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Abstract

Cell and circadian cycles control a large fraction of cell and organismal physiology by
regulating large periodic transcriptional programs that encompass anywhere from
15-80% of the genome. The gene-regulatory networks (GRNs) controlling these
programs were largely identified by genetics and chromosome mapping approaches in
model systems, yet it is unlikely that we have identified all of the core GRN
components. Moreover, large periodic transcriptional programs controlling a variety of
processes certainly exist in important non-model organisms where genetic approaches to
identifying networks are expensive, time-consuming or intractable. Ideally, the core
network components could be identified using data-driven approaches on the
transcriptome dynamics data already available. Previous work used dynamic gene
expression features to identify sets of genes with periodic behavior; our work goes
further to distinguish genes by role: core versus their non-regulatory outputs. Here we
present a quantitative approach that can identify nodes of GRNs controlling cell or
circadian cycles across taxa. There are practical applications of the approach for
network biologists, but our findings reveal something unexpected—that there are
quantifiable and fundamental shared features of these unrelated GRNs controlling
disparate periodic phenotypes.

Author summary

Circadian rhythms, cellular division, and the developmental cycles of a multitude of
living creatures, including those responsible for infectious diseases, are among the many
dynamic phenomena in the natural world that are known to be the eventual output of
gene regulatory networks. Identifying the small number of specialized genes that control
these dynamic behaviors is of fundamental importance to our understanding of life, and
our treatment of disease, but is difficult because of the sheer size of the genomes. We
show that the core genes in organisms separated by millions of years of evolution have
remarkable similarities that can be used to identify them.
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Introduction

Periodic phenotypes span nearly the entire tree of life and include such fundamental
processes as the cell-division cycle, circadian rhythms, and developmental cycles.
Probing the genetic mechanisms that give rise to these dynamic activities is not only
crucial to our fundamental understanding of life and its evolution, it will also add to the
current collection of synthetic biology components and principles of design, and may
reveal novel treatments for disease and infection. A vast body of experimental evidence,
gathered over years of targeted experimentation (e.g. gene knock-outs) has uncovered
the existence of endogenous circadian clocks: complex GRNs—comprised mostly of
interacting transcription factors (TFs)—within cyanobacteria, fungi, plants and
mammals [113]. Moreover, a GRN also appears to control the timing of cell-cycle events
in budding yeast [4-8]. To understand the complex dynamic functions of these GRNs,
experimentalists and computational scientists have developed a variety of approaches to
infer the structure of GRNs. An essential first step is to identify, from among an
expansive set of candidate genes, those core gene products controlling the dynamics of
the associated program of gene expression. We conceptualize core nodes as interacting
in a strongly connected subnetwork of mutual activation and repression. The core then
drives the dynamics of “output” or “effector” nodes that do not feed back into the core
but rather transmit the dynamic expression pattern to downstream target genes (Fig.
).

Identifying core nodes is especially daunting for organisms where genetic
experiments are largely intractable. Moreover, functional redundancy, and complex
GRN mechanisms, such as accessory feedback loops, can complicate the discovery of
core nodes. Here we identify distinguishing characteristics of the dynamics of gene
expression that are conserved across organisms that are separated by hundreds of
millions of years of evolution, in vastly different biological processes, and across
data-collection modalities. We discover that a combination of dynamic features provides
a rank ordering of all genes such that core nodes are generally highly-ranked, even
among the many genes which exhibit these features. Moreover, we find that, in general,
a combination of dynamic features more accurately distinguishes core transcriptional
regulators than individual features on their own. Our findings support the use of
quantified dynamic characteristics of gene expression to identify core regulatory
elements and show that there are common features in the dynamic gene expression of
core regulatory variables that drive very different biological processes.

Materials and Methods

Dynamic Curve Features

We utilize quantified measures of 1) periodicity at a specified period, and 2) regulatory
strength associated to each time series transcript abundance profile across a
transcriptome. The metrics used in this study are summarized in Table [I} Detailed
descriptions of the algorithms used to compute these metrics are available in the
Supplementary Materials.

Performance of Gene Ranking Metrics

The problem of identifying the core regulatory elements within an organism’s genome is
fundamentally a question of binary classification of gene function: is a gene core or not?
In practice, this decision task amounts to ranking all genes by some quantitative metric
or “score” in the hope that the ranking is enriched with core genes, so as to reduce the
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Fig 1. Conceptual Model of Core Regulatory Elements. (A) Conceptual model
of a transcriptional regulatory network with core nodes (squares) operating in a
strongly-connected subnetwork of mutual activation (arrows) and repression (short
bars), together with outputs of the core (circles). Output nodes transmit the
transcriptional signal that is generated by the core, but which diminishes as it moves
away from core nodes. (B) Illustrations of transcript abundance profiles exhibited by
the core and its output nodes, with core nodes having oscillations that have a precise
match to a specified period (shaded region) and large variations in expression.

expected effort required to gather additional experimental evidence of gene function
through, for example, knock-out experiments.
To assess the capacity of each ranking metric given in Table [I] to distinguish core

from non-core genes, we compute the precision-recall (PR) curves of the gene rankings.

PR curves track the precision (the fraction of true core genes among all genes ranked
above some score threshold) across all levels of recall (the fraction of true core genes
appearing above the chosen threshold). From each PR curve we compute the average
precision (AP), which summarizes with a single number a ranking’s performance across
all recall levels. See the Supplementary Materials for a more complete description of PR
curves, precision, recall and AP.

For us, a perfect ranking of genes is one in which all core genes are ranked higher
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Table 1. Quantitative metrics of periodicity and regulation strength used
in this study to rank genes. *Refer to the Supplementary Materials for equation
definitions.

Name Function Type Description

DL Per Score  Per(G) periodicity A measure of abundance profile periodicity
as defined by Eq. [3".

DL Per p-val Dper(G) periodicity An empirical p-value measuring the
probability that a random abundance
profile will exhibit a DL Per Score larger
than the actual gene’s expression pattern.

JTK Per p-val pju(G)  periodicity —An analytic p-value introduced in [9)
measuring the correlation in the discrete
up-down patterns of expression between a
gene and a sinusoidal template.

DL Reg Score  Reg(G)  regulation A measure of the variability of transcript
abundance about its mean expression level
as defined by Eq.

DL Reg p-val = preg(G) regulation  An empirical p-value measuring the
probability that a random abundance
profile will exhibit a DL Reg Score larger
than the actual gene’s.

PerReg combined  The product of DL Per and DL Reg Scores.

DL combined  The original periodicity measure introduced
in [10] and defined according to Eq. .

DLxJTK combined A modified version of the original

periodicity measure introduced by [10],
defined according to Eq. [I[f with ppe,(G)
replaced by pj;ik(G).

than all non-core genes. In this way, an experimentalist prioritizing hypotheses using
the gene ranking would encounter all core genes before testing any non-core. The AP of
a perfect ranking will be 1. At the other extreme is an uninformative ranking which
assigns scores to genes at random. The average precision achieved for a random
classifier is C/N [11], where C is the number of core genes and N is the number of all
genes. Moreover, the expected PR curve for such an algorithm is a horizontal line at
precision level C//N across all recall levels, as seen in Figs. Thus, performance of
each classifier, as measured by its PR curve and its AP, should be compared against the
(non-universal) baseline performance of a random classifier. In other words,
precision-recall points above the baseline reflect the skill of a metric, over the random
classifier, to rank genes in a way which enriches the top of a list with core genes.

Gene Expression Datasets
Data Processing

The normalized transcriptomic datasets used in this analysis were taken from the
references presented in Table [2] Before deriving dynamic features, transcript
abundances were preprocessed to remove unreliable data. For the M. musculus and S.
cerevisiae RNAseq datasets, genes whose normalized transcript levels were less than 1
FPKM for more than half of their time points were dropped from the dataset and not
considered in any part of this analysis.
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Table 2. Time series transcript abundance datasets used in this study.

Organism | S. cerevisiae | M. musculus (liver) | A. thaliana (whole leaf)
Synch. in|Cell Cycle| Cell Cycle | Circadian | Circadian Diurnal Circadian
Technology | RNASeq | Microarray | Microarray | RNASeq Microarray Microarray
Period | 75 min* 94 min* 24 hr 24 hr 24 hr 24 hr
Duration | 245 min 254 min 48 42 48 48
Frequency| 5 min 16 min 2 hr 6 hr 4 hr 4 hr
Timepoints/Cycle 15 5.875 12 4 6 6
Reference f6) 12 i3] {13) | [14) (LL.LDHC)| {14] (LDHC)
No. of Genes' 5910 5718 19750 18388 22484 22484
No. of TFsf 304 307 1373 1118 1415 1415
No. of Core 17 17 15 14 11 11

LL_LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature

* Cell-cycle period length was taken from the respective publication, which estimated period length
using the CLOCCS algorithm [15].

T Counts are based on post-processed datasets (see Materials and Methods)

Authors of [6] produced the S. cerevisiae microarray dataset from S. cerevisiae cells
that were synchronized via centrifugal elutriation. It is known that elutriation impacts
the transcription of many genes and that a brief recovery period is needed after
elutriation. The resulting transcript abundance dynamics early in the time series, which
are not related to cell-cycle transcript abundance dynamics, can impact periodicity
analyses [15]. Therefore, prior to any analysis, [6] eliminated data determined to be
associated with the elutriation recovery period. We adopted the same method of
eliminating the first two time points from the S. cerevisiae microarray dataset.

In the S. cerevisiae mircoarray dataset and both A. thaliana datasets, some genes
were associated with multiple probes, causing some genes to have more than one
transcript abundance profile. The A. thaliana core gene, RVES, was one such gene.
Having two transcript abundance profiles for RVES resulted in inaccurate performance
metrics. To remedy this issue, we applied a filtering step to the S. cerevisiae mircoarray
dataset and both A. thaliana datasets after quantifying dynamic features using the
methods in Table (Il For genes with multiple abundance profiles, we kept the profile
with the highest average abundance, resulting in the elimination of 96 and 326 profiles

from the S. cerevisiae mircoarray dataset and both A. thaliana datasets, respectively.
All time series data can be found in [Dataset S1l

Curation of Core Regulatory Elements

In order to evaluate the ability of each method given in Table [1] to identify core TFs
driving a periodic program of gene expression, we consider data derived from
well-studied organisms for which there is significant experimental evidence of gene
function. Core cell-cycle TFs in yeast are described as genes functioning in an
autoregulatory transcriptional network that robustly maintains a large program of
periodic gene expression [4H6L(8]. A list of yeast core cell-cycle TFs based on this
definition was compiled in [16] for evaluating the transcriptonal oscillator underlying the
yeast cell cycle. Therefore, the core TF list defined in [16] was used in this study as the
ground truth for S. cerevisiae . Similarly, core circadian clock TFs are
described as genes functioning in an autoregulatory transcriptional feedback loop,
maintaining circadian-like transcript abundances under constant light or dark conditions
and are necessary components for generation and regulation of circadian

rhythms [1,[17,[18]. The literature evidence supporting our labeling of plant and
mammalian genes as core are listed in Although the core networks are
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known to include non-TF regulatory elements that control functional activity, such as
kinases and ubiquitin ligases [1}/18}19], we limit our definition of core to TFs since these
are more reliably annotated in the genomes we consider. This ensures our conclusions
are conservative by not unfairly inflating the core list with known core
post-transcriptional modifiers while not simultaneously including all non-core members
of these gene categories.

Curation of Transcription Factors

In this study, we define a TF as a gene that has the ability for sequence-specific DNA
binding alone or in a complex and is capable of activating and/or repressing gene
expression. This definition excludes genes that are also known to affect gene expression,
such as chromatin-related genes like chromatin remodeling factors, histone
demethylases, and histone acetyltransferases. To ensure the lists of TFs are consistent
across strains, we used curated TF databases that use the given TF definition. In
particular, TFs used in this study were retrieved from Animal TF
Database 3.0 [20], Plant TF Database 4.0 [21], and YEASTRACT |22] for M. musculus,
A. thaliana, and S. cerevisiae, respectively. Each species list of TFs was inspected for
presence of the respective species core regulatory elements. Upon inspection of the A.
thaliana TF list, it was discovered that the core regulatory elements from the
pseudo-response regulator (PRR) family were not present. Therefore, we added PRRS,
PRR7, PRRY, and PRR1 (TOC1) to A. thaliana list of TFs, which are known as core
regulatory elements of the plant circadian clock [23H25].

Results and Discussion

Understanding the function of GRNs requires a specification of the control variables and
their interactions. Accurate inferences have generally required substantial genetic
perturbation and physical localization studies and thus has been confined to
experimentally tractable model systems. However, previous work has indicated that
interactions between GRN nodes can be inferred directly from transcriptome dynamics
data [16]. Here we investigated whether the list of core nodes could also be identified
from time series transcriptomics. We determined that quantifiable features from
time-series gene expression measurements can be used to identify
experimentally-inferred core nodes from model systems across taxa (yeast cell cycle,
mouse circadian cycle, plant circadian cycle).

We consider two quantifiable characteristics of dynamic transcript abundance
profiles, measured in multiple ways, and assess the capacity of each to differentiate core
from non-core regulatory elements. Because the dynamic phenotypes of interest are
rhythmic, e.g. sleep-wake cycles, cell division, etc., it is natural to ask to what extent,
relative to all genes, will the core elements driving these processes be endowed with
periodicity that matches the observed cycling at the level of their transcript abundance?
Moreover, since the core elements are by definition those TFs governing the dynamics of
gene expression, to what extent will the strength of the regulatory signal be reflected in
the dynamics of transcript abundance?

Dynamic transcript abundance features identify regulatory
elements in core networks.

We first examined the list of dynamic features, used both individually and in various
combinations (see Table [I)) to distinguish core TFs from among all TFs. To provide a
unified measure of performance across datasets we considered the AP of each metric’s
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ranking of transcripts. When restricting to TF's, using both periodicity and regulation
strength features together yields significantly higher AP scores than the baseline for
each of the six datasets examined (Fig. ) Even using just one of the two types of
dynamic features, we see remarkable improvement over baseline, although generally
lower AP scores, than the combined metrics, across all six datasets (Fig. ) These
results are significant since the datasets considered in this study represent organisms
from three different kingdoms, undergoing two ostensibly mechanistically distinct
periodic dynamic processes. The complete set of metrics scoring all genes in all datasets
are available in and the complete precision-recall curves for all datasets and
all metrics are available in Figs.

A Combined Metrics B Individual Metrics
0.7 o q
Method Method
B PerReg W JTK Per p-val
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Fig 2. Identifying Core Genes Among Transcription Factors. Average
precision of classifiers identifying core from non-core TFs among all TFs by combined
metrics (A) and individual metrics (B) (Table [1]) as well as the baseline average
precision of a random classifier, for each dataset (Table [2]).

From the viewpoint of an experimentalist interested in understanding the entirety of
a core network, it is encouraging to observe the enrichment of the top 25 TFs with core
genes. Among the top 25 TFs ranked by the measure DLXJTK, 13 (12) of the possible
17 S. cerevisiae core genes are identified using the microarray (RNASeq) data. Similarly,
10 (4) core M. musculus genes from the possible list of 15 (14) core genes, are among
the top 25 transcription factors as ranked by DLxJTK using microarray (RNASeq)
data. Finally, A. thaliana LDHC and LL_LDHC datasets contain 4 and 5 core genes,
respectively, from among the 11 possible core, in the top 25. Perhaps even more
amazingly, 9 of the top 10 M. musculus TFs and 6 of the top 10 S. cerevisiae TFs are
core when the high temporal resolution microarray datasets are ranked using DLxJTK.
These results are given in Table

We emphasize the skill of dynamic gene expression features to identify core TFs in
Fig. [3] which gives the distribution of core TF DLxJTK ranks among all TFs for S.
cerevisiae (see also Tab. and heatmaps of microarray gene expression grouped by
DLxJTK rankings. The top 25 genes are clearly seen to robustly oscillate at
approximately the specified period (94 min) and among these are 13 of the 17 core
genes.

The recall of core genes by DLxJTK among the top 25 TFs is as much as 76.5% of
the core yeast cell-cycle transcriptional regulatory network, up to 66.67% for the mouse
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Table 3. Top 25 transcription factors ranked by DLxJTK metric.

Rank S. cerevisiae M. Musculus A. thaliana

an MA RNA MA RNA LDHC LL_LDHC

1 SWIs* TOS4* | ARNTL* DBP* COL1 STH

2 YOX1*  HST4 DBP* NPAS2* HB-12 AT1G26790

3 HST3 HST3 NPAS2* CDX}4, TGA3 CCA1*
4 ASF1  SWI5s* NR1D1* ARNTL* RVE1 BBX18

5 ACE2* YOX1* NR1D2* EGR1 MYBL2 COL1

6 RTT107 RTT107 | BHLHE41* GM14401 LHY* CDF1

7 STB1*  WTM2 CLOCK* GM14305 Cco COL2

8 | HCM1* ASH1* NFIL3* POU4F1 PIL6 CDF3

9 RME!1  FKH1* | RFXANK EN2 AT2G28200 AT2G28200
10 | FKH1*  ASF1 RORC* DMRTA2 COL2 RVE1
11 | PLM2* ACE2* TEF* LHX1 CCA1* LHY*
12 | SWI4*  POGI CREM GM20422 PRR7* COL5
13 | NDD1* SWI4* EGR1 GM14444 HYH PIF}

14 | ASH1* RME1 PPARD OVOL2 BBX18 PIL6
15 | YHP1* PLM2* ZBTB21 GM4969 RVES* BBX16
16 TOS4*  RLF2 NFIC HOXCY PRE1 LUX*
17 EDS1 NDD1* | AHCTF1 FOX06 BZS1 PRR7*
18 RIF1  HCM1* ATF5 MESP1 EPR1 CDF2
19 SIP4 GAT1 LITAF AI854703 CDF3 LZF1
20 | FHL1*  TECI KLF10 NR1D1* RVE2 HB-12
21 NUT!  STB1* KLF13 BNC2 AT1G26790 RVES8*
22 ASG1  YHP1* ESR1 NPAS3 BBX16 ATCTH
23 TBF1 RPI1 STAT5B  2210418010RIK COLY MYBL2
24 SNF5  MTHI1 SREBF1 HOXC6 LZF1 ARF11
25 WTM2  RIFI MAFB TBX1 ARF10 RL6

Recall | 76.5% 70.6% |  66.7% 28.6% | 36.4% 45.5%

LL_LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature; MA:
Microarray; RNA: RNAseq

* Core transcription factors in [Dataset S2

circadian clock with well-sampled data, and 45.45% for the core plant circadian network
under circadian conditions. Meaning, by using only the dynamics of transcript
abundance and a list of TFs, an experimentalist would identify three-quarters of the
known core cell-cycle TFs in yeast, two-thirds of the core circadian TFs in mice, and
almost half of the core circadian TF's in plants from among the top 25 TFs when ranked
using a combined measure of periodicity and regulation strength. Other combined
measures perform skillfully when examining the top 25 ranked TF's, although not as
consistently well across all the datasets as DLxJTK (Tables[S2| and [S3).

The ability of dynamic characteristics to identify core TFs from among all TFs may
depend on the data collection modality and will certainly depend on the number of time
points per cycle collected. This is made apparent by comparing the S. cerevisiae
RNASeq and microarray datasets and, separately, M. musculus RNASeq and
microarray datasets. We expect that the reduced DLxJTK classifier performance is
largely due to the sensitivity of the JTK algorithm to the number of timepoints per
cycle [26], although we cannot conclusively rule out the impact of the data type.

At the same time, quantitative measures of rhythmicity in transcript abundance and

strength of regulation both independently improve the skill of a classifier above random.

Thus, the functional regulatory elements driving very different biological processes
exhibit common characteristics in the dynamics of their transcript expression.
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Fig 3. Transcript abundance dynamics across DLxJTK rankings of
transcription factors. (A) Distribution of DLxJTK ranks of core S. cerevisiae TFs
among all TFs and time series expression of two core TFs: NDD1, which is highly
ranked (rank 13), and MCM1, which is not highly ranked (rank 266). NDD1 and MCM1
act in a complex to regulate downstream targets. (B) Heatmaps of standardized gene
expression profiles of the genes ranked (left) 1-25, (middle) 76-100, and (right) 276-300
by DLxJTK. Within each subpanel, genes are ranked by peak expression.

Dynamic transcript abundance characteristics remain adept at
identifying core regulatory elements, even in the absence of
prior knowledge of transcription factors.

The organisms chosen for this study are model organisms in mammalian, plant, and
fungi research which have been extensively studied. Thus, for these organisms, there are
reliable annotations of gene function and comprehensive lists of TFs. If studying a
non-model organism, evidence of gene function may be much weaker, for example
relying on sequence-based inferences. We ask, to what extent do the dynamic
characteristics of transcript abundance that distinguish core TFs from non-core TF's
continue to distinguish core from all genes? In this way, we assess the capacity for gene
expression dynamics to reduce hypothesis space in the absence of any prior biological
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knowledge. Note, this is an extremely lofty goal given the minuscule fraction of these
genomes occupied by core transcriptional regulator elements.

For each dataset in Table [2] we ranked all transcript abundance profiles using the
methods in Table[I[] We have chosen to be very conservative in our labelling of core
genes: only 17 out of nearly 6000 transcripts in S. cerevisiae, 14 out of close to 20,000
genes in M. Musculus, and 11 of over 22,000 genes in A. thaliana. As expected, AP
scores are greatly reduced across all datasets. However, the APs remain significantly
above baseline in most cases (Fig. [4]). Examining the top 25 genes ranked by the
measure DLxJTK, at least one core TF remained in the top 25 for all datasets, except
the A. thaliana LDHC microarray dataset . Remarkably, six of the 15 core
mouse circadian TFs (recall of 40%) are identified among the top 25 genes ranked by
DLxJTK in the M. Musculus liver microarray dataset.

A Combined Metrics B Individual Metrics
0.30 o q
Method Method
N PerReg JTK Per p-val
N DLxJTK DL Reg p-val
0.25 1 . DL B BN DL Per p-val
I baseline B DL Reg Score
B DL Per Score
N baseline

Average Precision

0.0005

0.0005
0.0008
0.0008
0.0029
0.0029

w .
Fig 4. Identifying Core Genes Among All Genes. Average precision of
classifiers identifying core from non-core TFs among all genes by combined metrics and
individual metrics (Table [1]) as well as the baseline average precision of a random
classifier, for each dataset (Table .

The dynamic transcript abundance characteristics of core
regulatory elements are not overrepresented among
transcription factors.

It is certainly possible that the dynamic features under investigation are characteristic
of TFs themselves, and thus our filtering on TFs causes us to already select for these
features. To investigate the possibility that the dynamic metrics in this study are
overrepresented in TFs and not just core transcriptional regulatory elements, we
assessed the ability of the dynamic characteristics of transcript abundance to identify
TF's from among all transcripts. In line with our hypothesis, all methods listed in
Table [1| performed poorly as each method’s AP dropped to near or below the AP
baseline (Fig. . Said another way, TFs within these organisms are effectively
randomly distributed in the rankings of all genes by periodicity and variability of
transcript abundance. The inability of the methods to identity TFs in each dataset
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demonstrates that these dynamic features are not characteristic of TFs in general,

although they are indicative of core regulatory elements.

A.thaliana (LDHC) MA

A.thaliana (LL_LDHC) MA

M. musculus RNA
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Fig 5. Identifying Transcription Factors Among All Genes. Average precision
of classifiers identifying TFs from non-TFs among all genes by combined metrics and
individual metrics (Table [1)) as well as the baseline average precision of a random

classifier, for each dataset (Table .

Statistical significance measures are not required to skillfully

rank core genes.

A major concern with the DL methods for determining significance is that they require
the generation of empirical null distributions derived from the periodicity and regulator

metrics of many synthetic expression profiles generated by repeated sampling of the

experimental data. As the number of genes and/or the number of time points increases,

the background distributions of potential random synthetic abundance profiles grows
rapidly. As a result, in general, many more synthetic profiles must be generated and
characterized to improve estimates of these p-values. If too few random curves are
analyzed, there may be ambiguity in the final rankings due to repeated p-values caused

by the resulting coarse discretization of possible estimates. Additionally, the choice of a
background distribution has a large impact on statistical significance and gives poor
results when assumptions of the background distribution do not match the reality of the
data (see the discussion of the malaria data set in [28]).

Is it necessary to compute a significance value in order to skillfully rank core TFs?

We address this question by ranking genes according to DL’s “naive” measurements for
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periodicity and regulation, individually (DL Per Score and DL Reg Score in Table
respectively) and in combination (PerReg). These naive measurements are calculated
quickly with no permutations or random sampling required, and thus greatly reduce the
computational time required to rank genes. When used individually, the naive DL
measurements perform equally well or better than the empirical p-values at identifying
core, as measured by AP (Fig. ) Indeed, there is a striking difference across all
datasets in the ranking of core genes using DL’s naive periodicity score rather than its
associated empirical p-value, which is particularly expensive to compute for large gene
sets.

When combined, the naive measures also skillfully rank genes well above baseline
across all datasets. In fact, there is a notable increase in AP over the other combined
metrics, which are derived from p-values, for the A. thaliana data in both conditions
(Fig. ) We expect that this, along with the generally lower performance of these
metrics on A. thaliana data compared to the other datasets, may be due to the fact
that the A. thaliana transcript abundance profiles reflect gene expression in multiple
tissue types, making it difficult to collect accurate empirical p-values.

Much like DL xJTK, PerReg shows skillful recall at identifying core genes among the
top 25 TFs (Table [S3)), identifying at least 4 and at most 10 core TFs among the top 25,
across all datasets considered in this study.

Several high ranking non-core genes display regulatory
relationships with core genes.

The lists of core TFs used in this study are conservative since 1) a lack of strong
evidence supporting a gene as a core regulator is not proof that it is not core and 2)
many functional regulators are also known to be transcriptional co-regulators and
post-transcriptional modifiers; we labelled the latter as non-core to ensure fair
assessment of the performance of the ranking methods. Thus, our binary labels may
contain false negatives (core labeled as non-core) due to a lack of strong experimental
evidence, and certainly contain false negatives due to our restriction to TFs. We ask,
what are the identities of the most highly ranked non-core TF's, and does there exist any
evidence that they target the activity of and/or are targeted by our core TFs?

Utilizing the curated list of regulatory relationships in YEASTRACT [22] and
PlantTFDB [21], as well as a literature search for M. musculus TF interactions, we
indeed observe evidence that several yeast, plant, and mouse genes among the top 25
TF's ranked by the measure DLxJTK target core and/or are targeted by core (Table .
For example, we find that among the top 25 S. cerevisiae TFs ranked by DLxJTK in
either MA or RNASeq datasets, that 40% (9/23) of the genes have existing evidence of
both regulating and being regulated by core. This observation suggests that genes that
appear highly ranked by our combined measures, but were not labeled as core due to a
lack of existing evidence, may in fact be core nodes.

Within the top 25 of all genes, as ranked by DLxJTK, we observe a number of
regulatory elements that are known to be essential to produce the given periodic
program of gene expression, but which are not strictly TFs, and therefore do not qualify
in our definition as a core gene. Examples include the mouse transcriptional
co-regulators Period 3 (PER3) [37] and Cryptochrome 1 (CRY1) 38| and the plant
post-transcriptional gene Gigantea (GI) |39] (Table , which are known or proposed to
be transcriptional co-regulators and post-transcriptional elements. This supports our
conclusion that core elements, even beyond the TFs, can be identified by quantifiable
features in their transcript abundance dynamics. Improvement in the annotation of
non-TF regulatory elements is needed before we can reliably quantify the extent to
which these dynamic characteristics are exhibited by all nodes of these networks at the
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Table 4. Interaction relationships® between core TFs and non-core that appear in the
top 25 TFs as ranked by DLxJTK?.

S. cerevisiae M. musculus A. thaliana

Gene  Targeted by Targets Gene Targeted by Targets Gene  Targeted by Targets
ASG1 FHL1 NDD1 | EGR1 ARNTL [29] ARNTL (30| EPR1 RVE4 PRR5
EDS1 FHL1 TOS4 | KLF10 ARNTL |31 ARNTL (32| PIF} CCA1l LHY
GAT1 ACE2 ACE2 NFIC HLF [33] PIL6 CCAl LHY
MTH1 FHL1 STB1 ATF5 CLOCK |[34] ARF11 CHE
RME1 ACE2 ASH1 ESR1  CLOCK |35] co CCA1

RPI1 FHL1 NDD1 | SREBF1 BHLHE/0/41 36| | COL1 CHE

SIP/ FHL1 STB1 COL9 CHE

TEC1 SWI4 ASH1 MYBL2 CHE
WTM2 ACE2 STB1 CDF2 LHY
ASF1 SWI4 RVE1 PRR5
HST3 FKH1 RVE2 CCA1
HSTY MBP1
POG1 MCM1

RLF2 MBP1

RTT107 MCM1
SNF5 ACE2
TBF1 FHL1

* S. cerevisiae and A. thaliana interactions determined respectively by database searches of |22]

and |21] and represent a range of direct and indirect evidence types, including the presence of binding
motifs in regulatory regions and response to TF over-expression. M. musculus interactions determined
by evidence gathered in the associated citation.

T M. musculus non-core TFs drawn from MA dataset only, while non-core S. cerevisiae and A. thaliana
TFs were drawn from the unions of each pair of analyzed datasets.

level of transcript abundance. 308
External periodic signals do not significantly alter the skill of 300
transcript abundance dynamics at identifying core genes. 310
Implicit in the definitions of the core transcriptional regulatory networks considered in  su
this study is that they are free-running and can support rhythmic oscillations in the 312
absence of external periodic stimuli due to their mutual regulatory interactions with 313
other core elements. Is necessary to collect time series transcriptomics in the absence of s
external circadian stimuli to skillfully identify core regulatory elements? 315

To address this question, we compared the skill of dynamic expression features to 316
identify the core TFs for A. thaliana in 1) periodically fluctuating light and 317
temperature (diurnal) conditions (LDHC) and 2) constant light, (circadian) conditions s
(LL_LDHC). For the details on the precise experimental setup see [14]. 310

One might expect that the transcript dynamics of diurnal non-core genes—those 320

that are strictly driven by periodic light-dark and/or temperature cycles—would reduce s
the capacity of dynamic gene expression features to distinguish core regulatory elements. 3
We find that the signal of core genes is not degraded in the presence of external periodic s

stimuli in these experiments, since all combined quantitative measures show nearly 304
identical skill at identifying core genes across both conditions (Fig. ) Even more 325
striking is the consistency in the individual ranks of core genes across diurnal and 26
circadian conditions, as shown for DLxJTK in Table 327
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Conclusion

Elucidating the underlying GRNs driving dynamic biological processes, such as
cell-division and sleep-wake cycles, is crucial if we are to leverage existing control
mechanisms for synthetic biology applications, understand the evolution of biological
networks, and inform experiments to discover new drug targets. However,
experimentally identifying the core regulatory elements of these gene networks can be
costly, time consuming and daunting, even for the simplest organisms, due to the large
hypothesis space. We have shown that many core transcriptional regulators, appearing
in organisms separated by millions of years of evolution, share common features in their
transcript abundance dynamics. We demonstrated the use of several metrics that
quantify and combine these dynamic features. The outcome is a substantial reduction in
hypothesis space, a prioritization of gene targets for experimental validation, and a
facilitation of network modeling via the identification of control variables.

High degrees of periodicity and strong regulation signals appear to be characteristic
features of many core TFs involved in generating periodic biological processes. However,
not all known core regulatory TFs strongly exhibit the dynamic features quantified here
at the level of their transcript abundance. For instance, the abundance profile of the
core S. cerevisiae TF NDD1 is highly periodic with a precise match to cell-cycle period
and exhibits large dynamic range, but MCM1 does not show convincing oscillations at
the cell-cycle period (Fig. [3]A). MCM1 is the only core TF to not rank in the top 70
TF's in at least one of the two S. cerevisiae datasets using DLxJTK (Table .
However, MCM1 acts in complex with other rhythmically-expressed genes like
NDD1 [40,41], so it can still be part of a highly periodic TF complex without itself
exhibiting highly periodic signatures in transcript abundance. It is enticing to imagine
there may be other features captured in the gene or protein expression profiles, as well
as features not related to gene expression, such as sequence-based and protein
interaction features that could be used to more accurately capture all core genes,
including those identified in TF complexes.

It is known in the circadian field that several core clock genes have tissue-specific
periodic properties in mice [13]. Thus, we expect not all core genes will rise to the top
of our rankings in every tissue. For example, within the three retinoid-related orphan
receptors (RORs) TFs, RORA, RORB, and RORC, only RORC is known to display
periodic gene expression in mouse liver [42]. Indeed, only RORC was ranked in the top
25 TFs ranked by DLxJTK (Table [3) in the mouse liver microarray dataset. Another
example is the mouse core clock gene ARNTL2, which is not ranked highly in the mouse
liver datasets. Most studies suggest ARNTL2 has brain-specific circadian expression
with lower levels of expression in the liver in mammals [43H45]. There is also growing
evidence for genes to exhibit tissue-specific dynamics in plants [46].

Our ability to identify plant core genes appears generally lower than the other
organisms we considered. This may be due to the fact that samples were taken from the
whole leaf and thus contained a mixture of multiple tissue types such as mesophyll,
epidermis, and vasculature [14]. The abundance and periodicity of any particular
transcript might therefore appear muted as genes are likely expressed differentially
across tissues. Consistent with this hypothesis, several studies have shown that
tissue-specific clocks in plants can be asymmetrically coupled [47], have different period
lengths 48], or have different levels of gene expression for core components [49}/50].
Naturally it is more difficult to identify a core component whose observed dynamics is
either a convolution of multiple dissimilar abundance profiles derived from multiple
tissues or has specificity to an under-represented tissue in a mixture of tissue types.
Interestingly, the dominant tissue type in whole leaf samples is mesophyll, and
morning-expressed clock genes (CCA1, PRRs, and LHY') are highly expressed in the
mesophyll [47,/51]. These morning-expressed genes are mostly the only plant core genes
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ranked highly in this study (Table .

Broadly speaking, our findings herein suggest that even naive measures of periodicity
and regulatory strength can be used to skillfully rank genes. We conclude that
classifiers are likely dependent on the dynamic characteristics of the the transcript
abundance profiles, and perhaps less so than on the particular quantification of these
characteristics. Thus, broad recommendations for thresholds that reliably identify core
nodes are currently not possible. That said, with the availability of proper experimental
controls across organism, platform, sampling density, etc., it might be possible to
compare the various metrics to make a more prescriptive recommendation of which
particular method to use for a given dataset.

The use of naive metrics rather than empirical p-values does not suffer from
ambiguous rankings caused by insufficient sampling of the null distribution, as may be
the case with DL’s method of measuring significance. It is possible to reduce the
ambiguity of a ranking by increasing the sampling of the null distribution at the cost of
increased compute time. The disambiguation of empirical regulator p-values computed
by the DL metric through increased sampling is visualized in Fig. Similarly,
combining several p-values derived from different dynamic characteristics into combined

metrics can eliminate ambiguous rankings that may be present in one of these features.

We have demonstrated the importance of reliable genome annotation of TF genes,
but many organisms of interest currently lack comprehensive gene annotations. Thus it
is desirable to have methods that can leverage high-throughput technologies to provide
evidence of gene function. Additional evidence such as identifying DNA-binding
domains and/or orthology to known TFs in other organisms are two such methods that
could be used to provide putative TF lists for poorly-annotated genomes.

Here we demonstrate that dynamic features of transcriptomes appear to be
conserved across kingdoms and networks that appear to serve disparate functions such
as cell-cycle or circadian clocks. It is possible that the conservation of these features
results from a fundamental property of GRNs, where a transcriptional signal is
developed within a core set of nodes and that the signal degrades as it is propagated
through effector nodes that control downstream gene expression. Alternatively, the
conservation of features could reflect an evolutionary conservation of network topologies
that produce rhythmic behaviors during circadian and cell cycles.

Supporting Information

Fig. S1. Precision-recall curves of classifiers identifying core from non-core genes in
the S. cerevisiae microarray dataset.

Fig. S2. Precision-recall curves of classifiers identifying core from non-core genes in
the S. cerevisiae RNASeq dataset.

Fig. S3. Precision-recall curves of classifiers identifying core from non-core genes in
the M. Musculus microarray dataset.

Fig. S4. Precision-recall curves of classifiers identifying core from non-core genes in
the M. Musculus RNASeq dataset.

Fig. S5. Precision-recall curves of classifiers identifying core from non-core genes in
the A. thaliana microarray, diurnal condition dataset.
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Fig. S6. Precision-recall curves of classifiers identifying core from non-core genes in
the A. thaliana microarray, circadian condition dataset.

Fig. S7. Plot of the number of unique DL Reg p-values as a function of the number
of permutations used in the calculation.

Table Ranks of all core genes among transcription factors using DLxJTK score.
Table Top 25 transcription factors, ranked by DL score.
Table Top 25 transcription factors, ranked by PerReg score.

Dataset S1 Gene Expression Data. An EXCEL file containing gene expression
profiles for each dataset used in this study.

Dataset S2 Core Genes. An EXCEL file containing lists of core genes for all
organisms.

Dataset S3 Transcription Factors. An EXCEL file containing lists of
transcription factors for all organisms.

Dataset S4 Gene Rankings. An EXCEL file containing the rankings of all genes
by each metric for all datasets.

Code and Data Availability

All data and code used to process and analyze the data, and generate figures are
provided in a public repository at [52].
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