulatory networks
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To begin, we benchmarked the two naive networks using the six ChlP-seq “gold standard” networks and
evaluated their accuracy based on the Area Under the Receiver-Operator Characteristic Curve (AUC-ROC, or
more simply, AUC). This provided a baseline assessment of network accuracy in the absence of epigenetic
information (Figure 2a). Unsurprisingly, we observed very low AUC values — from ~0.57 to ~0.60 (Figure 2b,
gray and black bars) — indicating that message passing in the absence of cell line specific epigenetic data does
not improve the network accuracy. We also evaluated the SPIDER seed networks, which represent the
contribution of chromatin accessibility data to network accuracy in the absence of applying message passing
(Figure 2b, pale colored bars). Interestingly, we found only a marginal increase in AUC compared to the naive
networks. For example, the SPIDER seed networks for A549 had an AUC of 0.594, only a 3.8% increase over
the naive seed network (AUC=0.572). This indicates that the addition of epigenetic data alone does not result in
accurate gene regulatory networks. For more explanation regarding these results, see Supplemental Section
Si.

We next evaluated the SPIDER predicted gene regulatory networks, which are the result of applying
message passing to the epigenetically informed seed networks (Figure 2b, dark colored bars). We found that
SPIDER regulatory networks are highly accurate, with AUC scores dramatically increased compared to both the
naive and epigenetically informed SPIDER seed networks. For example, the accuracy of the A549 network was
improved by over 37% (AUC=0.816) compared the seed network. The SPIDER predicted network for GM12878
was the most accurate, with an AUC value of 0.819. This level of accuracy and overall improvement was
consistent across all six cell lines (Supplemental Table 1). This is remarkable, especially given that adding
epigenetic data to the naive networks did little to improve accuracy. It also demonstrates the robustness of
SPIDER in predicting accurate regulatory networks across a range of cell types. Importantly, these results
indicate that the combination of epigenetic information and message passing, rather than either in isolation, is
critical for uncovering the cellular regulatory architecture.

To ensure that these results were not driven by a handful of transcription factors, such as those with a high
number of motif locations or abundant ChlP-seq peaks, we separately evaluated the accuracy of the edges
emanating from each individual transcription factor (Figure 2c). Just as with the overall networks, we found that
the AUC values for TFs were nearly always significantly higher in SPIDER networks than in the corresponding
naive and seed networks, and that this was true across all the cell lines. Of note, transcription factors with ChlP-
seq data in multiple cell lines (CEBPB, CTCF, EP300, GABPA, MAX, REST in all six cell lines; ATF3, USF1,
YY1, JUND, MX11, MYC, NRF1, RFX5, TBP, USF2, in five cell lines) had consistent AUC values across the cell
lines. Interestingly, some of these transcription factors also have higher AUC values across all the different
network types. This may be due to the fact that their corresponding motif is found in the promoter region of more
genes. For example, GABPA targets 18-19% of all genes in the seed networks, whereas the average TF only
targets about 6% of genes in the seed networks. Other examples include CTCF (targets ~10% of genes), NRF1
(~10%), and USF2 (~7%).

Finally, we verified that these results were not the result of class-imbalance by repeating these analyses
using the Area Under the Precision-Recall Curve (AUPR) instead of AUC to evaluate network accuracy. We
observed almost identical results using AUPR as we did with AUC (Supplemental Figure 2). Overall, these
analyses demonstrate that SPIDER effectively applies message passing to an epigenetically informed seed
network in order to infer accurate gene regulatory networks. Importantly, these networks represent the in vivo
regulatory architecture observed in ChlP-seq data, both at the overall gene regulatory network level and at the
individual transcription factor level.

SPIDER predicts cell specific regulatory relationships

A cell’s regulatory network includes interactions that are specific to a given cell type or biological context as
well as interactions that are shared across many cell types and support common regulatory processes? 3.
Therefore, we next evaluated SPIDER’s ability to predict network edges that are cell line specific, i.e. instances
wherein ChlP-seq data indicates that a TF is bound to the regulatory region of a gene in one cell line but not
another. Such interactions are important in determining cellular function and may play a role in a wide range of
cell-specific characteristics, including disease risk®.

To evaluate SPIDER’s ability to predict of cell line specific edges, we first constructed “differential networks”.
Specifically, for each pair of cell lines (“A” and “B”), we subtracted (1) the input SPIDER seed networks, (2) the
regulatory networks predicted by SPIDER, and (3) the ChIP-seq derived gold standard networks. It's important
to note that, since the seed networks and gold standard networks are binary, taking the difference between these
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networks results in three classes of edges: those specific to cell line A (difference = +1), those specific to cell
line B (difference = -1), and those that are the same in both cell lines (either existing in both, or not existing in
both; difference = 0) (Figure 3a).

Next, we computed the AUC for the differential-seed and differential-regulatory networks using three-level
predictors, with the differential ChlP-seq networks as our benchmark. To help illustrate and interpret this analysis,
Figure 3b shows the ROC curve comparing one pair of cell lines: HIHESC versus HELASS. For this pair of cell
lines, the differential SPIDER regulatory network had a much higher predictive power (AUC = 0.69) compared
to the differential seed network (AUC=0.53). Importantly, this curve also shows that all the three classes of edges
(-1, +1, and 0) contribute to overall AUC. This can be seen by noting that the ROC curve for the differential seed
network is composed of three straight line segments, one for each of the three classes of edges. The ROC for
the differential SPIDER network rises above these segments and is especially pronounced for the middle
segment. This segment represents edges that either existed or didn’t exist in both cell lines’ seed networks.
Thus, the dramatic shift in the ROC curve indicates that the message passing portion of SPIDER is effectively
removing false positives and false negatives from the epigenetically informed seed networks.

Figures 3c-d illustrate the AUC values for the differential networks across all pairs of cell lines. We observe
that the SPIDER regulatory networks consistently predict cell line specific interactions much more accurately
than the seed networks. Overall, these results indicate that message passing is enhancing the detection of cell
line specific edges.

SPIDER can be used to model distal regulatory elements

Transcription factor binding in the proximal promoter region regulates gene expression through the formation
of the pre-initiation complex. Similarly, distal regulatory elements can influence the rate of gene transcription by
acting as either activators or repressors®. Incorporating these distal regulatory factors into network models is an
important step in developing a more holistic perspective on gene regulation.

One important advantage of chromatin accessibility data such as DNase-seq is the identification of enhancer
regions. Although the local chromatin environment around enhancers is well studied®*38, less is known about
which genes are targeted by these distal elements through mechanisms such as DNA looping®®#'. However,
proximity can be used to map distal regulatory elements to genes, providing a first order approximation of distal
regulation. Along these lines, we modulated the definition of the regulatory region used by SPIDER to assess
transcription factor binding sites located outside the proximal promoter. In particular, we defined the regulatory
region of each gene as composed of two windows of 5kb each (total 10kb) located at increasing distances
upstream and downstream of the TSS, up to +100 kb. For example, Figure 4a shows the regulatory region of a
gene as located -20 kb to -25 kb and +20 kb to +25 kb away from the TSS. For two example cell lines, GM12878
and A549, we ran SPIDER using five different definitions of potential regulatory regions: +5-10kb, +20-25kb,
+45-50kb, £70-75kb, +95-100kb. This allowed us to examine the potential impact of distal epigenetic variability
on gene regulation at multiple distances; the width of these distal regions was selected such that the density of
the SPIDER seed information was similar to our proximal promoter analysis. We benchmarked the results from
SPIDER to their corresponding ChlP-seq derived gold-standards, also constructed based on these same
regulatory regions (Figure 4b; Supplemental Table 2). The AUC values for the regulatory predictions made
using these alternate windows showed little variation, indicating that SPIDER can be used to predict transcription
factor binding sites outside of the proximal promoter. Interestingly, the prediction accuracy for these distal
regulatory elements was even slightly higher than those obtained using proximal promoter regions.

Given these results, we selected a single window, +20-25kb, to investigate in more detail. We systematically
evaluated all six cell lines and found that SPIDER accurately predicts distal ChlP-seq binding events. Importantly,
the accuracy of SPIDER predictions was significantly higher than either those made based on the epigenetically
informed “seed” data or those based on a “naive” mapping. This is true both overall (Figure 4c; Supplemental
Table 3) as well as for individual TFs (Figure 4d). For example, AUC for distal regulatory interactions in A549
from SPIDER (AUC = 0.850) was over 35% higher than the seed interactions (AUC = 0.628). As in our previous
analysis, we obtained very similar results when computing the AUPR instead of the AUC (Supplemental Figure
3). We also evaluated the cell line specificity of these distal regulatory interactions and found that the predictions
made by SPIDER were highly cell-line specific and more specific than the information used to seed the algorithm
(Figure 4e-f). These findings are consistent with the notion that biological processes specific to individual cell
types or tissues are more likely to be driven by distal regulatory elements, such as enhancers, while common
“housekeeping” processes tend to be regulated by promoters*? 43,
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SPIDER outperforms other prediction algorithms

Our results demonstrate that SPIDER can effectively leverage epigenetic information to estimate highly
accurate and cell line specific regulatory networks. However, there are a number of other computational tools
and resources in the literature that provide epigenetically informed networks or genome-wide transcription factor
binding site predictions. We benchmarked the performance of SPIDER with several of these predictive
frameworks. In particular, we downloaded publicly available genome-wide transcription factor binding locations
predicted by CENTIPEDE' and PIQ (protein interaction quantitation)'#, and created a set of associated gene
regulatory networks by intersecting these locations with gene regulatory regions using the same pipeline we
applied to build the SPIDER seed networks. We also downloaded the gene regulatory networks associated with
two publications: Neph et. al. * and Marbach et. al. *°. Finally, we applied TEPIC '3 to the same DNase data we
used to test SPIDER. Additional details regarding how we processed these data is included in Supplemental
Section S3.

It is important to note that the data reported by each of these sources varies. For example, it is possible to
obtain continuous scores for the predictions made by CENTIPEDE, PIQ, and TEPIC, but the networks provided
with the Neph et. al. and Marbach et. al. publications are unweighted. Therefore, to ensure a fair comparison
across the sources, we converted all networks (including those estimated by SPIDER) into unweighted graphs
using thresholding (see Supplemental Section S3). The cell lines and transcription factors included in each
source also differ. Therefore, to gauge the accuracy of network predictions across these sources, we calculated
a series of AUC scores by comparing the targeting profile of each transcription factor in a given cell line network
with its targeting profile based on cell line specific ChlP-seq data. This resulted in a series of AUC scores
associated with each method. The number of cell lines, transcription factors, and tests performed for each source
is reported in Supplemental Table 4. The distribution of the calculated AUC values across all tests is shown in
Figure 5a.

The networks derived from the genome-wide transcription-factor binding prediction algorithms were only
marginally better than random chance; the mean AUC across all tests was only 0.516 for CENTIPEDE and 0.556
for PIQ. This is despite the fact that both of these algorithms do an outstanding job of predicting transcription
factor binding at the genome-wide level (Supplemental Figure 4a; see also Supplemental Section S1 and
Supplemental Figure 1). The networks reported in Neph et. al. and Marbach et. al. were also not very accurate,
with mean AUCs (based on comparison to ChlP-seq data) across all tests of 0.518 and 0.559, respectively. This
is likely due to the fact that these networks were derived using similar techniques as the ones we modeled based
on CENTIPEDE and PIQ. The networks predicted by TEPIC were overall more accurate than the other sources
(mean AUC = 0.582) but were still less accurate than those predicted by SPIDER (mean AUC = 0.695). We note
that these results were not greatly impacted by considering the scores made by the algorithm in lieu of
thresholding (Supplemental Figure 4b) and were similar for distal regulatory interactions (Supplemental
Figure 4d-e). As in the case of our other analyses, these results were also very similar when using the AUPR
instead of the AUC to measure accuracy (Supplemental Figure 4c&f).

To better understand why SPIDER outperformed other methods/sources, we analyzed the components that
lead to the calculation of the AUC (Figure 5b), namely: (1) the True Positive Rate (TPR), or instances where a
TF is predicted to be regulating a gene and that gene has a ChIP-seq peak for the TF in its regulatory region;
(2) the True Negative Rate (TNR), or instances where a TF is predicted to be absent and there is no ChIP-seq
peak; (3) the False Positive Rates (FPR), or instances where a TF is predicted to be regulating a gene, but that
prediction is not supported by ChlP-seq; and (4) the False Negative Rate (FNR), or instances where TF is
predicted to be absent, but a ChlP-seq peak exists in the regulatory region of the gene (for more details, see
Supplemental Section S3). Visualizing these rates (Figure 5b) revealed that although other methods generally
excel at detecting true negatives, this is at the cost of greatly reducing the number of true positives, ultimately
leaving to a very high false negative rate and poor overall accuracy. On the other hand, although the networks
predicted by SPIDER had a slightly lower true negative rate compared to networks associated with the other
sources, they also included many true positive events, which were largely missed by the other methods. This is
due to the fact that, unlike previous approaches, SPIDER does not require that a TF motif is present in the
promoter region of a gene in order to predict a regulatory interaction between that transcription factor and gene.
Rather, an interaction between a transcription factor and a gene can be learned through SPIDER’s message
passing process, which assesses the likelihood of each edge based on the overall structure of the network.
Biologically, these learned relationships may represent transcription factor regulatory mechanisms that are not
captured by DNA sequence*, such as the recruitment of cofactors*’: 48
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SPIDER predicts biologically relevant hidden interactions

SPIDER estimates accurate networks by simultaneously predicting two classes of regulatory relationships:
those that have initial evidence based on the presence of a TF motif in the regulatory region of a gene, as well
as those without evidence from TF motif data but which are instead only supported by the local structure of the
regulatory network (and potentially modulated by regulatory mechanisms not encoded in the DNA sequence).
We evaluated the biological significance of this second class of edges, i.e. edges which were not present in
SPIDER’s seed network but had a high edge weight in SPIDER’s predicted regulatory network. For
demonstration, we focused on the SPIDER seed and regulatory networks for the A549 (lung cancer) cell line.
Key results for all six cell lines are included in Supplemental Tables 5-6.

To begin, we selected TF-gene relationships that were absent in the SPIDER seed network (i.e. true and
false negative edges, or those with no evidence of TF-gene regulation based on intersecting motif data with open
chromatin and gene regulatory regions; Figure 6a) and plotted the distribution of their weight in the predicted
SPIDER regulatory network (Figure 6b). We then selected the subset of these relationships with the highest
weights for further analysis, using FDR < 0.05 as our cutoff (see Supplemental Section S4); these edges are
those that were absent in the epigenetically informed seed network but which were subsequently predicted after
running SPIDER.

Next, we determined the genes targeted by these edges (Figure 6¢). Among the genes associated with the
most edges are several that are important for lung cancer, including PDE4D (Phosphodiesterase-4), ZBTB20,
and TGIF1. PDE4D is known to promote proliferation and angiogenesis in lung cancer under hypoxia and is a
potential therapeutic target for lung cancer therapy*®. PDE4D is also involved in apoptosis, growth, and
proliferation in lung cancer cells®® %', and promotes Epithelial-Mesenchymal Transition (EMT) in A549 cell lines®2.
Similarly, ZBTB20, a member of the POK family of transcriptional repressors, is up-regulated in lung cancer
compared to adjacent normal tissue through transcriptional repression of FOXO1%. Finally, TGIF1 knockdown
inhibits the growth and the migration of non-small cell lung cancer cells® and is dysregulated in several types of
cancer. Assessment of TGIF expression has shown that silencing TGIF attenuates the tumorigenicity of A549
cells®. These results suggest that SPIDER networks can identify biologically relevant genes that may be
regulated in a context-specific manner despite a lack TF motif evidence.

Finally, we investigated SPIDER-predicted transcriptional regulation, focusing on transcription factors with
ChiIP-seq data. In particular, we selected the three top-weight edges with motif evidence (i.e. true or false
positives in the SPIDER seed network) as well as the three top-weight edges that do not have any corresponding
motif evidence (i.e. true or false negatives in the SPIDER seed network). Four of these top-weight edges,
including two with motif evidence and two without, targeted PDE4D (Figure 6d). To better understand these
SPIDER predictions, we visualized DNase-seq, ChlP-seq, and motif locations in the regulatory region of PDE4D
(Figure 6e). For CEBPB and SIX5 we find ChIP-seq peaks aligned with their corresponding motif and a DNase-
seq peak. CREB1 and MAX also have ChlP-seq peaks aligned with DNase-seq peaks but no corresponding
predicted motif, meaning that their potential role in regulating PDE4D would have been missed using other
common approaches. Interestingly, CEBP proteins can mediate the binding of cCAMP proteins, such as CREB1,
to gene promoters®, suggesting that recruitment of CREB1 to PDE4D may have been facilitated by CEBPB - a
cofactor mechanism which was likely captured by SPIDER’s message passing procedure.

Discussion

In this manuscript we present SPIDER, a framework to predict robust, accurate, and epigenetically informed
gene regulatory networks. SPIDER works by applying a message passing approach that emphasizes similarities
in transcription factor targeting patterns across an initial (or seed) set of epigenetic-informed regulatory
relationships. SPIDER not only predicts accurate overall networks, it also reliably estimates cell-line specific and
individual transcription factor level regulatory information. Importantly, SPIDER-predicted networks are
significantly more accurate than the regulatory information used to seed the algorithm as well as networks
constructed without epigenetic data. This indicates that both message passing and epigenetic information are
critical to SPIDER’s success.

We compared the performance of SPIDER-predicted networks to that of published gene regulatory networks
and networks constructed using the results of transcription factor binding site prediction algorithms, all of which
leverage similar input data. SPIDER predictions were significantly more accurate than those made by these other
approaches. Other methods often require that a transcription factor’s motif is present in the regulatory region of
a gene in order to assign an edge between that transcription factor and gene. Our analysis demonstrates that
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this leads to a high number of false negatives (missing edges). In contrast, the message passing procedure
employed by SPIDER allows new TF-gene relationships to be inferred, even when a transcription factor’'s motif
is not present in the regulatory region of a gene.

SPIDER'’s strength lies in its ability to reduce false negatives while retaining a high true positive rate, i.e.
recovering missing edges without introducing a large number of false edges. SPIDER’s ability to detect and
effectively enhance “hidden” interactions not only increases the accuracy of the predicted networks, it also allows
for the identification of biologically important regulatory information. For example, when we investigated edges
that had no supporting evidence from our motif scan, but were predicted by SPIDER, we identified PDE4D as a
key target in the A549 network. PDE4D plays an important role in apoptosis, growth, and proliferation in lung
cancer.

SPIDER is a highly versatile algorithm. In this manuscript, we primarily focused on modeling gene regulatory
networks based on promoter regions. However, when we applied the approach to predict transcription factor
binding in regions that are distally located from the transcriptional start site, we observed a very high level of
accuracy. Like our promoter-based analyses, SPIDER predictions in distal regions were cell-type specific and
highly accurate across transcription factors. While we recognize that the ChIiP-seq data we used for validation
only provides information on TF binding, and not on gene regulation, our ability to accurately predict cell-specific
TF binding outside of promoter regions suggests that SPIDER can be used in modeling distal regulatory
mechanisms mediated by enhancers or three-dimensional chromatin structure.

It should also be noted that we used only DNase hypersensitivity as a marker of open chromatin. This was
done to facilitate the comparison of SPIDER with the extensive literature that leverages DNase data to predict
transcription factor binding. However, the algorithm could easily be used with data from other epigenetic marks
of open chromatin, such as ATAC-sequencing data or ChlP-sequencing of histones —this is a key future direction
of our work. Finally, since SPIDER builds on the message passing framework used in the PANDA reconstruction
algorithm, it has the potential to be extended to incorporate other sources of regulatory information, including
protein-protein interaction and gene expression data.

SPIDER provides a principled way to use open chromatin data to gain a comprehensive understanding of
the cellular transcriptional regulatory architecture. The algorithm’s unique application of message passing to
highlight structures in a seed network gives it a distinct advantage compared to other methods and illustrates
the importance of considering the overall regulatory context when predicting transcription factor targeting.
SPIDER predicts biologically interpretable, context-specific, and epigenetically informed gene regulatory
networks. Ultimately, we believe SPIDER networks will facilitate a more comprehensive understanding of
regulatory processes that define health and disease.

Data availability

An implementation of SPIDER is available at: https://github.com/kimberlyglass/spider. The input data and
output networks analyzed in this manuscript can also be directly downloaded from:
https:/sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/spider.
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Table 1: Overview of human cell lines used in this paper together with information on each cell line, the
number of unique TF motifs with corresponding ChlP-seq data that we evaluated in that cell line, and the
number of DNase-seq peaks.

Cell line Tissue Description # ChlP-seq TFs # DNase peaks
A549 Lung Alveolar Carcinoma 19 176870
H1HESC | Stem cell Male embryo stem cell 35 258188
HELAS3 Cervix Cervical adenocarcinoma 38 199188
HEPG2 Liver Hepatocellular carcinoma 45 192959
GM12878 Blood B-lymphoblastoid cells 58 183953
K562 Blood Erythrocytic leukemia 59 202266
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Figure 1: Overview of SPIDER and evaluation pipeline. a. Schematic of the SPIDER network reconstruction
approach. b. Overview of the pipeline we used to evaluate SPIDER, including input data sources, key
algorithmic steps, and output networks assessed.
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Figure 2: Evaluation of SPIDER predictions. a. For each cell line we evaluated four networks, modeled
either with or without using epigenetic data, as well as with or without applying message passing. SPIDER-
predicted regulatory networks represent a combination of epigenetic information and message passing. b. The
AUC values of four types of networks evaluated in six different cell lines (based on ChlP-seq gold standards).
A baseline AUC value of 0.5 is shown as a horizontal dotted line. ¢. The AUC values for individual TFs within
each network. The distribution of values is shown in the top panel. Individual values are visualized in the
bottom panel. See also Supplemental File 1, Supplemental Table 1, and Supplemental Figure 2.
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Figure 4: Distal regulatory events predicted by SPIDER. a. An example set of regions (£20-25 kb from the
TSS) used to define distal regulatory windows around a gene. b. The AUC values for SPIDER predictions
across sets of regulatory windows at increasing distance from the transcriptional start site. Two example cell
lines (GM12878 and A549) are shown. ¢. The AUC values for SPIDER predictions, as well as predictions
made without epigenetic information or message passing, for six cell lines using the +20-25 kb regulatory
window. d. Distribution of AUC values for individual TFs. e-f. Differential analysis demonstrates that SPIDER
detects cell line specific interactions in distal regulatory windows. See also Supplemental Table 2,
Supplemental Table 3, and Supplemental Figure 3.
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Figure 6: SPIDER Identification of hidden regulatory relationships. a. Schematic showing the relationship
between true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) in the SPIDER
seed network, as well as potential SPIDER predictions (red lines). b. Distribution of the SPIDER-predicted
edge weights in the A549 network for the subset of edges that were absent in the A549 SPIDER seed network
(TN or FN edges; see panel a). Of these, top-weight edges that have a significant (FDR < 0.05) weight in the
SPIDER-predicted networks are shown in light red. ¢. The number of times a gene is targeted by one of the
top-weight edges shown in panel b. d. A table showing the three top-weight edges predicted by SPIDER that
originate from TFs with ChlP-seq data. Edges validated by ChlP-seq are illustrated below the table. e.
Integrative Genomics Viewer (IGV) tracks showing DNase hypersensitivity regions, motif predictions, and
ChlP-seq data in the PDE4D promoter region. Motif, DNase, and ChlIP-seq peaks exist for CEBPB and SIX5.
However, although only DNase and ChIP-seq peaks can be seen for CREB1 and MAX (but no corresponding
motif), SPIDER recovered these regulatory relationships. See also Supplemental Table 5 and Supplemental
Table 6.
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Supplementary Materials and Methods
S1. Limitations to using genome-wide TFBS predictions when constructing gene regulatory networks

Position-weight-matrices (PWMs) are used to conceptualize the DNA sequence pattern bound by a transcription
factor (TF). The genomic locations (“motif locations”) that match the pattern contained in a PWM can be used to
predict a transcription factor’s binding sites (TFBSs). Multiple methods have been developed that leverage
chromatin accessibility and other genomic information (e.g. sequence conservation, proximity to an annotated
transcription start site, etc.) alongside PWMs to improve motif scoring and thereby TFBS predictions. These
methods are generally benchmarked by comparing the scores associated with each motif location against a
“gold standard” derived from ChIP-seq data. At a technical level, this amounts to comparing two vectors of length
Nm, where Ny is the number of motif locations in the genome: (1) one containing scores associated with each
motif location, and (2) one indicating whether or not there is also a ChlP-seq peak at these locations. This
approach has two well-known limitations. First, by definition, this approach excludes locations in the genome
where the TF is bound based on ChlP-seq data but there is no corresponding pattern in the DNA that matches
the PWM. Secondly, because only a handful of motif locations are occupied by a transcription factor, these
evaluations are prone to a high number of true-negatives, which can artificially inflate metrics such as the Area
Under the Receiver-Operator Characteristic Curve (AUC-ROC, or more simply AUC).

These issues, especially the former, are exacerbated when constructing gene regulatory networks. In
constructing gene regulatory networks, the motif locations that occur within the regulatory region (most often the
promoter region) of a gene are often used to estimate which TFs regulate that gene. In contrast to genome-wide
TFBS prediction, benchmarking the targets of a TF in a gene regulatory network involves comparing two vectors
of length Ny, where Ny is the number of genes in the network: (1) one containing information regarding whether
or not the TF’s motif was found within the regulatory region(s) of the genes, and (2) one containing information
regarding whether or not there is a ChlP-seq peak for that same TF within the regulatory region(s) of the genes.
Note that in this evaluation, genes whose regulatory regions contain a bound TF based on ChIP-seq data, but
do not contain a corresponding match to that TF's PWM, are no longer excluded, but instead are considered
false negatives.

This shift has profound implications for model accuracy. Namely, even highly accurate TFBS predictions can,
when naively used to construct a gene regulatory network as described above, lead to very poor network
accuracy. To illustrate this seemingly counter-intuitive statement, Supplemental Figure 1 depicts a toy example
illustrating how the same data evaluated using either a ‘motif-centric’ or a ‘gene-centric’ approach can lead to
dramatically different AUC values. The top panel shows three tracks that represent the genomic locations of (1)
motifs, (2) gene promoters, and (3) open chromatin (for example, DNase-seq peaks). The middle panel shows
the location of TF binding sites based on ChlP-seq peaks. In constructing this example, we selected parameters
consistent with those observed in real biological data. Namely, 75% of gene promoters also contained an open
chromatin region and 40% contained a predicted TFBS, 5% of predicted TFBS not in promoters were in regions
of open chromatin (representing enhancers), and 25% of open chromatin regions contained a true TF binding
site (ChIP-seq peak); no ChIP-seq peaks were located outside of open chromatin regions.

We computed the AUC using both a motif-centric and gene-centric approach. For the motif-centric comparison,
motif locations that overlapped with open chromatin were given a score of “1” while motif locations that were not
in open chromatin were given a score of “0”. Benchmarking this vector of motif scores against the ChlP-seq
peaks resulted in a very high AUC value (AUC = 0.96; Supplemental Figure 1, first row of bottom panel). For
the gene-centric approach we considered two scenarios. In the first, gene promoters that contained a motif were
give a score of “1” and promoters that did not contain a motif were given a score of “0”. This is equivalent to
using motif locations without chromatin information to predict a TF’s target genes, as in a regulatory network. In
this set-up, the AUC value dropped severely (AUC = 0.55; Supplemental Figure 1, second row of bottom panel).
For the second scenario, gene promoters that contained a motif that was also in open chromatin were given a
score of “1” and all other gene promoters were given a score of “0”. In this case, despite the additional epigenetic
information, there was only a minimal improvement in AUC (AUC = 0.63; Supplemental Figure 1, third row of
bottom panel), and the accuracy was significantly below that obtained using the same information, but in a motif-
centric manner.
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This analysis shows that highly accurate results from motif-centric prediction approaches, including algorithms
that combine PWM and chromatin accessibility information to predict TFBS, do not directly translate into accurate
gene regulatory network models. This is not only due to a high number of true negatives, but also a high number
of false negatives.

S2. Details of the SPIDER method, input, and validation

S2.1 Details of the SPIDER algorithm:

Step 1 — Intersect open chromatin regions with motif locations: In this step SPIDER uses bedtools' (version
v2.25.0) to intersect a BED file containing regions of open chromatin with a series of BED files containing the
locations of TF motifs (one BED file per TF). The output of this step is a single BED file that contains the locations
of TF motifs that are in open chromatin regions. By default, each of these locations is given a default score of
one. Note that, in practice, the file produced by this step could be produced in another manner and still used by
SPIDER.

Step 2 — Intersect motifs in open chromatin (from Step 1) with gene requlatory regions and create a seed
regulatory network: Next, SPIDER uses bedtools to overlap a BED file containing the locations of TFs that are
in open chromatin (created in Step 1) with a BED file containing the regulatory regions of genes. Note that a
gene can have multiple associated regulatory regions in this second file. If a TF’s motif falls within the regulatory
region(s) of a gene, then an edge is created between that TF and gene. The maximum score across all TF motif
instances associated with a gene is used to weight the edge; by default, this value is one. The result of this step
is an epigenetically-informed seed regulatory network between all transcription factors and genes.

Step 3 — Degree normalize seed network: The seed network from Step 2 consists of edges between N7 TFs and

Nec genes. Let us denote the TF by gene adjacency matrix describing this network as A. Based on this matrix,

we can calculate the average degree for each TF jas kIF = NLZ?'G A;j, and the average degree for each gene
G

1

j as ije”e :N—Z?’TAU-. We use this information to degree normalize the seed network based on the
T

transformation A;; = Aij\/(kiTF)Z + (k]Gene)Z_

Step 4 — Apply message passing: Finally, SPIDER applies the PANDA? message-passing algorithm to the
degree-normalized seed network A* calculated in Step 3. PANDA’s message-passing framework integrates
information from three networks, representing TF protein-protein interaction (P), TF/gene regulation (W) and
gene co-expression (C). In SPIDER, P and C are set equal to the identity matrix; Wis set equal to A*. PANDA
returns a complete, bi-partite network with edge weights representing the likelihood that a TF regulates a gene;
the distribution of these edge weights is similar to z-scores.

S2.2 Data used in SPIDER:

The input data used by SPIDER includes BED files which contain (1) the genomic locations of potential
transcription factor binding sites (one BED file per TF), (2) epigenetic (chromatin-accessibility) information, and
(8) regulatory regions. In this study, we construct GRNs between 687 TFs and 27090 genes for six cell lines. We
used hg19 coordinates for all the data in this study.

Identification of potential TFBS: In this project, we used motifs for 687 human transcription factors from the
Catalog of Inferred Sequence Binding Preferences (Cis-BP)® (http://cisbp.ccbr.utoronto.ca, accessed: July 7,
2015). We mapped the motifs to the human genome (hg19) using FIMO?, and retained all locations meeting a
significance of p<10*.

Epigenetic data: We obtained DNase-seq peak locations from ENCODE for 6 cell lines. Additional information
about the DNase-seq data used, including lab and download URL, is given in Supplemental File 1.

Regulatory regions: We used RefSeq gene annotations downloaded from the UCSC genome browser
(https://genome.ucsc.edu/cgi-bin/hgTables; accessed on 29" May 2018) to define the regulatory regions of
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genes. We defined ranges of regulatory regions in terms of distance from the transcription start site (TSS): the
proximal range was defined as window of 2kb centered around the TSS. For the analysis where we evaluated
the potential of SPIDER to be used to predict distal regulatory events, we used pair of ranges, each with a width
of 5kb. We chose separate distal windows of 5kb on both sides of the TSS in order to exclude promoter effects
and to keep the density of regulatory seed network information similar between the promoter and distal analyses.
For our primary distal analysis, these ranges were situated at a distance of 20-25kb both upstream and
downstream of the gene transcriptional start site (TSS). We also evaluated SPIDER at various distance-ranges
in the GM12878 and A549 cell lines. This included windows at +5-10kb, +20-25kb, +45-50kb, +70-75kb, and
1+95-100kb around the TSS. We saw little variation in the accuracy of SPIDER predictions across these ranges.

$2.3 Validating SPIDER:

ChlP-seq data for human transcription factors in six cell lines was obtained from ENCODE in narrow peak (BED)
format. Information about the ChlP-seq data used, such as treatment, antibody, data freeze date, lab, and
download URL, is provided in Supplemental File 1. For some TFs, multiple ChlP-seq experiments performed
in the same cell line were available. In these cases, we made one composite file containing all ChlP-seq peaks
using the bedtools merge function. To create gold standard networks from these data, ChIP-seq peaks were
intersected with gene regulatory regions following the same protocol as used by SPIDER, described in Step 2 in
Section S2.1 above. We computed the AUC and AUPR of SPIDER predictions using the perfcurve function in
matlab (R2014b). For the differential network analysis, the ‘negclass’ parameter for three class prediction
problem was used.

S3. Benchmarking SPIDER against other methods

We compared the performance of SPIDER to that of several other methods and available networks that
incorporate epigenetic information. These fall into three main categories: (1) transcription factor binding site
prediction methods (whose output needs to be processed to create gene regulatory networks comparable to
those predicted by SPIDER); (2) publicly available gene regulatory networks (provided as a resource in other
publications), and (3) gene regulatory network prediction methods. In analyzing these diverse resources, we
processed the provided data in as consistent of manner as possible to support a fair comparison of the sources.

Below we describe each of these additional methods/networks and how we adapted their usage or output to
systematically compare their performance with each other and with that of SPIDER. For all methods/networks
we only focused on the subset of cell lines and transcription factors for which we had ChlP-seq data (see Section
S2.3 and Supplemental File 1). For each of the methods/networks we performed a threshold analysis to
evaluate the accuracy of that method/network’s predictions. The thresholds used in these analyses were used
to calculate the true positive rate, true negative rate, false positive rate, and false negative rate for each test
performed, which is summarized in Figure 5b in the main text. The results reviewed in this section are
summarized in Supplemental Table 4 and illustrated in Figure 5a and Supplemental Figure 4.

Group 1: TFBS inference methods

We chose CENTIPEDES® and PIQ® as two representative, highly-cited examples of the many methods that have
been developed to perform genome-wide TFBS prediction. Both of these were pioneering methods and are
widely used as benchmarks.

CENTIPEDE: The CENTIPEDE algorithm identifies regions of the genome that are bound by transcription factors
using a hierarchical Bayesian mixture model to integrate histone modifications and DNase | cleavage patterns
with gene annotations and evolutionary conservation. We downloaded the data on TFBS predicted by
CENTIPEDE from two resources:

(a) the original CENTIPEDE repository: http://centipede.uchicago.edu/SimpleMulti/

(b) website hosting supplemental material for ”: https:/noble.gs.washington.edu/proj/priors4search/
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From the original CENTIPEDE repository, we downloaded the TFBS predictions for five cell lines (GM12878,
H1HESC, HELAS3, HEPG2, K562) since these were analyzed in our primary SPIDER analysis. These data
listed the genomic locations of predicted TFBS in hg18 coordinates, which we converted to hg19 coordinates
using the liftOver program (downloaded from https://genome.ucsc.edu/cqi-bin/hgLiftOver, accessed October 2,
2018), but no scoring information. Therefore, to provide additional insight into the performance of CENTIPEDE,
we also downloaded information regarding the posterior probability of TF binding data for the CENTIPEDE
model, which was provided as part of the supplemental material in 7. These data included six TFs in one exemplar
cell line: GM12878. Although limited, these data included scores for all motif locations, allowing us to recapitulate
the performance of CENTIPEDE at a genome-wide level and to gain insights into why the apparent superior
performance of the algorithm did not directly translate into accurate network predictions (see Section S1).

To evaluate CENTIPEDE, we first focused on the limited dataset from 7 and calculated the accuracy of the
predicted motif locations based on PWM scores as well as the CENTIPEDE-predicted posterior probability
scores. In particular, for each TF, we intersected the associated motif locations with the locations of ChIP-seq
peaks (using the same ChlP-seq data as we used to benchmark SPIDER, see Section S2.3); locations that
intersected with a ChIP-seq peak were considered true binding events. When then calculated the AUC based
on the initial PWM scores associated with the motif locations as well as using the posterior probability scores
predicted by CENTIPEDE. This analysis recapitulated CENTIPEDE’s excellent predictive performance, with a
mean AUC of 0.9782 across the six TFs based on the posterior probability score. This compared to a mean AUC
of only 0.7039 when using the original PWM scores (Supplemental Figure 4a).

Next, for each TF, we intersected motif locations with either proximal (£1kb around the TSS) or distal (£20-25kb
around the TSS) gene regulatory regions (see Step 2 in Section S2.1 above). Genes for which no associated
regulatory region included a motif location were given a default weight of 0.001 less than the minimum posterior
probability score across all motif locations, genes for which exactly one motif location was found across all
associated regions were assigned the posterior probability score associated with that motif location, and genes
for which more than one motif location was identified across all associated regulatory regions were assigned the
highest of the posterior probability scores associated with the identified motif locations. For each TF, we
compared the resulting vector of gene scores with information regarding whether or not there is also a ChiP-seq
peak for that TF within at least one of the gene’s associated regulatory regions (see Section S2.3); we then
used this information to calculate both an AUC and AUPR for that TF. We found that the mean AUC across the
six TFs was only 0.5403 for the proximal regions (Supplemental Figure 4b-c) and 0.5632 for the distal regions
(Supplemental Figure e-f).

We also performed a threshold analysis since this would better align with the data supplied in the original
CENTIPEDE repository. In particular, we identified motif locations that had a high posterior probability (score >
5) and intersected those locations with proximal and distal gene regulatory regions (as in Step 2 of SPIDER, see
Section S2.1). Genes which were not associated with any regulatory regions that included one of these high-
scoring motif locations were given a default weight of zero, while genes associated with at least one regulatory
region that contained one or more of these high-scoring motif locations were given a score of one. The mean
AUC across the six TFs in this context was only 0.5236 for the proximal regions and 0.5189 for the distal regions
(Supplemental Table 4).

Finally, we analyzed the data provided from original CENTIPEDE repository, which contained bed files listing
only high-probability motif locations. Exactly as in the above analysis, we intersected motif locations with gene
regulatory regions, and then benchmarked each resulting profile with its corresponding standard based on ChIP-
seq data for that TF and cell-line (47 total comparisons). We observed overall poor predictive performance, with
a mean AUC of only 0.5156 for proximal regions and 0.5218 for distal regions. These values are very similar to
those we obtained when analyzing the more detailed data from only six TFs, as described above. The results of
these analyses are shown in Figure 5a (proximal) and Supplemental Figure 4d (distal).

Protein-DNA _Interaction quantitation (PIQ): PIQ is a tool for global TF binding site detection using a
combination of motif information and DNase-seq data®. Similar to CENTIPEDE, PIQ estimates binding
probabilities associated with a set of motif locations. We downloaded data containing PIQ predictions from
http://pig.csail.mit.edu/data/141105-3618f89-hg19k562.calls/. These data contained predictions for the K562 cell
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line and included 48 motifs that were also associated with one of the TFs for which we had K562 ChlIP-seq data;
these 48 motifs corresponding to 25 unique TFs.

As in our CENTIPEDE analysis (see above), we first evaluated the overall accuracy of the PIQ scores across all
motif locations. More specifically, for each motif, we merged together the genomic locations provided for both
the standard and reverse compliment PIQ analyses. We then intersected these combined locations with the
locations of ChlP-seq peaks (using the same ChlP-seq data as we used to benchmark SPIDER, see Section
$2.3); locations that intersected with a ChIP-seq peak were considered true binding events. We used these data
to calculate an AUC based on the initial PWM scores as well as based the scores assigned by PIQ. In this
context, P1Q performed well, with a mean AUC of 0.7729 across the 48 motifs based on the PIQ score, compared
to a mean AUC of 0.6001 for the PWM score (Supplemental Figure 4a).

Next, we intersected motif locations with either proximal or distal regulatory regions (as described in Step 2 of
SPIDER, see Section S2.1 above). Exactly as in our CENTIPEDE analysis (see above), genes whose regulatory
regions didn’t include a motif location were given a default weight of 0.001 less than the minimum score across
all motif locations, genes associated with exactly one motif location across all associated regulatory regions were
assigned the score associated with that motif location, and genes with more than one motif location identified
across all associated regulatory regions were assigned the highest score across all associated motif locations.
For each motif, we compared the resulting vector of gene scores with information regarding whether or not there
is also a ChlP-seq peak for the corresponding TF within at least one of the gene’s associated regulatory regions;
this allowed us to calculate an AUC and AUPR for that motif. We found that the mean AUC across the 48 motifs
was only 0.5703 for the proximal regions (Supplemental Figure 4b-c) and 0.5606 for the distal regions
(Supplemental Figure e-f).

Finally, we also performed a threshold analysis where we identified motif locations that had a high score (score
> 0) and intersected those locations with proximal and distal gene regulatory regions (as in Step 2 of SPIDER,
see Section S2.1). Genes whose associated regulatory regions didn’t include a high-scoring motif location were
given a default value of zero, while genes that were associated with at least one regulatory region that contained
one or more high-scoring motif locations were given a score of one. The mean AUC across the 48 tested motifs
was 0.5559 for proximal regions and 0.5389 for distal regions. The results of these analyses are shown in Figure
5a (proximal) and Supplemental Figure 4d (distal).

Overall, these analyses indicate that the predictions from CENTIPEDE and PIQ cannot be naively used for
regulatory network inference. TFBS prediction approaches that combine motif locations with chromatin data are
poor predictors of TF occupancy when restricted to gene regulatory regions. For more information, see Section
S1, above.

Group 2: Available gene regulatory networks

Networks published along with Neph et. al.8: One of the first attempts to use DNase footprints to construct
regulatory networks was published by Neph et. al.8. In this paper, the authors combined TF motif locations with
genome-wide DNase1 footprints to construct regulatory networks of transcription factors. Specifically, if the
DNase1 footprint of transcription factor / was identified within the promoter region of the gene encoding
transcription factor j, a regulatory edge was drawn from transcription factor i to transcription factor j. By design,
only genes that encode transcription factors were included in these networks.

We downloaded the regulatory networks associated with 8 from http://www.reqgulatorynetworks.org. From these,
we selected the networks for the K562 and HEPG2 cell lines, since those were included in the six cell lines for
which we had ChIP-seq data. Note that the downloaded networks were binary (non-weighted), only contained
transcription factors, and were restricted to promoter-based regulatory predictions. We evaluated the accuracy
of each of the TFs within these networks using the ChIP-seq gold standards used to evaluate TFs in the proximal
SPIDER networks (see Section S2.3), restricting those standards to only include target genes within in the Neph
et. al. networks (i.e. the subset of genes encoding transcription factors). The mean AUC across all the tests
performed was 0.5178, similar to mean AUC for threshold proximal CENTIPEDE analysis. The results of this
analysis are illustrated in Figure 5a in the main text.
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Networks published along with Marbach et. al.°: Another collection of gene regulatory network models was
provided along with the article published by Marbach et. al.’. These network models were constructed by
identifying the promoters and enhancers of genes using CAGE expression profiles, and then linking TF motif
locations found within these regions to the corresponding target genes.

We downloaded the networks constructed by Marbach et. al.® from http:/requlatorycircuits.org. Among the 394
networks provided through this resource, we identified five for which we had corresponding ChlP-seq data and
could use for benchmarking and validation. The downloaded networks were binary (non-weighted), limited to the
set of genes used for network building in the CAGE analysis (these genes were provided by the authors in a
supplemental file together with the downloaded networks), and did not distinguish between proximal and distal
regulation. Similar to how we evaluated the networks associated with Neph et. al. (see above), we evaluated the
accuracy of these networks using the ChlP-seq gold standards used to evaluate the proximal SPIDER networks
(see Section S2.3). Specifically, we restricted each gold standard to only include the set of genes used in the
CAGE analysis and evaluated each TF in each network using its corresponding TF and cell line ChIP-seq
standard (167 total tests). The mean AUC across all the tests performed was 0.5595, similar to the mean AUC
for the threshold proximal PIQ analysis. The results of this analysis are illustrated in Figure 5a in the main text.

Group 3: Gene regulatory network prediction methods

TEPIC: TEPIC performs a segmentation-based method to predict TF-binding by the combining PWMs and open-
chromatin assay data. TEPIC computes TF binding affinities based on a biophysical model of TF binding which
detects low affinity binding sites. Of all the methods/networks evaluated, the TEPIC input information and
approach is the most similar to that of SPIDER.

Reconstructing networks using TEPIC: We downloaded the TEPIC program and supporting files from
https://github.com/SchulzLab/TEPIC. To create regulatory predictions, the input to TEPIC includes (1) a set of
formatted PWMs, (2) the full genomic sequence in fasta format, (3) open chromatin regions in BED format, (4) a
gene annotation file that indicates the location of gene transcriptional start sites, and (5) a window size to indicate
the range around the TSS to designate as the regulatory region. For (1) we used a set of formatted JASPAR
motifs (“human_jaspar_hoc_kellis. PSEM”) provided with the TEPIC program. For (2) we used the same hg19
fasta sequence file used for the FIMO motif scan we performed to create the SPIDER input files (see Section
$2.2 above, “Identification of potential TFBS”). For (3) we used the same DNase peak bed files we used when
running SPIDER (see Section S2.2 above, “Epigenetic Data”).

For (4) we created custom gene annotation files that would ensure TEPIC used the same regulatory regions that
we used when running SPIDER. In particular, for the proximal regions we created a gtf file with each entry
corresponding to a unique TSS. We note that some genes are associated with more than one TSS; however,
TEPIC by default only considers one entry for each unique gene symbol. Therefore, in order for TEPIC to treat
these as separate regulatory regions (as we did in SPIDER), we listed a gene (“GeneName”) that is annotated
to multiple TSS as GeneName::COPY1, GeneName::COPY2, etc, one copy per unique TSS. When running
TEPIC for proximal regions we set the window size to 1000, which corresponded to running TEPIC on regulatory
regions defined as +1kb around each TSS - the same regions we used for our proximal SPIDER analysis.

To run TEPIC using distal regions, we created a gtf file that had two entries for each unique TSS, one noting a
location 22500bp upstream of the TSS and one noting a location 22500bp downstream of the TSS. These
locations correspond to the mid-points of the regulatory regions we used when performing our distal analysis
with SPIDER. In order for TEPIC to treat these as separate regulatory regions, each gene (“GeneName”) was
listed twice using the convention GeneName::U and GeneName::D, and annotated to the upstream and
downstream TSS locations, respectively. As in the proximal analysis, genes that were associated with more than
one TSS were denoted by GeneName::U::COPY1, GeneName::U::COPY2, etc. When running TEPIC for distal
regions we set the window size to 2500, which corresponded to running TEPIC on regulatory regions located at
1+20-25kb around each TSS — the same regions we used for our distal SPIDER analysis.
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We ran TEPIC using DNase data for each of the six cell lines and gene annotations for proximal as well as distal
regulatory regions (twelve total analyses). To handle multiple regulatory regions associated with the same gene
(eg a gene associated with multiple associated TSS), for each TF motif to gene edge, we weighted the edge
based on its maximum score across all possible inferences. Note that only genes associated with at least one
regulatory region that overlaps with a DNase peak are contained in the TEPIC output file. Therefore, for
completeness, edges targeting genes not in the TEPIC output were given a default score of zero; this ensured
the networks we inferred using TEPIC contained the same set of target genes as the networks inferred using
SPIDER.

Analyzing TEPIC-predicted networks: We first evaluated the accuracy of TEPIC predictions using continuous
scores. Specifically, for each TF motif in each cell line, we extracted the vector of edge-weights from that motif
to all genes in the TEPIC-predicted network and compared that vector to the TF’s targets in the corresponding
cell line specific ChlP-seq gold standard (see Section $2.3). Based on this analysis, we observed a mean AUC
across all the tests of 0.7405 for the proximal analysis (Supplemental Figure 4b-c) and 0.7586 for the distal
analysis (Supplemental Figure 4e-f). Overall the predictions made by TEPIC were more accurate than all the
other methods/networks we evaluated, with the exception of SPIDER

We also performed a threshold analysis. For each cell line network, we selected the top 25% of edges by weight.
We evaluated the accuracy of each TF motif in these binarized networks using the corresponding TF and cell
line specific ChlP-seq gold standard. Thresholding the TEPIC results negatively impacted its performance. When
thresholding, we observe a mean AUC of only 0.5820 across all tests for the proximal analysis and a mean AUC
of 0.6549 for the distal analysis. The results of this threshold analysis are shown in Figure 5a of the main text.

SPIDER: Our main evaluation of SPIDER’s performance involved benchmarking the continuous edge scores
predicted by SPIDER against ChlP-seq predictions. The results of these evaluations for individual TFs is shown
in Figures 2 & 4 (proximal and distal AUC, respectively) in the main text and in Supplemental Figures 2 & 3
(proximal and distal AUPR, respectively). These results are summarized across all cell lines and shown in
Supplemental Figure 4b-c (proximal networks) and Supplemental Figure 4e-f (distal networks) alongside the
subset of methods for which we could also perform continuous evaluations (six motifs in CENTIPEDE, PIQ, and
TEPIC). For SPIDER, we observe a mean AUC of 0.7949 (proximal) and 0.8477 (distal) across all tests.

However, for many of the methods/networks described above we were only able to evaluate binary predictions.
Therefore, to support a more equitable comparison of SPIDER to these other methods/networks, we also
performed a threshold analysis based on SPIDER’s predictions. As in the TEPIC evaluations (see above), for
each cell line network, we identified the top 25% of edges by weight. We evaluated the accuracy of each TF in
these binarized networks using the corresponding TF and cell line specific ChlP-seq gold standard. We observed
a mean AUC of only 0.6950 across all tests for the proximal analysis and a mean AUC of 0.7747 for the distal
analysis. Although these AUC values are lower than the ones we obtained when evaluating SPIDER’s
continuous scores, they are still much higher than those we obtained from all other sources in the context of
thresholding. The results of this threshold analysis are shown in Figure 5a of the main text.

SPIDER input data: For our final evaluation, we also determined the accuracy of the FIMO motif scan (see
Section S2.2 “Data used in SPIDER”). This is an important evaluation since the quality of the data used to seed
SPIDER may impact the algorithm’s performance and explain its higher accuracy compared to the other sources
we evaluated. To begin, we intersected the genomic locations of each motif with each of the ChlP-seq bed files
corresponding to that motif's associated TF. Locations with an overlapping ChlP-seq peak were considered true
binding events. Separately, we also intersected the genomic locations of each motif with open chromatin regions
for each of the six cell lines, as defined in the DNase BED files used by SPIDER. Motif locations that overlapped
with open chromatin regions were given a score of one, and all other locations were assigned a score of zero.
This mirrors Step 1 of the SPIDER algorithm (see Section S2.1).

We used these data to calculate an AUC based on the initial PWM scores as well as based the binary “scores”
obtained from overlapping with chromatin information. We found that, at a genome wide level, the data used as
an input to SPIDER was already fairly accurate, with a mean AUC across all tests of 0.6596 based on PWM
scores, and a mean AUC across all tests of 0.7431 based on the binary DNase-based scoring scheme. These
results are illustrated in Supplemental Figure 4a. Overall, the accuracy of the motif scan that we used to
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construct the seed networks for SPIDER appears fairly similar to that used by CENTIPEDE and PIQ. Thus, the
accuracy of the SPIDER input data cannot explain its highly superior performance compared to these other
approaches in the gene regulatory network context.

S4. Detecting novel interactions inferred by SPIDER

For each cell line network, we selected TF-gene relationships that were absent in the SPIDER seed network.
Because SPIDER uses PANDA to perform message-passing, the weights of these edges can be interpreted as
Z-scores?. Therefore, to identify significant edges in this class, we converted the weights of edges into
probabilities using the pnorm() function in R and corrected for multiple comparisons using the Benjamini-
Hochberg method. We selected top significant edges for further analysis using an FDR cutoff of 0.05. For the
A549 proximal network this corresponded to an edge weight cutoff of 4.64.
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Supplemental Tables:

Supplemental Table 1: Statistical evaluation of the increase in AUC for the SPIDER Regulatory Networks (SRN)
compared to the naive regulatory networks (NRN) and SPIDER seed networks (SSN). Density for the naive seed
(NSN) network was 39.73%.

Proximal Region
(0 — 1kb from TSS)

Cell line AUC values (95% CI) SRN vs NRN SRN vs SSN
(SSN Percent z-score Percent z-score p-value
density) NRN SSN SRN . (DeLong’s | p-value | . (DeLong’s (two-
increase increase '
test) test) sided)
A549 0.574 0.594 0.816
(0.5722- | (0.5921- | (0.8144- 421 -220.78 | <2.2e-16 37.3 -316.34 | <2.2e-16

(5.89%) 0.5763) 0.595) 0.817)

Hi-HESC | 0597 | 0607 | 0.726
S0aon) | (05957 | (0.6057- | (0.7248- | 216 | -13843 |<22e16| 196 | -19441 |<22e-16
(6.04%) | (5991) | 0.6083) | 0.7277)

HELAS3 | 0579 | 0602 | 0.8093
5 6ao0, | (05725 | (0.6008- | (0.8072- | 397 | -28991 |<22e16| 343 | -41216 | <22e-16
(5.64%) | 5755) | 0.603) | 0.8092)

HEPG2 | 0583 | 0598 | 0.770
sao, | (05778 | (05974- | (0.77- | 321 | -24852 |<22e16| 287 | -34419 | <22e-16
(5.49%) | 1 5806) | 0.5994) | 0.7721)

GM12878 0.581 0.602 0.819

5170y | (05771~ | (06014- | (0.8178- | 409 | 37318 |<22e16| 360 | 53896 |<22e-16
(8.77%) | 0.5795) | 0.6031) | 0.8193)
K562 0578 | 0596 | 0.795

(0.5738- | (0.5956- | (0.7943- | 375 | -358.64 |<22e-16| 333 | -505.68 |<2.26-16
5.69%
(5.69%) | 05761) | 0.5972) | 0.7959)

Supplemental Table 2: Characteristics of the input data as well as output predictions made for distal ranges.

Ranges GM12878 A549
AUC - SRN AUC- SSN | Density (%) | AUC - SRN | AUC- SSN | Density (%)
+0-1kb 0.819 0.602 5.77 0.815 0.593 5.89
+5-10kb 0.842 0.622 5.89 0.846 0.629 4.84
+20-25kb 0.855 0.620 4.97 0.849 0.627 4.73
+45-50kb 0.854 0.620 5.12 0.848 0.627 4.82
+70-75kb 0.853 0.620 5.10 0.846 0.624 4.77
+95-100kb 0.849 0.618 5.04 0.849 0.625 4.68
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Supplemental Table 3: Statistical evaluation of the increase in AUC for the SPIDER Regulatory Networks (SRN)
compared to the naive regulatory networks (NRN) and SPIDER seed networks (SSN), based on a distal range
of +20-25kb around the TSS. Density for the naive seed network (NSN) was 80.52%.

Distal Region
(-20 to -25kb and +20 to +25 kb from TSS)
C(esllsme AUC values (95% Cl) SRN vs NRN SRN vs SSN

) Z-Score Z-Score p-value

density) NRN SSN SRN .I;errcent (DeLong’'s | p-value .I:errcent (DeLong'’s (two-

increase test) Increase test) sided)
A549 0.536 0.628 0.85

1.73% (0.5332- | (0.6258- | (0.8478- | 58.58 -196.17 | <2.2e-16 | 35.32 -218.68 | <2.2¢e-16
(4.73%) | 05382) | 0.6298) | 0.8514)
H1-HESC | 0513 0.625 0.807

(5.36%) (0.4844- | (0.6232- | (0.8056- | 57.30 22591 | <2.2e-16 | 29.16 2140 | <2.2e-16
. 0.4887) | 0.6268) | 0.8089)
HELAS3 | 0-503 0.615 0.846

(5.16%) (0.5043- | (0.6135- | (0.8442- | 68.2 27135 | <2.2e-16 | 37.47 -317.46 | <2.2¢-16
. 0.5083) | 0.6165) | 0.8467)
HEPG?2 0.526 0.614 0.803

(4.76%) (0.517- | (0.6131- | (0.8014- | 52.66 -260.54 | <2.2e-16 | 30.7 -277 <2.2e-16
. 0.5205) | 0.6156) | 0.8041)
0.522 0.62 0.855

G!\Inggos/m (0.4826- | (0.6192- | (0.8538- | 63.79 -382.33 | <2.2e-16 | 37.9 -401.31 | <2.2e-16
(4.97%) | 04857) | 0.6216) | 0.8557)
K562 0.495 0.616 0.832

5.56%) (0.5077- | (0.615- | (0.8307- | 68.08 -354.71 | <2.2e-16 | 35.06 -414.83 | <2.2e-16
(5:56%) | 05107) | 0.6172) | 0.8326)

Supplemental Table 4: Results when evaluating predicted TF—gene relationships estimated or provided by
various sources. The number of tests performed for each source are listed as well as the mean AUC and
AUPR values across all tests. Note that not all evaluations could be performed in all sources. In particular,
continuous AUC and AUPR could not be calculated for many sources. CENTIPEDE-sub refers to a small
subset of CENTIPEDE predictions for which we had continuous prediction information. CL=cell line;
TF=transcription factor; thresh = threshold analysis; cont = continuous analysis; PWM = position weight matrix
score used; * = sources shown in Figure 5; T = sources shown in Supplemental Figure 4d.

Characteristics Average AUC Across Tests Average AUPR Across Tests

# Evaluated proximal distal genome-wide | proximal | distal | genome-wide

Sources TFs CLs Tests | thresh cont | thresh cont | PWM Score cont cont | PWM Score

CENTIPEDE-sub | 6 1 6 0.524 | 0.540 | 0.519 | 0.563 | 0.704 | 0.978 | 0.316 | 0.199 | 0.303 | 0.730
CENTIPEDE*t 19 5 47 0.516 X 0.522 X X X X X X

PIQ*t 25 1 48 0.556 | 0.570 | 0.539 | 0.561 | 0.600 | 0.773 | 0.280 | 0.141 | 0.066 | 0.229
Neph* 64 2 91 0.518 X X X X X X X X
Marbach* 74 5 167 | 0.559 X X X X X X X X
TEPIC*t 97 6 243 | 0.582 | 0.741 | 0.655 | 0.759 X 0.284 | 0.221 X X
SPIDER*t 103 | 6 254 ] 0.695 | 0.795 | 0.775 | 0.848 X 0.374 | 0.332 X X

SPIDER Input 103 | 6 254 | 0.601 X 0.622 X 0.660 | 0.743 X X 0.072 | 0.182
Figure # X X X 5 S4b S4d S4e | S4a S4a S4c S4f X X
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Supplemental Table 5: The frequency of top genes in significant SPIDER edges (FDR<0.05) that were not
part of the SPIDER seed network, for each of the six cell lines and for the proximal and distal regions.

Cell line Most frequent genes among novel edges inferred (FDR p<0.05) by SPIDER
Proximal region (+0-1kb) Distal region (+20-25kb)
A549 PDE4D 200 MIR6870 378
MIR100HG 132 GPR25 375
ZBTB20 108 CABLES1 369
TGIF1 85 NINJ2 369
LINC-PINT 31 SEPT9 368
NCOA7 29 NFKBIZ 366
MIA2 11 MIR100HG 362
ABLIMA1 9 SERTAD3 362
FAM107B 5 MIR663B 360
H1-HESC No significant edges CXXC5 241
HOXA3 211
SEPT9 209
BDNF 134
FGR 116
HELA-S3 MIA2 163 PPARG 297
ZBTB20 139 PLEC 286
PLEC 35 CASC21 273
MIR99AHG 25 KRT8 271
UBE2D3 2 SMADS3 267
CXXC5 1 PDE4D 257
DNAJB4 1 CASC19 253
HEPG2 No significant edges CFLAR 288
NDUFS2 271
SYS1 268
CXXC5 205
PCBD2 203
FAM50B 199
KIFC3 197
GM12878 SEPT9 106 SLC44A2 376
ZFP36L1 2 LOC100120357 375
TMEM151B 375
MXRA7 373
SPTBN1 372
K562 FOXP1 84 CXXC5 290
MAPRE2 1 MIR4761 281
SAMSNT1 1 PHF19 277
COMT 268
RNY4 262
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Supplemental Table 6: For each of the six cell lines, the top edges (by weight) that were predicted by
SPIDER around TFs for which we had ChlP-seq data in that cell line. Top edges that either had, or did not
have, motif evidence are shown. Light blue shading indicates a true positive in the seed network that was
retained after running SPIDER,; light red shading indicates a false negative in the seed network that was
recovered by SPIDER.

Cell line Range TF Gene SRN Motif ChlP-seq
1. | A549 0-1kb MAX MIR100HG 22.35 Yes No
CEBPB | PDE4D 21.07 Yes Yes
SIX5 PDE4D 20.22 Yes Yes
CREB1 PDE4D 10.03 No Yes
ETSH MIR100HG 8.86 No No
MAX PDE4D 6.86 No Yes
A549 20- 25kb MAX PDE4D 38.50 Yes Yes
ETSH PDE4D 34.85 Yes Yes
CREB1 PDE4D 32.49 Yes Yes
YY1 PDE4D 14.61 No No
ETSH SMAD3 12.85 No Yes
CREB1 ITGB1 12.25 No Yes
2. | HHHESC | 0-1kb SP1 CNGA4 19.69 Yes No
SRF FOXP1 18.86 Yes Yes
SP1 SUGT1P1 18.77 Yes No
ZNF143 | PAX6 3.76 No Yes
SIX5 PAX6 3.48 No No
BACH!1 PAX6 3.22 No Yes
H1-HESC | 20-25kb SRF CXXC5 25.12 Yes No
MAX CXXC5 23.53 Yes No
SRF HOXA3 22.12 Yes Yes
TEAD4 | CXXC5 8.44 No Yes
CEBPB | CXXC5 8.43 No No
NANOG | HOXA3 8.29 No No
3. | HELA-S3 | 0-1kb E2F4 MIA2 24.76 Yes No
E2F1 MIA2 21.28 Yes No
MAZ TRANK1 19.75 Yes No
E2F1 ZBTB20 6.96 No Yes
ZNF143 | MIA2 6.51 No No
TCF7L2 | MIA2 6.18 No No
HELA-S3 | 20-25kb E2F4 KRT8 29.19 Yes No
RFX5 PDE4D 26.52 Yes Yes
STATA1 PDE4D 26.19 Yes Yes
E2F1 PDE4D 13.12 No No
ZNF143 | PDE4D 11.90 No No
MAX PDE4D 11.77 No Yes
4. | HEPG2 0-1kb MYBL2 | FOXP1 21.91 Yes No
MAZ DKFZP434H168 | 20.12 Yes No
SRF PDE4DIP 19.78 Yes No



https://doi.org/10.1101/2020.10.19.345827
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.19.345827; this version posted October 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

HSF1 FOXP1 4.97 No No
HSF1 MIA2 4.18 No No
HSF1 MIR4461 4.17 No No
HEPG2 20-25kb BRCA1 | CFLAR 28.18 Yes No
SRF CFLAR 27.36 Yes Yes
HSF1 CFLAR 25.10 Yes No
MYBL2 | CFLAR 10.32 No Yes
SRF NDUFS2 8.02 No Yes
SRF SYSH1 7.97 No No
GM12878 | 0-1kb MAX SEPT9 24.35 Yes Yes
STAT5A | SEPT9 20.15 Yes Yes
EBF1 SEPT9 20.07 Yes Yes
IKZF1 SEPT9 7.6 No No
ETS1 SEPT9 6.24 No Yes
ELK1 SEPT9 5.55 No No
20-25kb ELK1 CXXC5 30.49 Yes Yes
SRF CXXC5 30.26 Yes No
STAT3 CXXC5 28.86 Yes Yes
IKZF1 CXXC5 15.07 No Yes
SIX5 CXXC5 14.46 No No
PAX5 CXXC5 14.15 No Yes
K562 0-1kb SRF FOXP1 22.86 Yes No
ZNF263 | SKAP1 19.19 Yes No
MAZ DKFZP434H168 | 19.18 Yes Yes
ZNF143 | FOXP1 6.47 No No
ETS1 FOXP1 6.22 No No
THAP1 FOXP1 6.15 No No
20-25kb MAX CXXC5 27.59 Yes Yes
ETS1 COMT 26.68 Yes Yes
ELK1 CXXC5 26.34 Yes Yes
STAT5A | COMT 10.52 No Yes
MAX COMT 10.41 No Yes
E2F4 CXXC5 10.14 No Yes



https://doi.org/10.1101/2020.10.19.345827
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.19.345827; this version posted October 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Input Data
Motif Locations|| | I/ || | 11l 114100 AHEOUDR U O AR OO O T OO0

Gene Locations Il NN (AR M || | ||
DNase-seq peaks || | 5 5 1 5 S |

Gold Standard
ChiP-seq peaks | R R A= |

Background : Evaluation Comparisons AUC
Motif : D U\{Fs_i?f%: ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ H 0.96
Gene : Motif \ \ Ll ] \ \ 0.55

Supplemental Figure 1: lllustrative example of how TFBS predictions are often used to estimate gene
regulation, and the impact on prediction accuracy. The top panel shows the genomic locations of TF
motifs, gene promoters, and open chromatin regions. The second panel shows the true locations of TF binding
based on ChlP-seq data. The bottom panel illustrates combinations of data from the top panel. These
combinations were evaluated using a benchmark derived from the ChlP-seq data in the middle panel. The
word to the left of the colon indicates the set of elements being evaluated, while the word to the right indicates
what is considered a positive prediction. For example, in th’e final row, each gene is assigned a value of 1 or 0
based on whether or not that gene’s promoter also contains both a motif and a DNase-seq peak; this is
benchmarked against information regarding whether or not each gene’s promoter contains a true binding
event, based on ChlP-seq peaks. In this toy example, we see that the AUC value in this evaluation is 0.63.
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Results for Proximal region (x 0 to = 1kb)
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Supplemental Figure 2: AUPR predictions for the proximal region. a. AUPR scores for four types of
networks in six cell-lines. b. Distribution of AUPR scores across individual TFs in these networks. See also
Figure 2.
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Results for Distal region (+ 20kb to + 25kb)
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Supplemental Figure 3: AUPR predictions for the distal region. a. AUPR scores for four types of regulatory
models in six cell-lines. b. Distribution of AUPR scores across individual TF predictions. See also Figure 4.
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Supplemental Figure 4: Detailed comparative benchmarking of SPIDER with other methods. a.
Performance of CENTIPEDE, PIQ, and the input to SPIDER (the overlap of DNase peaks with motif
predictions), when all TF motif locations across the genome are considered in the evaluation, as measured by
AUC. b-c. Performance of the networks derived from the output of CENTIPEDE and PIQ, as well as the
networks predicted by TEPIC and SPIDER, based on continuous (as opposed to thresholded) edge-weights,
as measured by (b) AUC and (c) AUPR. d-f. Performance of the networks derived from the output of
CENTIPEDE and PIQ, as well as the networks predicted by TEPIC and SPIDER, using distal regulatory
regions, based on (d) thresholded and (e-f) continuous edge-weights, and evaluated using the (d-e) AUC and
(f) AUPR. These analyses demonstrate that even though some methods, such as CENTIPEDE and PIQ,
perform well at the genome-wide level (as shown in panel a), this does not necessarily translate into accurate
network-level predictions (as demonstrated in panels b-f). See also Supplemental Section S1, Supplemental
Figure 1, and Figure 5.
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