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Abstract 

A growing body of evidence suggests that, during decision-making, BOLD signal in the VMPFC 

correlates both with motivational variables – such as incentives and expected values – and metacognitive 

variables – such as confidence judgments, which reflect the subjective probability of being correct. At 

the behavioral level, we recently demonstrated that the value of monetary stakes bias confidence 

judgments, with gain (respectively loss) prospects increasing (respectively decreasing) confidence 

judgments, even for similar levels of difficulty and performance. If and how this value-confidence 

interaction is also reflected in VMPFC signals remains unknown. Here, we used an incentivized 

perceptual decision-making task that dissociates key decision-making variables, thereby allowing to test 

several hypotheses about the role of the VMPFC in the incentive-confidence interaction. While initial 

analyses seemingly indicate that VMPFC combines incentives and confidence to form an expected value 

signal, we falsified this conclusion with a meticulous dissection of qualitative activation patterns. Rather, 

our results show that strong VMPFC confidence signals observed in trials with gain prospects are 

disrupted in trials with no – or negative (loss) monetary prospects. Deciphering how decision variables 

are represented and interact at finer scales (population codes, individual neurons) seems necessary to 

better understand biased (meta)cognition. 
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Introduction 

Over the past decades, a growing number of neurophysiological studies in human and non-human 

primates have established that the neural signals recorded during learning and decision-making tasks in 

the orbito-medial parts of the prefrontal cortex (OMPFC) – the medial orbitofrontal cortex (OFC) and 

the ventromedial prefrontal cortex (VMPFC) – correlate with key variables derived from theories of 

motivation and decision-making (Kable and Glimcher, 2009; Padoa-Schioppa, 2007; Rangel and Hare, 

2010). For instance, in Pavlovian conditioning tasks, neurons in the non-human primate OFC signal the 

anticipatory value of upcoming rewards, with neural activity commensurate to the monkeys9 subjective 

preferences (Tremblay and Schultz, 1999). In economic decision-making tasks, neuronal activity in the 

same region of the OFC correlates with the subjective value of available options (Padoa-Schioppa and 

Assad, 2006). In humans, similar results have been derived from functional neuroimaging studies. 

Blood-Oxygen Level Dependent (BOLD) signal in the VMPFC scales with the anticipation of upcoming 

reward (Kahnt et al., 2011; Knutson et al., 2003), with the subjective pleasantness and desirability 

attributed to different stimuli (Lebreton et al., 2009), with the willingness to pay for different types of 

goods (Chib et al., 2009; Levy and Glimcher, 2011; Plassmann et al., 2007), and with the expected value 

of prizes, performance incentives and economic bundles such as lotteries (Gläscher et al., 2009; Hare et 

al., 2008; Knutson et al., 2005; McNamee et al., 2013). Overall, together with the midbrain and the 

ventral striatum (VS), the VMPFC seems to form a Brain Valuation System (Bartra et al., 2013; Haber 

and Behrens, 2014; Haber and Knutson, 2009), whose activity automatically indexes the value of 

available options so as to guide value-based decision-making (Lebreton et al., 2009; Levy et al., 2011), 

and to motivate motor and cognitive performance (Pessiglione and Lebreton, 2015). 

 

Recently, a set of human neurophysiological studies have suggested that activity in the VMPFC is also 

triggered by metacognitive processes (Fleming and Dolan, 2012; Vaccaro and Fleming, 2018). In 

particular, both single neurons and BOLD activity in the VMPFC correlate with participants9 confidence 

in their own judgments and choices (De Martino et al., 2013; Lebreton et al., 2015; Lopez-Persem et al., 

2020; Shapiro and Grafton, 2020). Confidence is a metacognitive variable that can be defined as one9s 
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subjective estimate of the probability of being correct (Fleming and Daw, 2017; Pouget et al., 2016). 

Just like values, confidence judgments seem to be automatically represented in the VMPFC, for different 

types of judgments and choices (Lebreton et al., 2015; Lopez-Persem et al., 2020; Morales et al., 2018). 

Confidence signals are potentially useful to the flexible adjustment of behavior – such as monitoring 

and reevaluating previous decisions (Folke et al., 2016), tracking changes in the environment (Heilbron 

and Meyniel, 2019; Vinckier et al., 2016), or arbitrating between different strategies (Daw et al., 2005; 

Donoso et al., 2014).  

 

Interestingly, at the behavioral level, values and confidence seem to interact. For instance, a handful of 

studies in psychology and economics have documented that confidence judgments increase in response 

to prospects of monetary bonuses (Giardini et al., 2008), and to positive incidental psychological states 

such as elevated mood (Koellinger and Treffers, 2015), absence of worry (Massoni, 2014) and emotional 

arousal (Allen et al., 2016; Jönsson et al., 2005). Recently, we designed an incentivized perceptual 

decision-making task to demonstrate that monetary incentives bias confidence judgments, with gain 

(respectively loss) prospects increasing (respectively decreasing) confidence judgments, even for similar 

levels of difficulty and performance (Lebreton et al., 2018). This result was also replicated in a 

reinforcement-learning context (Lebreton et al., 2019a; Ting et al., 2020). We explicitly hypothesized 

that this interaction would stem from the concurrent neural representation of – hence putative interaction 

between – incentives and confidence in the VMPFC (Lebreton et al., 2018).  

 

Here, we use a functional neuroimaging adaptation of our original perceptual decision-making paradigm 

that allows to investigate the overlap in neural correlates between incentive and confidence (Lebreton 

et al., 2018). Our first set of analyses did not show the hypothesized overlap of incentive and confidence 

signals in the VMPFC at the expected statistical threshold (P < 0.05 whole-brain corrected FWE at the 

cluster level), nor in other regions of interest (ROI) that have been linked with value, motivation and 

confidence in the past - such as the ventral striatum (VS) and the anterior cingulate cortex (ACC). 

Therefore, we formulated an alternative hypothesis, positing that VMPFC integrates confidence and 

incentive signals into an expected value signal. We ran several quantitative and qualitative analyses that 
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thoroughly compare the relative merits of these different hypotheses for the neural basis of the incentive-

confidence interaction. Our results ultimately depict a complex picture, suggesting that motivational 

signals (notably prospects of loss) can disrupt metacognitive signals in the VMPFC. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323550doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.02.323550
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 

To investigate the neurobiological basis of the interactions between incentives and confidence, we 

modified the task used in (Lebreton et al., 2018) to make it suitable for fMRI (Figure 1A). Basically, 

this task is a simple perceptual task (contrast discrimination), featuring a 2-alternative forced choice 

followed by a confidence judgment. At each trial, participants can win (gain context) or lose (loss 

context) points – or not (neutral context) – depending on the correctness of their choice. Importantly, 

this incentivization was implemented after the moment of choice and before confidence rating. Note that 

this corresponds to the simplest implementation of the task – corresponding to Experiment 2 in 

(Lebreton et al., 2018) –, which otherwise conditioned monetary outcomes to confidence rating precision 

rather than choice accuracy – see (Lebreton et al., 2018) for details. Yet, our previous results suggested 

that this task still reveals an effect of incentives on confidence, while keeping instructions simpler – a 

most desirable feature especially for clinical and fMRI studies. 

 

Behavioral results replicate Lebreton, et al. 2018 

To begin with, we verified that our task generated the incentive-confidence interaction at the behavioral 

level. First, using an approach similar to (Lebreton et al., 2018), we simply tested the biasing effects 

(i.e. net value) and motivational effects (i.e. absolute value) of incentives on behavioral variables, using 

linear mixed-effects models (see Methods). Replicating our previous results, we found a significant 

positive effect of incentive net value on confidence (β = 0.77 ± 0.32, t4317 = 2.43, P = 0.015) and no 

effect of incentive absolute value (β = -0.32 ± 0.55, t4317 = -0.58, P = 0.565; Figure 1B). This result 

alone validates the presence of incentive-confidence interaction at the behavioral level. Importantly, this 

effect was not driven by any net incentive value effects on accuracy or RT (accuracy: β = 0.38 ± 0.93, 

t4317 = 0.41, P = 0.685; RT: β = 13.75 ± 19.22, t4317 = 0.72, P = 0.474). Moreover, we did not find 

evidence for any absolute incentive value on neither accuracy nor RT (accuracy: β = 1.86 ± 1.45, t4317 = 

1.28, P = 0.199; RT: β = -25.24 ± 29.17, t4317 = -0.87, P = 0.387). To confirm the robustness of our main 

effect of net incentive on confidence, we next ran several full linear mixed-effects models, which 

included additional control variables (evidence, accuracy, etc. see Suppl. Mat.). Overall, the incentive-
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confidence interaction remained significant after accounting for those other potential sources of 

biases/confounds. 

  

 

  

Figure 1 | A. Experimental paradigm. Participants viewed two Gabor patches on both sides of the screen (150 ms) and then 
chose which had the highest contrast (left/right, self-paced). After a jitter of a random interval between 4500 to 6000 ms, the 
incentive was shown (900 ms; green frame for win trials, grey frame for neutral trials, red frame for loss trials). Then 
participants were asked to report their confidence in the earlier made choice on a scale ranging from 50% to 100% with steps 
op 5%. The initial position of the cursor was randomized between 65% and 85%. Finally, subjects received feedback. The inter 
trial interval (ITI) had a random duration between 4500 and 6000 ms. The calibration session only consisted of Gabor 
discrimination, without confidence rating, incentives or feedback and was used to adjust difficulty so that every individual 
reached a performance of 70%. B. Behavioral results. Individual-averaged accuracy (left), reaction times (middle) and 
confidence (right) as a function of incentive condition (-100/red, 0/grey, +100/green). Colored dots represent individuals, grey 
lines highlight within subject variation across conditions. Error bars represent sample mean ± sem. Note that for confidence 
and accuracy, we computed the average per incentive level per individual, but that for reaction times, we computed the median 
for each incentive condition rather than the mean due to their skewed distribution. C. Generalized linear mixed-effect 
regression (GLMER) results. Graph depict fixed-effect regression coefficients (β) for incentive net value and incentive absolute 
value predicting performance (top), reaction-times (middle) and confidence (bottom). Error bars represent standard errors of 
fixed effects. 
* P < 0.05 
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fMRI results 

Having established the presence of a robust confidence-incentive interaction at the behavioral level, we 

next turned to the analysis of the functional neuroimaging data. Critically, our task allows us to 

temporally distinguish the moment of stimulus presentation and choice – where the decision value, 

together with an implicit estimation of (un)certainty are expected to build up – from the incentive 

presentation and confidence rating moment – where the explicit, metacognitive confidence signal is 

expected to interact with the incentive (Figure 2A-B). 

 

BOLD signal in the VMPFC correlates significantly with early certainty and incentives but weakly 

with confidence. 

Our original hypothesis proposes that incentives bias confidence because those two variables are 

represented in the same brain area – presumably the VMPFC (De Martino et al., 2013; Lebreton et al., 

2015). To test this hypothesis, we built a first fMRI GLM (GLM1) which models 1) early certainty 

Figure 2 | A-B. Events of interest. The timeline depicts the succession of events within a trial A. Yellow boxes highlight 
the two events/timing of interest (stimulus/choice and incentive/confidence), that are modelled as stick function for the 
fMRI analysis. We also modelled the feedback event as a stick function. C. GLMs parametric regressors specification. 
The graph displays the different combination of parametric modulators of each event of interest for all GLMs used to 
analyze the fMRI data. 
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during stimulus and choice (see Methods for details), and 2) both incentives and confidence ratings 

during incentive/rating (Figure 2C).  

During choice, early certainty positively correlated with activation in the VMPFC, as well as posterior 

cingulate cortex (PCC) (Figure 3A). This replicates several studies that have reported an early and 

automatic encoding of confidence in the VMPFC (De Martino et al., 2017; Lebreton et al., 2015; Shapiro 

and Grafton, 2020). Negative correlations were observed in a widespread network of bilateral 

dorsolateral prefrontal cortex (DLPFC) and rostro-lateral prefrontal cortex (RLPFC), bilateral anterior 

insula, right putamen, right inferior frontal gyrus, supplementary motor area (SMA), mid- and anterior 

cingulate cortex and bilateral inferior parietal lobe. This large network has already been implicated in 

uncertainty and metacognition (Vaccaro and Fleming, 2018). 

During the incentive/rating moment, we found positive correlations between incentive value and activity 

in the VMPFC - extending to clusters in the dorsomedial prefrontal cortex (Figure 3B). This is in line 

with our hypothesis and with a large neuro-economics literature (Bartra et al., 2013). A small cluster 

was detected in the occipital lobe, which negatively correlated with incentives.  

 

 

Figure 3 | A-C: Whole brain statistical BOLD activity correlating with GLM1 early certainty (A), incentives (B) and 
confidence (C). D. Whole brain statistical maps of BOLD activity correlating with GLM3 expected value. 
Unless otherwise specified, all displayed cluster survived P<0.05 FWE cluster correction. Voxel-wise cluster-defining 
threshold was set at P < 0.001, uncorrected. Red/yellow clusters: positive activations. Blue clusters: negative activations. 
For whole-brain activation tables see Supplementary Materials.  
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Finally, regarding subjective confidence, we found significant positive effects in a large, lateralized 

visuo-motor network including the left primary motor cortex, left putamen and left para-hippocampal 

gyrus, as well as right cerebellum and right visual cortex (Figure 3C). All those activations were 

mirrored in the negative correlation with confidence (although with lower – and sometimes subthreshold 

– significance), suggesting these are simply part of the visuo-motor network that process the movement 

of the cursor on the rating scale - remember that movements of the cursor are operationalized with the 

left (resp. right) index finger to move the cursor toward the left (resp. right). 

Outside those visuo-motor areas, activity in a large cluster in the dorsal anterior cingulate cortex (dACC) 

and the mid cingulate cortex (MCC) was found to positively correlate with confidence. Interestingly, an 

adjacent region of the dACC negatively correlated with early certainty in the choice period (Figure 3A). 

To our surprise, and in contradiction with our hypothesis, no whole-brain significant cluster was found 

in the VMPFC at our a priori defined statistical threshold. There were, however signs of sub-threshold 

activations (Figure 3C). 

 

Accounting for incentive bias in confidence does not restore VMPFC confidence activations. 

Next, we attempted to understand why no strong correlations with confidence were found in the 

VMPFC, while the same region robustly encoded early certainty and incentives - two precursors of 

confidence. We reasoned that because confidence is biased by incentive, shared variance between those 

two variables could decrease our chances to reveal clear confidence signals during confidence ratings. 

We therefore built two control GLMs, which differed in how we modelled the incentive/rating period 

(Figure 2C): GLM2a only included confidence as a parametric modulator, while GLM2b included 

incentive and early certainty (i.e. the precursor of confidence, devoid of incentive shared variance). We 

defined an anatomical VMPFC ROI (see Methods and Figure 4A), and extracted individual 

standardized regression coefficients (t-values) corresponding to the confidence variable in those 3 GLMs 

(GLM1, GLM2a, GLM2b) (see Methods). We then tested whether the difference in the GLM 

specifications had an impact on these activations at the rating period (GLM1 and 2a: confidence; 

GLM2b: certainty), using repeated measure ANOVAs. Results showed that activations for GLM2a-

confidence and GLM2b-early certainty during incentive/rating period are indistinguishable from 
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GLM1-confidence (ANOVA, main effect of GLMs: F(2,29) = 0.68; P = 0.509), falsifying the hypothesis 

that the weak confidence activations in VMPFC observed with GLM1 were due to an ill-specified GLM.  

 

BOLD signal in the VMPFC strongly correlates with expected value.  

Having established that BOLD activity in the VMPFC only weakly correlates with confidence after the 

incentive display, we proposed a new hypothesis – namely that the VMPFC encodes a signal 

commensurate to an expected value. The rationale is twofold: first, because confidence represents a 

subjective probability of being correct, this can be combined with the performance bonus once this is 

revealed, thereby mechanically generating the expected value (EV) variable. Second, activity in the 

VMPFC has been repeatedly shown to correlate with EV in different contexts (lotteries, etc.) (Gläscher 

et al., 2009; Hare et al., 2008; Knutson et al., 2005; McNamee et al., 2013). To test this hypothesis, we 

built another fMRI GLM similar to the previous ones, but that modeled EV at the time of incentive/rating 

(GLM 3; see Figure 2C). 

Whole-brain results showed massive positive correlations between EV and signal in the VMPFC -

stretching into anterior medial prefrontal cortex, as well as the ventral and dorsal part of the anterior 

cingulate cortex and the mid cingulate cortex (Figure 3D). There were no clusters with activity 

negatively related to EV. 

 

BOLD signal in the VMPFC correlates better with expected value than with other variables.  

Although these results seem to validate our second hypothesis, the fact that we observed more 

activations (wider cluster, lower P-values) at the whole-brain level for EV than for confidence does not 

constitute a formal statistical test that VMPFC signals might rather correlate with EV than with 

confidence. Also, they may be caused by the fact that incentives and EV are highly correlated – in other 

words, VMPFC activations to EV could simply be a result of VMPFC activations to incentives. In order 

to alleviate those concerns, we built an additional GLM (GLM4), which only included incentive at the 

incentive/rating period (Figure 2C). Again, we extracted VMPFC individual standardized regression 

coefficients (t-values) corresponding to the early certainty, the incentive and the confidence-related 

activations in all available GLMs. We tested whether the different specifications had an impact on those 
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activations using repeated measure ANOVAs, and post-hoc t-tests (Figure 4, Table 1). Although 

activations for early certainty during choice moment were similar for all GLMs (ANOVA, main effect 

of GLM; F(4,29) = 0.24, P = 0.916; Figure 4B), GLM specification had an impact on both the incentive 

activations (ANOVA, main effect of GLM; F(3,29) = 10.67, P = 4.837×10-6; Figure 4C) and the 

confidence activations (ANOVA, main effect of GLM; F(3,29) = 3.22, P = 0.027; Figure 4C) during 

incentive/rating moment. In both cases, post-hoc t-tests showed that T-values extracted from the GLM3 

that related to the expected value regressor were significantly higher than from other GLMs with a 

different coding of incentives (GLM1 vs GLM3: t29 = 3.90, P = 5.306×10-4; GLM2b vs GLM3: t29 = 

3.38, P = 0.002 , GLM4 vs GLM3: t29 = 2.97, P = 0.006), and marginally higher from other GLMs with 

a different coding of confidence (GLM1 vs. GLM3: t29 = 1.92, P = 0.064; GLM2a vs. GLM3: t29 = 1.72, 

P = 0.096; GLM2b vs. GLM3: t29 = 2.36, P = 0.025). Overall these analyses suggest that the VMPFC 

combines incentive and confidence signals in the form of an expected value signal.  

 

 

 

 

Figure 4 | A. Anatomical vmPFC region of interest (ROI). B-D Comparison of vmPFC activations to different specifications of early 
certainty during choice moment (B), incentives during incentive/rating moment (C) and confidence during incentive/rating moment (D), as 
implemented in the different GLMs. Dots represent individual activations; bar and error bars indicate sample mean ± sem. Grey lines 
highlight within subject variation across the different specifications. 
Cert: early certainty; Inc.: incentives; conf.: confidence; EV: expected value; 
Diamond-ended horizontal bars indicate the results of repeated-measure ANOVAs. Dash-ended horizontal bars indicate the result of post-
hoc paired t-tests. 
~ P < 0.10; * P<0.05; ** P<0.01; *** P < 0.001 
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Qualitative falsification of the EV model of VMPFC activity 

Lastly, in order to confirm the conclusions drawn from our quantitative comparison of VMPFC 

activations, we ran a qualitative falsification exercise (Palminteri et al., 2017). Basically, leveraging the 

factorial design of our experiment, we can draw qualitative patterns of activations that would be 

expected under different hypotheses underlying VMPFC activation (Figure 5A).  

We therefore designed a last GLM (GLM5) that splits up the task in two time points (stimulus/choice 

and incentive/rating), and three incentive conditions, and that incorporates a baseline and a regression 

slope with confidence judgment for all these events. We then extracted the VMPFC activations for all 

these regressors using our ROI, and compared them with the theorized qualitative patterns we would 

expect if VMPFC encodes one of these variables (Figure 5B-C and Table 3). As expected, at the 

moment of the stimulus/choice, there was no effect of incentive conditions on VMPFC baseline activity, 

nor on its correlation with confidence – <slope= (ANOVA baseline: F(2,29) = 0.36, P = 0.701; ANOVA 

correlation with confidence: F(2,29) = 0.56, P = 0.576). Basically, the slopes were significantly positive 

in all three incentive conditions (Loss: t29 = 2.10, P = 0.045; Neutral: t29 = 2.43, P = 0.021; Gain: t29 = 

3.04, P = 0.005), confirming that the VMPFC encodes an early certainty signal. 

At rating moment, incentive conditions had an effect on both VMPFC baseline activity, and on its 

correlation with confidence (ANOVA baseline: F(2,29)= 8.56, P = 5.543×10-4; ANOVA correlation 

with confidence: F(2,29)= 5.26, P = 0.008). Post-hoc testing revealed that VMPFC baseline activity was 

significantly larger in gain versus loss (t29 = 3.47, P = 0.002) and in gain vs neutral conditions (t29 = 

3.17, P = 0.004), but not in neutral vs loss condition (t29 = 0.43, P = 0.673) (see Table 3). This constitutes 

a deviation from a standard linear model of incentives, and suggest that different regions might process 

incentives in gains and loss contexts (Palminteri and Pessiglione, 2017). 

Moreover, we found that the correlation of VMPFC activity with confidence is mostly positively 

significant in the gain condition (t29 = 3.29, P = 0.003), and not in the loss (t29 = -0.75, P = 0.457) nor 

neutral (t29 = 0.70, P = 0.491) conditions. The correlation with confidence was therefore significantly 

higher in gain versus loss (t29 = 3.13, P = 0.004) and in gain versus neutral conditions (t29 = 2.02, P = 

0.053), but not in neutral versus loss condition (t29 = 1.03, P = 0.313). While the absence of correlation 
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in the neutral condition would be expected, should the VMPFC encode EV, the lack of correlation in 

the loss condition was not featured in any model prediction (Figure 5A). 

 

Overall, these results explain why EV appears, at first sight, as a better model of VMPFC activation 

than confidence and/or incentive (correct pattern in gains and neutral conditions), but ultimately falsify 

this account (absence of positive correlation between VMPFC activation and confidence in the loss 

condition). 

 

 

 

Figure 5 | A. Qualitative vmPFC activation patterns predicted under different models. The different boxes present how BOLD 
signal should vary with increasing confidence in the three incentive conditions (green: +100; grey: 0; red: -100), under different 
hypotheses (i.e. encoding different variables), at different time points. Bar graphs in insets summarize these relationships as 
expected intercepts (or baseline – top) and slope (bottom). B-C. vmPFC ROI analysis. T-values corresponding to baseline and 
regression slope were extracted in the three incentive conditions, and at the two time-points of interest (B: stimulus/choice; C: 
incentive/rating). Dots represent individual activations; bar and error bars indicate sample mean ± sem. Grey lines highlight 
within subject variation across the different incentive conditions. 
Diamond-ended horizontal bars indicate the results of repeated-measure ANOVAs. Dash-ended horizontal bars indicate the 
result of post-hoc paired t-tests. 
~ P < 0.10; * P<0.05; ** P<0.01; *** P < 0.001 
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Discussion 

In this study, we set out to investigate the neural signature of incentive bias on confidence estimations, 

using an fMRI-optimized version of an incentivized perceptual decision-making task (Lebreton et al., 

2018). First, at the behavioral level, we replicated the biasing effect of incentives on confidence 

estimation, in the form of higher confidence in gain contexts and lower confidence in loss context – 

despite equal difficulty and performance. This result constitutes the fourth independent replication of 

this bias, initially revealed in perceptual decision making and later generalized in a reinforcement-

learning task (Lebreton et al., 2018, 2019a; Ting et al., 2020). Note however, that the bias effect-size 

remain small – a few average confidence percentage points at the population level –, what sets clear 

bounds a priori on our ability to dissect its precise neurophysiological bases with current (correlational) 

functional neuroimaging techniques. 

 

Our initial goal and hypothesis was therefore quite simple and modest. In the literature, it is now well 

established that BOLD signal in the VMPFC correlates with confidence and/or values in a variety of 

tasks (De Martino et al., 2013, 2017; Lebreton et al., 2015; Lopez-Persem et al., 2020; Morales et al., 

2018; Shapiro and Grafton, 2020). We reasoned that if we could unequivocally evidence the co-

existence of incentive and confidence signals in VMPFC activity in our task, this would reinforce the 

intuition that this region plays a role in the observed behavioral phenomenon - the incentive bias on 

confidence. Our neuroimaging predictions were that 1) VMPFC should automatically correlate with 

early certainty before and during choice, regardless of the context, and 2) VMPFC should integrate 

confidence and incentive after the choice and the revealing of the incentive condition. Our broader, 

speculative neural hypothesis was that during this last confidence judgment step, a third-party 

metacognitive region or network would sample signal in the VMPFC (Meyniel et al., 2015; Shekhar and 

Rahnev, 2018), and incidentally end up with a biased confidence estimate incorporating incentive signal.  

 

Our functional MRI investigation of the neural correlates of early certainty confirms our first prediction: 

BOLD activity in the VMPFC positively correlates with this quantity in all conditions. This result 

replicates and extends previous studies demonstrating this area to be involved in the initial and automatic 
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processing of confidence during choice (De Martino et al., 2013; Lebreton et al., 2015; Shapiro and 

Grafton, 2020). In parallel with this positive correlation in the VMPFC, we also observed wide-spread 

negative correlations in the DLPFC, DMPFC and insula, a network robustly associated with both 

metacognition and uncertainty (Molenberghs et al., 2016; Morales et al., 2018; Vaccaro and Fleming, 

2018). Contrary to our second prediction, we only found weak evidence (i.e. at a lower statistical 

threshold than the one we defined a priori) for confidence encoding in the VMPFC. Robust activations 

were nonetheless observed in the dACC, a region known to be recruited in metacognitive judgments 

(Bang and Fleming, 2018; Fleming et al., 2012). 

 

Given that the lack of robust confidence signal in the VMPFC is somewhat in contradiction with what 

we expected from our previous work, as well as numerous other reports in the literature (De Martino et 

al., 2013, 2017; Lebreton et al., 2015; Lopez-Persem et al., 2020; Morales et al., 2018; Shapiro and 

Grafton, 2020), we formulated an alternative hypothesis: we proposed that VMPFC could encode a 

signal commensurate to an expected reward (or expected value EV), i.e. incorporating the subjective 

probability of being correct with the potential incentive bonus when revealed. Whole-brain activations 

and ROI quantitative analyses clearly showed that this second hypothesis seems to give a better account 

of VMPFC BOLD activations. Expected value signals are frequently reported in the VMPFC, but mostly 

in reinforcement-learning contexts, where they are critical to both choices between available options 

and learning – i.e. value updating, through the computation of prediction errors (Chase et al., 2015). In 

the present perceptual task, there is no learning, therefore no explicit need to encode EV. 

 

Because quantitative comparisons of hypotheses are notoriously hard to interpret, we decided to leverage 

the factorial aspect of our design to proceed to a qualitative hypothesis falsification, to validate – or 

falsify – the EV account of VMPFC activity (Palminteri et al., 2017). In short, different hypotheses 

about what should be contained in VMPFC signal (EV, confidence and/or incentives) predict different 

patterns of activations (baseline and correlation with confidence) in our different incentive conditions. 

From activity extracted in an anatomical VMPFC ROI, it is clear that activity in the VMPFC correlates 

with confidence only in the gain context, once the incentive has been revealed. This finding explains 
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why the EV hypothesis gets more quantitative support than the confidence and/or incentives hypotheses 

(as the VMPFC activity pattern is similar to the EV predictions in the gain and neutral context). 

However, it also ultimately falsifies this EV hypothesis as well (as VMPFC activity does not seem to 

correlate with confidence in the loss context). Interestingly VMPFC did correlate with early certainty – 

a precursor of confidence - in all conditions before the incentives are revealed. Therefore, it does not 

seem that VMPC fails to activate in the neutral and loss conditions, but rather that the signal is actively 

suppressed once those contexts are explicit. In summary, we believe that our results show a complex 

picture of disruptions of confidence signals within the VMPFC in response to motivational signals.  

 

The notion that there are different brain networks which execute symmetric computations in gains vs. 

loss contexts is increasingly popular (Palminteri and Pessiglione, 2017; Seymour et al., 2015). In the 

present dataset we did not find any region correlating either positively or negatively with confidence in 

the loss context, even when exploring at the whole brain level with very lenient statistical thresholds. 

One promising area, that has repeatedly been found to be responsive to loss anticipation and that 

correlated positively with subjective confidence in our data, is the dACC. However, when we performed 

a similar falsification exercise within the dACC as we used within the VMPFC (see Suppl. Mat.), the 

results were similar to the VMPFC activation patterns: dACC activity only correlated with confidence 

within the gain contexts. In summary, the neurobiological bases of confidence judgments in loss contexts 

remain an open question.  

 

Our results have important implications, as the influences of motivational processes on confidence could 

lead to dysfunctional behaviors. Indeed, several psychiatric disorders such as addiction, obsessive-

compulsive disorder and schizophrenia have been associated with disrupted incentive processing, and 

studies have additionally demonstrated distorted confidence estimations in these groups (Hoven et al., 

2019). Moreover, the regions involved in incentive processing and confidence estimation such as the 

VMPFC, VS, insula and ACC are all consistently implicated in these disorders (Chai et al., 2011; 

Goldstein and Volkow, 2011; Namkung et al., 2017; Thorsen et al., 2018). Therefore, the relation 
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between motivational processes and confidence estimation and their role in psychopathology warrants 

future investigation. 

  

In conclusion, we show that although the VMPFC superficially seems to encode both value and 

metacognitive signals, these metacognitive signals are only present during the prospect of gain, but are 

disrupted in a context with loss or no monetary prospects. Studies targeting this problem within a finer 

spatial (Kepecs and Mainen, 2012; Lopez-Persem et al., 2020; Middlebrooks et al., 2013), as well as 

temporal scale (Desender et al., 2016), could help with resolving and better comprehending biased 

confidence judgments and metacognition overall. 
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Methods 

Participants 

We included thirty-three right-handed healthy participants with normal or corrected to normal vision. 

Exclusion criteria were an IQ below 80, insufficient command of the Dutch language or MRI 

contraindications. All experimental procedures were approved by the Medical Ethics Committee of the 

Academic Medical Center, University of Amsterdam (METC 2015_319) and participants gave written 

informed consent. Participants were compensated with a base amount of €40 and additional gains based 

on task performance. Session-level behavioral and fMRI data was excluded when task accuracy was 

below 60% or when subjects did not show sufficient variation in their confidence reports (standard 

deviation of confidence judgments <5 confidence points), and session-level fMRI data when participants 

displayed more than 3.5 mm head movement. This led to the inclusion of 32 participants for the 

behavioral analyses and 30 for the fMRI analyses, of which four participants contributed only one of 

two task sessions.  

 

Decision-making and confidence judgment task 

We adapted the task from Lebreton et al. (2018) for use in an fMRI environment with fMRI suitable 

timing intervals. For an overview and details, see Figure 1A. All tasks used in this study were 

implemented using MATLAB® (MathWorks Inc., Sherborn, MA, USA) and the COGENT toolbox 

(www.vislab.ucl.ac.uk/cogent.php).  

 

Study procedure 

On the day of testing, subjects were first assessed for clinical and demographic data, then performed a 

ten-trial practice session, once outside and once inside the scanner, to get acquainted with the task. 

Before performing the main task, subjects were instructed that it was important to be as accurate as 

possible as this would maximize their earnings, but to also give accurate confidence judgments. All 

subjects initially performed a 144-trial calibration session inside the scanner to tailor the difficulty levels 
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of the task to each individual and to keep performance constant across subjects - see Lebreton et al. 

(2018) for details. 

Two sessions of the main task were performed in the fMRI scanner, each consisting of 72 trials with 24 

trials per incentive condition, presented in a random order. The practice task, calibration and main 

sessions were projected onto an Iiyama monitor in the fMRI environment, which subjects could see 

through a 45-degree angle mirror fixed to the head coil. After completing the fMRI task, six random 

trials were drawn (i.e. two of each incentive condition) on which the payment was based. If subjects 

made an accurate choice, they would either gain or avoid losing points, whereas they would miss out on 

gaining or lose points when making an error. In the neutral trials, nothing was at stake. Finally, the total 

amount of points was converted to money. 

 

Behavioral Measures 

We extracted various trial-by-trial experimental factors (evidence, incentive and difficulty level) and 

behavioral measures (accuracy, subjective confidence ratings, reaction times). Two additional variables 

were computed as combinations of those experimental factors and behavioral measures: early certainty 

and expected value. 

 

Early certainty: We built an 8early certainty9 variable to analyze brain activity at choice moment, when 

the brain possibly automatically encodes a confidence signal that is not yet biased by incentives 

(Lebreton et al., 2015). We reasoned that such a signal should be highly correlated with confidence, 

while exhibiting no statistical relationships with incentives. Therefore, we used a leave-one-trial-out 

approach to obtain trial-by-trial estimations of early certainty (Bang and Fleming, 2018). We fitted a 

generalized linear regression model to each subject9s subjective confidence ratings using choice and 

stimulus features as predictors (i.e. log-transformed reaction times, evidence, accuracy and the 

interaction between accuracy and evidence), using the whole individual dataset but trial X. We then 

applied this model9s beta estimates to generate predictions about the early certainty in trial X, using the 

choice and stimulus features of trial X. This process was repeated for every trial, resulting in a trial-by-

trial prediction of early certainty based on stimulus features at choice moment. The resulting early 
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certainty signal featured high correlation with confidence, and no statistical relationship with incentives 

(see Suppl. Mat. for more details). 

 

Expected value: we computed a value-based measure of expected value (EV). In our task paradigm, EV 

was computed as an integrative signal of early certainty (i.e. the non-biased probability of being correct) 

and the incentive value (i.e. value-context of the current trial). Early certainty ratings represent the 

subjects9 probability of being correct, and thus the probability of gaining (or avoid losing) the incentive 

at stake. Thus, EV corresponds to 0 in the neutral condition (no value is expected to be gained or lost), 

is equal to early certainty in the gain condition (e.g. being 100% certain results in a maximal EV in a 

positive incentive environment), and is equal to early certainty – 100 (e.g. being 100% certain in a loss 

trial results in an EV of 0, as you avoid losing).  

 

Behavioral Analyses 

All behavioral analyses were performed using MATLAB and the R environment (RStudio Team (2015). 

RStudio: Integrated Development for R. RStudio, Inc., Boston, MA). For the statistical analyses reported 

in the main text, we used linear mixed-effects models (estimated with the fitglme function in MATLAB) 

to model accuracy, reaction times and confidence. For all three trial-by-trial dependent variables we 

used the absolute incentive value (|V|) and the net incentive value (V) as predictor variables. All mixed 

models included random intercepts and random slopes. Additional control analyses are reported in the 

Suppl. Mat. 

 

fMRI acquisition & preprocessing 

fMRI data was acquired by using a 3.0 Tesla Intera MRI scanner (Philips Medical Systems, Best, The 

Netherlands). Following the acquisition of a T1-weighted structural anatomical image, 37 axial T2*-

weighted EPI functional slices sensitive to blood oxygenation level-dependent (BOLD) contrast were 

acquired. A multi echo (3 echoes) combine interleaved scan sequence was applied, designed to optimize 

functional sensitivity in all parts of the brain (Poser et al., 2006). The following imaging parameters 

were used: TR, 2.375 seconds; TEs, 9.0ms, 24.0ms, and 43.8ms, (total echo train length: 75ms); 3 mm 
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(isometric) voxel size; 37 transverse slices; 3 mm slice thickness; 0.3 mm slice-gap. Two experimental 

sessions were carried out, each consisting of 570 volumes. All further analyses were performed using 

MATLAB® (MathWorks Inc., Sherborn, MA, USA) with SPM12 software (Wellcome Department of 

Cognitive Neurology, London, UK). 

 

Raw multi-echo functional scans were weighed and combined into 570 volumes per scan session. During 

the combining process, realignment was performed on the functional data by using linear interpolation 

to the first volume. The first 30 dummy scans were discarded. The remaining functional images were 

co-registered with the T1-weighted structural image, segmented for normalization to MNI space and 

smoothed by using a Gaussian kernel of 6 mm at full-width at half-maximum.  

 

Due to sudden motion, in combination with the interleaved scanning method, a number of subjects 

showed artifacts in some functional volumes. In order to reduce those artifacts, the Art-Repair toolbox 

(Mazaika et al., 2007) was used to detect large volume-to-volume movement and repair outlier volumes. 

The toolbox identifies outliers by using a threshold for the variation of the mean intensity of the BOLD 

signal and a volume-to-volume motion threshold. A threshold of 1.5% variation from the mean intensity 

was used to detect and repair volume outliers by interpolating from the adjacent volumes (n=12). 

 

fMRI Analyses 

All fMRI analyses were conducted using SPM12. All general linear models (GLMs) were estimated on 

subject-level with two moments of interest: the moment of choice (i.e. presentation of the Gabor patches) 

and the moment of incentive presentation/confidence rating (Fig 2). The rating moment follows the 

presentation of the incentive after 900 ms, hence the decision to analyze them as a single moment of 

interest. Moreover, the GLMs also included a regressor for the feedback moment, which was not of 

interest for analysis, but was intended to explain variance in neural responses related to value and 

accuracy feedback, but unrelated to the decision-making process.  
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When using parametric modulators in our GLMs, those were not orthogonalized and competed to 

explain variance. Nuisance regressors consisting of 6 motion parameters were included in all GLMs. 

Regressors were modeled separately for each scan session and constants were included to account for 

between-session differences in mean activation. All events were modeled by convolving a series of delta 

functions with the canonical HRF at the onset of each event and were linearly regressed onto the 

functional BOLD-response signal. Low frequency noise was filtered with a high pass filter with a cut 

off of 128 seconds. All contrasts were computed at subject level and taken to a group level mixed effect 

analysis using one-sample t-tests. 

 

We controlled for the number of sessions while making the first-level contrasts. We assessed group-

level main effects by applying one-sample t-tests against 0 to these contrast images. All whole-brain 

activation maps were thresholded using family-wise error correction for multiple correction (FWE) at 

cluster level (PFWE_clu < 0.05), with a voxel cluster-defining threshold of P<.001 uncorrected.  

 

GLM1: Neural signatures of certainty, incentive and confidence 

GLM1 consisted of three regressors for the three moments of interest: 8choice9, 8incentive/rating9 and 

8feedback9, to which one or more parametric modulators (pmod) were added (Fig 2). The regressors 

were specified as stick function time-locked to the onset of the events. The choice regressor was 

modulated by two pmods: early certainty (z-scored before entering the GLM) and button press (left/right 

choice) in order to control for activity related to motor preparation. The incentive/rating regressor was 

modulated by two pmods: incentive value and subjective confidence level (z-scored). Lastly, the 

feedback regressor was modulated by a pmod of accuracy.  

 

GLM2a: control for incentive bias 1 

GLM2a consists of the same regressors as GLM1, except that rating moment is only modulated by 

confidence judgments (i.e. we deleted the incentive modulator).  
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GLM2b: control for incentive bias 2 

GLM2b consists of the same regressors as GLM1, except that the pmod of confidence judgments at 

rating moment is replaced by a pmod for early certainty.  

 

GLM3: Neural signatures of expected value 

GLM3 consists of the same regressors as GLM1, except that rating moment is modulated by a single 

pmod of EV.  

 

GLM4: control for incentive  

GLM4 consists of the same regressors as GLM1, except that rating moment is only modulated by 

incentives (i.e. we deleted the confidence judgment modulator).  

 

GLM5: qualitative patterns of activations 

GLM5 includes a regressor for all three incentives at two timepoints of interest: choice and rating 

moment, as well as a regressor at feedback moment. All regressors at choice moment were modulated 

by a pmod of early certainty and button press (L/R). All regressors at rating moment were modulated by 

a pmod of confidence judgment. The feedback regressor was modulated by accuracy. This GLM allowed 

us to investigate activity related to both baseline and the regression slope with early certainty or 

confidence judgment for these events.  

 

Regions of interest 

To avoid circular inference, we took an independent anatomical ROI of the VMPFC from the 

Brainnetome Atlas (Fan et al., 2016). We included three areas along the ventral medial axis for the 

VMPFC ROI. Using this ROI, we extracted individual t-statistics (i.e. normalized beta estimates – see 

(Lebreton et al., 2019b) from contrasts of interest, and statistically compared them using paired t-tests 

or repeated measure ANOVAs. 
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Tables 
 
 
 

 
Table 1 | Comparison of VMPFC parametric activity (t-values) as a function of model specification 

(GLMs) 

The table reports descriptive and inferential statistics on VMPFC ROI parametric activations with three 
different variables of interest: early certainty effects at choice moment, incentive effects at rating 
moment and confidence effects at rating moment (see Fig. 4). Per effect of interest, results of one-sample 
t-tests against zero, repeated-measure (RM) ANOVAs on the main effect of GLMS, and post-hoc t-test 
results are shown. 
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 GLM1 GLM2a GLM2b GLM3 GLM4 

0.52 ± 0.18 
t29 = 2.92 
P = 0.007 

0.52 ± 0.18 
t29 = 2.91 
P = 0.007 

0.53 ± 0.18 
t29= 2.93 
P = 0.007 

0.53 ± 0.18 
t29 = 2.93 
P = 0.007 

0.52 ± 0.18 
t29 = 2.90 
P = 0.007 

RM ANOVA - - - - 

F(4,29) = 0.24 
P = 0.916 

- - --  

In
ce

n
ti

v
e 

 

GLM1 GLM2b GLM3 GLM4 

0.30 ± 0.09 
t29 = 3.45 
P = 0.002 

0.33 ± 0.09 
t29 = 3.60 
P = 0.001 

0.42 ± 0.10 
t29 = 4.26 

P = 1.981×10-4 

0.34 ± 0.09 
t29 = 3.68 

P = 9.433×10-4 

RM ANOVA 
T-Test 
[3 vs 1] 

T-Test 
[3 vs 2b] 

- 
T-Test 
[3 vs 4] 

F(3,29) = 10.67 
P = 4.837×10-6 

0.12± 0.03 
t29 = 3.90 

P = 5.306×10-4 

0.09 ± 0.03 
t29 = 3.38 
P = 0.002 

-- 
0.08 ± 0.03 
t29 = 2.97 
P = 0.006 
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GLM1 GLM2a GLM2b GLM3 

0.18± 0.08 
t29 = 2.14 
P = 0.041 

0.21 ± 0.09 
t29 = 2.30 
P = 0.028 

0.12 ± 0.09 
t29 = 1.35 
P = 0.187 

0.42 ± 0.10 
t29 = 4.26 

P = 1.981×10-4 

RM ANOVA 
T-Test 
[3 vs 1] 

T-Test 
[3 vs 2a] 

T-Test 
[3 vs 2b] 

- 

F(3,29) = 3.22 
P = 0.027 

0.24 ± 0.13 
t29 = 1.92 
P = 0.064 

0.21 ± 0.12 
t29 = -1.72 
P = 0.096 

0.30 ± 0.13 
t29 = 2.36 
P = 0.025 
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Table 2 | Comparison of VMPFC activity at choice moment (t-values), as a function of incentive 

condition 

The table reports descriptive and inferential statistics on VMPFC ROI parametric activations in our three 
incentive conditions during choice moment, for both baseline activity as well as the correlation with 
early certainty (i.e. slope) (see Figure 5B). Results of RM ANOVAs and one-sample t-tests against 0 
are shown.  

C
h
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e/
S

ti
m

 

b
a

se
li

n
e Inc. -100 Inc. 0 Inc. +100 RM ANOVA 

-0.10 ± 0.15 
t29 = -0.70 
P = 0.490 

-0.04 ± 0.15 
t29 = -0.30 
P = 0.770 

-0.13 ± 0.15 
t29 = -0.85 
P = 0.400 

F(2,29) = 0.36 
P = 0.701 

sl
o

p
e 

Inc. -100 Inc 0 Inc. +100 RM ANOVA 

0.250 ± 0.12 
t29 = 2.10 
P = 0.045 

0.29 ± 0.12 
t29 = 2.43 
P = 0.021 

0.35 ± 0.12 
t29 = 3.04 
P = 0.005 

F(2,29) = 0.56 
P = 0.576 
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Table 3 | Comparison of VMPFC activity at rating moment (t-values), as a function of incentive 

condition 

The table reports descriptive and inferential statistics on VMPFC ROI parametric activations in our three 
incentive conditions during rating moment, for both baseline activity as well as the correlation with 
confidence (i.e. slope) (see Figure 5C). Results of one-sample t-tests against 0, RM ANOVAs and post-
hoc t-tests are shown. 
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Inc -100 Inc 0 Inc +100 RM ANOVA 

-0.16 ± 0.12 
t29 = -1.31 
P = 0.20 

-0.20 ± 0.17 
t29 = -1.19 
P = 0.25 

0.22 ± 0.16 
t29 = 1.37 
P = 0.18 

F(2,29) = 8.56 
P = 5.543×10-4 

T-Test 
[-100 vs 0] 

T-Test 
[0 vs 100] 

T-Test 
[-100 vs 100] 

 0.04 ± 0.09 
t29 = 0.43 
P = 0.673 

-0.42 ± 0.13 
t29 = 3.17 
P = 0.004 

-0.38 ± 0.11 
t29 = 3.47 
P = 0.002 

sl
o

p
e 

Inc -100 Inc 0 Inc +100 RM ANOVA 

-0.06 ± 0.07 
t29 = -0.75 
P = 0.457 

0.05 ± 0.07 
t29 = 0.70 
P = 0.491 

0.32 ± 0.10 
t29 = 3.29 
P = 0.003 

F(2,29) = 5.26 
P = 0.008 

T-Test 
[-100 vs 0] 

T-Test 
[0 vs 100] 

T-Test 
[-100 vs 100] 

 -0.11 ± 0.10 
t29 = 1.03 
P = 0.313 

-0.27 ± 0.13 
t29 = 2.02 
P = 0.053 

-0.38 ± 0.12 
t29 = 3.13 
P = 0.004 
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