

1 **Obtaining deeper insights into microbiome diversity using a simple**
2 **method to block host and non-targets in amplicon sequencing.**

3

4 Teresa Mayer¹, Alfredo Mari^{2^}, Juliana Almario^{2#}, Mariana Murillo-Roos¹,
5 Muhammad Abdullah¹, Nina Dombrowski^{3\$}, Stephane Hacquard³, Eric M.
6 Kemen², and Matthew T. Agler^{1*}

7

8 ¹ Plant Microbrosis Lab, Department of Microbiology, Friedrich-Schiller
9 University, Jena, Germany

10 ² Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen,
11 Tübingen, Germany

12 ³ Max-Planck Institute for Plant Breeding Research, Department of Plant-
13 Microbe Interactions, Cologne, Germany

14 ^ Current address: University of Basel, Departement Biomedizin, Hebelstrasse
15 20, 4031 Basel, Switzerland

16 # Current address: Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA,
17 VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France

18 \$ Current address: Royal Netherlands Institute for Sea Research (NIOZ),
19 Department of Marine Microbiology and Biogeochemistry, PO Box 59, NL-1790
20 AB, Den Burg, The Netherlands

21

22 *** Corresponding author:**

23 Matthew T. Agler
24 Department of Microbiology, Plant Microbrosis Lab
25 Friedrich Schiller University of Jena
26 Neugasse 23
27 07743 Jena, Germany
28 E-mail: matthew.agler@uni-jena.de
29 Tel: +49 (0)3641 9 49980

30

31

32 **Abstract**

33 Microbiome profiling is revolutionizing our understanding of biological
34 mechanisms such as metaorganismal (host+microbiome) assembly, functions
35 and adaptation. Amplicon sequencing of multiple conserved, phylogenetically
36 informative loci is an instrumental tool for characterization of the highly diverse
37 microbiomes of natural systems. Investigations in many study systems are
38 hindered by loss of essential sequencing depth due to amplification of non-
39 target DNA from hosts or overabundant microorganisms. This issue requires
40 urgent attention to address ecologically relevant problems using high
41 throughput, high resolution microbial profiling. Here, we introduce a simple, low
42 cost and highly flexible method using standard oligonucleotides (“blocking
43 oligos”) to block amplification of non-targets and an R package to aid in their
44 design. They can be dropped into practically any two-step amplicon sequencing
45 library preparation pipeline. We apply them in leaves, a system presenting
46 exceptional challenges with host and non-target microbial amplification.
47 Blocking oligos designed for use in eight target loci reduce undesirable
48 amplification of host and non-target microbial DNA by up to 90%. In addition,
49 16S and 18S “universal” plant blocking oligos efficiently block most plant hosts,
50 leading to increased microbial alpha diversity discovery without biasing beta
51 diversity measurements. By blocking only chloroplast 16S amplification, we
52 show that blocking oligos do not compromise quantitative microbial load
53 information inherent to plant-associated amplicon sequencing data. Using
54 these tools, we generated a near-complete survey of the *Arabidopsis thaliana*
55 leaf microbiome based on diversity data from eight loci and discuss
56 complementarity of commonly used amplicon sequencing regions for
57 describing leaf microbiota. The blocking oligo approach has potential to make
58 new questions in a variety of study systems more tractable by making amplicon
59 sequencing more targeted, leading to deeper, systems-based insights into
60 microbial discovery.

61 **Keywords:**

62 holobiont, microbiome, amplicon sequencing, microbial diversity, non-target
63 amplification, bacteria, fungi, oomycete, protist

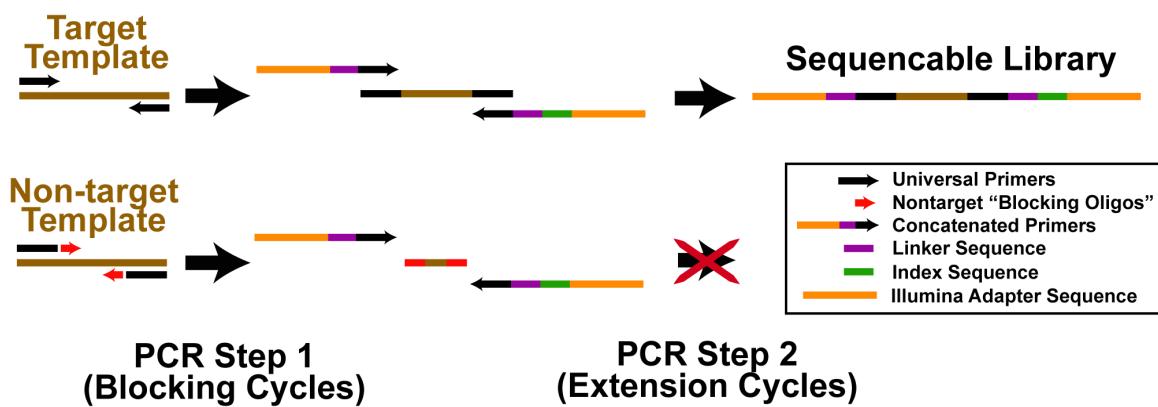
64

65 **Introduction**

66 A revolution in biology is currently underway as our understanding of various
67 systems is brought into the context of the structures and roles of symbiotic
68 microbial consortia. This transformation is the result of increasing research to
69 characterize the microbiota associated with various abiotic or biotic systems.
70 For example, important roles of microbial communities have been revealed in
71 systems as diverse as biotechnological transformations¹ and plant and animal
72 health and fitness²⁻⁵. To do so, many studies rely on microbiota profiles
73 generated by amplicon sequencing of phylogenetically informative genomic
74 loci. These profiles are then linked to specific experimental parameters, host
75 phenotypes or performance measurements⁶.

76 Microbiomes often include species from all kingdoms of life. These cohabiting
77 members interact with the environment and influence one another via direct
78 associations⁷ or indirectly via a host⁸. To resolve these interactions and model
79 microbial community dynamics, robust systems approaches are needed⁹ with
80 integration of diversity beyond bacteria¹⁰. Such approaches have revealed, for
81 example, keystone species that participate heavily in inter-kingdom interactions
82 in phyllosphere microbial communities¹¹ and in ocean samples¹² and which
83 thereby underlie microbial community structures. Whatever the system, robust
84 approaches to pinpoint important microbes in community surveys require broad
85 and deep coverage of diversity in a high-throughput manner. Additionally,
86 quantitative abundance data is needed to accurately infer inter-microbial
87 interactions.

88 Researchers use many technologies and pipelines to generate and sequence
89 amplicon libraries. A major problem affecting broad-diversity amplicon
90 sequencing pipelines is that “universal” amplification primers amplify DNA from
91 non-target or overabundant organisms (e.g., hosts^{13,14}, resident sporulating
92 microorganisms¹¹ or endosymbionts¹⁵), reducing effective sequencing depth
93 and obscuring microbial diversity. Methods commonly used to address this
94 problem include peptide nucleic acid (PNA) “clamps”¹⁶ or oligonucleotides
95 modified with a C3 spacer¹⁷, which both arrest amplification of non-target
96 amplicons. These, however, can be costly to design and implement, especially
97 when the needs of researchers are constantly changing. Additionally, non-


98 target (e.g., host) abundance information can provide quantitative insights into
99 microbial load¹⁸, and none of these methods are designed to retain this quality.
100 We employed amplicon sequencing to generate microbial diversity data from
101 multiple loci from 16S and 18S rRNA genes (bacteria and eukaryotes,
102 respectively) as well as the internal transcribed spacer (ITS) of fungi and
103 oomycetes. We target microbial diversity in plant leaves, a challenging system
104 where amplification of non-target and occasionally sporulating microbiota is
105 extensive, resulting in large amounts of wasted data. To address this major
106 barrier, we introduce a new method that uses a pair of standard
107 oligonucleotides, making it cost-efficient and flexible. Additionally, they can be
108 dropped into almost any library preparation pipeline. Indeed, this method, which
109 we first applied in 2016¹¹, has since been used successfully in multiple
110 studies^{19,20} but its applicability and accuracy has not yet been broadly tested.
111 Here, we extend the approach to 8 loci in the 16S, 18S, ITS1 and ITS2 regions
112 and demonstrate it is effective in blocking most host plant species and a non-
113 target microorganism without biasing diversity results. We also show that in
114 plants, increasing read depth and diversity discovery with blocking oligos is
115 compatible with deriving quantitative bacterial load information from 16S data.
116 This simple solution enables rapid and nearly complete characterization of
117 hyperdiverse microbiomes in difficult systems and increases diversity
118 discovery, broadening the applicability and impact of amplicon sequencing
119 experiments. Finally, we provide an “R” package with three simple functions to
120 rapidly and easily design oligos to block amplification of any specific DNA
121 template.

122

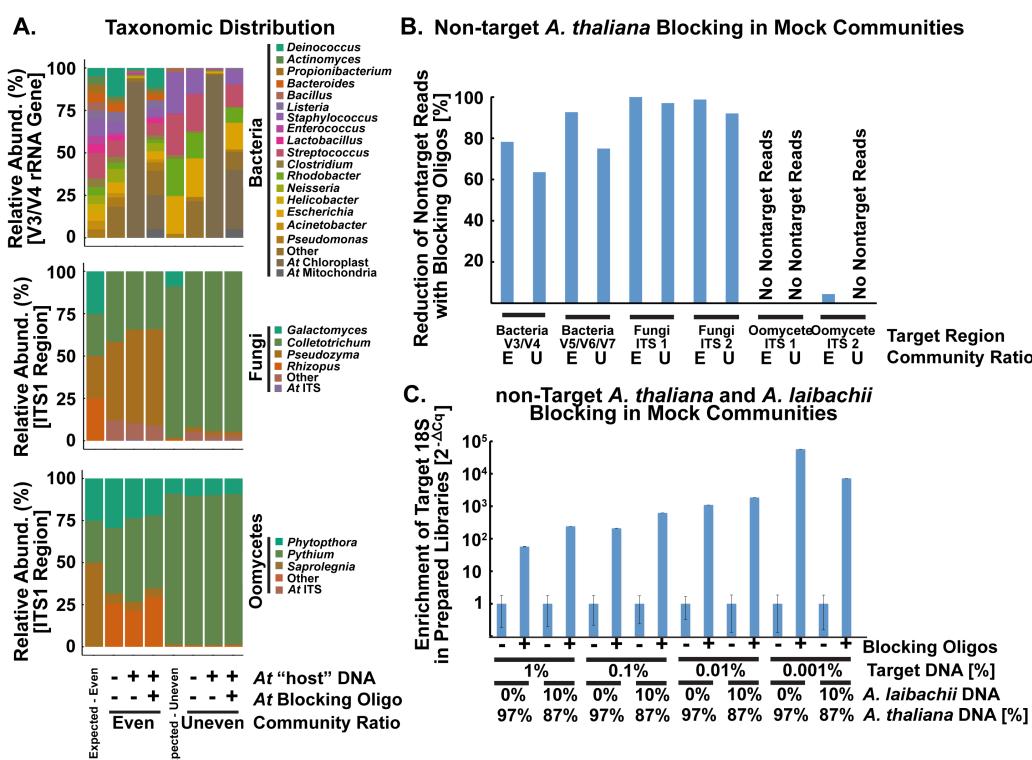
123 Results

124 **Blocking oligos reduce non-target amplification by “universal” primers**

125 Host or other non-target amplicons are not useful to assess microbial diversity
126 and are therefore often discarded, wasting sequencing depth. Therefore, we
127 developed “blocking oligos” to reduce amplification of non-target DNA. Blocking
128 oligos are standard oligonucleotides whose binding site is nested inside the
129 binding site of “universal” primers for a locus of interest and are highly specific
130 for a non-target organism (**Fig. 1** and **Fig. S1**). During the first PCR step
131 (blocking cycles), their nested binding location physically blocks the non-target
132 elongation by the polymerase at the “universal” primer site, resulting in only
133 short non-target amplicons. In the second PCR step (extension cycles),
134 concatenated primers are used to add indices and Illumina sequencing
135 adapters. Since the concatenated primer binding site is not present on non-
136 target products, they are not amplified, and the sequencing library becomes
137 enriched with target amplicons (**Fig. 1**). They can be dropped into the first step
138 of any standard two-step amplicon library preparation pipeline.

Figure 1. A strategy to reduce non-target amplification in amplicon sequencing pipelines. A 2-step amplification approach is used in which universal primers first amplify genomic templates, then indices and adapters are added in a second step. To prevent amplification of non-target templates, blocking oligos complementary to non-target genomic templates are employed in the first “blocking cycles” PCR step, resulting in short amplicons that cannot be amplified with concatenated primers in the second “extension cycles” step. Without addition of Illumina adapter sequences, these PCR products are not sequenced.

139 We previously designed blocking oligos to reduce amplification of plant
140 chloroplast (16S V3-V4 rRNA), mitochondria (16S V5-V7 rRNA) and plant ITS
141 (fungal and oomycete ITS regions 1 and 2) (**Table 1**)¹¹. Here, we thoroughly
142 tested them by checking how much they reduced host amplification compared
143 to a “standard” library preparation without blocking, and whether they biased


144 beta diversity estimates. We used a mock community that simulated a host
145 associated microbiome (95% *A. thaliana* / 5% microbial genomic DNA). With
146 blocking oligos, useful read depth was largely recovered by eliminating 60 -
147 90% of nontarget contamination in bacterial 16S datasets and nearly all of the
148 small amount of contamination in fungal ITS data (**Fig 2A and 2B**). Blocking
149 oligos were slightly more effective in even (target microbes all in equal
150 abundance) than in uneven communities (target microbes in unequal
151 abundance), but much of this difference was either caused by poor taxonomic
152 annotation or universal primer bias (see **Supporting Notes**). Importantly, in all
153 three kingdoms, replicates that only differed in the use of blocking oligos were
154 very similar to the expected distribution, demonstrating that blocking oligos do
155 not change the recovered taxa distribution (shown at the genus level in **Fig 2A**,
156 **Fig S2**, **Fig S3** and at the order level in **Fig S4**). Variations of the library
157 preparation protocol had little or no effect on the results (see **Supporting Note**
158 for additional details on testing the library preparation protocol).

Target region	Non-target blocking oligo set	Library Protocol	Blocking oligo origin
Bacteria - 16S V3/V4	<i>A. thaliana</i> Chloroplast 16S V3/V4		
Bacteria – 16S V5-V7	<i>A. thaliana</i> Mitochondria 16S V5-V7		Agler et. al 2016
Oomycete ITS1/ITS2	<i>A. thaliana</i> ITS1/ITS2		
Fungi ITS1/ITS2			
Eukaryote – 18S V4/V5	<i>A. thaliana</i> 18S V4/V5 <i>Albugo</i> sp. 18S V4/V5	A	
Eukaryote – 18S V9	<i>A. thaliana</i> 18S V9 <i>Albugo</i> sp. 18S V9		This Study
Bacteria - 16S V3/V4	Universal Plant Chloroplast V3/V4		
Eukaryote – 18S V4/V5	Universal Plant 18S V4/V5	B	

Table 1: Overview of the loci and the non-target regions for which blocking oligos were designed previously and for this study. The blocking oligo approach of Agler et. al (2016) was extended here to 8 loci to characterize bacteria, fungi, oomycetes and other eukaryotic microbiota while avoiding non-target *A. thaliana* and *Albugo* sp. amplification. Libraries were prepared and sequenced with “Protocol A”, similar to Agler et. al (2016). Single sets of blocking oligos that block amplification of DNA of most plant hosts were designed for the 16S and 18S regions. An alternative protocol B was used for sequencing and library preparation. All primer sequences are available in Files S1a and S1b.

159 Sequencing 18S rRNA gene libraries in addition to ITS (**Table S1**) should
160 recover more leaf eukaryotic microbial diversity²¹. This diversity would be

161 obscured, however, by the host and occasionally by sporulating pathogens like
 162 *Albugo laibachii* that are efficiently amplified by universal 18S primers.
 163 Therefore, we designed and tested blocking oligos to overcome non-target
 164 amplification of both *A. laibachii* and *A. thaliana* in the 18S region (**Table 1**).
 165 For testing, we generated mock genomic DNA templates (**Table S2**) containing
 166 bacterial (*Bacillus* sp.), *A. thaliana*, *A. laibachii* and target (*S. cerevisiae*)
 167 genomic DNA. We then prepared 18S V4-V5 region amplicon libraries from the
 168 template samples with or without *A. thaliana* and *A. laibachii* blocking oligos in
 169 the first PCR step. Finally, we quantified the levels of target (*S. cerevisiae*)
 170 amplicons in the prepared libraries using qPCR. Indeed, blocking both non-
 171 targets increased target levels between ~57x (1% target template) and
 172 ~57,000x (0.001% target template) (**Fig 2C**), demonstrating that both host and
 173 non-target microbial taxa can be efficiently simultaneously blocked.

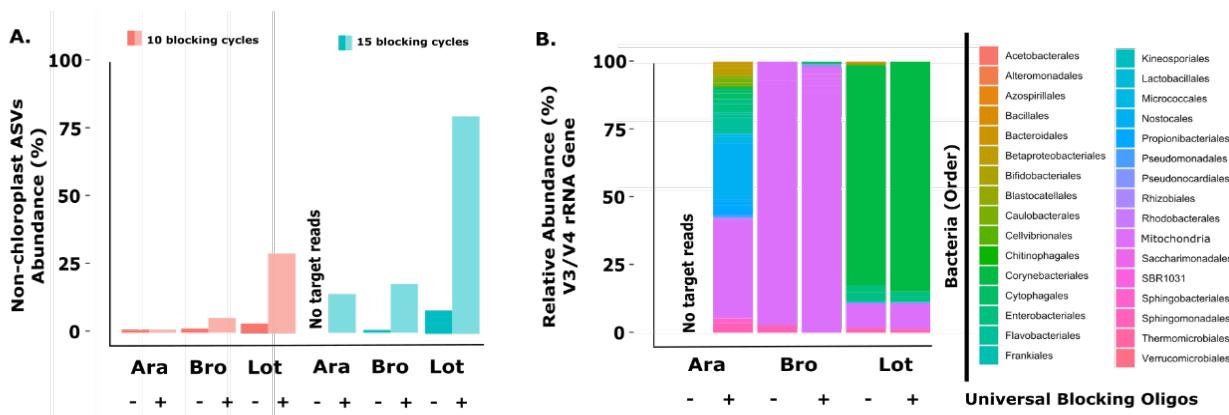


Figure 2. Reproducible and accurate characterization of mock communities of bacteria, fungi, and oomycetes by amplicon sequencing. (A) Observed taxa at the genus level in sequenced mock communities closely matched expected communities. The taxa “Other” is primarily non-target amplification from *A. thaliana* “host” DNA that was added to test blocking oligomers which prevent “host” DNA amplification. “NA” indicates a sample where sequencing depth was too low after subsampling to be included. (B) Near-complete reduction of amplification of *A. thaliana* “host” non-target plastid 16S or ITS by employing blocking oligos in preparation of mock community libraries. “E” and “U” refer to even and uneven communities, respectively. (C) Relative increase of target (*Saccharomyces* sp.) 18S V4-V5 region amplicons (qPCR $2^{-\Delta Cq}$ values relative to measurement without blocking oligomers) in mock community libraries prepared with blocking oligomers to reduce *A. thaliana* and *A. laibachii* non-target amplification.

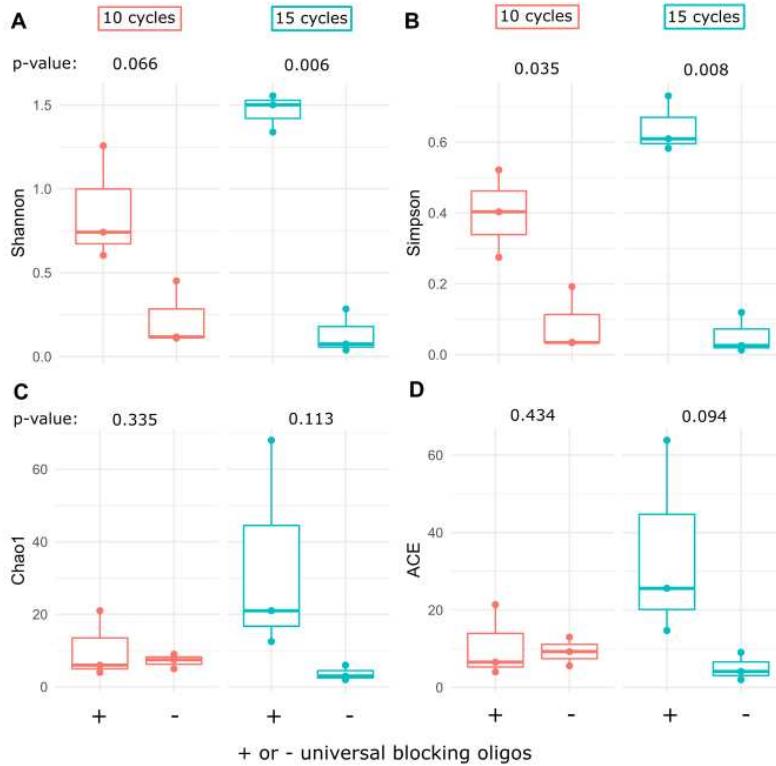
174

175 **“Universal” plant blocking oligos enable profiling of microbiota in many**
176 **host species.**

177 *A. thaliana* blocking oligos are not effective against every plant host, so users
178 would need to design and test new oligos for their purposes²². Thus, we
179 expanded to multiple hosts by designing a set of oligos to block amplification of
180 chloroplast 16S rRNA and plant 18S rRNA genes using a highly diverse set of
181 plant species (see **Table S3**). Candidates were first tested for specificity to
182 plants by amplifying DNA from 21 plant species (**Table S4**) and mixed bacterial
183 DNA and then visualizing bands on a gel. We selected primer sets that
184 amplified most plants but avoided amplification of bacteria or fungi (**Fig S5**).
185 Next, we tested the oligos by preparing sequencing libraires (Protocol B, see
186 supplementary notes for comparison with Protocol A) with DNA templates from
187 leaves of plant species representing five orders spanning monocots and dicots
188 (*Amaranthus spec.*, *Arabidopsis thaliana*, *Bromus erectus*, *Lotus corniculatus*
189 and *Plantago lanceolata*) (see **Table S5**). Although *A. thaliana* blocking oligos
190 were very efficient in mock leaf microbiomes (**Fig 2**), in real leaf samples they
191 only sometimes helped recover higher microbial diversity (**Fig S6D/E** and
192 **S7D/E**). Microbial loads on leaves are typically very low²⁰, so we reasoned that
193 more blocking cycles may be required in real leaves. Therefore, for testing
194 universal 16S blocking oligos we compared 10 vs. 15 blocking cycles.

Figure 3: Universal blocking oligos successfully block undesired reads whilst remaining specific for recovered bacterial species and therefore increasing sequencing depth. (A) Percentage of reads assigned to ASVs other than chloroplast (non-chloroplast ASVs) with 10 vs 15 blocking cycles. The use of blocking oligos leads to higher recovery of bacterial ASVs. When the number of blocking cycles is increased, the fraction of blocked ASVs increases as well. (B) Taxonomic distribution in samples of different plants species with and without blocking oligos (15 blocking cycles). The use of universal blocking oligos does not significantly change the identity of retrieved ASVs. Results for other plant species and mock communities are shown in Fig S6 and Fig S7.

195 With 10 blocking cycles, 1-25% of target (non-chloroplast) reads were
196 recovered from *Arabidopsis thaliana*, *Bromus erectus* and *Lotus corniculatus*
197 (**Fig 3A**, the other two species had no usable reads with 10 cycles). 15 blocking
198 cycles increased the amount of retrieved target reads by at least 2.5-fold
199 compared to 10 cycles (**Fig 3A**), increasing the fraction of useful reads 8-16x
200 compared to without blocking oligos in all five plant species (**Fig 3A** and **Fig**
201 **S8**). 18S blocking oligos were only tested with 10 blocking cycles but in four
202 plant species we observed an increase from < 5% target (non-plant) reads
203 without blocking oligos to up to 57% target reads with blocking oligos (**Fig S9**).
204 Next, we again checked whether blocking oligos bias recovered beta diversity
205 (differences between samples). In the 16S, we observed no significant effects
206 on leaf samples (**Fig 3B**), a microbial community standard (**Fig S10**), nor in
207 three different samples with soil DNA as template (**Fig S11**). We only tested the
208 18S oligos on leaf samples and observed that they resulted in recovery of more
209 diverse communities. However, without further testing using mock communities
210 we cannot say to which extent, if any, the 18S oligos introduce bias to the
211 measurements. Overall, all universal blocking oligos can be used with
212 practically any sample to increase useful data recovery and 16S blocking oligos
213 do this without biasing beta diversity patterns.


214

215 **“Universal” plant blocking oligos increase recovered alpha diversity**

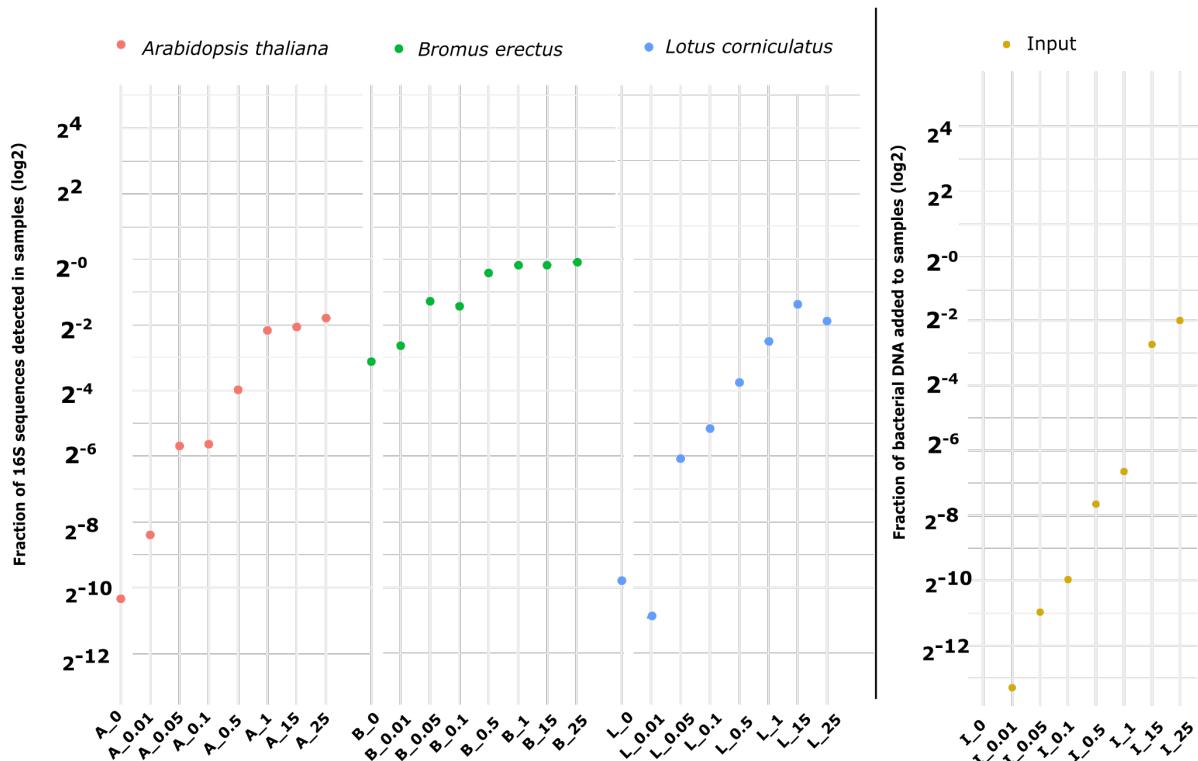
216 When the majority of reads retrieved from amplicon sequencing are non-target,
217 the effective sequencing depth is drastically decreased. Thus, an important
218 question is whether this actually obscures the microbial diversity recovered and
219 whether blocking oligos allow recovery of higher alpha diversity. We checked
220 Shannon and Simpson (observed species richness and diversity, respectively)
221 and ACE and Chao1 (which estimate total species richness) alpha diversity of
222 bacterial 16S data from the three naturally grown plant species amplified with
223 10 or 15 blocking cycles with and without universal blocking oligos. With 10
224 blocking cycles, observed richness and diversity were marginally higher (**Fig**
225 **4A and 4B**) and estimates of total species richness were unchanged (**Fig 4C**
226 **and 4D**) with blocking. Blocking for 15 cycles, on the other hand, resulted in
227 significantly higher observed and estimated richness and diversity ($p<0.01$ for
228 Shannon and Simpson and $p=0.11$ and $p=0.09$ for Chao1 and ACE,

229 respectively) (Fig 4). The difference between 10 and 15 cycles is again most
230 likely due to low bacterial loads in real leaf samples (**Fig S6D/E and S7D/E**).
231 Thus, >10 blocking cycles are recommended to consistently recover complete
232 diversity.

233

Figure 4: The use of blocking oligos increases the bacterial alpha diversity recovered. Comparison of alpha diversity measures between samples with 10 or 15 blocking cycles. We calculated the alpha diversity indices Shannon (A), Simpson (B), Chao1 (C) and ACE (D). Shannon and Simpson diversity indices combine richness and diversity (they measure both the number of species as well as the inequality between species abundances), whereas Chao1 and ACE estimate the total species richness. The use of blocking oligos for 10 cycles showed an increase in only Shannon and Simpson alpha diversity indices. However, when blocking for 15 cycles all indices show an increase in alpha diversity. p-values are calculated with a one-sided paired t-test.

234

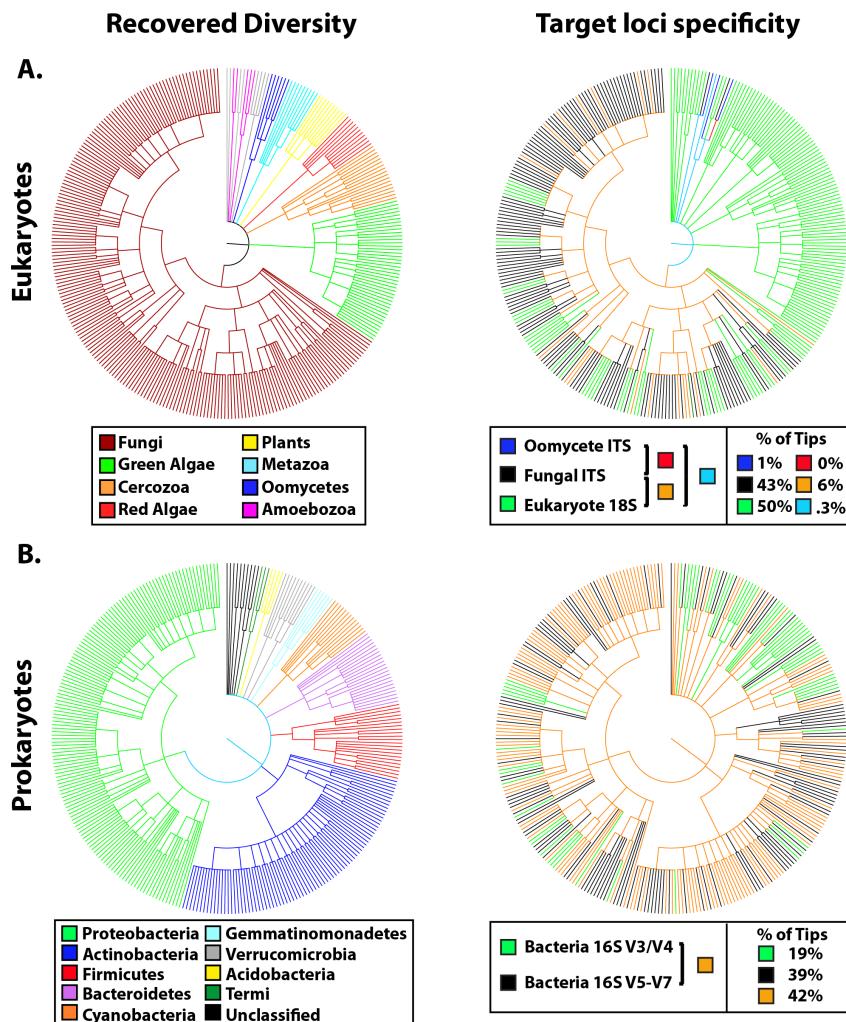

235 Leaf bacterial loads can be estimated using 16S amplicon data

236 One limitation of amplicon sequencing is that it is compositional, such that the
237 quantitative bacterial load information is lost. Recently it has been
238 demonstrated that “non-target” host to target bacterial ratios can be used to
239 roughly estimate bacterial loads in plant samples¹⁸. Losing this information
240 would be a downside of implementing blocking oligos. We observed that after
241 blocking chloroplast amplification with the universal blocking oligos, host
242 mitochondrial reads still made up a significant part of the data (**Fig 3**).

243 Therefore, we checked whether quantitative load information is still contained
244 in the data generated with chloroplast blocking oligos. We tested this using the
245 same plant species as before, which we grew axenically, harvested DNA, then
246 combined with specific amounts of a bacterial DNA mix (Zymo Research
247 Europe, GmbH). We then estimated the fraction of bacterial 16S sequences
248 recovered (after filtering remaining chloroplast reads – **Fig. 5**).

249 Up to a 1% fraction of bacterial DNA in the template, we observed a nearly
250 linear increase in the fraction of sequenced reads assigned to bacteria (**Fig 5**).
251 For a given load, the fraction of bacterial reads was similar for *A. thaliana* and
252 *L. corniculatus* and was higher for *B. erectus*. Therefore, we conclude that
253 within samples of the same species blocking oligos not only increase recovered
254 bacterial diversity but can be applied so that quantitative bacterial load
255 information is maintained.

256



257
258 **Figure 5: The fraction of bacterial reads can be used to gain quantitative microbial load**
information. The fraction of bacterial reads in sequenced amplicon libraries increases with as the load
of mixed bacterial gDNA increases in the template. The axenic plant gDNA used in the mixes were *A.*
thaliana (red), *B. erectus* (green) and *L. corniculatus* (blue). The fraction of bacterial gDNA compared to
plant gDNA is shown in yellow (“Input”).

257

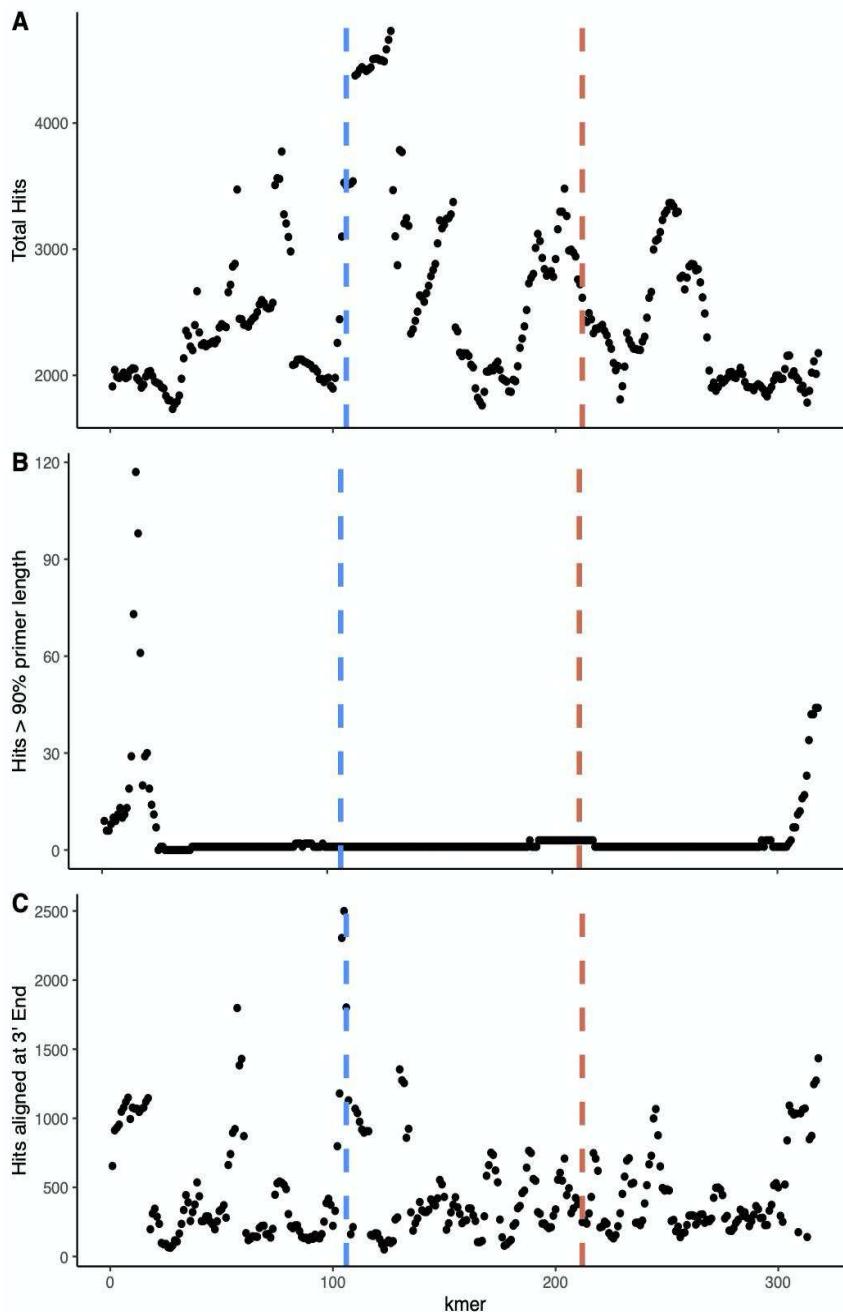
258 **An expanded multi-kingdom view of leaf microbial diversity**

259

FIGURE 6. A comprehensive overview of highly diverse *A. thaliana* leaf microbiomes revealed by parallel amplicon sequencing of 8 loci targeting eukaryotic and prokaryotic microbes. Tree branches represent recovered genera and are colored by taxonomy (left, “Recovered Diversity”) and loci from which they were recovered (right, “Target loci specificity”). The % of genera that were found in each dataset or by multiple datasets is presented (% of Tips). (A) Eukaryotes were targeted in 6 loci: Two regions of the 18S rRNA gene (V4-V5 and V8-V9), two regions of the fungal ITS (ITS 1 and 2) and two regions of the oomycete ITS (ITS 1 and 2). The 18S loci revealed the broadest diversity but was complemented by fungi and oomycete-specific primer sets which had more detailed resolution within these groups. (B) 2 loci targeting prokaryotes: Two regions of the 16S rRNA gene (V3-V4 and V5-V7) that amplify mostly bacteria revealed a largely overlapping diversity profile complemented by unique discovery of taxa from each of the two target regions.

260

261 We tested using the blocking oligo system to generate as broad of a microbial
262 diversity profile as possible from leaves. We amplified and sequenced the 8
263 target loci in 12 wild *A. thaliana* leaf samples, including leaves with sporulating
264 *A. laibachii* infections, and employed the *A. thaliana* and *A. laibachii* specific
265 blocking oligos. Then we analyzed the diversity insights gained with this broad
266 approach. The addition of the 18S rRNA gene primers broadly targeting


267 eukaryotes increased diversity recovery by nearly 50% compared to ITS
268 primers alone (observed genera, **Fig 6**). This included red and green algae,
269 cercozoa and amoebozoan and even suggested signs of metazoa like insects
270 and helminthes (**Fig 6** and **File S2**). The fungal and oomycete ITS datasets
271 complemented the broader 18S data with more specificity in those groups –
272 together, these two accounted for 44% of observed eukaryotic genera (**Fig 6a**).
273 Prokaryote datasets further demonstrate complementarity for primer sets
274 targeting the same groups of microbes (**Fig 6B**). Here, 42% of observed genera
275 were discovered by both primer sets, with complementary diversity discovery
276 especially in the phyla *Cyanobacteria* (V3-V4 dataset) and *Firmicutes* (V5-V7
277 dataset). Thus, blocking of over-abundant host and microbial amplicons allows
278 deep diversity characterization in leaves using multiple loci.

279

280 **AmpStop: An “R” package for quick design of blocking oligos for any**
281 **non-target organism**

282 A key advantage of using standard oligomers as a tool to block amplification is
283 that many design options can be tested rapidly and at low cost using standard
284 PCR techniques. A limit on rapid implementation in labs could be the design
285 step, where some computational know-how is required. To reduce this burden,
286 we created “AmpStop”, an “R” package to automate design of blocking oligos.
287 AmpStop can be used by anyone with R and BLAST+ installed on their
288 computer. It requires as input only the amplified non-target region (for example
289 the host ITS1 sequence) and a target sequence database that is BLAST-
290 formatted. Three functions enable users to within minutes generate a list of all
291 possible blocking oligos, a figure showing how many times each oligo “hits”
292 target templates and other useful metrics of specificity (**Fig 7A-7C**) and a list of
293 the most promising blocking oligo pairs. Since the design of peptide nucleic acid
294 clamps follows practically identical steps¹⁶, the package can also be used to
295 design them. AmpStop and detailed instructions on its use and interpretation of
296 results is freely available on GitHub (<https://github.com/magler1/AmpStop>).

297

Figure 7. Example output from the “R” package AmpStop when given as input the *A. thaliana* ITS1 sequence (non-target) and the UNITE fungal ITS database (target). The x-axis represents all possible 30-base oligomers (candidate blocking oligos) along the length of the nontarget sequence. The sequence of the oligos are produced in a separate file. **The y-axes show** three complementary measures of how likely each candidate oligo is to amplify target sequences, where a hit represents an alignment of the oligo a target. The best candidates will minimize hits and thus be highly specific to non-targets. (A) The total number of hits of each candidate to the target database. Those least likely to amplify targets will have few hits. However, not all hits are equally problematic. Thus, (B) shows oligos that hit a sequence in the target database along >90% of its length, which would increase the chance of amplifying a target organism and (C) shows hits aligned at the 3' end, which are especially problematic because this is the site of polymerase binding. The blue and red guidelines represent 1/3 and 2/3 of the length of the non-target, respectively, and forward and reverse blocking oligos are probably best chosen before and after these lines, respectively.

298

299 **Discussion**

300 Amplicon sequencing of phylogenetically or functionally informative loci has
301 become an indispensable technique in a variety of biology-related fields
302 because its targeted approach (compared to untargeted approaches like
303 metagenomics) enables in-depth diversity characterization with accurate
304 annotation using specialized databases²³. It has revealed that microbial
305 community structuring is more complex than previously thought and suggested
306 extensive interactions between (a)biotic factors and microbes²⁴ and between
307 microbes even across kingdoms^{9,11}. As we have shown here, recent advances
308 have made sequencing up to 8 loci in parallel possible, drastically increasing
309 throughput and diversity resolution. This will be important to add certainty to
310 systems-scale investigations of factors contributing to microbial community
311 structures. On the other hand, the use of “universal” primers has the
312 disadvantage that highly abundant microorganismal or host DNA are often
313 strongly amplified, sacrificing read depth and masking diversity²⁵.
314 A previously described method to address this problem are peptide nucleic acid
315 “clamps” that are highly specific to non-target templates and which physically
316 block their amplification¹⁶. These clamps work efficiently even in single-step
317 amplifications, but their production is relatively expensive, which would limit
318 rapid development and deployment of multiple clamps for new loci, for blocking
319 multiple non-targets and add major costs for high-throughput projects. For
320 example, our current library preparation costs are estimated at about 2 Euros
321 per library. PNAs, at about 4500 Euro/μmol would add 1.14 Euro or 57% per
322 library. This would be for only host blocking and does not include costs of design
323 and testing of new PNAs for new loci and new non-targets. Other approaches,
324 like using oligonucleotide clamps modified with a C3 spacer¹⁷ are also costly
325 and work best when they block the universal primer binding site. For many
326 highly conserved target regions, the target and non-target binding sites are
327 therefore too similar to design specific clamps.
328 Blocking oligos, which are cheap and flexible, therefore fill an important need
329 for a tool that can be quickly designed and employed for different purposes
330 (e.g., host or microbe blocking). Blocking can also be “dropped in” to practically
331 any pipeline and do not bias results, so it is beneficial to include them when

332 relative abundance of target and non-target DNA is unknown. Several different
333 blocking techniques were previously placed under “blocking oligos” or “blocking
334 primers” as umbrella terms¹⁷. However, we suggest using this term specifically
335 for the blocking oligos we present here, as it most accurately describes their
336 function.

337 An important question besides price and flexibility is whether blocking oligos
338 work as well as PNAs and other methods. Giancomo et al.²² tested blocking
339 oligos that they designed for maize vs. other methods, including PNA clamps
340 and discriminating primers. They recommended PNA clamps for 16S rRNA
341 studies because they block without distorting microbiota profiles. Their maize
342 blocking oligos did reduce plant amplification as efficiently as PNAs, but they
343 distorted microbiota profiles in soil samples (notably not in leaf samples). Here,
344 we tested the new universal plant 16S blocking oligos in leaves, in mock
345 communities and in soil samples and observed no discernible effects on beta
346 diversity. We did observe a desirable increase in alpha diversity in real leaf
347 samples due to blocking the host and recovering more microbial reads. Thus,
348 we recommend universal 16S and 18S plant blocking oligos, which block all
349 plant species we tested and should also work in maize (**Fig S5**).

350 A downside common to blocking oligos, PNAs and other methods is that they
351 need to be designed and tested for different non-targets, which can be
352 cumbersome²². The R package “AmpStop”, which we make available here
353 should ease the design process. AmpStop can also be used by researchers
354 who do choose PNAs, as blocking oligos design essentially follows the same
355 procedure¹⁶. The availability of universal plant blocking oligos that block
356 amplification of most host species will further reduce the need to make new
357 designs. Notably, we were not able to design universal blocking oligos for the
358 ITS region because diversity between different plant species made it impossible
359 to find a universal blocking oligo set. On the other hand, we and others have
360 observed that the host ITS is not efficiently amplified when there is significant
361 target microbial DNA²⁶. Thus, universal ITS blocking oligos are not as urgently
362 needed as universal 16S blocking oligos.

363 Studies of leaves of the wild plant *A. thaliana* found that bacterial fraction of
364 extracted DNA are typically very low but range up to about 25%²⁰. We found
365 that more blocking cycles (15 vs. 10) were necessary to efficiently block non-

366 target amplification in real leaf samples, but not in mock communities with 5%
367 bacterial DNA. More cycles also lead to discovery of more alpha diversity in
368 real leaf samples. This effect is most likely due to low bacterial loads in real leaf
369 samples, so too few blocking cycles results in libraries that still contain relatively
370 high levels of non-target contamination. This occurs because non-target
371 template DNA can be carried over to the extension PCR and are amplified
372 because the concatenated primers contain the universal primer sequence as
373 the binding site (**Fig 1**). Thus, we recommend increasing the number of blocking
374 cycles when following protocol A or B used here and when no prior information
375 about bacterial loads is available. Alternatively, a linker sequence could be used
376 as the binding site for concatenated primers in the second step¹⁹. This only
377 amplifies amplicons from the first step, not left-over template DNA. Thus,
378 blocking could be minimized to only a few cycles. Lundberg et al.¹⁹ did apply
379 our ITS blocking oligos in their protocol, demonstrating that blocking oligos can
380 be dropped into most two-step library pipelines.

381 Some host amplification can be advantageous because it can be used to
382 quantitatively estimate bacterial loads¹⁸ and having quantitative information has
383 can change inferred ecological relationships between plant microbiota²⁰. When
384 we only blocked chloroplast in the 16S V3/V4 region and allowed mitochondrial
385 amplification, the fraction of bacterial reads was proportional to the bacterial
386 DNA load in mock communities. At our target read depths in the V3-V4 region,
387 mitochondria amplification did not overwhelm the bacterial diversity signal, but
388 this will be locus-specific (in our hands in the V5-V7 region, mitochondrial
389 amplification is more problematic). Generally, estimating bacterial loads from
390 16S rRNA data is not perfect because 16S copy numbers can vary drastically
391 between bacterial species and plastid abundance per cell varies between
392 eukaryotic species²⁷. HamPCR¹⁹ is an alternative method utilizing single-copy
393 host genes to gain accurate quantitative insights. While that approach is more
394 precise, it does require more steps and may not be suitable for extremely high-
395 throughput studies. Direct estimates from 16S rRNA data has the advantage of
396 simplicity and throughput – we have designed dual-indexing primer sets to
397 parallelize up to 500 samples (**File S1B**). Gaining approximate quantitative
398 information here would allow users to quickly scan for plants, conditions and
399 microbial interactions affecting bacterial load. Thus, we advise using fraction of

400 bacterial reads in 16S data as an initial approximation to gain insight in many
401 samples and then to design specific experiments using more precise measures.

402

403 **Conclusions**

404 The realization of the immense complexity of biological systems – and our
405 inability to adequately describe them - has led to many important, unresolved
406 issues. For example, there is ongoing debate about what it means to view
407 macroorganisms as holobionts, since symbiotic microbiota affect host health
408 and fitness^{28,29}. Unanswered questions also linger, like what causes host
409 genotype-independent taxonomic conservation of plant root microbiomes over
410 broad geographic distances³⁰. Blocking oligos will help researchers to deeply
411 and accurately resolve microbial community diversity when non-target
412 contamination is problematic, addressing some of the current barriers to
413 progress. Although other challenges remain, we expect this approach to equip
414 researchers to make better hypotheses and to address currently intractable
415 questions. These advances will thereby assist in increasing discovery of the
416 important roles of microbiota.

417

418 **Methods**

419 **Design of “blocking oligos” to avoid non-target template amplification**

420 Blocking oligos were previously designed for the *A. thaliana* chloroplast (16S
421 rRNA V3-V4 region) or mitochondria (16S rRNA V5-V7 region) and *A. thaliana*
422 ITS1 and ITS2 regions (fungal and oomycete ITS)¹¹. Primers specific to a
423 known, non-target DNA template (“blocking oligos”) and nested inside the
424 universal primer binding sites (**Fig 1**) were designed (see **File S1a and S1b** for
425 all oligo and primer sequences used in this study). To design oligomers with
426 high specificity, we adapted the approach used by Lundberg et al.¹⁶ for PNA
427 clamps. In short, the region of interest (chloroplast/mitochondria 16S or ITS)
428 from *A. thaliana* was divided up into “k-mer” sequences of length 30. We then
429 used BLAST to search the kmers against a blast-formatted target database.
430 The BLAST search used the following parameters which allow weak matches:
431 percent identity 25, word size 7, evalue 100000. Candidate 30-mer blocking
432 oligos were selected that received a relatively low number of hits. For this study,

433 we have developed an R package, “AmpStop”, which automates this part of the
434 process and suggests good candidates, and which is freely available on GitHub
435 (<https://github.com/magler1/AmpStop>). We then selected candidates which had
436 a high T_m (well above the universal primer binding temperatures) and which
437 had low potential to form self-dimers or hairpins. Candidate oligomers were
438 tested in single-step amplification of target and non-target templates for non-
439 target specificity. The selected blocking oligomers (**File S1**) were always used
440 in the first amplification step of library preparation (blocking cycles), resulting in
441 shortened amplicons that could not be elongated with Illumina adapters in the
442 second amplification step (**Fig 1B**). All databases will be made publicly
443 available prior to publication on Figshare.

444

445 **Design of 18S blocking oligos for host and microbial non-targets**

446 To reduce both *A. thaliana* and *A. laibachii* amplification in the 18S regions we
447 designed additional blocking oligos for both of these organisms (**File S1**). We
448 tested them by preparing 18S amplicon libraries from two mock communities
449 consisting of *A. thaliana* (97% or 87%), *A. laibachii* (0 or 10%), *Sphingomonas*
450 sp. (1.5%), *Bacillus* sp. (1.5%) and 0.001% to 1% of target *Saccharomyces*
451 cerevisiae. (**Table S2**). We then used primers targeting the *Saccharomyces* sp.
452 18S (V4 Fwd/Rev: AACCTTGAGTCCTTGTG/AATACGCCCTGCTTG V9
453 Fwd/Rev: GTGATGCCCTTAGACG/ACAAGATTACCAAGACCTC) with qPCR
454 to relatively quantify target *S. cerevisiae* in the libraries generated with and
455 without blocking oligos (**Fig 4B**).

456

457 **Design of universal plant blocking oligos for 16S and 18S rRNA loci**

458 To design blocking oligos that could be used for multiple plant species we used
459 the same approach as described above. In short, we used chloroplast
460 sequences from multiple plant species that spanned the phylogenetic tree of
461 plants (**see Table S4**) as input for the AmpStop package and checked where
462 the results overlapped between species. The resulting blocking oligos were
463 tested in a one-step PCR protocol for their specificity against genomic DNA
464 from various plant species and bacterial mixes (**Fig S5**). The blocking oligo pair
465 BloO_16S_F5 and BloO_16S_R1 was chosen for further analysis, since it hit
466 most of the plant species tested but at the same time amplified none of the

467 bacterial mixes. These selected oligomers were used in the blocking cycles for
468 library preparation from multiple plant species.

469

470 **Testing *A. thaliana* blocking oligos against mock communities**

471 We tested blocking oligos designed to block *A. thaliana* in two loci from each of
472 bacteria (16S rRNA V3-V4 and V5-V7), fungi (ITS1 and 2) and oomycetes (ITS1
473 and 2) using mixed kingdom mock microbiomes. The simulated host-
474 associated microbiomes consisted of 5% of a mix of the mock microbiomes and
475 95% *A. thaliana* genomic DNA. For each template sample, 6 separate PCR
476 reactions were prepared, one targeting each locus. We also tested the effect of
477 variations on the amplicon sequencing library preparation method. We
478 compared PCR performed in one step (35 cycles, no blocking) or two steps (10
479 then 25 cycles or 25 then 10 cycles). For two-step preparations, the primers
480 used in the first step consisted of unmodified universal amplification primers
481 (**Fig. S1**). For single-step preparations and for the second step in two-step
482 preparations, primers were a concatenation of the Illumina adapter P5 (forward)
483 or P7 (reverse), an index sequence (reverse only), a linker region, and the
484 universal primer for the region being amplified (**Fig 1** and **Fig S1**). Sequences
485 and details of all primers used can be found in **File S1a** and details on PCR,
486 library preparation and sequencing, as well as the steps to generate OTU tables
487 and taxonomy from raw multi-locus data can be found in the **Supporting**
488 **Methods (Protocol A)**. We summarized bacterial, fungal and oomycete OTU
489 tables by taxonomic ranks, converted abundances to relative values and plotted
490 the genus- and order-level taxonomic distribution directly from this data with the
491 package ggplots2 in R. To analyze the percent reduction in host plant-
492 associated reads when blocking oligos were employed, we considered the
493 relative abundance of reads associated with the class “Chloroplast” or the order
494 “Rickettsiales” in the 16S OTU tables and reads in the kingdom “Viridiplantae”
495 in the ITS OTU tables in samples with *A. thaliana* DNA and with and without
496 blocking oligos. We also checked whether the non-indexed step of the 2-step
497 library preparation approach results in sample cross-contamination by
498 sequencing three negative control libraries (two blank samples carried through
499 DNA extraction and one PCR water control) by adding the whole volume of the

500 libraries to the combined sequencing pool. These negative controls were
501 prepared in parallel with 381 other plant samples (**Supporting Notes**).
502

503 **Testing “universal” plant blocking oligos in natural leaves and mock**
504 **communities**

505 16S and 18S universal plant blocking oligos were tested using five leaves from
506 five plant species collected from different experiments. The plant species
507 represent five plant orders spanning monocots and dicots (see **Table S5**). All
508 plant leaves were naturally grown outside without artificial addition of any
509 microorganism. Details on the DNA extraction can be found in the
510 **Supplementary Methods**. The 16S universal blocking oligos were additionally
511 tested for how they affect bacterial diversity distribution against a mixed
512 microbial community standard (ZymoBIOMICS microbial community DNA
513 standard) and against three different soil DNA extracts. For testing if bacterial
514 load information is maintained, we quantified concentrations of axenic plant
515 DNA extracts and combined it with the Zymo standard to create genomic DNA
516 mixes (0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 15% and 25% microbial genomic
517 DNA).

518 Libraries were prepared with either 10 or 15 blocking cycles and 25 or 20
519 extension cycles, respectively. In short, the templates were amplified in the
520 blocking cycles including the universal 16S primers as well as the blocking
521 oligos. The product of this first PCR was then purified and amplified in the
522 extension cycles using concatenated primers. The extension step used
523 concatenated primers similar to before but both primers had unique index
524 sequences. Sequences and details of all primers used can be found in **File S1b**
525 and details on PCR, library preparation and sequencing, as well as the steps to
526 generate ASV tables and taxonomy from raw data can be found in the
527 **Supporting Methods (Protocol B)**.

528

529 **8-locus amplicon sequencing with blocking oligos to fully characterize A.**
530 **thaliana leaf microbiome diversity**

531 We next expanded the multi-locus approach to more completely cover
532 eukaryotic microbial diversity by including two additional 18S rRNA gene loci
533 (V4-V5 and V8-V9, **Fig. 1a** and **Table S1** - primer sequences are available in

534 **File S1).** With the expanded target set, we characterized the phyllosphere
535 microbiome of *A. thaliana* leaves infected with the oomycete pathogen *Albugo*
536 *laibachii*. Whole leaves (defined as a single whole rosette) or endophytic
537 fractions of leaves (defined as in¹¹) were collected in the wild (a total of 18
538 samples - 9 whole leaf, 9 endophyte) and were immediately frozen on dry ice.
539 DNA extraction was performed as described previously¹¹. Library preparation,
540 sequencing and analysis was performed as in the optimized protocol with
541 blocking oligos. To provide a complete and concise picture of the diversity of
542 microbiota inhabiting *A. thaliana*, we combined the data from all samples. To
543 visualize data, we assigned taxonomy to OTUs and generated two phylogenetic
544 trees where branches represent unique genera. Trees were generated based
545 on the taxonomic lineages (*not* phylogenetic relatedness of OTUs or genera)
546 with the ape package in R and output as newick files³¹. The trees were
547 uploaded to iTOL v3.1³² to color branches by taxonomy or by targeted regions.
548 The first tree (**Fig. 3A**), for Eukaryotes, includes data from the 18S rRNA and
549 ITS targeted regions. The second tree includes data from the 16S rRNA
550 targeted regions.

551

552 **Declarations**

553 **Ethics approval and consent to participate**

554 Not applicable

555

556 **Consent for publication**

557 Not applicable

558

559 **Availability of Data and Material**

560 Universal primer sequences, sequencing primers, blocking oligos and
561 concatenated primer sequences are all provided in File S1a and S1b.
562 Scripts used to generate ASV tables from the raw data, as well as OTU/ASV
563 tables and metadata files to recreate the main figures are being made publicly
564 via Figshare:

565 https://figshare.com/projects/Obtaining_deeper_insights_into_microbiome_diversity_using_a_simple_method_to_block_host_and_non-targets_in_amplicon_sequencing_89504
566 Raw sequencing data is publicly available as a NCBI projects (*PRJNA420016*
569 and *PRJNA663775*).
570 AmpStop is freely available on GitHub (<https://github.com/magler1/AmpStop>).
571

572 **Competing Interests**

573 The authors declare that they have no competing interests.
574

575 **Funding**

576 TM and MTA are supported by the Carl Zeiss Stiftung *via* the Jena School for
577 Microbial Communication. MMR is supported by the International Leibniz
578 Research School. EK, JA, SH and ND were supported financially by the Max-
579 Planck Gesellschaft and the University of Tuebingen. AM Acknowledges the
580 financial support from the European Research Council (ERC) under the
581 DeCoCt research program (grant agreement: ERC-2018-COG 820124). SH
582 and ND were supported financially by the Max-Planck Gesellschaft.
583

584 **Acknowledgements**

585 We wish to thank Ariane Kemen and Jonas Ruhe for providing *P. capsici* and
586 *Pseudozyma* sp. isolates and Marie Harpke and Prof. Erika Kothe for providing
587 soil DNA. We also thank the MPIPZ genome center for implementing our
588 custom sequencing protocol and Carl-Eric Wegner, Stefan Riedel and Prof.
589 Kerstin Küsel for making their sequencing equipment and knowledge available
590 to us.
591

592 References

593 (1) Werner, J. J.; Knights, D.; Garcia, M. L.; Scalfone, N. B.; Smith, S.; Yarasheski,
594 K.; Cummings, T. A.; Beers, A. R.; Knight, R.; Angenent, L. T. Bacterial
595 Community Structures Are Unique and Resilient in Full-Scale Bioenergy
596 Systems. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108* (10), 4158–4163.
597 <https://doi.org/10.1073/pnas.1015676108>.

598 (2) Mera, H.; Bourne, D. G. Disentangling Causation: Complex Roles of Coral-
599 Associated Microorganisms in Disease. *Environ. Microbiol.* **2018**, *20* (2),
600 431–449. <https://doi.org/10.1111/1462-2920.13958>.

601 (3) Xu, L.; Naylor, D.; Dong, Z.; Simmons, T.; Pierroz, G.; Hixson, K. K.; Kim, Y.-
602 M.; Zink, E. M.; Engbrecht, K. M.; Wang, Y.; Gao, C.; DeGraaf, S.; Madera, M.
603 A.; Sievert, J. A.; Hollingsworth, J.; Birdseye, D.; Scheller, H. V.; Hutmacher,
604 R.; Dahlberg, J.; Jansson, C.; Taylor, J. W.; Lemaux, P. G.; Coleman-Derr, D.
605 Drought Delays Development of the Sorghum Root Microbiome and
606 Enriches for Monoderm Bacteria. *Proc. Natl. Acad. Sci. U. S. A.* **2018**, *115*
607 (18), E4284–E4293. <https://doi.org/10.1073/pnas.1717308115>.

608 (4) Panke-Buisse, K.; Poole, A. C.; Goodrich, J. K.; Ley, R. E.; Kao-Kniffin, J.
609 Selection on Soil Microbiomes Reveals Reproducible Impacts on Plant
610 Function. *Isme J* **2015**, *9* (4), 980–989.
611 <https://doi.org/10.1038/ismej.2014.196>.

612 (5) Johnson, E. L.; Heaver, S. L.; Waters, J. L.; Kim, B. I.; Bretin, A.; Goodman, A.
613 L.; Gewirtz, A. T.; Worgall, T. S.; Ley, R. E. Sphingolipids Produced by Gut
614 Bacteria Enter Host Metabolic Pathways Impacting Ceramide Levels. *Nat.
615 Commun.* **2020**, *11* (1), 2471. <https://doi.org/10.1038/s41467-020-16274-w>.

617 (6) Gould, A. L.; Zhang, V.; Lamberti, L.; Jones, E. W.; Obadia, B.; Korasidis, N.;
618 Gavryushkin, A.; Carlson, J. M.; Beerenwinkel, N.; Ludington, W. B.
619 Microbiome Interactions Shape Host Fitness. *Proc. Natl. Acad. Sci. U. S. A.*
620 **2018**, *115* (51), E11951–E11960.
621 <https://doi.org/10.1073/pnas.1809349115>.

622 (7) Henriques, S. F.; Dhakan, D. B.; Serra, L.; Francisco, A. P.; Carvalho-Santos,
623 Z.; Baltazar, C.; Elias, A. P.; Anjos, M.; Zhang, T.; Maddocks, O. D. K.; Ribeiro,
624 C. Metabolic Cross-Feeding in Imbalanced Diets Allows Gut Microbes to
625 Improve Reproduction and Alter Host Behaviour. *Nat. Commun.* **2020**, *11*
626 (1), 4236. <https://doi.org/10.1038/s41467-020-18049-9>.

627 (8) Prince, D. C.; Rallapalli, G.; Xu, D.; Schoonbeek, H.-J.; Cevik, V.; Asai, S.;
628 Kemen, E.; Cruz-Mireles, N.; Kemen, A.; Belhaj, K.; Schornack, S.; Kamoun,
629 S.; Holub, E. B.; Halkier, B. A.; Jones, J. D. G. Albugo-Imposed Changes to
630 Tryptophan-Derived Antimicrobial Metabolite Biosynthesis May
631 Contribute to Suppression of Non-Host Resistance to Phytophthora
632 Infestans in *Arabidopsis Thaliana*. *BMC Biol.* **2017**, *15* (1), 20.
633 <https://doi.org/10.1186/s12915-017-0360-z>.

634 (9) Lima-Mendez, G.; Faust, K.; Henry, N.; Decelle, J.; Colin, S.; Carcillo, F.;
635 Chaffron, S.; Ignacio-Espinoza, J. C.; Roux, S.; Vincent, F.; Bittner, L.; Darzi,
636 Y.; Wang, J.; Audic, S.; Berline, L.; Bontempi, G.; Cabello, A. M.; Coppola, L.;
637 Cornejo-Castillo, F. M.; d'Ovidio, F.; De Meester, L.; Ferrera, I.; Garet-
638 Delmas, M.-J.; Guidi, L.; Lara, E.; Pesant, S.; Royo-Llonch, M.; Salazar, G.;
639 Sánchez, P.; Sebastian, M.; Souffreau, C.; Dimier, C.; Picheral, M.; Searson, S.;

640 Kandels-Lewis, S.; Gorsky, G.; Not, F.; Ogata, H.; Speich, S.; Stemmann, L.;
641 Weissenbach, J.; Wincker, P.; Acinas, S. G.; Sunagawa, S.; Bork, P.; Sullivan,
642 M. B.; Karsenti, E.; Bowler, C.; de Vargas, C.; Raes, J. Ocean Plankton.
643 Determinants of Community Structure in the Global Plankton Interactome.
644 *Science* **2015**, *348* (6237), 1262073.
645 <https://doi.org/10.1126/science.1262073>.

646 (10) Bergelson, J.; Mittelstrass, J.; Horton, M. W. Characterizing Both Bacteria
647 and Fungi Improves Understanding of the *Arabidopsis* Root Microbiome.
648 *Sci. Rep.* **2019**, *9* (1), 24. <https://doi.org/10.1038/s41598-018-37208-z>.

649 (11) Agler, M. T.; Ruhe, J.; Kroll, S.; Morhenn, C.; Kim, S. T.; Weigel, D.; Kemen, E.
650 M. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome
651 Variation. *PLoS Biol.* **2016**, *14* (1), e1002352.
652 <https://doi.org/10.1371/journal.pbio.1002352>.

653 (12) Chow, C.-E. T.; Kim, D. Y.; Sachdeva, R.; Caron, D. A.; Fuhrman, J. A. Top-
654 down Controls on Bacterial Community Structure: Microbial Network
655 Analysis of Bacteria, T4-like Viruses and Protists. *ISME J.* **2014**, *8* (4), 816–
656 829. <https://doi.org/10.1038/ismej.2013.199>.

657 (13) Jakuschkin, B.; Fievet, V.; Schwaller, L.; Fort, T.; Robin, C.; Vacher, C.
658 Deciphering the Pathobiome: Intra- and Interkingdom Interactions
659 Involving the Pathogen *Erysiphe Alphitoides*. *Microb. Ecol.* **2016**, *72* (4),
660 870–880. <https://doi.org/10.1007/s00248-016-0777-x>.

661 (14) Popovic, A.; Bourdon, C.; Wang, P. W.; Guttman, D. S.; Voskuyl, W.; Grigg, M.
662 E.; Bandsma, R. H. J.; Parkinson, J. Design and Application of a Novel Two-
663 Amplicon Approach for Defining Eukaryotic Microbiota. *Microbiome* **2018**,
664 *6* (1), 228. <https://doi.org/10.1186/s40168-018-0612-3>.

665 (15) Simhadri, R. K.; Fast, E. M.; Guo, R.; Schultz, M. J.; Vaisman, N.; Ortiz, L.;
666 Bybee, J.; Slatko, B. E.; Frydman, H. M. The Gut Commensal Microbiome of
667 *Drosophila Melanogaster* Is Modified by the Endosymbiont Wolbachia.
668 *mSphere* **2017**, *2* (5). <https://doi.org/10.1128/mSphere.00287-17>.

669 (16) Lundberg, D. S.; Yourstone, S.; Mieczkowski, P.; Jones, C. D.; Dangl, J. L.
670 Practical Innovations for High-Throughput Amplicon Sequencing. *Nat. Methods*
671 **2013**, *10* (10), 999–1002. <https://doi.org/10.1038/nmeth.2634>.

672 (17) Vestheim, H.; Jarman, S. N. Blocking Primers to Enhance PCR Amplification
673 of Rare Sequences in Mixed Samples - a Case Study on Prey DNA in
674 Antarctic Krill Stomachs. *Front. Zool.* **2008**, *5*, 12.
675 <https://doi.org/10.1186/1742-9994-5-12>.

676 (18) Humphrey, P. T.; Whiteman, N. K. Insect Herbivory Reshapes a Native Leaf
677 Microbiome. *Nat. Ecol. Evol.* **2020**, *4* (2), 221–229.
678 <https://doi.org/10.1038/s41559-019-1085-x>.

679 (19) Lundberg, D. S.; Na Ayutthaya, P. P.; Strauß, A.; Shirsekar, G.; Lo, W.-S.;
680 Lahaye, T.; Weigel, D. Measuring Both Microbial Load and Diversity with a
681 Single Amplicon Sequencing Library. *bioRxiv* **2020**, 2020.05.19.103937.
682 <https://doi.org/10.1101/2020.05.19.103937>.

683 (20) Regalado, J.; Lundberg, D. S.; Deusch, O.; Kersten, S.; Karasov, T.; Poersch,
684 K.; Shirsekar, G.; Weigel, D. Combining Whole-Genome Shotgun Sequencing
685 and rRNA Gene Amplicon Analyses to Improve Detection of Microbe-
686 Microbe Interaction Networks in Plant Leaves. *ISME J.* **2020**, *14* (8), 2116–
687 2130. <https://doi.org/10.1038/s41396-020-0665-8>.

688 (21) George, P. B. L.; Creer, S.; Griffiths, R. I.; Emmett, B. A.; Robinson, D. A.;
689 Jones, D. L. Primer and Database Choice Affect Fungal Functional but Not
690 Biological Diversity Findings in a National Soil Survey. *Front. Environ. Sci.*
691 **2019**, 7, 173. <https://doi.org/10.3389/fenvs.2019.00173>.

692 (22) Giangacomo, C.; Mohseni, M.; Kovar, L.; Wallace, J. G. Comparing DNA
693 Extraction and 16S Amplification Methods for Plant-Associated Bacterial
694 Communities. *bioRxiv* **2020**, 2020.07.23.217901.
695 <https://doi.org/10.1101/2020.07.23.217901>.

696 (23) Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.;
697 Glöckner, F. O. The SILVA Ribosomal RNA Gene Database Project:
698 Improved Data Processing and Web-Based Tools. *Nucleic Acids Res.* **2013**,
699 41 (Database issue), D590-596. <https://doi.org/10.1093/nar/gks1219>.

700 (24) de Menezes, A. B.; Prendergast-Miller, M. T.; Richardson, A. E.; Toscas, P.;
701 Farrell, M.; Macdonald, L. M.; Baker, G.; Wark, T.; Thrall, P. H. Network
702 Analysis Reveals That Bacteria and Fungi Form Modules That Correlate
703 Independently with Soil Parameters. *Environ. Microbiol.* **2015**, 17 (8),
704 2677–2689. <https://doi.org/10.1111/1462-2920.12559>.

705 (25) Hanshew, A. S.; Mason, C. J.; Raffa, K. F.; Currie, C. R. Minimization of
706 Chloroplast Contamination in 16S rRNA Gene Pyrosequencing of Insect
707 Herbivore Bacterial Communities. *J. Microbiol. Methods* **2013**, 95 (2), 149–
708 155. <https://doi.org/10.1016/j.mimet.2013.08.007>.

709 (26) Ihrmark, K.; Bödeker, I. T. M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.;
710 Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K. E.;
711 Lindahl, B. D. New Primers to Amplify the Fungal ITS2 Region--Evaluation
712 by 454-Sequencing of Artificial and Natural Communities. *FEMS Microbiol.*
713 *Ecol.* **2012**, 82 (3), 666–677. <https://doi.org/10.1111/j.1574-6941.2012.01437.x>.

715 (27) Cole, L. W. The Evolution of Per-Cell Organelle Number. *Front. Cell Dev.*
716 *Biol.* **2016**, 4, 85. <https://doi.org/10.3389/fcell.2016.00085>.

717 (28) Brucker, R. M.; Bordenstein, S. R. The Hologenomic Basis of Speciation: Gut
718 Bacteria Cause Hybrid Lethality in the Genus *Nasonia*. *Science* **2013**, 341
719 (6146), 667–669. <https://doi.org/10.1126/science.1240659>.

720 (29) Sharma, R.; Mishra, B.; Runge, F.; Thines, M. Gene Loss Rather than Gene
721 Gain Is Associated with a Host Jump from Monocots to Dicots in the Smut
722 Fungus *Melanopsichium Pennsylvanicum*. *Genome Biol. Evol.* **2014**, 6 (8),
723 2034–2049. <https://doi.org/10.1093/gbe/evu148>.

724 (30) Hacquard, S. Disentangling the Factors Shaping Microbiota Composition
725 across the Plant Holobiont. *New Phytol.* **2016**, 209 (2), 454–457.
726 <https://doi.org/10.1111/nph.13760>.

727 (31) Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of Phylogenetics and
728 Evolution in R Language. *Bioinforma. Oxf. Engl.* **2004**, 20 (2), 289–290.
729 <https://doi.org/10.1093/bioinformatics/btg412>.

730 (32) Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v3: An Online Tool for
731 the Display and Annotation of Phylogenetic and Other Trees. *Nucleic Acids*
732 *Res.* **2016**, 44 (W1), W242-245. <https://doi.org/10.1093/nar/gkw290>.

733