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Abstract

Sex is an important covariate of epigenome-wide association studies due to its
strong influence on DNA methylation patterns across numerous genomic
positions. Nevertheless, many samples on the Gene Expression Omnibus (GEO)
frequently lack a sex annotation or are incorrectly labelled. Considering the
influence that sex imposes on DNA methylation patterns, it is necessary to ensure
that methods for filtering poor samples and checking of sex assignment are
accurate and widely applicable. In this paper, we presented a novel method to
predict sex using only DNA methylation density signals, which can be readily
applied to almost all DNA methylation datasets of different formats (raw IDATs
or text files with only density signals) uploaded to GEO. We identified 4345
significantly (p < 0.01) sex-associated CpG sites present on both 450K and EPIC
arrays, and constructed a sex classifier based on the two first components of
PCAs from the two sex chromosomes. The proposed method is constructed using
whole blood samples and exhibits good performance across a wide range of
tissues. We further demonstrated that our method can be used to identify
samples with sex chromosome aneuploidy, this function is validated by five Turner
syndrome cases and one Klinefelter syndrome case. The proposed method has
been integrated into the wateRmelon Bioconductor package.
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Background
DNA methylation is one of the most-studied epigenetic modifications, which typi-

cally occurs in the context of a cytosine-guanine dinucleotide motif (CpG) [1]. DNA

methylation plays important roles in the stability and regulation of gene expression

in the development and maintenance of cellular identity [2]. The dynamic process of

DNA methylation and the plasticity of the DNA methylation landscape make genes

responsive to the changes of environmental conditions. Several health and lifestyle

factors have been found to be associated with DNA methylation signatures, includ-

ing childhood disease, tobacco smoke, drug use and poor nutrition [3, 4, 5].

Genome-wide analysis of DNA methylation has now become popular and is grow-

ing rapidly, owing to array-based profiling technologies. The two most widely used

microarray platforms, Infinium HumanMethylation450 BeadChip (450K) [6] and

Infinium MethylationEPIC BeadChip (EPIC) [7], offer broad coverage and precise

quantification of DNA methylation levels at roughly 480,000 and 860,000 CpG sites

respectively.

Epigenome-wide Association Studies (EWAS) are a powerful way to study the

relationships between epigenetic variation and human diseases [8]. Apart from sex

chromosomes, thousands of CpG sites on autosomes also show very different DNA

methylation patterns between males and females [9, 10]. As a result of this, sex
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has been considered an important co-variate, when undertaking methylation and

phenotype association studies.

Many researchers have submitted their methylation microarray datasets to the

Gene Expression Omnibus (GEO). Currently, there are over 100,000 HM450k sam-

ples and over 18,000 EPIC samples which are publicly available. Most of these have

phenotype annotations accompanying them, thus they can be used by other re-

searchers to perform meta-analyses or as independent references to validate their

hypothesis. However, many mismatches have been found between annotations and

samples, Toker et al. discovered widespread mislabelling in transcriptomics datasets

of GEO [11], Heiss et al. found 25% of the datasets they studied contained sex-

mismatched samples, particularly in three datasets, more than 30% of the samples

were identified as being mislabelled [12]. A large portion of these discrepancies may

stem from data entry errors. Researchers should deal with these sex-mismatched

samples carefully; the safest way is to remove them directly before downstream

analysis.

Currently, there are several methods which can be used to predict the sex of sam-

ples from DNA methylation data. The ‘getSex’ function of minfi package estimate

sex based on the median values of measurements on the X and Y chromosomes

respectively [13]; the ‘estimateSex’ method of sEst package estimate sex based on

the percentages of beta-values and p-value in different intervals [14]; The ‘check sex’

method within the ewastools package predict sex based on normalized average signal

intensity values on the autosomes and the sex chromosomes [12].

In this paper, we propose a novel method to predict the sex of samples using

solely DNA methylation levels. We identify a set of significant sex-associated CpG

sites, and perform principal component analysis (PCA) on these sites to obtain a

sex classifier, and evaluate our method’s performance across a wide range of human

tissues. The proposed sex classifier allows users to attribute sex to un-annotated

samples on public databases, and also identify samples with sex aneuploidy.

Results
Identifying sex-associated CpG loci

To make our method compatible with both 450K and EPIC, we only included

453,152 probes that are present on both arrays. A two-sample T -test was used to

identify differentially methylated CpG sites between sexes, after Bonferroni multiple

comparison correction, those with p-value less than 0.01 were selected as the most

significant sex associated CpG sites. As a result of this, we obtain 4345 significantly

sex-associated sites. In this study we have chosen a relatively strict threshold, as

we aim to capture those most robust features which methylate differently and con-

sistently between the two sex groups across various datasets. As expected, most

of the sex-associated sites belong to sex chromosomes, with the majority (4047,

93%)located on the X chromosome (ChrX), and with a total of 284 (6.5%) CpG

sites located on the Y chromosome (ChrY). As reported previously [9], some regions

of the autosomes also show highly significant sex association, here we also identify

14 sites dispersed throughout the autosomes which significantly associated with sex.

As shown in Figure 1a, these sex-associated CpG sites on ChrX are distributed

across almost the whole chromosome, and with most of them (3781, 93.4%) asso-

ciated with higher methylation levels in females compared to males, this is mainly
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because one X chromosome of the female is inactivated and highly methylated. How-

ever, we also observed a small portion of CpG sites (266, 6.6%) on ChrX that have

higher methylation levels in males compared to females, one possible explanation

is that some genes on the X chromosome can escape X chromosome inactivation

(XCI) [15].

Among the 284 sex-associated CpG sites on ChrY, 211 CpG sites have higher

methylation levels in male samples (Fig. 1b). Females do not carry Y chromosomes,

thus most of the intensity signals of ChrY we observed from females are mainly due

to background noise, and the remainders may come from cross hybridisation with

similar genomic regions on the autosomes.

Sex classifier based on sex-associated CpG sites

Since we have obtained a large group of CpG sites which show a significant differ-

ence (p < 0.01) in methylation levels between males and females, we are able to

construct a sex classifier. To begin with, the DNA methylation values of the 4047

sex-associated CpG sites on ChrX from the same training samples are processed

using PCA. PCA takes a linear approach to generate reduced dimensions by max-

imizing the captured residual variance in each further dimension[16]. As shown in

Fig. 2a, the first principal component, which explained 98% of total variance, has

captured the most sex differences among the all trainging samples. Thus, we could

use this first component to separate samples into two categories: 1) with two X

chromosomes and 2) with a single X chromosome.

Similarly, a PCA is performed using the 284 CpG sites of ChrY, and as that

of ChrX, the first component accounted for the most variances can make a good

separation between male and female samples (Fig. 2b). As the result of this, the

first component can be used to divide samples into two categories: 1) with Y and

2) without Y.

Finally, the two first components of the two PCAs which both explained the most

sex differences are utilized to build the sex classifier. Normal females have two X

chromosomes and normal males have one X chromosome and one Y chromosome.

By our sex classifer, male samples with 46,XY should locate in the top left area and

female samples with 46,XX should distribute at the bottom right area (Fig. 2c).

It is reasonable to suggest that this model can be applied to identify samples with

sex aneuploidy: samples with 45,XO will be placed at the bottom left corner, and

samples with 47,XXY should be distributed at the top right corner.

Comparison with other tools

To compare the proposed sex classifier with three other existing sex prediction

classifiers from DNA methylation microarray data taken from the R packages, minfi

[13], ewastools [12] and sEst [14], we take GSE51032 [17] as a benchmark dataset, as

it was used in developing ewastools and sEst. GSE51032 includes 857 samples (188

men and 657 women) and their source tissue are all from buffy coat. Fig. 4 shows the

results generated by the four methods, as we can see, there are eight samples (four

males and four females) displaying mismatches between predicted sex and labelled

sex, and the mismatches are consistent in the results from four methods, thus we

have high confidence that the eight samples are mislabelled. Two samples (marked
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by black circles) are identified by our classifier as 47,XXY, sEst also identified the

two outliers. However, only one of the two samples appears as an outlier from minfi

and ewastools, and the other one stays close with the male group.

In general, all four methods show good performance in clustering male samples,

however the method from minfi performs much poorer in clustering female samples

compare to the other three tools, as some females are not distinguishable from males

in the x-axis. The female group of the result generate by ewastools exhibits long tail

towards males; the sex prediction tools in minfi and ewastools are both based on

signal intensity therefore they produce more similar results than the other two tools.

Our sex classifier and the method from sEst are both beta value based, although the

two methods utilised beta values very differently and sEst requires further p-value

information, the patterns of their results are similar. Overall, compared to three

other sex prediction tools, our proposed method is highly robust and shows better

or similar performance in clustering females and males.

Performance evaluation

The DNA methylation levels of samples from training set and validation set are

assessed by 450k array and EPIC array respectively. As we can see from the results

(Fig. 2), the proposed model has correctly classified all samples in the two datasets,

proving that the proposed classifier is highly robust and compatible with both

platforms.

The proposed sex classifier is trained and validated using whole blood samples.

As whole blood is a heterogeneous collection of different cell types, to investigate

whether our classifier is biased by blood cell types, we tested its performance on

DNA methylation data derived from five purified blood cell types—B cells, CD4 T

cells, CD8 T cells, monocytes and granulocytes from 28 individuals. As shown in

Fig.3a and Fig.3b, all the five cell types are clustered into two sex groups and we

could not find any or very minor differences between cell types. Collectively, these

results suggest that the proposed sex classifier is robust to blood cell types.

Although blood is the most studied tissue in EWAS, there are also many DNA

methylation studies that use samples from other types of human tissue. To eval-

uate our sex classifier’s range of application, we further tested its performance on

several other most studied human tissues, including saliva, buccal cells, brain cells,

liver, placenta, and sperm. Results from Fig.3c to Fig.3f demonstrate that the pro-

posed classifier is robust in these vastly different types of tissues—saliva, buccal

cells, brain cells, and liver. However, despite we can observe two groups clustering

within placenta, the females are much loosely clustered along the x-axis(Fig 3g).

Additionally, boundaries have diverged greatly on both ChrX and ChrY, with this

being more pronounced on ChrX.

Interestingly, sperm samples clustered into a single group, located in the bottom

left region (Fig3.h). This area is typically recognised by our sex classifier as 45,XO.

As sperm cells are a mixture of two types of haploid cells (23,X and 23,Y) this

suggests that their methylation levels are lower on ChrY compared to other mature

human tissues.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.345090doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.345090
http://creativecommons.org/licenses/by-nd/4.0/


Wang et al. Page 5 of 13

Predicting sex chromosome aneuploidy

DNA methylation has been an important way to study the various developmental

symptoms caused by copy number aberrations of the sex chromosome [18]. Earlier,

we proposed that our classifier can be applied to identify samples with abnormal

sex chromosomes, including 45,XO and 47,XXY. To further validate its ability,

we searched the public repositories for positive samples with clinical diagnosis. As

a result of this, we obtained five cases (Table 1) diagnosed as Turner syndrome

from two studies [19, 20]. As hoped, they are all clearly classified as 45,XO by our

model (Fig. 5), proving our classifier’s ability to predict females with only one X

chromosome.

Viana et al. reported a male with schizophrenia carrying an extra X chromosome

[21] which is also clearly classified as 47,XXY by our method (Fig. 5). Unfortunately,

we did not find any publicly available samples from those diagnosed with Klinefelter

syndrome. Unlike Turner syndrome, most patients with Klinefelter syndrome have

only mild symptoms and are never diagnosed. It is interesting to find out how many

samples in GEO having a karyotype of 47,XXY but not linked to a diagnosis. By

applying our classifier to scan the GEO datasets, we find a total of eight samples

(Table 1) which are highly likely to be 47,XXY (Fig. 5). It should be noted that

we only include these samples sourced from blood or brain cells related tissues and

their DNA methylation level are assessed by 450K or EPIC arrays; we also do not

include those samples which located near the boundaries which may be low-level sex

chromosome mosaics (46,XX/47,XXY). It is interesting that two of the eight suspect

abnormal samples are from those diagnosed with schizophrenia. Martin et al. found

that Klinefelter patients have nearly a four times higher risk of schizophrenia [22],

which accords with our observation of more 47,XXYs with schizophrenia. Studying

the methylation patterns of these syndromes will provide more insights into these

diseases.

Discussion
There are two principal reasons to require a good and simple sex classifier based

on methylation data. First, there are still many samples in GEO that do not have

sex annotations, thus an accurate classifier can provide reliable sex information.

Second, due to data entry errors, there are non-negligible proportions of mislabelled

samples in the public database. A mismatch between reported sex and predicted

sex would be a clear indication of a wrong annotation and introduces doubt on

the accuracy of the rest of the phenotype information for that sample, hence it is

reasonable to remove these mislabelled samples before downstream analyses. We

would recommend sex checking to be a standard part of all DNA methylation QC

pipelines. Here in this study, the proposed sex classifier is straightforward and the

outcomes are highly intuitive.

In this study, we first obtained a group of significant sex-associated CpG sites.

90% of these located on the X chromosome are more methylated in females than

that in males, this is mainly due to the effect of X-chromosome inactivation: one

of the two X chromosomes in females is randomly chosen for inactivation (highly

methylated) to balance the extra gene expression dosage [23, 24]. This also justified

that our classifier was built on blood samples could work well across a wide range

of other tissue types.
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The proposed sex classifier shows robust performance across a wide range of tissue

types despite it is built upon whole blood samples. We choose blood samples because

they are easily accessible and are the most widely used tissue for measuring DNA

methylation and have been adopted in most large cohort studies. However, whole

blood is a heterogeneous collection of different cells, and their cell composition

changes across age [25]. Different cell types can have distinct methylation profiles

even though they share identical genetic makeup [26]. Here as our results have

shown that the proposed model is not biased among different blood cell types;

we also demonstrated the proposed classifier performs well across a wide range of

human tissues, including saliva, buccal cells, brain cells, liver. These results suggest

that our model is not driven by blood-specific sex differences, but it has captured

the more general sex-associated differences across human tissues and cell types.

However, we have also found some tissues such as placenta (Fig3.h) showing an

ambiguous boundary between the two sexes. Placenta is a fetal-maternal endocrine

organ responsible for ensuring proper fetal development throughout pregnancy [27].

The fetal part of the placenta has the same genetic composition as fetus, whereas

it exhibits apparent different DNA methylation patterns. Our results demonstrate

placenta samples are less distinguishable between the two sex groups, showing both

ChrX in female placentas and ChrY in male placentas are less methylated than that

in other normal tissues. During the early development of human embryo, sperm cells

are highly methylated and then become hypomethylated after fertilization [28]. Our

results have shown that those sex-associated CpG on X chromosomes of sperm cells

exhibited similar methylation patterns with other normal male tissues, however,

the Y chromosomes are much less methylated. Collectively, our method can also

be used to evaluate the methylation level of the two sex chromosomes in different

tissues.

Our method can be readily applied to almost all DNA methylation datasets in

GEO. A large portion of DNA methylation datasets uploaded to GEO are not in

IDAT format, which is prerequisite by using minfi and ewastools, many of these

datasets only include density values of the methylated and unmethylated signals.

Our sex classifier developed in this paper is based on beta values of those differently

methylated CpG loci between the two sexes, users are only required to feed the

whole beta value matrix, which can be easily computed from the density files, to

the ‘estimateSex’ function in wateRmelon to obtain final sex predictions.

The underlying mechanism of our sex classifier is very intuitive: females have

higher levels of methylation on ChrX, on the contrary, males are less methylated on

ChrX and show strong methylation signals on ChrY. We have also demonstrated

that the proposed classifier can be applied on both 450K and EPIC arrays. Com-

pared to signal density-based methods such as minfi and ewastools, the methylation

ratio-based method from our sex classifier and sEst provide better separation be-

tween the two sexes (Fig 4). In addition, both minfi and ewastools require at least

one female and one male in the input samples to make correct sex predictions, how-

ever, our method and sEst do not have a such limitation. In term of running speed,

our method is more than four times faster than sEst when the number of input

samples exceeds 1,000.

We have provided a powerful tool that can identify sex chromosome aneuploidies

(45,XO and 47,XXY) from DNA methylation data. This function has been verified
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in five Turner syndrome samples and one Klinefelter syndrome case, we should

acknowledge that we need much more positive cases to testify its sensitivity and

specificity. It is a pity that we did not find any DNA methylation samples labelled as

Klinefelter syndrome in the public repositories. Nevertheless, we found eight cases

in the GEO database with great potential to be 47,XXY by applying our classifier,

with the knowledge that most patients with Klinefelter syndrome have only mild

symptoms and are never diagnosed. Those eight suspect Klinefelter syndrome cases

can be good candidates to study the various developmental symptoms caused by

copy number aberrations of sex chromosomes.

Conclusion
In this study, we constructed a very intuitive sex classifier, simply based on the

most robust CpG sites on the sex chromosomes, which not only can be used for sex

predictions but also applied to identify samples with sex chromosome aneuploidy.

Our classifier has been integrated into the wateRmelon Bioconductor package, which

is freely and easily accessible by calling the ‘estimateSex’ function.

Methods
All statistical analyses were conducted either by R (version 3.6.0, https://www.r-

project.org/) or Python (version 3.7.4, https://www.python.org/). Raw data for all

datasets were processed by bigmelon package [29], methylated and unmethylated

signals were extracted from idat files and beta values are calculated as:

β =
M

M + U + 100

where β is beta value, M denotes methylated densities and U represents unmethy-

lated densities.

Availability of data
All the DNA methylation data except for the validation set are public avail-

able and were obtained from the GEO public repository. The training set is

from GSE105018[30] which includes 832 male and 826 female whole blood sam-

ples, the validation set which includes 1175 whole blood samples is available

from the European Genome-phenome Archive under accession EGAS00001002836

(https://www.ebi.ac.uk/ega/home). Other datasets: purified blood cell types

(GSE103541 [31]), buccal cells (GSE137884 [32]), brain cells (GSE112179 [33]),

saliva (GSE78874 [34]), liver (GSE119100 [35]), placenta (GSE100197 [36]), sperms

(GSE64096 [37]). The one Klinefelter syndrome positive sample is available upon

request. More details about these datasets are shown in Table 2.
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M., Ndungu, A.W., Nicolae, D.L., Nobel, A.B., Oliva, M., Ongen, H., Palowitch, J.J., Panousis, N.,

Papasaikas, P., Park, Y., Parsana, P., Payne, A.J., Peterson, C.B., Quan, J., Reverter, F., Sabatti, C., Saha, A.,

Sammeth, M., Scott, A.J., Shabalin, A.A., Sodaei, R., Stephens, M., Stranger, B.E., Strober, B.J., Sul, J.H.,

Tsang, E.K., Urbut, S., Van De Bunt, M., Wang, G., Wen, X., Wright, F.A., Xi, H.S., Yeger-Lotem, E.,

Zappala, Z., Zaugg, J.B., Zhou, Y.H., Akey, J.M., Bates, D., Chan, J., Claussnitzer, M., Demanelis, K., Diegel,

M., Doherty, J.A., Feinberg, A.P., Fernando, M.S., Halow, J., Hansen, K.D., Haugen, E., Hickey, P.F., Hou, L.,

Jasmine, F., Jian, R., Jiang, L., Johnson, A., Kaul, R., Kellis, M., Kibriya, M.G., Lee, K., Li, J.B., Li, Q., Lin,

J., Lin, S., Linder, S., Linke, C., Liu, Y., Maurano, M.T., Molinie, B., Nelson, J., Neri, F.J., Park, Y., Pierce,

B.L., Rinaldi, N.J., Rizzardi, L.F., Sandstrom, R., Skol, A., Smith, K.S., Snyder, M.P., Stamatoyannopoulos, J.,

Tang, H., Wang, L., Wang, M., Van Wittenberghe, N., Wu, F., Zhang, R., Nierras, C.R., Branton, P.A.,

Carithers, L.J., Guan, P., Moore, H.M., Rao, A., Vaught, J.B., Gould, S.E., Lockart, N.C., Martin, C.,

Struewing, J.P., Volpi, S., Addington, A.M., Koester, S.E., Little, A.R., Brigham, L.E., Hasz, R., Hunter, M.,

Johns, C., Johnson, M., Kopen, G., Leinweber, W.F., Lonsdale, J.T., McDonald, A., Mestichelli, B., Myer, K.,

Roe, B., Salvatore, M., Shad, S., Thomas, J.A., Walters, G., Washington, M., Wheeler, J., Bridge, J., Foster,

B.A., Gillard, B.M., Karasik, E., Kumar, R., Miklos, M., Moser, M.T., Jewell, S.D., Montroy, R.G., Rohrer,

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.345090doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.345090
http://creativecommons.org/licenses/by-nd/4.0/


Wang et al. Page 9 of 13

D.C., Valley, D.R., Davis, D.A., Mash, D.C., Undale, A.H., Smith, A.M., Tabor, D.E., Roche, N.V., McLean,

J.A., Vatanian, N., Robinson, K.L., Sobin, L., Barcus, M.E., Valentino, K.M., Qi, L., Hunter, S., Hariharan, P.,

Singh, S., Um, K.S., Matose, T., Tomaszewski, M.M., Barker, L.K., Mosavel, M., Siminoff, L.A., Traino, H.M.,

Flicek, P., Juettemann, T., Ruffier, M., Sheppard, D., Taylor, K., Trevanion, S.J., Zerbino, D.R., Craft, B.,

Goldman, M., Haeussler, M., Kent, W.J., Lee, C.M., Paten, B., Rosenbloom, K.R., Vivian, J., Zhu, J., Regev,

A., Ardlie, K.G., Hacohen, N., MacArthur, D.G.: Landscape of X chromosome inactivation across human

tissues. Nature 550(7675), 244–248 (2017)

16. Abdi, H., Williams, L.J.: Principal component analysis. Wiley interdisciplinary reviews: computational statistics

2(4), 433–459 (2010)

17. Riboli, E., Hunt, K.J., Slimani, N., Ferrari, P., Norat, T., Fahey, M., Charrondière, U.R., Hémon, B.,

Casagrande, C., Vignat, J., Overvad, K., Tjønneland, A., Clavel-Chapelon, F., Thiébaut, A., Wahrendorf, J.,
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Campbell, H., McGovern, D.P.B., Annese, V., Zoldoš, V., Permberton, I.K., Wuhrer, M., Kolarich, D.,

Fernandes, D.L., Theorodorou, E., Merrick, V., Spencer, D.I., Gardner, R.A., Doran, R., Shubhakar, A.,
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Figures

Tables

Table 1 Samples with verified or suspect abnormal karyotypes from GEO.

Sample ID Karyotype Verified karyotype? Source tissue Disease status Reference
GSM1566904 45,XO Yes Peripheral Blood Turner syndrome [19]
GSM1566905 45,XO Yes Peripheral Blood Turner syndrome [19]
GSM1566906 45,XO Yes Peripheral Blood Turner syndrome [19]
GSM1566907 45,XO Yes Peripheral Blood Turner syndrome [19]
GSM1572595 45,XO Yes Whole Blood Turner syndrome [20]

3999215192 R06C02 47,XXY Yes Prefrontal cortex Schizophrenia and Klinefelters syndrome [21]

GSM3562874 (GSM3667736)* 47,XXY No Whole blood [38]
GSM1649023 47,XXY No Whole blood [39]
GSM1946555 47,XXY No Whole Blood Post-traumatic stress disorder [40]
GSM3662121 47,XXY No Blood Lynch-like syndrome NA
GSM1344329 47,XXY No Peripheral blood [41]
GSM2336820 47,XXY No CD8+ T-cells Ulcerative colitis [42]
GSM3680912 47,XXY No Frontal cortex Schizophrenia [43]
GSM1496810 47,XXY No Frontal cortex Schizophrenia [44]

* GSM3562874 and GSM3667736 refer to the same case.
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Figure 1 Females and males exhibit distinct methylation patterns at sex-associated CpG sites
on the two sex chromosomes a: The X chromosome: most sex-associated CpG sites from females
have beta values range between 0.2 and 0.8; most of these sites from males are less methylated
(beta values less than 0.2). b: The Y chromosome: the identified sex-associated CpG sites of
males are highly methylated with beta values greater than 0.6 whereas females exhibited low
methylation signals.
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Figure 2 A sex classifier is constructed by applying two PCAs on two sex chromosomes
separately. a: The first two components on ChrX. b: The first two components on ChrY. Results
of c training set and d validation set produced by the sex classifier, all samples are classified into
four categories: 46XY, 46XX, 47XXY, and 45XO.
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Figure 3 The sex classifier was evaluated across five blood cell types (a and b) and six other
human tissues (c-h). a. Scatter plot showing results from five blood cell types: B cells, CD4 T
cells, CD8 T cells, monocytes and granulocytes. b. On X chromosome, the five blood cell types
showing similar results. c. Buccal cells; d. Brain cells; e. Saliva; f. Liver; g. Placenta; h. Sperms.
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Figure 4 Comparisons of sex prediction ability between four tools. a. minfi, b. ewastools, c.
sEst, d. our classifier in wateRmelon. Two outlier samples are marked by black circles, blue square
represents male and red triangle denotes female.
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Figure 5 The proposed classifier is verified its ability to predict sex chromosome aneuploidy in
five Turner syndrome samples and one Klinefelter syndrome case, it also predicted eight
potential 47,XXY cases from GEO.

Table 2 Summary of datasets used in this study.

Dataset Source Platform Number Male/Female Age(years) Reference
GSE105018 Whole blood 450k 1658 832/826 18 - 18 [30]
UKHLS Whole blood EPIC 1175 489/686 28 - 98 [45]

GSE103541 Purified blood cells EPIC 145 NA NA [31]
GSE137884 Buccal cells 450k 89 51/38 3 - 6 [32]
GSE112179 Brain cells EPIC 100 75/25 23 - 77 [33]
GSE78874 Saliva 450k 259 146/113 36 - 88 [34]
GSE119100 Liver EPIC 108 46/62 25 - 71 [35]
GSE100197 Placenta 450k 102 NA NA [36]
GSE64096 Sperms 450k 40 NA NA [37]
GSE51032 Buffy coat 450k 845 188/657 34 - 72 [17]
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