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35 Abstract

36
37  Sexual selection researchers have traditionally focused on adult sex differences; however,

38  the schedule and pattern of sex-specific ontogeny can provide insights unobtainable from
39  an exclusive focus on adults. Recently, it has been debated whether facial width-to-height
40  ratio (fWHR; bi-zygomatic breadth divided by midface height) is a human secondary

41  sexual characteristic (SSC). Here, we review current evidence, then address this debate
42  using ontogenetic evidence, which has been under-explored in fWHR research. Facial

43 measurements collected from males and females aged 3 to 40 (Study 1; US, n=2449), and
44 7 to 21 (Study 2; Bolivia, n=179) were used to calculate three fWHR variants (which we
45  call ftWHRnasion, tWHRstomion, and fWHRbrow) and two other common facial

46  masculinity ratios (facial width-to-lower-face-height ratio, fWHR/ower, and cheekbone
47  prominence). We test whether the observed pattern of facial development exhibits

48  patterns indicative of SSCs, 1.e. differential adolescent growth in either male or female

49  facial morphology leading to an adult sex difference. Results showed that only

50 fWHRI/ower exhibited both adult sex differences as well as the classic pattern of

51  ontogeny for SSCs—greater lower-face growth in male adolescents relative to females.
52 fWHRbrow was significantly wider among both pre- and post-pubertal males in the 2D
53  sample; post-hoc analyses revealed that the effect was driven by large sex differences in
54 brow height, with females having higher placed brows than males across ages. In both

55  samples, all fWHR measures were inversely associated with age; that is, human facial

56  growth is characterized by greater relative growth in the mid-face and lower face relative
57  to facial width. This trend continues even into middle adulthood. BMI was also a positive

58  predictor of most of the ratios across ages, with greater BMI associated with wider faces.
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59  Researchers collecting data on fWHR should target fWHRIower and fWHRbrow and
60  should control for both age and BMI.
61
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Introduction

Charles Darwin (1872) used the term secondary sexual characteristic (SSC) to
refer to traits that evolve by sexual selection, and which contribute to an individual’s
reproductive success through deterring competitors (i.e., intrasexual selection;
Andersson, 1994; Buss 1988; Lindenfors & Tullberg, 2011; Puts, 2010) or attracting
mates (i.e., intersexual selection; Andersson, 1994; Buss, 1989). Sexual selection is the
primary explanatory framework for the evolution of sex differences across species,
including humans (e.g., Andersson, 1994; Conroy-Beam et al., 2015; Lassek & Gaulin,
2009; Penton-Voak et al., 1999; Plavcan, 2012; Puts et al., 2007; Puts, 2010).

In 2007, Weston et al. proposed a new human SSC—facial width-to-height ratio
(fWHR), or the width of the face (between the left and right zygion) divided by the length
of the mid-face (from the nasion to the prosthion, referred to as fWHRnasion in the
current analyses; see Table 1 and Fig 1 for measurement variants) based on identification
of sex differences in a sample of South African crania. Since then, this and similar facial
metrics have gained increasing attention' in psychology, biological anthropology, and
other fields for its persistent association with an array of behavioral, psychosocial, and
anatomical traits (e.g., Carré, & McCormick, 2008; Carré, McCormick, & Mondloch
2009; Gomez-Valdés et al., 2013; Hodges-Simeon, Sobraske, Samore, Gurven, & Gaulin,
2016). A number of recent studies, however, highlight inconsistencies in the findings
(Lefevre et al., 2012; Kosinski, 2017; Ozener, 2012) and it is now currently debated

whether fWHR should be characterized as a SSC (Dixson, 2018; Hodges-Simeon et al.,

! Searching “facial width to height ratio” in Google Scholar revealed increasing numbers of publications
every year from 2010 (N=6) to 2018 (N=155).
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97  2016; Hodges-Simeon et al., 2018; Kramer, 2017; Welker et al., 2016). We review the
98  current debate, and then argue that important insights may be gained from an ontogenetic

99  approach, which should inform any conclusions drawn from adult populations.

100

101 Is fWHR a secondary sexual characteristic (SSC)?

102 Evolutionary biologists emphasize three joint criteria to assess whether a trait is a
103 product of sexual selection rather than an alternative process (e.g., genetic drift,

104  pleiotropic byproduct; Jérvi et al., 1987).

105 1. SSCs should be sexually dimorphic, at least during the period(s) of mating

106  competition (Andersson, 1994). Weston et al. (2007) first described sex differences in dry
107  bone fWHR among a sample of native southern African crania. However, since then,

108  identification of adult sex differences in fWHR have been inconsistent; several studies
109  have found significant sex differences (Carré, & McCormick, 2008; Weston et al., 2007),
110 while others have not (Gémez-Valdés et al., 2013; Kramer, Jones, & Ward, 2012;

111 Kramer, 2015; Kramer, 2017; Ozener, 2012; Robertson, Kingsley, & Ford, 2017). A

112 recent meta-analysis of these findings indicated a significant adult sex difference in

113 fWHR, but the magnitude of the effect was small (mean weighted effect size = 0.11;

114 Geniole et al., 2015). For comparison, three traits that likely are SSCs—stature, voice
115  pitch, and muscularity—show much larger sex differences, with effect sizes of 1.63

116  (height, across 53 nations; Lippa, 2009), 2.38 (vocal fundamental frequency; Vogel et al.,
117 2009), and 2.5 (arm muscle volume; Lassek and Gaulin, 2009).

118 2. SSCs should increase success in mating competition, leading to higher

119  reproductive success (or proxies thereof, such as mating success or judgments of
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120  attractiveness; Apicella, Marlowe, & Feinberg, 2007; Hughes, Dispenza, Gallup, 2004;
121  Gontard-Danek & Moller, 1999). The evidence that men with greater fWHRs have

122 greater reproductive success has been mixed. Studies have shown that men with greater
123  fWHR have greater mating success (Valentine, Li, Penke, & Perrett, 2014), increased sex
124 drive (Arnocky et al., 2017), and more children (Loehr & O’hara, 2013); whereas other
125  studies have not identified a relationship between men’s fWHR and number of children
126  (Gomez-Valdés et al., 2013).

127 Weston et al. (2007) originally proposed that a larger fWHR in males (i.e., wider
128  face relative to midface height) may have evolved by intersexual selection (i.e., female
129  choice); however, a meta-analysis showed a significant negative relationship between
130  fWHR and physical attractiveness ratings across 8 studies; i.e., women judged men with
131  wider faces to be /less attractive (Geniole et al., 2015). In contrast, there is more

132 compelling support for the notion that fWHR was shaped by intrasexual competition
133  among males. Wider faces seem to be reliably associated with a suite of behavioral traits
134  involved in physical competition (e.g., aggressive behavior in sports; Carré, &

135  McCormick, 2008; Carré, McCormick, & Mondloch 2009) and aggression in both

136  naturalistic and laboratory settings (Carré, & McCormick, 2008; Geniole et al., 2015;
137  Welker, Goetz, Galicia, Liphardt, & Carré, 2015; Zilioli et al., 2015). While several

138  studies found no relationship between fWHR and aggression-linked traits (e.g., Lewis et
139 al., 2012), self-reported aggression (Ozener, 2012), or behavioral measures of aggression
140  (Deanor et al, 2012), meta-analyses show a strong and consistent relationship between
141  higher male fWHR and perceptions of aggressiveness, fighting ability, masculinity,

142 dominance, and threat by both male and female raters (» = .13-.46; Geniole et al., 2015;
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Geniole & Mccormick 2015; Zilioli et al., 2015). In addition, fWHR is linked to
measures of dominance, status, or assertiveness among capuchin monkeys (Sapajus spp:
Lefevre et al., 2014), macaques (Macaca mulatta; Altschul et al., 2019; Borgi & Majalo,
2016), and bonobos (Pan paniscus; Martin et al., 2019).

3. SSCs often co-occur with a suite of other behavioral, physiological, and
morphological traits that jointly contribute to a particular mating strategy (Geniole et al.,
2015). For instance, selection on larger body size and muscle mass in males (relative to
females) usually co-occurs with the behavioral inclination to use these weapons (Sell et
al., 2009; Sell et al., 2016), yet fWHR was not associated with grip strength in either sex
in a recent study (MacDonell et al., 2018). Some research suggests fWHR is best
understood as a predictor of behavioral strategies that promote status-seeking (Lewis et
al., 2012), power, and resource acquisition, such as willingness to cheat or exploit the
trust of others to increase financial gain (Geniole, Keyes, Carré & McCormick, 2014;
Haselhuhn & Wong, 2011; Jia et al., 2014; Stirrat & Perrett, 2010), risk-taking (Welker et
al., 2015), and narcissism (Noser et al., 2018; however, see Kosinski, 2017). Many
authors reason that the link between these behavioral strategies and fWHR stems from
their joint regulation by testosterone (Bird et al., 2016; Carré & McCormick, 2008).
However, amongst adult males, a meta-analysis showed no significant relationship
between fWHR and basal T concentrations (Bird et al., 2016) or androgen receptor gene
polymorphisms (Eisenbruch et al., 2017). For reactive T (i.e., change in T in response to
challenge), Lefevre et al. (2013) found a positive association with fWHR, yet Bird et al.

(2016) and Kordsmeyer et al. (2019) did not. Research on wider face shape and higher
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prenatal testosterone is promising (Bulygina et al., 2006; Weinberg et al., 2014;
Whitehouse et al., 2016), but further studies on hormonal correlates fWHR are needed.
In summary, for each of the three criteria useful in identifying SSCs, the
previously published evidence is weak, conflicting or ambiguous. The first criterion has
been under-examined in the literature; that is, the majority of studies focus on adult sex
differences. In the present study, we examine the developmental pattern of fWHR (as
well as several other facial masculinity ratios) to assess whether these ratios demonstrate

sex-specific changes that occur in tandem with the commencement of sexual maturation.

Ontogenetic perspectives on sexual selection

Evolution and ontogeny are closely intertwined because intra- and interspecific
evolutionary change in the adult phenotype occurs by means of changing schedules of
ontogeny (Bogin, 1999; Gould, 1977; Leigh, 1995). For example, sex differences in adult
height can be explained quantitatively by the delayed onset, increased rate, and longer
duration of the adolescent growth spurt in males compared with females (Hauspie &
Roelants, 2012). This sex-specific pattern of growth suggests that selection for a later and
longer growth spurt in males outweighed the costs of later reproduction. Research on
fWHR—as well as on sexual selection more generally—has almost exclusively drawn
from studies of adult males and females; however, the schedule and pattern of sex-
specific development can provide insights on sexual selection pressures unobtainable
from studies limited to adults (e.g., Badyaev, 2002; Mank et al., 2010; Taylor, 1997;
Hodges-Simeon et al. 2014, 2015). Several types of ontogenetic data should be

particularly useful to those interested in sexual selection pressures.
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First, SSCs should develop in temporal contiguity with the commencement of
mating competition. For some species, this may occur during defined mating seasons
(e.g., Burger et al., 2013; Galea et al., 1994; Jarvi et al., 1987; Pyter et al., 2005; Smith et
al., 1997) or transient exposure to potential mates (e.g., Amstislavskaya & Popova, 2004;
Roney et al., 2007), while in others SSC development may canalize during reproductive
maturation (i.e., puberty in humans; Hochberg, 2012; Hodges-Simeon et al. 2013). Thus
far, only Weston et al. (2007) has examined sex differences in fWHR prior to adulthood
(although see Kesterke et al., 2016; Koudelova et al., 2019; and Matthews et al., 2018 for
sex-specific development in non-ratio facial dimensions); therefore, our primary goal is
to determine if fWHR (along with several other commonly used facial masculinity ratios)
exhibits sex-specific divergence during puberty. To further clarify the developmental
pattern and shed light on the role of sexual selection, we assess whether sex differences,
if present, arise from male-specific or female-specific growth as a proxy for selection
pressures acting on males versus females.

Second, male-specific trait development during or before mating competition is
orchestrated by androgens such as testosterone (e.g., Galea et al., 1999; Hodges-Simeon,
Gurven, & Gaulin, 2015; Mareckova et al., 2011; Mareckova et al., 2015; Pyter et al.,
2006; Spritzer & Galea, 2007; Verdonck et al., 1999); thus, an association between
testosterone and trait development of masculine features is often treated as evidence for
sexual selection in mammalian males (Folstad & Karter, 1992; Bird et al., 2016). Few
studies, however, have examined the association between fWHR and testosterone prior to
adulthood. Hodges-Simeon et al. (2016) showed that among adolescents, fWHR was not

associated with age, and only weakly with testosterone (see also Welker et al., 2016;
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Hodges-Simeon et al., 2018). This is in stark contrast to more established SSCs (e.g.,
voice pitch, muscle mass), which show very strong associations with testosterone and age
during the adolescent period—a phase when testosterone increases by an order of
magnitude in only 5 to 9 years (Butler et al., 1989; Elmlinger et al., 2004; Kelsey et al.,
2014; Hodges-Simeon et al., 2015).

Third, if fWHR 1is a SSC, then it should exhibit ontogenetic patterns similar to
other human SSCs. SSCs typically emerge together during puberty because they form a
functional suite of tactics supporting success in mating competition. Thus, we should see
males’ and females’ fWHR diverge in the phase between puberty and adulthood—i.e.,
adolescence (or potentially in the period between adrenarche and puberty, called
juvenility or middle childhood; Bogin, 1999; Pereira & Fairbanks, 1993). The pattern of
development in males may also exhibit a “spurt” (i.e., a period of increasing growth
velocity), which is descriptive of the growth pattern of male muscle mass, height, and
voice pitch (Hodges-Simeon et al., 2016). This pattern is likely due to regulation by
testosterone, which itself shows a pronounced spurt (Hodges-Simeon et al., 2016).
Currently, there is a deficit of findings on the ontogeny of fWHR and other commonly

used facial masculinity ratios, which this research seeks to address.

Aims and predictions of the present research

We propose four aims and associated predictions for the present study. Our first
goal is to test for the presence or absence of adult sexual dimorphism in fWHR in a large,
homogenous (i.e., European-Caucasian; N = 1,477, aged 22-40) sample. Previous studies

have diverged, with some showing a significant sex difference (Carré, & McCormick,

10
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2008, N = 88; Weston et al., 2007, N = 121) and others not (Gémez-Valdés et al., 2013, N
=4,960; Kramer, Jones, & Ward, 2012, N = 415; Kramer, 2015, N = 3,481; Kramer,
2017, N=17,941; Ozener, 2012, N = 470; Robertson, Kingsley, & Ford, 2017, N = 444),
which utilize 2D, 3D, and dry bone skull samples. Kramer et al. (2017) has targeted the
largest sample of fWHR in dry bone skulls thus far (N = 7,941), showing small but
significant sex differences in fWHR in East Asian but not any other populations. We
offer the largest sample size to date for f WHR from soft tissue, three-dimensional faces.
This is an important complement to the literature on dry bone morphology, as sexual
dimorphism may stem not only from divergence in craniofacial growth, but also sex-
specific patterns of muscle and fat deposition (Lassek & Gaulin, 2009; Woods & Wong,
2016).

Our second aim is to examine sex differences and sex-specific growth in fWHR in
sub-adult age groups (i.e., childhood, juvenility, and adolescence), and to determine if sex
differences in fWHR are due to male-specific or female-specific growth—questions that
have not yet been addressed in the literature. For most human SSCs, pre-pubertal groups
show little-to-no difference, while those in later adolescence and adulthood exhibit more
observable differences. Sex differences may derive from male-specific growth (i.e., male
features growing faster or longer than females’), female-specific growth (i.e., female
features growing faster or longer than males’), or a combination of the two. To this end,
we measure fWHR among sub-adult males and females in two populations: the large
European-Caucasian sample of 3D facial scans (ages 3 to 21) and an indigenous Bolivian

Tsimane sample of 2D front-facing photographs (ages 7 to 21).

11
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256 Our third goal is to examine variation in fWHR growth velocity (i.e.,

257  acceleration) across ages as the pattern of ontogeny may yield additional insight. In

258  particular, human male SSCs typically show evidence of a growth spurt during

259  adolescence—rapid acceleration followed by deceleration—due to the influence of

260  testosterone on this trait. This was previously examined in our Tsimane dataset (Hodges-
261  Simeon et al., 2016), which showed no evidence of a growth spurt in several different
262  fWHR ratios. However, because this sample was small, we address the question again
263  here in our 3D dataset, which offers a larger N.

264 Our fourth goal is to examine sex differences and sex-specific development in
265  several other commonly used facial masculinity ratios that, unlike fWHR, incorporate
266  mandibular proportions (Lefevre et al., 2012; Penton-Voak et al., 2001; Little et al.,

267  2016): the ratio of bizygomatic facial width to the width of the face at the mouth

268  (“cheekbone prominence”) and the ratio of bizygomatic width to morphological face
269  height (nasion to bottom of chin; “tWHR/ower”, see Fig 1). fWHR/ower and cheekbone
270  prominence are smaller in adult men compared to women (Lefevre et al., 2012) because
271  of the relatively larger size of the male mandible. In contrast to fWHR, these two facial
272 ratios incorporate the length and breadth of the jaw—an area of the face with a long

273  history of research in biological anthropology (Lundstrom & Lysell, 1953; Merton &
274  Ashley-Montagu, 1940;), clear sexual dimorphism across populations (Franklin et al,
275  2008; Saini et al., 2011), associations with other SSCs (Hodges-Simeon et al., 2016), and
276  known associations with age and testosterone during development (Hodges-Simeon et al.,
277  2016; Snodell et al., 1993; Verdonck et al., 1999). Further, we include three variants of

278  fWHR used in the literature: fWHRnasion, fWHRbrow, and fWHRstomion (see Fig 1

12
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279  and Table 1 for a guide to the facial ratios used in the present research and in previous
280  studies). We use this specific terminology here to increase clarity, as each of these

281  variants has separately been termed “fWHR” in the literature. Researchers have largely
282  treated these variants as interchangeable, yet it is unclear whether this decision is

283  justified—i.e., to what extent the variants overlap with one another.

284 Finally, in all analyses, we control for individual differences in facial adiposity
285  using BMI (Coetzee et al., 2010). Lefevre et al. (2013) found sexual dimorphism in
286  fWHR disappeared after controlling for BMI. A meta-analysis of studies before 2015
287  indicated that higher BMI was associated with larger fWHRs in adults (Geniole et al.,
288  2015), yet only a third of the studies reviewed for this paper control for individual

289  differences in adiposity (see Table 1). This may also be an important control in

290  behavioral research; for example, Deanor et al. (2012) identified body weight (which
291  likely overlaps muscle mass), not fWHR, as a predictor of aggression among athletes (see
292 also Mayew, 2013).

293

294  [INSERT FIG 1 ABOUT HERE]

295  Fig 1. Candidate facial masculinity ratios used in the present research

296

297  [INSERT TABLE 1 ABOUT HERE]
298

299  Methods

300 3D European/Caucasian Sample

301 Participants

302
303 3D facial scans were obtained from the 3D Facial Norms data set (see Weinberg

304 etal., 2017 for a detailed sample description). Participants were recruited from four US

13
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cities (Pittsburgh, Seattle, Houston, and Iowa City), primarily through target
advertisements. Only individuals who had no history of craniofacial trauma, congenital
malformations, or facial surgery were permitted to participate (Kesterke, et al., 2016).
The sample consisted of 2,449 unrelated individuals of European-Caucasian
ancestry between the ages of 3-40 (1502 females and 952 males). Individuals were
classified into four age groups: child (3-6 years of age, N = 193), juvenile (7-11 years of
age, N =199), adolescent-to-young adult (12-21 years of age, N = 580), adult (22-40
years of age, N = 1477). We classified ages 19-21 as “adolescents” for several important
reasons. First, the end of adolescence is ambiguous and variable across individuals and
populations. Western societies arbitrarily set this at 18; however, life history theory
marks the end of adolescence with the end of growth and birth of first offspring—events
that may vary widely. Second, while male adult height may be reached in the late teens
(but not always; Bogin, 1999), growth in other tissues (i.e. muscle mass) often continues
after age 18 (Schutz et al., 2002). Third, endocrine maturation (i.e. rapidly increasing
production of sex steroids) usually continues into the early 20s for males (Butler et al.,
1989; Elmlinger et al., 2004; Kelsey et al., 2014; Hodges-Simeon et al., 2015). Therefore,

development of T-mediated traits will also likely extend past age 18.

Instruments

Digital stereophotogrammetry was used to obtain 24 landmark distances from the
3D facial scans, from which 5 were used in the present study (nasion, labiale superius,
stomion, bottom of the chin, and tragion as a proxy of zygion; see Fig 1). We also utilized

two additional distances collected with direct anthropometry using spreading calipers
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328  (GPM Switzerland): maximum facial width (zygion to zygion) and mandibular width
329  (gonion to gonion). Previous investigations have verified that data collected from facial
330  images using digital stereophotogrammetry are highly replicable and precise (Aldridge,
331  Boyadjiev, Capone, DeLeon, & Richtsmeier, 2005); nevertheless, we examined

332 correlations between fWHR measures calculated using facial width from landmark

333  distances versus direct anthropometry. All were highly correlated:

334  fWHRnasion (r = .92), fWHRstomion (r = .91), ftWHRIlower (r = .89), and cheekbone
335  prominence (r = .87). All models described in the results were also run using the caliper-
336  derived ratios, which altered Beta values by only trivial amounts.

337

338  Facial landmarks and masculinity ratios

339 Facial width was measured from the left to the right tragion, the point marking the
340  notch at the superior margin of the tragus, where the ear cartilage meets the skin of the
341  face. The upper boundary of facial height was measured from the approximate location of
342 the nasion, the midline point where the frontal and nasal bones contact. The lower

343 boundaries for mid-facial height included the labiale superius, the midline point of the
344  vermilion border of the upper lip at the base of the philtrum (for fWHRnasion); the

345  stomion, the midpoint of the labial fissure (fWHRstomion); and the bottom of the chin
346  (fWHRlower). See Fig 1 and Table 1. Ratios were computed by dividing facial width by
347  facial height; greater fWHRs reflect relatively wider faces relative to the height

348  dimensions. Cheekbone prominence was a ratio of facial width to mandibular width. In
349  this sample, mandibular width was measured using a caliper at the left and right gonion.

350  Previous research on cheekbone prominence in front-facing 2D photographs has
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351  approximated this location (Lefevre et al., 2012) or used the width of the face at the

352  mouth (Hodges-Simeon et al., 2016; Penton Voak et al., 2001). Information about the
353  location of the brow was not available in the 3D renderings; therefore, of the ratios shown
354 in Fig 1, fWHRAbrow could not be used with the 3D sample.

355 Ratios (rather than measures of individual facial dimensions) are often utilized in
356  previous research for several reasons. First, for 2D photographs in particular, ratios offer
357  greater ease of measurement; that is, no corrections are necessary for distance from the
358  camera, ontogenetic scaling, or deviations from the Frankfurt plane. Second, because of
359  this ease, ratios have been increasingly adopted in disciplines outside of biological

360 anthropology; as such, there is now a growing literature of fWHR results that require
361  evolutionary and ontogenetic explanation.

362

363  Anthropometrics

364 Self-reported height and weight were collected from each participant, and then
365  used to calculate BMI. See www.facebase.org/facial norms/notes/ for more information
366  on the sample.

367

368 2D Bolivian Tsimane Sample

369 Population

370 The Tsimane are a small-scale, kin-based, group of hunter-horticulturalists who
371  reside in the Amazonian lowlands of Bolivia. They obtain relatively few calories from
372 market sources, have little access to modern medicine, and experience high rates of

373  infectious diseases (Gurven, Kaplan, Winking, Finch, & Crimmins, 2008; Martin et al.,
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374 2012; Vasunilashorn, Crimmins, Kim, Winking, Gurven, Kaplan, & Finch, 2010). On
375  average, individuals experience high rates of infection; for example, approximately 60%
376  ofindividuals carry at least one parasite (Vasunilashorn et al., 2010). As such the

377  Tsimane experience high rates of chronic inflammation, characteristic of populations
378  living in environments with high pathogen loads (Gurven et al., 2008).

379

380 Participants

381 Participants consisted of 139 peripubertal individuals (73 males and 66 females)
382  between the ages of 7 and 21. Participants’ ages were estimated by comparing their self-
383  reported age to their age taken from the Tsimane Health and Life History Project

384  (THLHP) census (Gurven, Kaplan, & Supa, 2007). When there was a discrepancy

385  between participants’ self-reported and census ages, census age was used (see Hodges-
386  Simeon et al., 2013, for further explanation of age estimation methods). Following our
387 3D sample, participants were divided into juvenile (age 7 to 11) and adolescent (age 12 to
388  21) age groups.

389

390 Facial measurement

391 To obtain facial measurements, we first took high-resolution, front-facing color
392 photographs of participants using a 12MP Sony camera. Participants’ heads were

393  positioned along the medial-sagittal plane and they were instructed to have a neutral

394  facial expression. Eleven trained research assistants (RAs), from Boston University and
395  University of California Santa Barbara, placed landmarks on all facial photographs using

396  the image-editing software GIMP and each photograph was processed by three RAs. The
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research assistants were blind to the hypotheses of the researcher and did not know any of
the photographed individuals. The research assistants recorded the x-y coordinates for
each landmark of the face twice. The coordinates were averaged (i.e., a total of six x
coordinates and six y coordinates per landmark) to establish final landmark coordinates
(o= .88, for males, a = .98 for females for the entire sample). Feature measurements
were standardized using inter-pupillary distance. Landmarks of interest and ratios are
shown in Fig 1. fWHRnasion, fWHRstomion, and fWHRIower were calculated based on
the same landmarks as described for the 3D sample above. Because the location of the
nasion must be approximated in soft tissue (the nasion is the midline point where the
frontal and nasal bones contact), we anticipate more error for this point. fWHRbrow was
calculated in the same way as in Carré & McCormick (2008): bi-zyomatic breath was
divided by height of the face from the top of the lip to the middle of the brow. Cheekbone
prominence was a ratio of facial width to the width of the face at the mouth (Hodges-

Simeon et al., 2016; Penton Voak et al., 2001).

Anthropometrics

Standard anthropometric protocols were used to assess growth and energetic
status (Lohman et al. 1988); participants wore light clothing and no shoes for

measurement of height and weight (to determine BMI).

Data Screening and Analysis

SPSS 24 was used for all analyses. To correct for small deviations from normality

all study variables were log-transformed. Although transformation only altered results by
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420  trivial amounts, we report results here using the transformed variables. All assumptions
421  for multivariate analysis (i.e., multi-collinearity, normality, linearity, and homogeneity of
422  variance) were met. Variance Inflation Factors (VIFs) were used to assess

423  multicollinearity; all VIFs < 2.

424 For analyses, alpha level was set at 0.05 (two-tailed). As a first step, we examined
425  bivariate correlations between all pairs of variables. Point biserial correlations were

426  examined for associations between sex and all other variables of interest (see Table 2).
427  We employed correlations to assess the degree of multicollinearity among different

428  measures of fWHR. Inspection of correlations between different measures of fWHR
429  revealed only small differences across the age groups (i.e., fWHRnasion and

430 fWHRstomion were closely correlated regardless of the age category). Therefore, in the
431 interest of reducing the number of tests, we collapsed across age categories to examine
432  correlations for males and females separately, controlling for age (see Supplement for
433  Table S1 for the 3D sample and Table S2 for the 2D sample). We then proceeded to

434  conduct standard (i.e., simultaneous) multiple regressions, within each face set and age
435  group (Table 3).

436 In both samples, males were coded “1”” and females were coded “2”; therefore, in
437  the results presented below, positive associations with sex indicate that female means are
438  higher on this trait. Given the importance of accurate coding of sex for the interpretation
439  of results, we examined the association between sex and height—a known SSC—in both
440  samples. In the 3D sample, sex was inversely correlated with body height in adults (r = -
441 .71, p <.001) and in adolescents (» = -.50, p <.001), with adult males showing the

442  expected height advantage over females. Among adolescents in the 2D sample, sex was
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inversely correlated with height but did not reach conventional levels of significance (» =
-.26, p = .08); therefore, we examined the association between sex and voice pitch (data
from Hodges-Simeon et al., 2013), which is more strongly dimorphic than height (Puts et
al., 2012). Sex was positively correlated with voice pitch controlling for age (r = .46, p <
.001). That is, being female was associated with higher voice pitch, which confirms
accurate sex coding in the 2D sample.

Curve Expert Version 1.5.0 was used to determine a best-fit algorithm for patterns
of age-related change in facial masculinity ratios. Goodness-of-fit was assessed using the
coefficient of determination (R?). In Hodges-Simeon et al. (2013, 2016), these methods

were used to demonstrate evidence for growth spurts in height and voice pitch.

Results

Correlations

[INSERT TABLE 2 ABOUT HERE]

3D European/Caucasian sample. Point-biserial correlations revealed significant
sex differences (positive values indicate females are larger) in fWHRstomion (r = -.08, p
=.001), fWHRlower (r = .07, p = .001), cheekbone prominence (» = .08, p =.001), and
BMI (r =-.10, p = .001) in adults, but not adolescents, juveniles, and children (see Table
2). Age was correlated with sex in both adults (» = .07, p = .01) and adolescents (» = .15,
p <.001), underscoring the need to control for age in further analyses. Collapsing across
age groups (and controlling for age), fWHRnasion, ftWHRstomion, and ftWHRIlower
showed high collinearity given their shared points of measurement (s = .78-.96; see

Table S1 for exact values). For males and females, cheekbone prominence was
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moderately associated with fWHRnasion (r = .15 and .07, respectively), ftWHRstomion (r
=.17 and .09), and fWHRIower (r = .18 and .12). BMI was positively associated with
tWHRnasion, ftWHRstomion, and fWHRIower for both males and females, indicating
increased facial width with increasing BMI. Cheekbone prominence was inversely
associated with BMI for females only, indicating that weight gain affects the breadth of
the lower face for females. See Table S1.

2D Bolivian Tsimane sample. Males had larger fWHRbrow (r = -.44, p =.001, in
adolescents; = -.43, p =.001, in juveniles) and fWHR/lower (r =-.29, p = .004, in
adolescents), but there were no sex differences in fWHRnasion and cheekbone
prominence. See Table 2. We also looked at the relationships between fWHR measures to
explore the extent to which these measures co-varied. fWHRnasion and ftWHRstomion
were correlated in males (= .71, p<.001) and females (» = .40, p <.001), similar to the
3D sample. fWHRbArow was also closely associated with fWHRnasion (r = .82, p <.001
and r=.78, p <.001) and fWHRstomion for males and females, respectively. Cheekbone
prominence was significantly associated with fWHR/ower (r = .63, p <.001 and r = .31,
p <.01). In contrast to the 3D sample, fWHRIower was not significantly associated with
fWHRnasion; however, fWHR/Iower was correlated with fWHRbrow (r = .40, p <.001
and = .61, p <.001) and ftWHRstomion (r = .50, p <.001 and » = .79, p <.001). Also in
contrast to the 3D sample, cheekbone prominence was inversely correlated with
fWHRnasion (r = -.40, p <.001 and » =-.39, p <.01) and uncorrelated with fWHRbrow

and fWHRsromion. See Table S2.

Are fWHR and/or other commonly used masculinity ratios sexually
dimorphic in adults?

21
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3D European/Caucasian sample. Zero-order correlations indicated that both BMI
and age were associated with sex; therefore, we employed multiple regression to examine
the effects of sex on facial masculinity ratios while controlling for these potential
confounds. Four separate multiple regression models were employed with sex, age, and
BMI as predictors and fWHRnasion, fWHRstomion, ftWHR/ower, and cheekbone
prominence as the outcome variables (see Table 3). Sex was a significant predictor of
fWHRstomion (f = -.05, p <.05), fWHRIower (3 = .09, p <.001), and cheekbone
prominence (= .08, p <.01), but not ftWHRnasion (f =-.01, p = .84). In other words,
males showed the expected pattern of larger mandible breadth (i.e., smaller cheekbone
prominence) and longer chin (i.e., smaller f WHR/ower). Males showed significantly
wider faces relative to the midface, but only when the midface extended to the stomion
(i.e., fWHRstomion), and not when it terminated at the labiale superius (fWHRnasion).
This finding was surprising given the shared variance in fWHRnasion and fWHRstomion
(r=.96; see Table S1). Post-hoc analyses showed a significant sex difference in upper lip
height in this sample (8 =-.38, p <.001) controlling for age and BMI; that is, males have
significantly larger upper lip height than females.

BMI was a significant predictor of the outcome variables in all models. Age was
also a significant negative predictor for fWHRnasion and ftWHRstomion; as individuals
age from 22 to 40 years, both of these fWHR measures get smaller, likely reflecting a
lengthening of the midface with aging (see Table 3). See also Fig 2 for visual

representation of changes in the variables of interest with age.

[INSERT TABLE 3 ABOUT HERE]
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[INSERT FIG 2 ABOUT HERE]
Fig 2. Facial masculinity ratios, height, and BMI by age and sex (3D sample)

Are fWHR and/or other commonly used masculinity ratios sexually
dimorphic in sub-adults?

3D European/Caucasian sample. Separate multiple regression models were again
conducted for each age group—children, juveniles, and adolescents— and paralleled
those for adults. Across all sub-adult age groups, sex was not a significant predictor of
any of the masculinity ratios while age was a significant inverse predictor of all facial
ratios (see Table 3 for standardized Betas and ¢ statistics). With sub-adult growth,
fWHRnasion (ff = -.25, p <.001) and fWHRstomion (3 =-.27, p <.001) became
smaller—facial width decreased relative to midface height (i.e., became less masculine
based on current conceptualizations of fWHR). fWHR/lower (ff =-.32, p <.001) and
cheekbone prominence (5 = -.11, p <.05) also became smaller, indicating childhood
growth in mandible dimensions relative to bizygomatic width. Similar to the adults, BMI
was a significant positive predictor of fWHRnasion, fWHRstomion, and fWHR/ower in
juvenility and adolescence but not childhood (s = .14 - .32; see Table 3). In other words,
juveniles/adolescents with greater somatic adiposity (and, by extension, facial adiposity)
had wider faces relative to facial height. See Table 3.

2D Bolivian Tsimane sample. Because brow information was available for the 2D
sample but not the 3D sample (see Methods for more information), we examined multiple
regression models predicting fWHRbrow as well as the other 4 ratios. In adolescents, sex
was a significant negative predictor of fWHRbrow (5 = -.44, p <.001), but not

fWHRstomion or fWHRnasion, for which sex approached significance as a positive
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predictor (5 =.17, p = .09). Again, these results were surprising because fWHRbrow and
fWHRnasion were correlated with each other (» =.82, p <.001). Post-hoc analyses were
employed to determine if the distance from the nasion to the brow was sexually
dimorphic and could be driving the opposing relationships with sex. Controlling for age
and BMI, sex was a very strong predictor of nasion-to-brow distance ( =.72, p <.001),
with females having higher-placed brows relative to the nasion position. A similar
pattern was found for juveniles (5 = .75, p <.001; see Table 3), indicating this sex
difference is present prior to puberty. See Fig 3 for nasion-to-brow distance by age.

Results also showed that sex was a significant positive predictor of fWHR/ower in
adolescents (B = .20, p = .04) and approached conventional significance in juveniles (B =
27, p=.08).

[INSERT FIG 3 ABOUT HERE]
Fig 3. Brow-to-nasion distance by age and sex (2D sample)

What is the pattern of sex-specific ontogeny for facial masculinity
ratios?

3D European/Caucasian sample. Because analyses thus far showed a significant
effect of age on facial ratios across age groups, we explore age-related changes by sex in
Fig 2. Visual inspection of results indicates declining facial width relative to height
during sub-adult growth as well as during adulthood, supporting conclusions about the
effects of age drawn from regressions above.

In order to assess the extent to which facial masculinity ratios exhibit changes in
velocity during adolescence—i.e., a growth spurt—we examined whether a sigmoidal

model explained more variance than a linear one. Because ftWHRstomion, fWHRIlower,
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567  and cheekbone prominence were found to be sexually dimorphic in adulthood, the pattern
568  of development for each of these ratios was examined for evidence of a growth spurt. As
569  in Hodges-Simeon et al. (2016), we found no evidence of changes in facial ratio growth
570  velocity during adolescence.

571 Visual inspection of the scatterplots suggested that fWHR/ower might become
572  sexually dimorphic in later adolescence; therefore, post-hoc analyses were also conducted
573  to determine if restricting the age range to over 14 in both samples changed the results for
574  the adolescent age group. In the 3D sample, fWHR/ower was sexually dimorphic (5 =
575 .11, p=.02) among those aged 14 to 21. Restricting the age range did not change the

576  effect of sex for any of the other ratios. In the 2D sample, restricting the age range to 14+
577  did not substantially change the results; however, fWHRnasion did reach conventional
578  levels of significance (f = .16, p =.049). That is, over-14 female adolescents had

579  significantly larger fWHRn#nasions than did males.

580

581  Discussion

582 The goal of the present research was to address ongoing debates on the existence
583  and evolutionary origins of sex-typical variation in fWHR and other facial masculinity
584  ratios using ontogenetic evidence. We examined sex differences in five different ratios
585  across sub-adult and adult age groups in 2D photos and 3D renderings in two distinct
586  populations. Results showed that 3 variables predict significant variation in facial

587  masculinity ratios—sex, age, and BMI. Each reveals potentially important clues to

588  inconsistencies in past fWHR research and suggest agendas for future research.

589
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590 Summary of results

591 First, sex was a significant predictor of some but not all facial masculinity ratios.
592 Across both samples, those ratios that incorporated dimensions of the lower face—i.e.,
593  the length (fWHR/ower) and breadth (cheekbone prominence) of the mandible—suggest
594  ahistory of sexual selection. In the adult 3D sample (ages 22 to 40), fWHR/ower and
595  cheekbone prominence were clearly sexually dimorphic, with males again showing a

596  longer (in terms of fWHR/ower where jaw size augments length) and wider (in terms of
597  cheekbone prominence where jaw size augments width) lower face than females.

598 fWHR/ower also showed the expected ontogenetic pattern for SSCs; that is, sexual

599  dimorphism developed in the life stage following puberty. In the 2D sample, among

600 adolescents (aged 12 to 21), but not among juveniles (aged 7 to 11), sex was a significant
601  predictor of fWHRI/ower. In the 3D adolescent sample (aged 12 to 21), sex differences
602  were not found; however, when the age group was restricted to later adolescent ages—
603 i.e., 14 to 21—a significant sex difference emerged, suggesting that lower face

604  development may occur later in adolescence. These findings accord with a long history of
605  research in biological anthropology showing differential growth in the mandible among
606  male Homo sapiens (Enlow & Harris, 1964; Lundstrom & Lysell, 1953; Merton &

607  Ashley-Montagu, 1940), which produces measureable sex differences across diverse

608  populations (Claes et al., 2012; Matthews et al., 2018). These findings also make sense in
609  light of research showing associations between fWHR/ower and baseline testosterone
610 levels (Hodges-Simeon et al., 2016), one testosterone-related genetic variant

611  (Roosenboom et al., 2018), as well as other testosterone-dependent traits, like upper body

612  strength (Hodges-Simeon et al., 2016).
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Our review of the literature, although not exhaustive, showed substantial variation
in the way fWHR is measured when the midface is used as the height dimension (see
Table 1). Facial width is relatively consistent across studies; however, midface height has
several variants, which we called fWHRnasion, fWHRbrow, and fWHRstomion (see Fig
1). Despite high correlations among these measures, sex differences in these variants
were not consistent across measures and samples. In the 3D sample, fWHRstomion was
larger in adult males, yet closely correlated fWHRnasion was not dimorphic. Post-hoc
analyses showed that this pattern of results was driven by greater upper lip height in
males compared with females (also found by Kesterke et al., 2016; Matthews et al.,
2018). Sexual dimorphism in upper lip height illustrates that variants of fWHR should not
be treated as interchangeable in research. In the 2D sample, fWHRstomion was not
dimorphic, while fWHRnasion was significantly larger in females rather than males
(among those over 14). It is possible that variation across these samples may be due to
inter-population differences in the presence and degree of sexual dimorphism in fWHR;
for example, Kramer et al. (2017) found significant sex differences in fWHRnasion
among East Asian populations but not any other groups. The degree of SSC development
may vary with energetic stress (Hodges-Simeon et al., 2013) and greater sexual
dimorphism has been found among energy-abundant societies (Stinson, 1985),
underscoring the need to sample across a range of diverse human socioecologies, as we
have done here.

Our 2D sample included landmarks on the eyebrow, which was not available for
the 3D renderings. fWHRArow was sexually dimorphic, with males showing the expected

wider faces relative to females. Again, this was surprising because closely correlated
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636  fWHRnasion and fWHRstomion were not dimorphic. Post-hoc analyses revealed that the
637  distance from the nasion to the brow accounts for this pattern of results, with females
638  showing substantially higher brows than males. Like mandible size, this finding accords
639  with previous research on greater supraorbital, or brow ridge, size in male Homo sapiens
640  (Claes et al., 2012; Gavin & Ruff, 2012; Shearer et al., 2012), which is likely associated
641  with lower-set eyebrows. Work in growth modeling has shown that males’ brow ridge
642  grows faster during adolescence, giving rise to observable sex differences by age 16

643  (Matthews et al., 2018).

644 Our results also showed that sexual dimorphism in fWHRbrow emerges early,
645  with sex being a significant predictor even in our juvenile sample. The ontogeny of

646  secondary sexual traits is traditionally characterized by differential male and female

647  growth arising from sex steroid hormone increases in puberty (Ellison, 2012; Hochberg,
648  2012). These findings, however, suggest that certain sexually dimorphic face features
649  may diverge prior to puberty—in other periods characterized by hormonal switch points
650 (i.e., prenatal, early post-natal, post-adrenarche). This conclusion is supported by a

651  number of studies that have identified significant early-life sex differences in the face
652  (Bulygina et al., 2006; Weinberg et al., 2014; Whitehouse et al., 2016) and other aspects
653  of the phenotype (e.g., Fouquet et al., 2016). Matthews et al. (2018) observed that there
654  were two phases in the emergence of facial sexual dimorphism—ages 5 to 10 (i.e., the
655  post-adrenarche period; Campbell, 2011) and ages 12 onwards. Some aspects of facial
656  sexual dimorphism were present in the first phase and became more exaggerated in the
657  second phase (i.e., forehead, chin, and cheeks), whereas others did not emerge until the

658  second phase (i.e., nose, brow ridge, and upper lip). Sexual dimorphism in several other
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SSCs begins before puberty; for example, human female infants show greater body fat
from birth onwards (Koo et al., 2000). The ultimate reasons for different emergence
patterns should be addressed in future research; however, one interpretation is that mating
and status competition may begin before puberty in humans.

A lower brow position may be an important factor in raters’ perceptions of
aggressiveness, fighting ability, masculinity, dominance, and threat in those with high
fWHRbrow (Geniole et al., 2015; Geniole & Mccormick 2015; Zilioli et al., 2015).
Research on emotion attribution from facial features has shown that lower-placed
eyebrows are perceived as more threatening and aggressive regardless of the facial
expression and that raters have greater anger recognition accuracy for high fWHR faces
and greater fear accuracy for low fWHR faces (Deska et al., 2017, which used brow
position). Further, faces where the chin is tilted forward or backward have higher fWHR
and are perceived as more intimidating as a result (Hehmen et al., 2013, which also used
the brow). Lower brow position in males may be a cause or consequence of the evolution
of the anger expression and head orientation; that is, sexually dimorphic attributes may

have co-evolved with universal facial expressions of anger and fear (Sell et al., 2014).

Confounds in fWHR research: Age and BMI

Across both samples, age was a significant inverse predictor of fWHR measures,
controlling for sex and BMI. In the 3D sample, age was a consistent negative predictor of
facial masculinity ratios from age 3 to adulthood; however, the effect was more
pronounced in sub-adult groups. In other words, the face becomes less wide relative to

midface height, lower face height, and chin breadth throughout childhood growth, i.e.,
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less “babyfaced” (Zebrowitz et al., 2015). This is likely a consequence of the decreasing
relative size of the cranial vault from birth to adulthood along with increases in nose and
mandible growth (Matthews et al., 2018). In addition, the 3D sample showed that
fWHRnasion and fWHRstomion continue to decrease with adulthood ageing, which has
been shown in previous research (Hehman et al., 2014; Robertson et al., 2017), although
the slope is not as steep as among sub-adult groups (see Fig 2). This effect may be due to
age-related collagen degradation (Yasui et al., 2013) and/or changes in the bony structure
(Shaw et al., 2011). Overall, these findings point to age as an important variable to
consider in sample selection and data analysis in fWHR research.

BMI was also a significant predictor of most fWHR measures across juvenile,
adolescent, and adult age groups (see Table 3). BMI was used as a proxy measure for fat
stores and controlled in all analyses because fat tends to be deposited on the cheeks and
chin, increasing facial width. Previous research has consistently shown that BMI is
correlated with a higher fWHR (Geniole et al., 2015); yet a minority of studies reviewed
for this paper control for it (see Table 1). The role of BMI in predicting individual
differences in facial masculinity ratios speaks to the importance of examining fWHR in
both dry bone and soft tissue faces. Evidence suggests that there may be differential
selection on bone and fat/muscle in humans and that each may separately contribute to
increases in fWHR. For example, in one forensic sample, men with lower fWHRs were
significantly more likely to die from contact violence than were men with higher fWHR,
suggesting that men with relatively wider faces were more likely to survive aggressive
encounters with other men (Stirrat et al., 2012). The authors hypothesized that greater

zygomatic buttressing may have benefited ancestral men by reducing the negative effects
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705  of craniofacial impact. Yet measures of fWHR from 2D photographs cannot distinguish
706  facial breadth due to bony dimensions, which are more substantial in men, versus fat

707  deposits, which tend to be greater in women (Lassek & Gaulin, 2009). Previous studies
708  have shown that the cheek region is sexually dimorphic (Matthews et al., 2018) and our
709  results showed that BMI affects cheekbone prominence in females but not males. Finally,
710 little research has considered how sex differences in facial muscle may impact fWHR
711  dimensions; one recent study showed that the brachyfacial face type, which overlaps with
712 high fWHR, has greater masseter volume than more narrow face types (Woods & Wong,
713 2016).

714

715  Ontogeny and sexual selection

716 The broader goal of this research was to emphasize the importance of using

717  ontogenetic data to address questions in sexual selection research, using fWHR as a

718  model case. We point to four questions that may be asked of this type of data that should
719  corroborate conclusions drawn from data on adults, providing a roadmap for future

720  researchers to use developmental patterns to substantiate claims about sexual selection
721  pressures. First, do sex differences arise in coordination with the onset of mate

722 competition? Second, do sex differences arise from differential male or female growth?
723 Third, does the purported sexually selected trait exhibit a spurt? And finally, do these
724 traits co-vary with sex steroid hormones and/or other SSCs? Our results show that only
725  fWHRIlower exhibits the expected pattern of ontogeny for a sexually selected male trait
726 As a further example of a SSC with a clearer history of sexual selection, we point

727  to research on the low human male voice. During puberty, increased production of
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testosterone causes males’ vocal folds to thicken and their larynxes to descend, producing
a lower pitched and more resonant sounding voice (Abitbol, Abitbol, & Abitbol, 1999;
Butler et al. 1989; Fitch & Giedd, 1999; Harries et al., 1998). Male adolescents
experience a decrease in fundamental and formant frequencies, which jointly contribute
to perceived lower pitch, as their vocal folds thicken and lengthen. This decrease happens
in a “spurt” (Hodges-Simeon et al., 2013). By adulthood, the sex difference in
fundamental frequency is over 5 standard deviations (Puts et al., 2011). Lower pitched
voices are rated as more attractive-sounding by women and more dominant-sounding by
both sexes (Feinberg et al., 2005; Jones et al., 2010; Puts et al., 2007). Furthermore, in
one natural fertility population, men with lower pitched voices were found to father more
offspring (Apicella, et al., 2007). Finally, sexually dimorphic vocal parameters are
correlated with body size (Pisanki et al., 2014), muscle mass during adolescence
(Hodges-Simeon et al., 2014), and aggressiveness (Puts et al., 2011). These various
sources of evidence jointly lend greater confidence to the assertion that male vocal traits

are SSCs.

Limitations

This research has several limitations. We sought to compare the pattern of fWHR
ontogeny in two distinct populations (European-decent Caucasians and indigenous-decent
Bolivians); however, there were methodological differences between the two that prohibit
a direct comparison. First, besides being 3D and 2D respectively, landmarks were placed
by a different set of researchers, which could have introduced bias. Further, cheekbone

prominence was measured using a caliper distance in the 3D sample and a landmark
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distance in the 2D sample, based on what was available in the datasets. Further research
is needed which directly compares across populations using the same methodology (see
Kramer, 2017). Second, the nasion landmark was used in Weston et al. (2007)’s original
research on facial width in dry bone samples; however, it should be used with caution in
soft tissue studies. The nasion refers to the midline point where the frontal and nasal
bones contact (i.e., the nasofrontal suture). Although informed by previous research
(Kolar & Salter, 1997), this exact position poses more of a challenge in soft tissue photos
or renderings; therefore, there may be a larger degree of error in this landmark. Our
results suggest that when fWHR is measured in soft tissue, brow position should be used
rather than the nasion. Finally, this research highlights the importance of age, yet the data
are cross-sectional. Future studies on intra-individual longitudinal change would help

clarify the effect of age and BMI on sex differences in fWHR.

Conclusions

These findings add an ontogenetic perspective to the ongoing debate on the
history of sexual selection on fWHR. Our results show that only fWHR/ower exhibits the
classic pattern of ontogeny for a sexually selected human male trait —i.e., adult sex
differences in fWHR/ower along with greater lower-face growth in males relative to
females during adolescence. These findings also highlight potential confounds that may
be responsible for inconsistent findings in the fWHR literature (i.e., age—due to both
sub-adult growth and adult ageing—and BMI), and also reveal via post-hoc analysis
some features (brow position and lip height) that deserve further study as possible targets

of sexual selection.
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Table 1. Facial ratios used in the present research

. (®)
Facial (a) . N
dimension Width dimension(s) .Helgh.t Citations
dimension
1) ftWHRnasion =~ Zygion to zygion Soft tissue: Geniole et al. (2015)*; Gomez-Valdés et
(or widest part of the =~ Nasion to al. (2013)7; Janson et al. (2018)*;
face, or the distance labiale Kojonius & Eldblom (2020); Kordsmeyer
between left and right  superius et al. (2019)*; Kramer (2017)+; Krenn &
tragion) Buehler (2019)**1; Krenn & Meier
Dry bone: (2018)*; Muiioz-Reyes et al. (2020)*;
Nasion to Ozener (2012)+; Rosenboom et al. (2018;
prosthion called “UpperFWH2”)**; Rostovtseva et
al. (2020); Zebrowitz et al. (2015); Zilioli
etal. (2015)*
2) ftWHRbrow Zygion to zygion Soft tissue: Ahmed et al. (2019; inner ends of
(or widest part of the ~ Eyebrow (tip eyebrow); Arnocky et al. (2018); Bird et
face, or the distance or center of al. (2016); Burton & Rule (2013; lateral
between left and right arch) to labiale center of eyebrow); Carré & McCormick
tragion) superius (2008; mid-brow); Carré et al. (2009;

mid-brow); Carr¢ et al. (2013); Cleary et
al. (2020; mid-brow); Coetzee et al.
(2010)*; Costa et al. (2017; mid-brow);
Deaner et al. (2012)**; Deska et al.
(2018a,b; mid-brow); Eisenbruch et al.
(2018)*; Fawcett et al. (2019)*; Fuji et al.
(2016; bottom of the eyebrows)*; Geniole
et al. (2014a,b); Geniole & Mccormick
(2015; mid-brow) Hahn et al. (2017);
Haselhuhn & Wong (2011; mid-brow);
Haselhuhn et al. (2014; mid-brow);
Haselhuhn et al. (2015; mid-brow);
Hehman et al. (2013; mid-brow); Heyman
et al. (2014; mid-brow)**; Hodges-
Simeon et al. (2016)***; Huh et al.
(2014); Kakkar et al. (2020; mid-brow);
Kamiya et al. (2019; midpoint of the
inner-most point of the eyebrows);
Kosinski (2017); Krenn & Buehler
(2019)**+; Landry et al. (2019); Lefevre
etal. (2012)*t; Lefevre et al. (2013)*;
Lieberz et al. (2017); MacDonell et al.
(2018; mid-brow); Mileva et al. (2014;
mid-brow); Ormiston et al. (2016; mid-
brow); Palmer-Hague et al. (2018; mid-
brow)*; Price et al. (2017; lower border
of the eyebrows)**; Valentine et al.
(2014; lower border of the eyebrows)***;
Welker et al. (2014; mid-brow)*; Welker
et al. (2015; mid-brow)*; Welker et al.
(2016); Wang et al. (2019; mid-brow),
Wen & Zheng (2020; mid-brow); Weston
et al. (2007); Whitehouse et al. (2015);
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Yang et al. (2018); Zhang et al. (2020;

mid-brow)

3) ftWHRstomion  Zygion to zygion Soft tissue: Rosenboom et al. (2018; called
(or widest part of the ~ Nasion to “UpperFWH1”)**; Robertson et al.
face, or the distance stomion (2017)F
between left and right
tragion)

4) fWHRIower Zygion to zygion Soft tissue: Rosenboom et al. (2018; called
(or widest part of the ~ Nasion to “TotalFWH”)** ; Hodges-Simeon et al.
face, or the distance bottom of chin  (2016)***; Landry et al. (2019); Lefevre
between left and right et al. (2012)*; Lefevre et al. (2013)*;
tragion) Robertson et al. (2017)+

5) Cheekbone Zygion to zygion (or Coetzee et al. (2010)*; Cunningham et al.

prominence widest part of the (1990); Grammer & Thornhill (1994);

face, or the distance Koehler et al. (2004); Landry et al.
between left and right (2019); Lefevre et al. (2012)*; Lefevre et
tragion) divided by al. (2013)*; Little et al. (2008); Little et
jaw width (distance al. (2013); Mogilski & Welling (2018);
between left and right Penton-Voak et al. (2001); Robertson et
gonion, or the width al. (2017); Rosenboom et al. (2018; called
of face at the mouth) “Upper:Lower FW”)**; Scheib et al.

(1999); Wade (2016)

Note: *Study controlled for BMI. ** Study controlled for body weight. ***Study
controlled for adiposity. ¥ fWHR was not consistently and/or significantly associated
with sexual dimorphism.

Two other dimensions used in previous research but not included in the present study are:
1) fWHR eyelids (zygion to zygion/ highest point of the upper lip to the highest point of
the eyelids): Alrajih & Ward (2013); Anderl et al., (2016); Chan et al. (2020); Efferson &
Vogt (2013); He et al. (2019); Kramer et al. (2012)*7; Lebuda & Karwowski (2016);
Lewis et al. (2012); Noser et al., (2018)*; Stirrat & Perrett (2010); Wen & Zheng (2020);
Zelazniewicz et al. (2020); Zhang et al. (2018). 2) fWHR whole face (zygion to zygion/
between the center of the hairline to the center of the chin): Lee et al. (2018); Polo et al.
(2019; forehead)*; Zebrowitz et al. (2015; top of the head in infants).
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1299  Table 2. Point-biserial correlations with sex across age groups (positive values
1300  indicate that females are larger)

1301
fWHR-
fWHR- fWHR- fWHR- lower
nasion brow stomion (nasion Cheek-
(nasion (brow to (nasion to bone
to labiale labiale to bottom Promin
superius)  superius) stomion)  of chin) - ence BMI Height Age
3D Sample
Adults -.04 n/a .08k .07* .08** S 10EE 7] ek o7t
Adolescents -.01 n/a -.04 .02 .04 .02 S50 HE ] 5k
Juveniles -.10 n/a -12 -12 -12 -.08 .01 .09
Children -.10 n/a -.13 -12 -.05 -.02 -.01 .03
2D Sample
Adolescents 18t - A4%* -.04 .10 -11 15 _o6f 14
Juveniles 24 - 43k .09 30T -.09 -.03 .01 337
1302

1303  Significance levels (two-tailed): TP <0.10, *P <0.05, **P <0.01, ***P <0.001.
1304
1305
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Table 3. Multiple regression models. Standardized Beta coefficients shown with 7 statistic in parentheses. Positive values for
sex indicate female ratios are larger.

3D sample predictors 2D sample predictors

DVs:

Sex

Age

BMI

Age

Adults (aged 22-40)

fWHRnasion

(nasion to labiale superius)
fWHRbrow

(brow to labiale superius)
fWHRstomion

(nasion to stomion)
fWHRIower

(nasion to bottom of chin)
Cheekbone Prominence

Adolescents+ (ages 12-21)

fWHRnasion

(nasion to labiale superius)
fWHRbrow

(brow to labiale superius)
fWHRstomion

(nasion to stomion)
fWHRIower

(nasion to bottom of chin)
Cheekbone Prominence

Juveniles (ages 7-11)

fWHRnasion

(nasion or brow to labiale superius)
fWHRbrow

(brow to labiale superius)
fWHRstomion

(nasion to stomion)

fWHRIower

(nasion to bottom of chin)

-01 (-0.2)

-.05 (-2.1%)
09 (3.2%%%)

08 (2.8%%)

01 (0.4)

-01 (-0.1)

.06 (1.5)

05 (1.1)

-.04 (-0.6)

-.06 (-0.9)

-.07 (-0.9)

- 13 (-4.9%%%)

-.08 (-3.0%%)
-03 (-1.1)

02 (0.78)

-5 (-5.9%%%)

-27 (-6.4%%%)

-32 (-7.6%%%)

- 11 (-2.3%)

-24 (-3.2%%%)

-8 (-3.8%%%)

-24 (-3.2%%%)

24 (9.1%%%)

26 (9.8%%%)
15 (5.6%%%)

-.08 (-2.7%%)

22 (5.3%%%)

25 (1.0%%%)

14 (3.4%%%)

06 (-1.2)

30 (4.1%%%)

32 (4.3%%%)

23 (3.0%%)

17 (1.77)

- 44 (-4.8%%%)

-02(-0.2)
20 (2.0%)

-.03 (-0.3)

21 (1.4)
-44 (-3.0%%)
.04 (-0.3)

27 (1.3

-12(-12)
-20 (-2.2%)
-27 (-2.7%%)
226 (-2.7%%)

-21 (-2.1%)

.10 (0.6)
05 (0.3)
02 (0.1)

.06 (0.3)

14(1.3)
20 (2.2%)

15(1.4)

-33 (-2.1%%)

-28 (-2.8%%)

.10 (0.7)
29 (2.0%)
35 (2.3%)

-20 (-1.4)
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Cheekbone Prominence -.08 (-1.0) -.12 (-2.4%) .06 (0.7) -.14 (0.9) -.09 (-0.6) -27 (-1.8%)

Children (ages 3-6)
fWHRnasion -.09 (-1.3) =31 (-4.3%%%) .06 (0.9) -- -- --
(nasion or brow to labiale superius)
fWHRbrow -- -- --
(brow to labiale superius)
fWHRstomion - 12 (-1.7%) -.32 (-4.5%%%) .01 (0.2) -- -- --
(nasion to stomion)
fWHRIower -.13 (-1.9%) =31 (-4.3%%%) -.05 (-0.7) -- -- --
(nasion to bottom of chin)
Cheekbone Prominence -.07 (-0.9) -.28 (-3.8***) -.01 (-0.1) -- -- --

Note. 1P <0.10, *P <0.05, **P <0.01, ***P < 0.001.

Model Summary:

aAdults, 3D: fWHRnasion [F(3,1429) =31.4, p <.001, R? = .06]; fWHRstomion [F(3,1428) = 36.1, p < .001, R? = .07]; fWHRlower
[F(3,1400) = 12.8, p <.001, R? = .03]; Cheekbone Prominence [F(3,1375) = 5.9, p=.001, R>=.01].

Adolescents, 3D: fWHRnasion [F(3,553) = 16.6, p <.001, R? = .08]; fWHRstomion [F(3,553) =20.9, p <.001, R? = .10];
fWHRIlower [F(3,543) = 20.0, p <.001, R? = .10]; Cheekbone Prominence [F(3,488) = 3.2, p = .024, R> = .02].

Adolescents, 2D: fWHRnasion [F(3,95) =2.2, p =.099, R? = .06]; fWHRbrow [F(3,92) = 11.1, p <.001, R? = .27]; fWHRstomion
[F(3,92)=3.1, p =.029, R? = .09]; fWHRIlower [F(3,95) = 6.8, p <.001, R? = .18]; Cheekbone Prominence [F(3,95) = 4.6, p = .005,
R?=.13].

Juveniles, 3D: fWHRnasion [F(3,185)=7.5, p <.001, R? = .11]; fWHRstomion [F(3,185) = 9.3, p <.001, R? = .13]; fWHRIlower
[F(3,184)= 5.8, p =.001, R? = .09]; Cheekbone Prominence [F(3,156) = 2.6, p = .055, R? = .05].

Juveniles, 2D: fWHRnasion [F(3,41) = 1.2, p =331, R? = .08]; fWHRbrow [F(3,38) = 4.6, p = .007, R? = .27]; fWHRstomion
[F(3,39)=1.9,p=.144, R? = .13]

fWHRIlower [F(3,41) = 2.0, p = .133, R? = .13]; Cheekbone Prominence [F(3,41)= 1.7, p=.176, R> = .11].

Children, 3D: fWHRnasion [F(3,176) = 7.0, p < .001, R? = .11]; fWHRstomion [F(3,176) = 7.6, p < .001, R? = .12]; fWHRlower
[F(3,166) =17.5, p<.001, R?> = .12]; Cheekbone Prominence [F(3,171) = 5.0, p = .002, R? = .08].
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