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ABSTRACT14

Avian H5 influenza is an emerging influenza strain with the potential for human15

pandemic spread. One unresolved issue in pandemic vaccine preparedness is to what16

extent a vaccine recall response depends on the interval between the priming and17

boosting vaccinations. In this study, we analyzed the anti-H5 HA IgG responses to18

an H5 A/Indonesia/5/2005 boosting vaccination in three cohorts: (1) a short interval19

boosting cohort that received a prime and boost 28 days apart, (2) a long-interval20

boosting cohort that received an H5 A/Vietnam/203/2004 priming vaccination 5 years21

before boosting, and (3) a double long-boost cohort that received single doses of all22

three vaccines separated by 5-6 year intervals. Anti-HA IgG levels were measured using23

a multiple-plex assay against 21 H5 and 16 seasonal strains covering both influenza24

phylogenetic groups. We used the antigentic distance between the vaccine strain25

and each HA in the assay panel to define the antibody response landscape. Both26

single and double long-interval boosting with the H5 variant vaccine elicited a broad27

antibody response to all H5 subtype strains, and double boosting resulted in sustained,28

vaccine-specific, anti-HA IgG levels over a six month period. Antibody-mediated im-29

mune responses were shaped by prior H5 exposure history, and the magnitude of both30

vaccine specific and cross-reactive anti-H5 HA IgG responses was highly correlated31

with the relative antigenic distance between the measured and the vaccine HAs. We32

conclude that the relative antibody landscape method can be used to quantify the33

phenomenon of antigenic imprinting on human influenza vaccine immune responses.34

35

IMPORTANCE36

A significant obstacle to development of a universal influenza vaccine is under-37

standing the relationship between multidimensional host humoral immunity, prior38

antigen exposure, and viral antigenicity. In this study, we used a multiplexed antibody39

assay to measure antibody cross-reactivities against antigenically similar H5 influenza40

virus strains. This work uses a novel method, relative antibody landscapes, to analyze41

the relationship between immune response and antigenic distance between the target42

m
S
y
st
e
m
s
S
u
b
m
is
si
o
n
Te
m
p
la
te

m
S
y
st
e
m
s
S
u
b
m
is
si
o
n
Te
m
p
la
te

m
S
y
st
e
m
s
S
u
b
m
is
si
o
n
Te
m
p
la
te

m
S
y
st
e
m
s
S
u
b
m
is
si
o
n
Te
m
p
la
te

m
S
y
st
e
m
s
S
u
b
m
is
si
o
n
Te
m
p
la
te

m
S
y
st
e
m
s
S
u
b
m
is
si
o
n
Te
m
p
la
te

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.14.340448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.340448
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wang et al.

H5 vaccine HA and other HAs in the assay after a boosting vaccination. This method43

improves analysis of immune responses by relating antigen exposure history to the44

influenza vaccination antibody response. This study also revealed that multiple vaccine45

boosting over several years can generate high levels of long-lasting cross-reactive anti-46

bodies against the priming H5 strains vaccine that subjects received, suggesting the HA47

imprinting mechanism(s) have a strong influence in the adult antibody response to H548

MIV vaccination.49

KEYWORDS: H5 monovalent influenza vaccine (MIV), antigenic distance,50

hemagglutinin(HA), antibody landscapes, Original antigenic sin (OAS), HA imprinting.51

INTRODUCTION52

Seasonal influenza (flu) virus infection is a significant global health threat, infecting53

over millions annually with significant deaths. The primary protection against influenza54

infection comes from antibodies directed against the influenza hemagglutinin (HA)55

protein, a major vaccine target(1). Pandemic influenza infections occur when new56

influenza viruses emerge with significant mutations in HA and evade prior influenza57

immunity. HA is composed of two domains, the highly plastic globular HA1 head58

domain and the conserved HA2 stalk domain. The hypervariable head domain of HA59

is believed to be immunodominant. Infection and vaccination primarily elicit strain-60

specific neutralizing antibodies, with limited cross-reactivity to divergent strains. In61

contrast, antibodies that target epitopes on the stalk domain can broadly cross-react62

with multiple influenza strains (2).63

A number of influenza strains have caused pandemics after animal to human64

transmission, particularly the H5 strain known to circulate in poultry(3, 4). The first65

human H5N1 infection was reported in 1997 during a poultry H5 outbreak in Hong Kong66

(5). From 2003 to January 2015, a total of 694 laboratory-confirmed human H5 cases67

were reported from 16 countries with 58% mortality rate (6). Almost all human cases68

have occurred as a direct result of close contact with infected birds or chickens. In 201569

a sizeable H5N2 outbreak within turkey and chicken farms occurred in the US, but were70

not transmitted to humans (7). However, the H5 virus has significant potential to cause71

future human influenza pandemics given its high mutation and recombination rates(8).72

Currently, there are no commercial human H5 vaccines available. in addition, H5 non-73

adjuvanted monovalent influenza vaccine (MIV) generally requires a prime and boost74

strategy (9, 10), as the primary anti-HA antibody response is very low (11, 12, 13, 14, 15).75

Thus, understanding the effects of prior immunologic memory, cross-reactive immunity,76

and the emergence of broadly cross reactive IgG mediated immunity are critical to77

effective vaccine development.78

One fundamental hurdle to eliciting effective immune responses against emerging79

influenza strains is the concept of "original antigenic sin" (OAS), variously referred to80

now as HA imprinting (16), or HA seniority (17, 18, 19). When a person is sequentially81

exposed to two related influenza virus strains, they tend to elicit an immune response82

dominated by antibodies against the first strain they were exposed to(20, 21). This is83

true even following a secondary infection or vaccination. Thus, the immune response84

to a new influenza viral infection or vaccination is at least partially shaped by preexist-85

ing influenza immunity. For development of vaccines against antigenically dissimilar86

influenza strains, it is critical to understand the antibody response against antigenically87

similar virus stains and vaccine development, especially within the context to OAS.88

Based on the phylogenetic distance of HA genes, ten clades of H5 HA (clade 0-9)89
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have been identified within the H5N1 virus subtype (22). H5N1 viruses from clades 0, 1,90

2, and 7 have the capacity to infect humans (23), and a universal H5 influenza vaccine91

would be able to induce broad cross-reactivity, against all of these clades. However,92

there are three distinct antigenic clusters, as determined by antigenic cartography93

generated with neutralizing antibody levels induced by H5 HA DNA vaccination in mice94

(3). This suggests the possibility that HA imprinting may impede generation of broadly95

cross-reactive H5N1 antibodies if the prime and boost H5N1 vaccine strains reside in96

different antigenic clusters. To address this issue, this study examines the effect of97

antigenic distance between a primary H5 vaccine strain and a subsequent, long term98

vaccine boost strain in human subjects.99

In this manuscript, we re-evaluated serum samples from a previous H5 human100

vaccine study (DMID 08-0059)(24) using multi-dimensional measurement of anti-H5N1101

HA IgG reactivities. Samples were collected during the inactivated A/Indonesia/5/05102

(Ind05) MIV study from subjects had received two primed H5 MIV ( A/Hong Kong/156/97103

(HK97) in 1997–1998 and A/Vietnam/1203/04 (VN04) in 2005–2006), with one VN04104

primed and naive control groups. Anti-HA antibody responses were measured by105

mPlex-Flu assay(25) to simultaneously evaluate the magnitude and breadth of the106

IgG repertoire directed against HAs from 21 H5 influenza virus strains and 9 other107

IAV strains (H1, H3 H7, H9). We hypothesized that as the relative antigenic distance108

between the original priming and the new H5 boosting vaccine strain becomes smaller109

(i.e. the strains are more antigenically similar), the greater the increase in the anti-HA110

IgG response to original H5 MIV strain. Thus, in a vaccine response, the original HA111

imprinting influences much later vaccine responses. We discuss the relevance of these112

findings to the development of influenza vaccines that induce broad antibody-mediated113

protection (i.e. universal influenza vaccines).114

RESULTS115
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Naive (none) Short Interval (S-Boost) 28 d A/Indonesia/5/2005 A/Indonesia/5/2005 

Primed Long Interval (L-Boost) 5 yr A/Vietnam/203/2004 A/Indonesia/5/2005 

Double Primed Double Long-Interval (DL-Boost) 7 & 12 yr A/Hong Kong/156/1997 x 2 A/Indonesia/5/2005   

A

B

FIG 1 Vaccination strategy. (A) Trial and sampling design: All subjects in the DMID 08-0059 study cohorts were vaccinated with

inactivated A/Indonesia/5/05 (Ind05) intramuscular influenza vaccine. The Naive group; S-boost received the Ind05 vaccine on day

0, and short interval boosting on day 28. The primed long-interval boost (L-boost) group had previously received the inactivated

subvirion influenza A/Vietnam/1203/04 (Vie04) vaccine in 2005–2006; and the primed double long interval boost (DL-boost) group

additionally received the baculovirus expressed recombinant influenza A/Hong Kong/156/97 vaccine (HK97) in 1997–1998. Both

L-boost and DL-boost groups also received long-interval vaccination with Ind05 on the day 0. Grey boxes indicate serum sampling.

A) Summary of prime and boost strains and groups.
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Characteristics of subjects Prior exposure to the predominant seasonal H1 or116

H3 influenza strain circulating close to a subject’s birth year can alter H5 or H7 infection117

and death rates (26, 27, 16). Thus, we first tested tested for differences in age that118

could alter the antibody levels between the H5 vaccine groups. To assess the birth119

year related influenza exposure history, we regrouped the study cohorts based on two120

key birth years: 1968 and 1977, when H3 and H1, respectively, became the dominant121

circulating influenza A strains (Table 1) (16). Subjects without baseline (pre-vaccination)122

serum samples were excluded, leaving a total of 55 subjects. The H5 naive subjects123

(Naive, n = 12) and primed subjects (L-boost, n = 30) previously received an inacti-124

vated subvirion influenza A/Vietnam/1203/04 (VN04) vaccine in 2005–2006(9). The125

double primed group (DL-boost, n = 13) received the recombinant influenza A/Hong126

Kong/156/97 vaccine (A/HK97) in 1997 - 1998 (11) and the VN04 vaccine in 2005 - 2006.127

We found no significant difference in birth year distributions between the cohorts (P >128

0.05; Fisher’s exact test), suggesting that the effects of flu exposure history on the H5129

MIV vaccine response should be similar across the three groups.130

TABLE 1 The number of subjects stratified by birth year in each cohort of the DMID

08-0059 study. Subjects were grouped by birth year based on key years when either H3

or H1 representing the predominant circulating seasonal flu strains, as prior exposure

history might influence the antibody responses to the H5 vaccines.

Group Birth Year Total

< 1968 1968 to 1977 > 1977

Naïve 10 (83) 1 (8) 1 (8) 12

Long-Interval Boost

(L-boost)

24 (80) 3 (10) 3 (10) 30

Double

long-Interval Boost

(DL-boost)

11 (85) 2 (15) 0 (0) 13

High anti-H5 IgG responses resulting from long-interval boosting are shaped131

by the priming vaccine strain. Using a 48-HA mPLEX-Flu assay panel, we observed132

that IgG response levels against the HA of A/Indonesia/5/05 (Ind05), VN04 and HK97133

were very low in the naive group, and about two-fold higher in the short interval134

boosting (S-boost) group who were boosted after 28 days (FIG 2 A, B). In both primed135

groups (L-boost and DL-boost), however, inactivated Ind05 MIV induced ∼5-fold higher136

vaccine-specific antibody levels by 14 days post-vaccination. Anti-VN04 and HK97137

IgG levels increased ∼7-8 fold, also peaking at 14 days in both primed groups (FIG 2).138

While both primed groups had higher pre-existing (day 0) anti-H5 IgG levels, their IgG139

response kinetic curves against the vaccine strains were similar. These differences140

result in a relative increase in the DL-boost group’s anti-HA antibody levels peaking141

at 3.5-fold (FIG2, D), even though the post-boosting IgG levels are similar in the S-142

and DL-boost groups. In both groups, anti-H5 HA antibodies levels remained high143

for over six months. These results are consistent with the previous finding that non-144

adjuvanted MIVs are poorly immunogenic in naive subjects (11, 12, 13, 14, 15), and145

long-interval boosting with H5 antigenic variant MIVs elicits significant and robust146

antibody responses (9, 24). However, this is the first report to show differences in147

antibody response induced by single vs. double long-interval MIV boosting.148

Importantly, we also found that the Ind05 MIV elicited robust antibody responses149

against the two previous priming H5 strains (VN04, HK97) in both vaccine groups, and150
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FIG 2 The effects of prior vaccination with H5 monovalent influenza vaccine (MIV) on multiplex HA antibody responses against

three different H5 virus boosting vaccine strains. The mean and standard deviation of IgG concentration for each group were

estimated by the mPlex-Flu assay. Antibody concentrations were adjusted within the linear mixed effects models using age at

enrollment, gender, ethnicity (Caucasian vs. non-Caucasian), dose (two dose levels: 15 and 90 µg ), and assay batch (five batches)

(28, 29). A. The H5 kinetic antibody levels against three vaccine strains after MIV H5 vaccination with A/Indonesia/05/2005 (Ind05;

clade 2). The primed response (Prime, unfilled symbols) and short-interval boost response (S-boost, filled symbols) of naive sub-

jects; the long-interval boost response (L-boost) after one dose of Ind05MIV in subjects primed by Vie04MIV the 5 years previously,

and in the subjects who were double primed with Vie04 (5 years previously) and A/Hong Kong/156/1997 (HK97; clade 0) HK97 (12-

13 years previously), as the double long-interval boost response (DL-boost), against Ind05, A/Vietnam/1203/2004 (Vie04; clade 1)

and A/Hong Kong/156/1997 (HK97; clade 0), three vaccine H5 strains. B. Comparison of antibody responses between time points

in the same groups for each vaccine strain. C. The antibody concentrations against each vaccination strain and fold changes as

compared to day 0, grouped by study cohort. D. The antibody titers for micro-neutralization (MN) against each vaccination strain

and fold changes, as compared to day 0, grouped by study cohort. The original MN assay data was been re-analysed with linear

mixed effects modeling, as above. Shown are the geometric mean of titers. * P<0.05, **P<0.01, ***P<0.001 Linear contrasts within

the linear mixed effects model framework were used to conduct the statistical comparisons.

that the anti-HA IgG responses shared similar kinetic patterns. Interestingly, Ind05 MIV151

elicited higher levels of IgG antibodies to VN04 and HK97 than to Ind05. In order to152

directly compare the effects of the priming virus strain, we plotted the concentrations of153

anti-H5 HA by groups, shown in FIG2 C, and the fold change of antibody concentrations154

against three vaccine strains of the different groups (FIG2 D). The results revealed155

higher antibody levels against the HA of VN04 in the L-boost group, and HK97 in the DL-156

boost group, which were the first H5 viral strains subjects were respectively vaccinated157

against. These results could be interpreted as indicative of HA imprinting (21, 20), in158

which subjects generate a robust antibody response against the H5 influenza strain159

they were first exposed to, by infection or vaccination, and maintain this response over160
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their entire lifetime (30).161

To confirm the protective activities of the higher level of long-lasting antibodies in162

the L-boost and DL-boost groups we re-analyzed the HAI and MN data in the DMID163

08-0059 study using the generalized linear mixed effects models with identity link164

functions as we have previously described (28, 29). The results confirmed that all three165

H5 MIV strain vaccines induced serum with viral neutralizing capacity and could protect166

cells from viral infection (FIG 2 D and FIG S8).167
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FIG 3 HA antibody responses were plotted against the related antigenic distances to each monovalent H5 vaccination (MIV)

strain of different study cohorts. A. Antigenic cartography of 21 H5 influenza virus strains generated by mPlex-Flu assay of an-

tisera against 17 anti-H5 influenza viruses, and plotted using using classical multi-dimensional scaling (MDS;see Methods). The

three vaccine strains are circled. B. We then used three dimensional plots to show the relative antigenic distance of all mPLEX-Flu

target HAs to the three vaccine strains A/Hong Kong/97 (HK97, clade 0), A/Vietnam/1203/2004 (VN04; clade 1), A/Indonesia/05/2005

(Ind05; clade 2). C. The IgG response of subjects in the DMID 08-0059 study to 21 H5 strains plotted in 3D bubble plots. The relative

antigenic distances of the 21 H5 strains assayed were plotted against their antigentic distance to each of the three MIV strains

to determine giving 3D-antigenic cartography. The bubble size represents the concentration (104ng/mL) of IgG against an H5

influenza strain at day 14 post MIV boosting. (A) Using unsupervised hierarchical clustering, three H5 antigenic groups were iden-

tified. Interactive 3D bubble plots can be accessed through the following links: Prime group (http://rpubs.com/DongmeiLi/565996);

S-boost group( http://rpubs.com/DongmeiLi/565998); L-boost: (http://rpubs.com/DongmeiLi/565989); DL-boost: (http://rpubs.com/

DongmeiLi/565994).
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Cross-reactive IgG response to H5 vaccination

Relative antigenic response landscapes of H5 MIV HAs Our results also raised168

another fundamental question: Does the magnitude of the imprinted recall response169

to the primoriginal H5 HA correlate with the antigenic distance between the HAs of170

the prime and boost strains? We hypothesized that the antigenic distance between171

the vaccine strain and a target H5 HA is inversely correlated with the cross-relativity of172

antibody response induced by the H5 MIV. In other words, smaller antigenic distances173

from the first influenza strain (imprinting strain) produce larger IgG responses. To174

answer this question, we performed antigenic cartography to quantitatively evaluate175

the antigenic distances between H5 clades and subclades.176

Recombinant H5 HA proteins were expressed and purified. Strains were chosen177

to cover all 10 H5 clades (0-9) or subclades, and 4 new H5 avian strains (Cl4.4.4.3)178

cloned in the US (TABLE S1, and FIG S1). Antibody reactivity to these strains was plotted179

against mouse anti-H5 HA IgG serum reactivity generated utilizing a monovalent DNA180

vaccination approach (FIG S2 A). We thus generated a comprehensive antigenic distance181

matrix between 17 H5 influenza strains and each of 21 H5 and 9 other influenza182

virus strains using the mPlex-Flu assay. The individual antibody levels against H5183

viruses are shown as MFI units at specific dilutions, with the dilution factors being184

normalized using a generalized linear model with an identity link function for the sera185

samples. We used classical multidimensional scaling (MDS) method(31) to project186

relative distances between strains into 2 dimensions, and the matrix data was created187

by calculating the Euclidian distance matrix from two-dimension coordinates. Finally,188

we used a modification of the approach of Smith, et al.(32) to visualize the antigenic189

distance between influenza virus HAs(32, 3) (FIG S2, C ). This approach accounts for the190

continuous nature of the mPlex-Flu assay data and the consistent range of estimated191

strain-specific binding(28, 29), yielding the same results as antigenic cartography. The192

antigenic distance matrix was also generated from the above multiplex data of mPlex-193

Flu assay using the DNA vaccine anti-sera (FIG S3).194

In order to show the relative antigenic distance between individual HAs and the195

H5 MIV strains (FIG 3 B), we plotted the distance of each H5 HA relative to the 3196

vaccine strains: HK97 (X-axis), Vie04 (Y-axis) and Ind05 (Z-axis). Each marker diameter197

represents the magnitude of the IgG concentration 14 days after MIV boosting. This198

allowed visualization of the magnitude of the antibody response against specific H5199

HAs, associated with antigenic distance in different cohort groups with respect to200

both prime and boost vaccine strains. The same diagram allowed visualization of H5201

strain vaccine strain relative distances from other H5 strains. Naive subjects had low202

anti-HA IgG levels against all H5 strains after priming and short-interval boosting with203

MIV. However, the L-boost and DL-boost groups had significantly enhanced antibody204

responses after 14 days, with higher IgG responses to H5 strains in the Vie04 and205

HK97 cluster groups than to the viruses in the MIV Ind05 cluster group, which are206

antigenically similar to the strain of the more recent MIV (FIG 3 C). These data more207

clearly show the relationship between the anti-HA IgG antibody response and the208

antigenic distances to the reference strains: higher cross-reactive antibody levels are209

elicited against the HAs from strains in the same cluster group with the first priming210

virus strain.211

Long-interval boosting of MIV elicited heterogeneous IgG responses against212

all H5 clade/subclades, which were correlated with the antigenic distance to213

the first primed virus strains. We next generated antigenic landscape plots (27) to214

visualize the magnitude of serological responses in relation to the antigenic distance215

between the vaccine strain HA and the H5 HAs in the mPlex-Flu panel. We first focused216

on the relationship between the magnitude of boosted IgG response and the antigenic217
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FIG 4 Relative HA antibody landscapes, anti-HA IgG levels and relative antigenic distances from vaccine strains. A. The relative

HA antibody landscapes of H5 virus strains as a function of the relative HA antigenic similarity distance from the vaccination

strain Ind05 for the Prime group and short interval boost (S-boost) group (see Materials and Methods). B. Correlation of the HA

antibody response to the HA-antigenic distance from the vaccine strain HAs of the Prime and S-boost groups. The coordinates

of each H5 strain result represent the relative antigenic distance of H5 HAi to the vaccine strain HA on each axis. C. Relative HA

antibody landscapes for each group using the relative HA antigenic distance from the H5 reference strains A/Vietnam/1203/2004

(Vie04; clade 1), or A/Hong Kong/97 (HK97, clade 0). D. The correlation between the HA antibody response and the HA-antigenic

distance of "first exposer" H5 strain: Vie04 for the long-interval boost group (L-boost)or HK97 for the double long-interval boost

group (DL-boost). The change of IgG concentration (∆I gGconc ) is the difference between the anti-HA antibody concentration of

past-vaccination from that of prior vaccination. The R 2 values were calculated from linear regression fitting.

distance between the boost HA and the three H5 vaccine strains. To this end, IgG218

antibody concentrations against 21 H5 strains were measured by mPLEx-Flu assay for219

each cohort on days 9, 14, and 28, which were plotted against their relative antigentic220

distances to Ind05 (FIG 4A, B), Viet04 (FIG 4C, D), and HK97 (FIG 4E, F). Correlation test221

results are given in the figure inset, and all data are presented in FIG S4, S5, S6).222

We found that the immune response in the Prime and S-boost groups were very223

weak, and since subjects in these groups were only exposed to the Ind05 MIV strain,224

we made antigenic landscapes (27) using Ind05 as the reference influenza virus strain.225

The relative antigenic landscapes for these two groups at days 0, 14 and 180 are226

shown in FIG4 A and B. Similarly, the serological responses of the L-boost and D-boost227

groups after boosting were plotted against the antigenic distance relative to Vie04228

and HK97, shown in FIG4 C and D. Note that the antigenic distance between the229

cognate vaccine strain and itself is zero (e.g. Vie04 - Vie04 = 0). The Ind05 MIV showed230
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Cross-reactive IgG response to H5 vaccination

very low antigenicity in both naive subject groups. Changes in IgG concentration231

(∆I gG = [I gGt ] − [I gGday0]) were not correlated with antigenic distance (P = 0.014232

and 0.020). However, Ind05 MIV boosting showed higher antibody responses to HAs233

from strains with a smaller antigenic distance in both L-boost (R 2 = 0.57) and DL-boost234

groups (R 2 = 0.73). These results support our hypothesis that that the imprinting235

of primed individuals is highly correlated with the related antigenic distance to the236

priming strains for long-interval H5 vaccination. FIG 4.237

Long-interval boosting with H5 MIV induced broadly heterosubtypic anti-238

body responses against Group 1 influenza strains. To assess the breadth of het-239

erosubtypic immunity generated by the H5 MIV prime and boost strategy, including IgG240

reactive against other influenza strain HAs, we estimated antibody cross-reactivity to241

select group 1 (H1, H2, H5, H6, and H9) and group 2 (H3, H4, H7) HAs (Table S1)) using242

the mPlex-Flu assay (FIG 5). In all subjects, we detected high pre-existing anti-H1 HA243

subtype IgG levels against older (A/South Carolina/1/18 (SC18), A/Puerto Rico/8/1934244

(PR8)) and newer (A/New Caledonia/20/1999 (NewCall99), A/California/07/2009 (Cali09))245

strains. However, these anti-HA levels were not significantly affected by H5 MIV vaccina-246

tion (FIG S7 A). In addition, we found dramatic increases in anti-HA IgG levels targeting247

other group 1 influenza viruses (e.g. H2, H6) that had lower baseline levels compared248

to those against influenza group 2 (H1, H3) subtype HAs.249

Further analysis demonstrated that post-H5 vaccination IgG reactivity across in-250

fluenza strains was inversely correlated to both phylogenetic and antigenic distance251

between the strains, especially the stalk regions. Based on phylogenetic distance, the252

gene sequence of H6 is closer to H5 than H9 (33). Similarly, the gene sequence of H2 is253

closer to H5 than H6 and H1 (FIG S1 A). In addition, we found that IgG responses induced254

by H5 MIV against HA of A/Japan/305/1957 (Jap57, H2) were significantly higher than255

that against A/Taiwan/2/2013 (TW13, H6) and A/guinea fowl/Hong Kong/WF10/1999256

(gfHK99, H9) (FIG5, FIG S7 A), the latter two strains have stalk regions phylogenetically257

and antigenically distant from the H5 clade stalk. We also found that, in both primed258

groups, H5 MIV elicited cross-reactive anti-H2 IgG responses in naive subjects, with a259

higher peak and a sustained duration than in the unprimed groups. Those responses260

were stronger than those against H6 and H9 HAs. No significant changes were detected261

in IgG levels against H3 and other group 2 influenza strains (FIG S7 B). Together, these262

findings also support the hypothesis that cross-strain, anti-HA antibody responses are263

highly correlated with phylogenetic similarity, and inversely correlated with antigenic264

distance, to the vaccine strain.265

Long-interval boosting elicited IgG antibodies against the HA head domain.266

The HA stalk domain is highly conserved within influenza virus phylogenetic groups,267

and stalk-reactive antibodies have been hypothesized to be the major contributors268

mediating cross-reactivity of anti-HA IgG antibodies across group 1(34) strains. How-269

ever, broadly cross-reactive neutralizing antibodies against the HA head domain have270

recently been identified, and could also contribute to this phenomenon (reviewed in271

(35)). Thus, we next measured the change in the relative proportions of head versus272

stalk reactive IgG within H5 boosting group.273

H5 head (HA1) specific IgG levels were measured using beads coupled with the274

Ind05 head domain only. Anti-stalk IgG was measured using chimeric cH9/1 and275

cH4/7 proteins to estimate, respectively, group 1 and group 2 stalk-reactive antibodies276

(36, 37, 38). The results demonstrate that short-interval boosting can induce an ∼2 fold277

increase in anti-H5 head IgG levels in naive subjects (FIG 6). In addition, significant278

increases in head-specific IgG were also detected in the L-boost group: 27 fold (14d), 20279

fold (28d), and 10 fold (180d). Examining the DL-boost group, ∼7-8 fold increases were280
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FIG 5 The human heterosubtypic IgG antibody response elicited by H5 MIV. The IgG antibody response induced by H5 influenza

vaccine against previously circulating or vaccine influenza strains (H1, H2, H3, H6, H7, H9), were measured by mPlex-Flu assay pre-

(day 0) and post- vaccination (days 14, 180).
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FIG 6 The head and stalk-reactive IgG response induced by the human MIV H5 vaccine. A. The kinetic profile of the IgG response

against the HA head or stalk domain estimated by mPlex-Flu assay. B. Comparison of concentrations of each H5 HA specific anti-

body pre- (day 0) and post-vaccination (14, 28 and 180 days). Linear contrasts within the linear mixed effects models framework

were used for statistic testing (* P<0.05, **P<0.01, ***P<0.001). C. Comparison of anti-HA IgG concentrations between HAs, in-

cluding antibodies against chimeric cH9/1 HA (termed group 1 stalk-reactive antibodies; G1 Stalk), and cH4/7 HA (termed group 2

stalk-reactive antibodies; G2 Stalk).

observed at 14, 28, 180 days after vaccination. High levels of group 1 stalk-reactive281

IgG were found in both boosting groups. However, these increases accounted for282

less than a 2-fold overall change in IgG levels, primarily because these stalk-reactive283

IgG antibodies were present at relatively high levels prior to vaccination. We did not284

observe any significant post-vaccination increases in group 2 stalk-reactive antibody285

levels regardless of test groups. Overall, our results suggest that broadly cross-reactive286
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Cross-reactive IgG response to H5 vaccination

IgG against H5 influenza HAs or the phylogenetic group 1 are most likely mediated by287

conserved epitopes on the head domain of HA as opposed to the stalk domain.288

DISCUSSION289

Two major impediments to universal flu vaccine development are the constant anti-290

genic changes of influenza strains, and that the human antibody response is shaped by291

prior influenza exposure history (39). In addition, vaccination strategies for emergent292

influenza strains need to take into account both the vaccination schedule, and the293

ability of HA imprinting to can hinder immune responses to new antigens. Antibody294

mediated immune responses to new influenza HA antigens are generally weak after the295

priming vaccination, and require further boosting to elicit adequate titers for infection296

prevention. This phenomenon can be leveraged if the subject has been primed by297

exposure to influenza HA antigens, by prior infection or vaccination, that are a short298

antigenic distance from emergent strain HAs (heterosubtypic immunity).299

The antigenic distance between two influenza strain HAs can be calculated empiri-300

cally or experimentally. Empirically, antigenic distance is the difference between amino301

acid sequences of HA proteins (e.g. edit distance, Damerau-Levenshtein distance).302

Experimentally it can be derived by calculating the n-dimensional distance between303

immune reactivity of sera from a subject vaccinated with a single virus against a panel304

of other HAs from disparate influenza strains (39). As we have previously shown (37),305

the smaller the antigenic distance between the prime and boost HAs, the stronger the306

post-boost vaccination increase in vaccine specific anti-HA IgG levels. This work extends307

that observation to show that boosting also increases anti-HA IgG to heterosubtypic308

strains within close antigenic distance of the priming strain.309

In this study, we also analyzed changes in multi-dimensional anti-H5 HA IgG re-310

sponses after vaccination and boosting using a modification of the antibody landscape311

method (30), a variant of antigenic cartography (32). We initially analyzed anti-HA312

IgG antibody levels against a comprehensive panel of H5 clade/subclade HAs as a313

function of the relative antigenic distance to the reference vaccine HA. We call this314

multi-dimensional measure the relative antibody landscape (Fig 4 A and C). This novel315

method, combined with multiplex serum IgG measurements, allows an analysis of316

the breadth of the antibody response as a function of the antigenic distance from the317

vaccine strain. Our results using the relative antibody landscape method show that the318

anti-H5 HA IgG responses elicited by boosting in both primed groups are highly corre-319

lated with the antigenic distance between the priming and boosting H5 vaccine strains.320

These findings provide further evidence of for the influence HA antigenic imprinting321

in H5 influenza vaccination. Most significantly, we demonstrate that relative antibody322

landscape methods can be used to analyze the effects of previous HA antigen exposure323

on vaccine responses, allowing for quantitative analysis of antigenic imprinting.324

Our work also demonstrates that long-interval boosting augments H5 vaccine-325

induced immunity. Studies using variants of the influenza H5 MIVs have shown that326

long-interval prime-boost strategies, on the order of 4-8 years between vaccinations,327

result in robust and durable antibody responses (9) to what are relatively poorly im-328

munogenic vaccine components (11, 12, 24). Intermediate intervals of 6-12 months329

between priming and boosting with H5 variants significantly increases antibody re-330

sponses (40, 41), compared to 8 weeks or less. One potential mechanism for these331

results is a time-dependent increase in long-lived memory B cells, which may take 2-4332

months after vaccine priming (42). These memory B cells can then respond rapidly333

to long interval boosting (43). Significant additional work is necessary to define the334

optimum prime-boost interval for robust responses.335
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Our results also support the hypothesis that long-interval boosting increases anti-336

body responses targeting the HA head domain, rather than the stalk. Recently, several337

broadly neutralizing antibodies (bnAbs) have been identified from both infected or338

vaccinated human subjects that target the hypervariable HA head domain, including339

C05 (44), 5J8 (45), CH65 (46) and CH67. These bnAbs exhibit considerable neutralizing340

breadth within the H1 (44, 45, 46) and H3 (47) influenza subtypes. Such bnAbs are341

thought to bind highly conserved regions on the sialic acid receptor binding site (RBS)342

in the HA head domain, explaining their ability to broadly neutralize viral binding from343

different subtypes (46, 48). As the head domain is known to be immunodominant in344

the induction of strong antibody responses, broadly head-reactive antibodies could be345

the major mediator of cross-reactive immunity across influenza subtypes or heterosub-346

types. Our results are also consistent with recent work that found rapid activation and347

expansion of pre-existing memory B cell responses to the conserved epitopes on the348

HA stalk and head domains after long interval prime-boost vaccination with H7N9 (42).349

Finally, our results contribute further to a framework for thinking about universal350

influenza vaccine development strategies. The aspirational goal of a universal influenza351

vaccine is to create long-lasting protective immunity to a wide spectrum of influenza352

viruses. In such cases, future exposure, via infection or vaccination may occur years353

after the initial priming and imprinting event. Our work demonstrates that the long354

interval prime-boost strategy for H5 vaccination induces long-lasting cross-reactive355

antibodies against conserved regions on the HA1 head domain. This may help in356

universal influenza vaccine development not as a single vaccine, but as a long-interval357

boost strategy to generate cross-reactive antibodies to recognize the conserved sites358

on HA1 head domain.359

In conclusion, we used a multiplex antibody assay and a novel antibody landscape360

method to analyze antibody mediated immunity to various influenza HAs after H5361

vaccine priming and boosting. These methods quantitatively account for the antigenic362

distances between the vaccine and other strain HAs. This new approach demonstrated363

that anti-H5 IgG antibody responses elicited by boosting are highly correlated to the364

antigenic distance between the the priming and boosting H5 vaccine strains, providing365

evidence for OAS and HA imprinting within the context of H5 vaccination.366

MATERIALS AND METHODS367

Human Subjects Ethics Statement This sub-analysis study was approved by the368

Research Subjects Review Board at the University of Rochester Medical Center (RSRB369

approval number RSRB00012232). Samples were analyzed under secondary use con-370

sent obtained previously as part of prior clinical trial (24). All research data were coded371

by sample IDs in compliance with the Department of Health and Human Services’372

Regulations for the Protection of Human Subjects (45 CFR 46.101(b)(4)).373

Samples and data Serum samples for the multiplex assay were obtained from374

a prior clinical trial, DMID 08-0059 (Figure 1)(24). Subjects without pre-vaccination375

serum samples (Day 0 baseline) were excluded. All subjects in the three cohorts376

were inoculated with inactivated A/Indonesia/5/05 (A/Ind05) vaccine. H5 naive subjects377

(n = 12), who were healthy adults, not at risk for H5 exposure and with no H5 vaccination378

history, received 2 identical A/Ind05 vaccinations separated by 28 days. Primed subjects379

(n = 30) previously received the inactivated subvirion influenza A/Vietnam/1203/04380

(A/Vie04) vaccine in 2005–2006 (9). The double primed group (n = 13) had received both381

the recombinant influenza A/Hong Kong/156/97 vaccine (A/HK97) in 1997-1998 (11)382

and the influenza A/Vie04 vaccine in 2005-2006. Serum samples were collected before383

vaccination (Day 0) and on days 7, 14, 28, 56, and 180 after vaccination. Serum samples384
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were collected from the naive group subjects on days 7, 14, and 28 days after the385

second immunization. All data from the mPlex-Flu, HAI, and MN assays were adjusted386

for dose difference using linear mixed effects models, as previously described (28, 29).387

mPLEX-Flu Analysis We estimated the concentrations of anti-HA IgG antibodies388

against a 45 HA antigen panel of influenza viruses using the mPLEX-Flu assay, as389

described previously(25, 36). All influenza HA sequence identifiers uesd are listed in390

the TABLE S1 and the HA genetic distance (phylogenic tree) is shown in FIG S1 A . The391

panel recombinant HA proteins were expressed by baculovirus system and purified392

Ni+ affinity column selection as previously described (36) and verified (FIG S1 B.393

The calculation of individual IgG concentrations for each influenza strain anti-HA394

IgG was performed using standard curves generated from five-parameter logistic395

regression models (28, 29). All IgG concentration results from the mPlex-Flu assay396

was adjusted using linear mixed effects models accounting for the group, day, and397

group-day interactions for each H5 vaccine strain. Covariates adjusted in the linear398

mixed effects models included age at enrollment, gender, ethnicity (Caucasian vs.399

non-Caucasian), dose (two dose levels: 15 and 90 µg ), and analytic batch (five batches)400

factors (28, 29).401

Antigenic cartography of H5 influenza viruses generated by mPlex-Flu assay402

data. In order to estimate the antigenic distance of HA antigens of H5 influenza virus403

strains, we adopted the 17 H5 HA genes that covered all 10 clades/subclades strains404

of H5 from Dr. Paul Zhou from Institute Pasteur of Shanghai, Chinese Academy of405

Sciences, Shanghai, China (3). The 17 individual antisera against each H5 influenza406

virus strain were generated with mouse DNA vaccination as previously described (3),407

and shown in FIG S2 A. Using the mPlex-Flu assay, we evaluated the 17 anti-sera against408

a panel of 36 HA antigens to create a multi- dimensional matrix, after normalizing the409

dilution factors and subtracting the background levels, using generalized linear models410

with identity link functions ( FIG S2 B) . Classical multidimensional scaling was used to411

project multi-dimensional distances into two-dimensional antigenic cartography plots412

plots(31, 25). The coordinates for two-dimension antigenic cartography were further413

used to calculate the Euclidean distance between H5 influenza viruses to obtain the414

antigenic distance matrix( FIG S3) .415

Relative antigenic landscapes of antibody response. Based on the antigenic416

distances generated above, and using the three vaccine strains as reference: A/Hong417

Kong/156/97 vaccine (HK97, clade 0) A/Vietnam/1203/04 (Vie04, clade 1) A/Indonesia/5/05418

(Ind05, clade 2) a vaccine-strain relative antigenic distance matrix was selected. Next,419

relative antigenic antibody landscape-like figures were created by using the relative420

antigenic distance as the X-axis and the Y-axis is IgG antibody response. Data points421

were linked by LOWESS fit spline curves (Prism 8 software). A set of antibody response422

landscape-like plots were generated for each vaccination strain.423

H5 head and stalk specific antibody response. We used the mPlex-Flu assay to424

simultaneously assess the antibodies to the head and stalk domains of HA. We coupled425

Luminex beads with the head region of HA, which are purified recommbinant proteins426

of HA1 domain of H5/Ind05 and H9/A/guinea fowl/Hong Kong/WF10/1999 (gfHK99,427

H9). To detect the group 1 stalk-reactive antibodies, we used the chimeric cH5/H1428

(head/stalk) and cH9/H1 proteins. For group 2 stalk-reactive antibodies, we used the429

cH5/H3 and cH7/H4 proteins kindly provided by Dr. Florian Krammer(49, 34, 36, 37).430

Reanalyses of HAI and MN data Primary HAI and MN data were generated pre-431

viously during the vaccine trial as described (24). Serum antibody responses to the432

homologous A/Indonesia/05/2005 PR8-IBCDC-RG2 virus were measured at the South-433

ern Research Institute (11). We reanalyzed these data using linear mixed effects models,434
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with correlations from repeated measurements within the same subject considered.435

The same predictors and covariates were used in the linear mixed effects models for436

the HAI and MN data analysis as for the mPLEX-Flu data analysis (28).437

Availability of data and materials. All data generated in this study are included438

in this published article and in the Supplementary Material.439
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Supplementary Material

Generation of an antigenic cartography representing 21 clades or subclades of H5 influenza
viruses using mouse antisera reactivity measured using our mPlex-Flu assay

1. ANIMALS

Female BALB/c mice were purchased from Taconic Biosciences. For all experiments, female 8-
to 12-week-old mice were used and randomly assigned to experimental groups. All research
involving live, vertebrate animals was conducted in accordance with the Public Health Service
Policy on Human Care and Use of Laboratory Animals. mice were maintained at the University of
Rochester Medical Center Vivarium, a AAALAC certified Vivarium (Animal Welfare Assurance
Number is A-3292-01), under their established guidelines, including isolation, feeding, recovery
procedures, and euthanasia in accordance with Federal regulations. All experimental procedures
for animals were approved by the Institutional Animal Care and Use Committee (IUCAC; protocol
number UCAR-2011-055E), and all personnel working with the animals were trained and certified
by the IUCAC and Vivarium staff.

2. GENERATION OF MOUSE ANTISERA DIRECTED AGAINST HEMAGGLUTININS (HAS)

REPRESENTING H5 CLADES AND SUBCLADES

A panel of 17 total DNA plasmids encoding all 10 H5 clades/subclades HA genes was provided
by Dr. Paul Zhou from Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai,
China (Zhou et al., 2012). The DNA vaccination plamids were constructed from the mammalian
expression vector, pCMV/R, containing whole codon-optimized HA gene inserts representing H5
influenza viruses (Zhou et al., 2012). All above plamid DNAs were amplified and then purified
with Plasmid Maxi Kit (QIAGEN) following the manufacture’s recommendations. Purified DNA
plamids were used for intramuscular immunizations (i.m.) of 8- to 12-week-old BALB/c mice
as previously described (Zhou et al., 2012). Briefly, the mice (n=4) were inoculated with 100g of
one of the 17 H5 subclade HA plamid DNAs respectively, on days 0, 28 and 56 (see Figure S2 A).
Fourteen days after the last immunization, serum samples were collected from each mouse and
combined within each group. The resultant H5 reactive antisera panel was aliquoted and stored
at -20◦C for future analysis.

3. RECOMBINANT HA PROTEINS (RHAS) OF H5 CLADES AND SUBCLADES

All rHAs of type A and B influenza viruses used in this study (TABLE S1) were expressed
using pFastBac baculovirus system with a C-terminal trimerization domain and a hexahisti-
dine purification tag (Wang et al., 2018). The entire panel of 17 H5 clades and subclades HA
genes were subcloned into this pFastBac vector using BamHI and NotI restriction endonucle-
ases (NEB, Ipswich, MA) as previously published (Wang et al., 2018). We also synthesized
four HA genes (see TABLE S1) of H5 avian influenza viruses belonging to the new subclade
2.3.4.4 that circulated during the huge H5 outbreak in turkey and chicken farms in USA in
2015, including A/duck/Sichuan/NCXN10/2014 (ducSC14,gene bank accession No:KM251469),
A/turkey/Washington/61-22/2014 (turWash14,accession No:KP739397), A/duck/Guangdong/wy11/2008
(ducGD08, accession No:CY091627) and A/turkey/California/K1500169-1.2/2015 (turCal15, ac-
cession No: KR150901). We also inserted these HA genes into the pFastBac expression vector to
express the rHAs of H5 influenza virus HAs.

Expression and purification of rHA was performed as previously described (Wang et al., 2018).
Purified rHAs were concentrated and desalted with 30 kDa Amicon Ultracell centrifugation units
(Millipore, Billerica, MA) and re-suspended in phosphate buffered saline (PBS, pH7.4). The purity,
integrity and identity of proteins was assessed by NuPage 4-12% Bis-Tris gels (Invitrogen, Grand
Island, NY), the results of which are shown in FIG S1 B. Protein concentration was quantified
using the Quickstart Bradford Dye Reagent (Bio-Rad, Hercules, CA) with a bovine serum albumin
standard curve.
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4. SIZE EXCLUSION CHROMATOGRAPHY (SEC) ANALYSIS OF RHAS OF H5 INFLUENZA

VIRUSES

The four representative rHAs of H5 influenza viruses were evaluated, including A/Chicken/Guangxi/12/2004
(chiGX04, CL2.4), A/Silky Chicken/Hong Kong/SF189/01 (s.chiHK01, CL3), A/Goose/Guiyang/337/2006
(gooGY06, CL4) and A/Chicken/Shanxi/2/2006 (chiSX06, CL7.2) (Colored in FIG S3. A). Par-
tially cleaved HA0 (into HA1 and HA2) and uncleaved HA0 were analyzed by SEC using the
AKTA chromatography system (GE Healthcare Bio-Sciences, Pittsburgh, PA) through a HPLC
Biosep-SEC-s4000 column (300X7.8mm, 00H-2147-K0, Phenomenex Inc, Torrance, CA) in pH 6.8
buffer of 50mM Na2HPO4, 50mM NaHPO4 and 150mM NaCl at 1.0 ml/min flow rate. All four
purified HA preps took the same length of time to flow out from SEC column in HPLC analysis
(see FIG S1 C), suggesting that there are not significant differences between the sizes of the protein
preps, regardless of whether the HA is uncleaved, partially or fully cleaved. This result provides
evidence that the cleavage of HA0 does not affect HA1 and HA2 binding to form the trimmer
structure in the natural condition. The protein standards for SEC were purchased from Bio-Rad
(151-1901, Bio-Rad Inc, Hercules, CA), and the peaks of protein standards in HPLC analysis are
shown in FIG S1 C.

5. DEVELOPMENT OF H5 MPLEX-FLU ASSAY

The mPlex-Flu assay contained an HA antigen panel with 35 rHAs from various influenza strains,
HA domains and chimeric HAs (Supplementary Table S1). The phylogenetic amino acid sequence
tree of those 35 HA proteins is shown in FigureS1.

We used the mPlex-Flu assay to estimate the strain specific binding of the 17 H5 DNA vaccina-
tion anti-sera with our 35 HA antigen panel as previously described (Wang et al., 2018). After
normalizing the dilution factor using the generalized linear model with identity link function,
strain specific binding was obtained from the estimated coefficients, using the background bind-
ing as the reference group (i.e. the strain specific binding is equal to the estimated strain binding
minus the background binding).

6. GENERATION AN ANTIGENIC CARTOGRAM UTILIZING A NOVEL MULTIPLE DI-

MENSIONAL SCALING METHOD (MDS)

Multidimensional scaling preserves the dissimilarities among strains by generating a two-
dimension plot with the distance between each strain approximating their dissimilarities. Using
classical (metric) MDS, multiple dimensional matrix data were generated using mPlex-Flu assay
data, as shown in Figure S2, B. The resultant two-dimensional MDS plot allowed us to estimate the
H5 HA antigenic distances and generate the HA antigenic cartography as previously published
(Zhou et al., 2012; Smith et al., 2004). Due to the continuous nature of data from the mPlex-Flu
assay (as compared to the relative discrete data from the HAI assay) and the consistent range
of estimated strain specific binding, we constructed the antigenic map by minimizing different
error functions E = ∑ij e(MFIij, dij), where MFIij denotes the target distance between antigen
i and antiserum j and dij denotes the Euclidean distance between antigen i and antiserum j in

the two-dimensional map. e(MFIij, dij) = (MFIij − dij)
2 is the error function we minimized to

construct the antigenic cartogram.
We also conducted sensitivity analysis to compare the generated antigenic cartography with

previous published methods (Smith et al., 2004). We replaced MFI∗ij = bj − MFIij with MFIij as

input for the MDS method, where bj denotes the maximum measurement for antiserum j. We
obtained the same antigenic cartography as expected due to the consistent range of the estimated
strain specific binding, shown in Figure S2, C.

An HA antigenic cartography consisting of 21 H5 influenza virus strains was generated utilizing
antisera from H5 DNA vaccinated mice, to calculate the antigenic distance from the H5 A/Hong
Kong/1997 clade 0 (HK97(0)), see Supplementary Figure S3.
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7. FIGURES AND TABLES

Supplementary Figure 1: A. The phylogenetic tree of 35 influenza A virus strains and the charac-
teristics of the purified recombinant HA proteins of H5 influenza virus .

Supplementary Figure 2: Antigenic cartography is generated with a mouse DNA vaccination
model.

Supplementary Figure 3: The heat-map matrix of the antigenic distance between the 21 H5
influenza virus strains.

Supplementary Figure 4: The correlation between the HA antibody response and HA antigenic
similarity of A/Hong Kong/156/97 (HK97) to 21 H5 influenza virus strains.

Supplementary Figure 5: The correlation between the HA antibody response and HA antigenic
similarity between A/Vietnam/1203/2004 (Vie04) and 21 H5 influenza virus strains.

Supplementary Figure 6: The correlation between the HA antibody response and HA antigenic
similarity of A/Indonesia/5/05 (Ind05) to 21 H5 influenza virus strains.

Supplementary Figure 7: The IgG concentration of group 1 and 2 influenza virus strains was
estimated by mPlex-Flu assay in the DMID 08-0059 study.

Supplementary Figure 8: Prior vaccination with a monovalent influenza vaccine (MIV) in-
creased the serum titers of hemagglutination-inhibition (HAI) and micro-neutralization (MN)
antibody responses against three antigenically drifted virus vaccine strains, including new vac-
cine strain A/Indonesia/05/2005 (Ind05; clade 2), previous MIV strains A/Vietnam/1203/2004
(Vie04; clade 1), A/Hong Kong/156/1997 (HK97; clade 0).

Supplementary Table 1: The mPlex-Flu assay panel of seasonal influenza viruses, H5 clades
and subclades.
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Fig. S1. HA protein characters of 35 influenza virus A strains in mPlex-Flu assay. A. The phy-
logenetic tree was generated using HA amino acid sequences of the 35 influenza A virus
strains obtained from the phylogenic tree maker on the Influenza Research Database Web-
site (https://www.fludb.org/brc/home.spg?decorator=influenza). B.SDS-PAGE gel image of purified
HA proteins of H5 influenza viral strains. C. HPLC analysis results of four representative HA
proteins flowing through the Biosep-SEC-s4000 columns with the Bio-rad protein standards.
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Fig. S2. Antigenic cartography is generated with a mouse DNA vaccination model. A. Mouse
DNA vaccination strategy. B. Heat map of the multiple dimensional antibody data generated
by the mPlex-Flu assay. Each mouse polyclonal antiserum was induced by DNA vaccination
with a DNA plasmid encoding HA proteins, and the antibody levels in the sera were estimated
by mPlex-Flu assay. C. Antigenic cartography of 36 influenza A strains assessed by mPlex-Flu
assay with the Multiple Dimensional Scaling (MDS) method.
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Fig. S3. The heat-map matrix of the antigenic distance between the 21 H5 influenza virus
strains. The three vaccination strains are highlighted with red arrows.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.14.340448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.340448
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

5.0 105

1.0 106

1.5 106

0.0

5.0 105

1.0 106

1.5 106

0.0

5.0 105

1.0 106

1.5 106

0.0

5.0 105

1.0 106

1.5 106

Day 180

Day 0

Day 14

Day 180-0Day 14-0

0.5827 0.5049R2=

Day 14-0

0.3146R2=

Day 180-0

NA

Day 180-0Day 14-0

0.7031 0.6432R2=

Day 180-0Day 14-0

0.7311 0.7378R2=

Relative HA-antigenic distance from HK97

HK97 Vie04 IND05TK06 chiSX06

Prime

S-Boost

L-Boost

DL-Boost

HK97 Vie04 IND05TK06 chiSX06

Relative HA-antigenic distance from HK97

Ig
G

 C
o
n
c
e
n
tr

a
ti
o
n
 (

n
g
/m

L
)

T
h
e
 c

h
a
n
g
e
 o

f 
Ig

G
 C

o
n
c
e
n
tr

a
ti
o
n
 (

-D
a
y
 0

, 
n
g
/m

L
)

0.0

5.0 105

1.0 106

1.5 106

0.0

5.0 105

1.0 106

1.5 106

0.0

5.0 105

1.0 106

1.5 106

0.0

5.0 105

1.0 106

1.5 106

C D

Day14-0

Day180-0

.

Fig. S4. The correlation between the HA antibody response and HA antigenic similarity
of A/Hong Kong/156/97 (HK97) to 21 H5 influenza virus strains. A. The HA antibody re-
sponse landscape-like plots of each group using the relative HA antigenic distance of A/Hong
Kong/156/97 (HK97, clade 0) as the reference strains (see material and methods). X-axis is
relative antigenic distance; Y-axis is IgG antibody response; the spots were linked by LOWESS
fit spline curve (Prism 8 software). B. The correlation of the HA antibody response to the HA-
antigenic distance. The ∆ change of antibody concentration of pre- and post- vaccination ver-
sus the relative HA antigenic distance of Vie04. The R squared values were calculated with
simple linear regression analysis (Prism 8 software).
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Fig. S5. The correlation between the HA antibody response and HA antigenic similarity be-
tween A/Vietnam/1203/2004 (Vie04) and 21 H5 influenza virus strains. A. The HA anti-
body response landscape-like plots of each group using the relative HA antigenic distance
of A/Vietnam/1203/2004 (Vie04, clade 1) as the reference strains (see material and methods).
X-axis is relative antigenic distance; Y-axis is IgG antibody response; the spots were linked by
LOWESS fit spline curve (Prism 8 software). B. The correlation of the HA antibody response to
the HA-antigenic distance. The ∆ change of antibody concentration of pre- and post- vaccina-
tion versus the relative HA antigenic distance of Vie04. The R squared values were calculated
with simple linear regression analysis (Prism 8 software).
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Fig. S6. The correlation between the HA antibody response and HA antigenic similar-
ity of A/Indonesia/5/05 (Ind05) to 21 H5 influenza virus strains. A. The HA antibody
response landscape-like plots of each group using the relative HA antigenic distance of
A/Indonesia/5/05 (Ind05, clade 1) as the reference strains (see material and methods). X-
axis is relative antigenic distance; Y-axis is IgG antibody response; the spots were linked by
LOWESS fit spline curve (Prism 8 software). B. The correlation of the HA antibody response to
the HA-antigenic distance. The ∆ change of antibody concentration of pre- and post- vaccina-
tion verse the relative HA antigenic distance of Vie04. The R squared values were calculated
with simple linear regression analysis (Prism 8 software).
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Fig. S7. The IgG concentration of group 1 and 2 influenza virus strains was estimated by
mPlex-Flu assay in the DMID 08-0059 study. The mPlex-Flu assay estimated the mean and
standard deviation of IgG concentration for each group. Then the antibody concentrations
were adjusted within the linear mixed-effects models, which included the following: age at
enrollment, gender, ethnicity (Caucasian vs. non-Caucasian), dose (two dose levels: 15 and 90
µg), and batch (five batches). A. The mPlex-Flu assay estimated the antibody concentrations of
group 1 influenza virus strains (including five human H1, one of each H2, H6, and H9). B. The
antibody concentrations to group 2 influenza A virus strains (including four H3, and two H7
strains) were estimated by the mPlex-Flu assay.
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Fig. S8. Prior vaccination with a monovalent influenza vaccine (MIV) increased the serum
titers of hemagglutination-inhibition (HAI) and micro-neutralization (MN) antibody re-
sponses against three antigenically drifted virus vaccine strains, including new vaccine strain
A/Indonesia/05/2005 (Ind05; clade 2), previous MIV strains A/Vietnam/1203/2004 (Vie04;
clade 1), A/Hong Kong/156/1997 (HK97; clade 0). Naive subjects (Unprimed) received the
MIV Ind05 strain and were subsequently boosted at day 28 with the same strain. A previous
primed group, received the MIV Vie04 5 years prior, (Primed) then received a single dose of
Ind05. The previous double primed MIV Vie04 and HK97 (Multiple). The mean and standard
deviation of IgG concentration for each group were estimated by linear mixed effects models
with group, day, and group-day interaction used to fit the data for each H5 vaccine strain. Co-
variates adjusted in the linear mixed effects models included the following: age at enrollment,
gender, ethnicity (Caucasian vs. non-Caucasian), dose (two dose levels: 15 and 90 µg), and
batch (five batches). * P<0.05, **P<0.01, ***P<0.001 Linear contrasts within the linear mixed
effects models framework were used to do the statistical testing.
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Table S1. The mPlex-Flu assay panel of seasonal influenza viruses, H5 clades and subclades

Influenza Subtypes Full Name of Viruses Abbreviation H5 Clades Genbank Accession #

Virus Type /Subclades

A H1 A/South Carolina/1/18 SC18 AF117241.1

A/Puerto Rico/8/1934 PR8 CY148243.1

A/USSR/90/1977 USSR77 DQ508897.1

A/New Caledonia/20/1999 NewCall99 DQ508889.1

A/Texas/36/1991 Tex91 CY125100.1

A/California/07/2009 Cali09 FJ966974.1

H2 A/Japan/305/1957 Jap57 L20407.1

H3 A/Port Chalmers/1/1973 PC73 CY112249.1

A/Hong Kong/1/1968 HK68 CY009348.1

A/Perth/16/2009 Per09 GQ293081.1

A/Victoria/361/2011 Vic11 KM821347

A/Texas/50/2012 Tex12 KC892248.1

H5 A/Hong Kong/156/97 HK97 0 AF028709

A/Viet Nam/1203/2004 Viet04 1 EF541403

A/Cambodia/P0322095/2005 Cam05 1.1 HQ200458

A/Indonesia/5/05 Ind05 2.1.3.2 EF541394

A/Turkey/65596/2006 TK06 2.2.1 EF619998

A/Common Magpie/Hong Kong/5052/2007 cmHK07 2.3.2.1 CY036173

A/Shenzhen/406H/2006 SZ06 2.3.4 EF137706

A/Chicken/Guangxi/12/2004 chiGX04 2.4 DQ366330

A/Chicken/Korea/es/2003 chiKR03 2.5 EF541412

A/Silky Chicken/Hong Kong/SF189/01 s.chiHK01 3 AF509021

A/Goose/Guiyang/337/2006 gooGY06 4 DQ992765

A/Duck/Guangxi/1378/2004 ducGX04 5 DQ320884

A/Duck/Hubei/wg/2002 ducHB02 6 DQ997094

A/Beijing/01/2003 BJ03 7.1 EF587277

A/Chicken/Shanxi/2/2006 chiSX06 7.2 DQ914814

A/Chicken/Henan/16/2004 chiHN04 8 AY950234

A/Goose/Shantou/1621/05 gooST05 9 DQ095628

A/duck/Sichuan/NCXN10/2014 ducSC14 2.3.4.4 KM251469

A/turkey/Washington/61-22/2014 turWash14 2.3.4.4 KP739397

A/duck/Guangdong/wy11/2008 ducGD08 2.3.4.4 CY091627

A/turkey/California/K1500169-1.2/2015 turCal15 2.3.4.4 KR150901

H6 A/Taiwan/2/2013 TW13 KJ162860.1

H7 A/mallard/Netherlands/12/2000 malNert00 EF470586

A/rhea/North Carolina/39482/1993 rheaNC93 KF695239

H9 A/guinea fowl/Hong Kong/WF10/1999 gfHK99 AY206676.1

HA domains Head of A/Indonesia/5/05 H5 Head

Head of A/guinea fowl/Hong Kong/WF10/1999 H9 head

Chimeric HA cH5/1 (A/Indonesia/5/05, A/Puerto Rico/8/1934) cH5/1PR

cH5/1 (A/Indonesia/5/05, A/California/07/2009) cH5/1Cal

cH9/1 (A/gf/HK/WF10/1999, A/California/07/2009) cH9/1

cH4/7 (A/duck/Czech/1956, A/Shanghai/1/2013) cH4/7
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